1
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Carvalho EM, Ding EA, Saha A, Garcia DC, Weldy A, Zushin PJH, Stahl A, Aghi MK, Kumar S. Viscoelastic High-Molecular-Weight Hyaluronic Acid Hydrogels Support Rapid Glioblastoma Cell Invasion with Leader-Follower Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404885. [PMID: 39508297 DOI: 10.1002/adma.202404885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Hyaluronic acid (HA), the primary component of brain extracellular matrix, is increasingly used to model neuropathological processes, including glioblastoma (GBM) tumor invasion. While elastic hydrogels based on crosslinked low-molecular-weight (LMW) HA are widely exploited for this purpose and have proven valuable for discovery and screening, brain tissue is both viscoelastic and rich in high-MW (HMW) HA, and it remains unclear how these differences influence invasion. To address this question, hydrogels comprised of either HMW (1.5 MDa) or LMW (60 kDa) HA are introduced, characterized, and applied in GBM invasion studies. Unlike LMW HA hydrogels, HMW HA hydrogels relax stresses quickly, to a similar extent as brain tissue, and to a greater extent than many conventional HA-based scaffolds. GBM cells implanted within HMW HA hydrogels invade much more rapidly than in their LMW HA counterparts and exhibit distinct leader-follower dynamics. Leader cells adopt dendritic morphologies similar to invasive GBM cells observed in vivo. Transcriptomic, pharmacologic, and imaging studies suggest that leader cells exploit hyaluronidase, an enzyme strongly enriched in human GBMs, to prime a path for followers. This study offers new insight into how HA viscoelastic properties drive invasion and argues for the use of highly stress-relaxing materials to model GBM.
Collapse
Affiliation(s)
- Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Atul Saha
- Department of Neurosurgery, University of California, San Francisco, CA, 94158, USA
| | - Diana Cruz Garcia
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Anna Weldy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California, San Francisco, CA, 94158, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
3
|
Zhang L, Lv Z, Xu QY, Wu B. TREM2 promotes the proliferation and invasion of renal cell carcinoma cells by inhibiting the P53 signaling pathway. Oncol Lett 2024; 28:538. [PMID: 39310025 PMCID: PMC11413725 DOI: 10.3892/ol.2024.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 09/25/2024] Open
Abstract
Renal cell carcinoma (RCC) is a prevalent malignancy characterized by poor prognosis and high mortality. The role of triggering receptor expressed on myeloid cells-2 (TREM2) in RCC progression has been increasingly recognized, yet its underlying mechanisms remain to be fully elucidated. The aim of the present study was to assess the effects of TREM2 on RCC cells and its potential mechanisms. Lentiviral transfection was used to knockdown and overexpress TREM2 in RCC cells, and the expression level of TREM2 was evaluated using reverse transcription-quantitative PCR. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to assess the proliferation of the RCC cells. Cell migration and invasion was evaluated using the wound healing assay and Transwell assay, respectively. Western blotting was used to assess the expression levels of TREM2, P53, p-P53, P21 and p-P21 in TREM2 knockdown or overexpression RCC cells. The results demonstrated that the expression level of TREM2 was significantly higher in cancer tissues compared with adjacent normal tissues. The results of the CCK-8 and EdU assays demonstrated that knockdown of TREM2 significantly inhibited the proliferation of RCC cells, whilst overexpression of TREM2 enhanced the proliferation of RCC cells. The results of the wound healing and Transwell assay revealed that, compared with the control group, the overexpression of TREM2 significantly increased the migration and invasion of RCC cells, whereas knockdown of TREM2 significantly decreased the migration of RCC cells. In addition, western blotting demonstrated that the phosphorylation levels of P53 and P21 proteins were significantly increased after TREM2 knockdown in RCC cells. In conclusion, TREM2 is highly expressed in RCC tissues and promotes the migration of RCC cells by inhibiting the P53 signaling pathway. The present study provides new insights into the regulatory effect of TREM2 on RCC and further reveals the potential of TREM2 as a therapeutic target for RCC.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213003, P.R. China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Zhong Lv
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213003, P.R. China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Qin-Yu Xu
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213003, P.R. China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Bin Wu
- Department of Urology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213003, P.R. China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
4
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Suh HN, Choi GE. Wnt signaling in the tumor microenvironment: A driver of brain tumor dynamics. Life Sci 2024; 358:123174. [PMID: 39471897 DOI: 10.1016/j.lfs.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The Wnt signaling pathway is important for cell growth and development in the central nervous system and its associated vasculature. Thus, it is an interesting factor for establishing anti-brain cancer therapy. However, simply inhibiting the Wnt signaling pathway in patients with brain tumors is not an effective anti-cancer therapy. Due to their complex microenvironment, which comprises various cell types and signaling molecules, brain tumors pose significant challenges. It is important to understand the interplay between tumor cells and the microenvironment for developing effective therapeutic strategies for both benign and malignant brain tumors. Thus, this research focused on the role of the tumor microenvironment (TME) in brain tumor progression, particularly the involvement of Wnt-dependent signaling pathways. The brain parenchyma comprises neurons, glia, endothelial cells, and other extracellular matrix elements that can contribute to the TME. The TME components can secrete Wnt ligands or associated molecules, resulting in the aberrant activation of the Wnt signaling pathway, followed by tumor progression and therapeutic resistance. Therefore, it is essential to understand the intricate crosstalk between the Wnt signaling pathway and the TME in developing targeted therapies. This review aimed to elucidate the complexities of the brain TME and its interactions with the Wnt signaling pathways to improve treatment outcomes and our understanding of brain tumor biology.
Collapse
Affiliation(s)
- Han Na Suh
- Center for Translational Toxicologic Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeonbukdo 56212, Republic of Korea.
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
6
|
Bartos LM, Quach S, Zenatti V, Kirchleitner SV, Blobner J, Wind-Mark K, Kolabas ZI, Ulukaya S, Holzgreve A, Ruf VC, Kunze LH, Kunte ST, Hoermann L, Härtel M, Park HE, Groß M, Franzmeier N, Zatcepin A, Zounek A, Kaiser L, Riemenschneider MJ, Perneczky R, Rauchmann BS, Stöcklein S, Ziegler S, Herms J, Ertürk A, Tonn JC, Thon N, von Baumgarten L, Prestel M, Tahirovic S, Albert NL, Brendel M. Remote Neuroinflammation in Newly Diagnosed Glioblastoma Correlates with Unfavorable Clinical Outcome. Clin Cancer Res 2024; 30:4618-4634. [PMID: 39150564 PMCID: PMC11474166 DOI: 10.1158/1078-0432.ccr-24-1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Current therapy strategies still provide only limited success in the treatment of glioblastoma, the most frequent primary brain tumor in adults. In addition to the characterization of the tumor microenvironment, global changes in the brain of patients with glioblastoma have been described. However, the impact and molecular signature of neuroinflammation distant of the primary tumor site have not yet been thoroughly elucidated. EXPERIMENTAL DESIGN We performed translocator protein (TSPO)-PET in patients with newly diagnosed glioblastoma (n = 41), astrocytoma WHO grade 2 (n = 7), and healthy controls (n = 20) and compared TSPO-PET signals of the non-lesion (i.e., contralateral) hemisphere. Back-translation into syngeneic SB28 glioblastoma mice was used to characterize Pet alterations on a cellular level. Ultimately, multiplex gene expression analyses served to profile immune cells in remote brain. RESULTS Our study revealed elevated TSPO-PET signals in contralateral hemispheres of patients with newly diagnosed glioblastoma compared to healthy controls. Contralateral TSPO was associated with persisting epileptic seizures and shorter overall survival independent of the tumor phenotype. Back-translation into syngeneic glioblastoma mice pinpointed myeloid cells as the predominant source of contralateral TSPO-PET signal increases and identified a complex immune signature characterized by myeloid cell activation and immunosuppression in distant brain regions. CONCLUSIONS Neuroinflammation within the contralateral hemisphere can be detected with TSPO-PET imaging and associates with poor outcome in patients with newly diagnosed glioblastoma. The molecular signature of remote neuroinflammation promotes the evaluation of immunomodulatory strategies in patients with detrimental whole brain inflammation as reflected by high TSPO expression.
Collapse
Affiliation(s)
- Laura M. Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
| | - Valerio Zenatti
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | | | - Jens Blobner
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Faculty of Biology, Master of Science Program in Molecular and Cellular Biology, Ludwig-Maximilians-Universität München, Planegg, Germany.
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany.
| | - Lea H. Kunze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Sebastian T. Kunte
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Leonie Hoermann
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Marlies Härtel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Ha Eun Park
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Mattes Groß
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Adrian Zounek
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | | | - Robert Perneczky
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom.
| | | | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Jochen Herms
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Munich, Germany.
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| | - Joerg C. Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Matthias Prestel
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Sabina Tahirovic
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Munich Cluster for Systems Neurology (SyNergy), University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Liu SJ, Zou C, Pak J, Morse A, Pang D, Casey-Clyde T, Borah AA, Wu D, Seo K, O'Loughlin T, Lim DA, Ozawa T, Berger MS, Kamber RA, Weiss WA, Raleigh DR, Gilbert LA. In vivo perturb-seq of cancer and microenvironment cells dissects oncologic drivers and radiotherapy responses in glioblastoma. Genome Biol 2024; 25:256. [PMID: 39375777 PMCID: PMC11457336 DOI: 10.1186/s13059-024-03404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Genetic perturbation screens with single-cell readouts have enabled rich phenotyping of gene function and regulatory networks. These approaches have been challenging in vivo, especially in adult disease models such as cancer, which include mixtures of malignant and microenvironment cells. Glioblastoma (GBM) is a fatal cancer, and methods of systematically interrogating gene function and therapeutic targets in vivo, especially in combination with standard of care treatment such as radiotherapy, are lacking. RESULTS Here, we iteratively develop a multiplex in vivo perturb-seq CRISPRi platform for single-cell genetic screens in cancer and tumor microenvironment cells that leverages intracranial convection enhanced delivery of sgRNA libraries into mouse models of GBM. Our platform enables potent silencing of drivers of in vivo growth and tumor maintenance as well as genes that sensitize GBM to radiotherapy. We find radiotherapy rewires transcriptional responses to genetic perturbations in an in vivo-dependent manner, revealing heterogenous patterns of treatment sensitization or resistance in GBM. Furthermore, we demonstrate targeting of genes that function in the tumor microenvironment, enabling alterations of ligand-receptor interactions between immune and stromal cells following in vivo CRISPRi perturbations that can affect tumor cell phagocytosis. CONCLUSION In sum, we demonstrate the utility of multiplexed perturb-seq for in vivo single-cell dissection of adult cancer and normal tissue biology across multiple cell types in the context of therapeutic intervention, a platform with potential for broad application.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Arc Institute, Palo Alto, CA, 94304, USA
| | - Christopher Zou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Joanna Pak
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexandra Morse
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Dillon Pang
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Timothy Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ashir A Borah
- Arc Institute, Palo Alto, CA, 94304, USA
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Wu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas O'Loughlin
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, 10029, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roarke A Kamber
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - William A Weiss
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Departments of Pediatrics, Neurology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
8
|
Deng EZ, Marino GB, Clarke DJB, Diamant I, Resnick AC, Ma W, Wang P, Ma'ayan A. Multiomics2Targets identifies targets from cancer cohorts profiled with transcriptomics, proteomics, and phosphoproteomics. CELL REPORTS METHODS 2024; 4:100839. [PMID: 39127042 PMCID: PMC11384097 DOI: 10.1016/j.crmeth.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The availability of data from profiling of cancer patients with multiomics is rapidly increasing. However, integrative analysis of such data for personalized target identification is not trivial. Multiomics2Targets is a platform that enables users to upload transcriptomics, proteomics, and phosphoproteomics data matrices collected from the same cohort of cancer patients. After uploading the data, Multiomics2Targets produces a report that resembles a research publication. The uploaded matrices are processed, analyzed, and visualized using the tools Enrichr, KEA3, ChEA3, Expression2Kinases, and TargetRanger to identify and prioritize proteins, genes, and transcripts as potential targets. Figures and tables, as well as descriptions of the methods and results, are automatically generated. Reports include an abstract, introduction, methods, results, discussion, conclusions, and references and are exportable as citable PDFs and Jupyter Notebooks. Multiomics2Targets is applied to analyze version 3 of the Clinical Proteomic Tumor Analysis Consortium (CPTAC3) pan-cancer cohort, identifying potential targets for each CPTAC3 cancer subtype. Multiomics2Targets is available from https://multiomics2targets.maayanlab.cloud/.
Collapse
Affiliation(s)
- Eden Z Deng
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Ido Diamant
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine, Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA.
| |
Collapse
|
9
|
Savage WM, Yeary MD, Tang AJ, Sperring CP, Argenziano MG, Adapa AR, Yoh N, Canoll P, Bruce JN. Biomarkers of immunotherapy in glioblastoma. Neurooncol Pract 2024; 11:383-394. [PMID: 39006524 PMCID: PMC11241363 DOI: 10.1093/nop/npae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer, comprising half of all malignant brain tumors. Patients with GBM have a poor prognosis, with a median survival of 14-15 months. Current therapies for GBM, including chemotherapy, radiotherapy, and surgical resection, remain inadequate. Novel therapies are required to extend patient survival. Although immunotherapy has shown promise in other cancers, including melanoma and non-small lung cancer, its efficacy in GBM has been limited to subsets of patients. Identifying biomarkers of immunotherapy response in GBM could help stratify patients, identify new therapeutic targets, and develop more effective treatments. This article reviews existing and emerging biomarkers of clinical response to immunotherapy in GBM. The scope of this review includes immune checkpoint inhibitor and antitumoral vaccination approaches, summarizing the variety of molecular, cellular, and computational methodologies that have been explored in the setting of anti-GBM immunotherapies.
Collapse
Affiliation(s)
- William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Mitchell D Yeary
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Anthony J Tang
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Arjun R Adapa
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nina Yoh
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
10
|
Afzal A, Afzal Z, Bizink S, Davis A, Makahleh S, Mohamed Y, Coniglio SJ. Phagocytosis Checkpoints in Glioblastoma: CD47 and Beyond. Curr Issues Mol Biol 2024; 46:7795-7811. [PMID: 39194679 DOI: 10.3390/cimb46080462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a "don't eat me" signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells.
Collapse
Affiliation(s)
- Amber Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Zobia Afzal
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sophia Bizink
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Sara Makahleh
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Yara Mohamed
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
| | - Salvatore J Coniglio
- School of Integrative Science and Technology, Kean University, Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
11
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
12
|
Villa G, Delev D, Heiland DH. Mapping myeloid cell function: Spatial diversity in tumor and neuronal microenvironment. Cancer Cell 2024; 42:934-936. [PMID: 38861929 DOI: 10.1016/j.ccell.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
In this issue of Cancer Cell, Zhong et al. explore the dual role of TREM2 in glioblastoma-associated myeloid cells, demonstrating its function in promoting inflammation at the tumor-neural interface and suppression within the tumor core, influenced by the local microenvironment. These findings open up promising prospects for advancements in neuro-oncological immunotherapy.
Collapse
Affiliation(s)
- Giulia Villa
- Department of Translational Neurosurgery, Alexander-Friedrich-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University, Erlangen Nürnberg, Erlangen, Germany
| | - Dieter Henrik Heiland
- Department of Translational Neurosurgery, Alexander-Friedrich-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University, Erlangen Nürnberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Zhong J, Xing X, Gao Y, Pei L, Lu C, Sun H, Lai Y, Du K, Xiao F, Yang Y, Wang X, Shi Y, Bai F, Zhang N. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell 2024; 42:968-984.e9. [PMID: 38788719 DOI: 10.1016/j.ccell.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Xudong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Lei Pei
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Chenfei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huixin Sun
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Yanxing Lai
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Kang Du
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ying Yang
- Institute of Pathology and Southwest Cancer Centre, Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center and Jinfeng Laboratory, Chongqing 400039, China
| | - Xiuxing Wang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Centre, Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center and Jinfeng Laboratory, Chongqing 400039, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
14
|
Tharp ME, Han CZ, Balak CD, Fitzpatrick C, O'Connor C, Preissl S, Buchanan J, Nott A, Escoubet L, Mavrommatis K, Gupta M, Schwartz MS, Sang UH, Jones PS, Levy ML, Gonda DD, Ben-Haim S, Ciacci J, Barba D, Khalessi A, Coufal NG, Chen CC, Glass CK, Page DC. The inactive X chromosome drives sex differences in microglial inflammatory activity in human glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597433. [PMID: 38895459 PMCID: PMC11185629 DOI: 10.1101/2024.06.06.597433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Biological sex is an important risk factor in cancer, but the underlying cell types and mechanisms remain obscure. Since tumor development is regulated by the immune system, we hypothesize that sex-biased immune interactions underpin sex differences in cancer. The male-biased glioblastoma multiforme (GBM) is an aggressive and treatment-refractory tumor in urgent need of more innovative approaches, such as considering sex differences, to improve outcomes. GBM arises in the specialized brain immune environment dominated by microglia, so we explored sex differences in this immune cell type. We isolated adult human TAM-MGs (tumor-associated macrophages enriched for microglia) and control microglia and found sex-biased inflammatory signatures in GBM and lower-grade tumors associated with pro-tumorigenic activity in males and anti-tumorigenic activity in females. We demonstrated that genes expressed or modulated by the inactive X chromosome facilitate this bias. Together, our results implicate TAM-MGs, specifically their sex chromosomes, as drivers of male bias in GBM.
Collapse
Affiliation(s)
- Marla E Tharp
- Whitehead Institute, Cambridge, MA 02142, USA
- These authors contributed equally
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Chris D Balak
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Conor Fitzpatrick
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sebastian Preissl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
- Present address: Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justin Buchanan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexi Nott
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | | | | | - Mihir Gupta
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
- Present address: Department of Neurosurgery, Yale University, New Haven, CT 06520, USA
| | - Marc S Schwartz
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - U Hoi Sang
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Pamela S Jones
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
- Present address: Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - David D Gonda
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sharona Ben-Haim
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Joseph Ciacci
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Barba
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexander Khalessi
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Nicole G Coufal
- Department of Pediatrics University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Clark C Chen
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
- Present address: Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
15
|
Rivera-Ramos A, Cruz-Hernández L, Talaverón R, Sánchez-Montero MT, García-Revilla J, Mulero-Acevedo M, Deierborg T, Venero JL, Sarmiento Soto M. Galectin-3 depletion tames pro-tumoural microglia and restrains cancer cells growth. Cancer Lett 2024; 591:216879. [PMID: 38636895 DOI: 10.1016/j.canlet.2024.216879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.
Collapse
Affiliation(s)
- Alberto Rivera-Ramos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Luis Cruz-Hernández
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Rocío Talaverón
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - María Teresa Sánchez-Montero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Juan García-Revilla
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Marta Mulero-Acevedo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Manuel Sarmiento Soto
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain.
| |
Collapse
|
16
|
Yan Y, Bai S, Han H, Dai J, Niu L, Wang H, Dong Q, Yin H, Yuan G, Pan Y. Knockdown of trem2 promotes proinflammatory microglia and inhibits glioma progression via the JAK2/STAT3 and NF-κB pathways. Cell Commun Signal 2024; 22:272. [PMID: 38750472 PMCID: PMC11094905 DOI: 10.1186/s12964-024-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND In the tumor immune microenvironment (TIME), triggering receptor expressed on myeloid cells 2 (trem2) is widely considered to be a crucial molecule on tumor-associated macrophages(TAMs). Multiple studies have shown that trem2 may function as an immune checkpoint in various malignant tumors, mediating tumor immune evasion. However, its specific molecular mechanisms, especially in glioma, remain elusive. METHODS Lentivirus was transfected to establish cells with stable knockdown of trem2. A Transwell system was used for segregated coculture of glioma cells and microglia. Western blotting, quantitative real-time polymerase chain reaction (qRT‒PCR), and immunofluorescence (IF) were used to measure the expression levels of target proteins. The proliferation, invasion, and migration of cells were detected by colony formation, cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. The cell cycle, apoptosis rate and reactive oxygen species (ROS) level of cells were assessed using flow cytometry assays. The comet assay and tube formation assay were used to detect DNA damage in glioma cells and angiogenesis activity, respectively. Gl261 cell lines and C57BL/6 mice were used to construct the glioma orthotopic transplantation tumor model. RESULTS Trem2 was highly overexpressed in glioma TAMs. Knocking down trem2 in microglia suppressed the growth and angiogenesis activity of glioma cells in vivo and in vitro. Mechanistically, knockdown of trem2 in microglia promoted proinflammatory microglia and inhibited anti-inflammatory microglia by activating jak2/stat1 and inhibiting the NF-κB p50 signaling pathway. The proinflammatory microglia produced high concentrations of nitric oxide (NO) and high levels of the proinflammatory cytokines TNF-α, IL-6, and IL-1β, and caused further DNA damage and promoted the apoptosis rate of tumor cells. CONCLUSIONS Our findings revealed that trem2 in microglia plays a significant role in the TIME of gliomas. Knockdown of trem2 in microglia might help to improve the efficiency of inhibiting glioma growth and delaying tumor progression and provide new ideas for further treatment of glioma.
Collapse
Affiliation(s)
- Yunji Yan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Shengwei Bai
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hongxi Han
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Junqiang Dai
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Liang Niu
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Hongyu Wang
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Qiang Dong
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Hang Yin
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China
| | - Guoqiang Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, No.82, cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
| | - Yawen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, No.82, Cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, No.82, cuiyingmen, Chengguan District, Lanzhou City, 730030, Gansu Province, China.
| |
Collapse
|
17
|
Johnson AL, Lopez-Bertoni H. Cellular diversity through space and time: adding new dimensions to GBM therapeutic development. Front Genet 2024; 15:1356611. [PMID: 38774283 PMCID: PMC11106394 DOI: 10.3389/fgene.2024.1356611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
The current median survival for glioblastoma (GBM) patients is only about 16 months, with many patients succumbing to the disease in just a matter of months, making it the most common and aggressive primary brain cancer in adults. This poor outcome is, in part, due to the lack of new treatment options with only one FDA-approved treatment in the last decade. Advances in sequencing techniques and transcriptomic analyses have revealed a vast degree of heterogeneity in GBM, from inter-patient diversity to intra-tumoral cellular variability. These cutting-edge approaches are providing new molecular insights highlighting a critical role for the tumor microenvironment (TME) as a driver of cellular plasticity and phenotypic heterogeneity. With this expanded molecular toolbox, the influence of TME factors, including endogenous (e.g., oxygen and nutrient availability and interactions with non-malignant cells) and iatrogenically induced (e.g., post-therapeutic intervention) stimuli, on tumor cell states can be explored to a greater depth. There exists a critical need for interrogating the temporal and spatial aspects of patient tumors at a high, cell-level resolution to identify therapeutically targetable states, interactions and mechanisms. In this review, we discuss advancements in our understanding of spatiotemporal diversity in GBM with an emphasis on the influence of hypoxia and immune cell interactions on tumor cell heterogeneity. Additionally, we describe specific high-resolution spatially resolved methodologies and their potential to expand the impact of pre-clinical GBM studies. Finally, we highlight clinical attempts at targeting hypoxia- and immune-related mechanisms of malignancy and the potential therapeutic opportunities afforded by single-cell and spatial exploration of GBM patient specimens.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Baltimore, MD, United States
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Baltimore, MD, United States
- Oncology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Peshoff MM, Gupta P, Oberai S, Trivedi R, Katayama H, Chakrapani P, Dang M, Migliozzi S, Gumin J, Kadri DB, Lin JK, Milam NK, Maynard ME, Vaillant BD, Parker-Kerrigan B, Lang FF, Huse JT, Iavarone A, Wang L, Clise-Dwyer K, Bhat KP. Triggering receptor expressed on myeloid cells 2 (TREM2) regulates phagocytosis in glioblastoma. Neuro Oncol 2024; 26:826-839. [PMID: 38237157 PMCID: PMC11066944 DOI: 10.1093/neuonc/noad257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.
Collapse
Affiliation(s)
- Mekenzie M Peshoff
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Pravesh Gupta
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shivangi Oberai
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Prashanth Chakrapani
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Minghao Dang
- Department of Genomic Medicine, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simona Migliozzi
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joy Gumin
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Divya B Kadri
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica K Lin
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nancy K Milam
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark E Maynard
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Brian D Vaillant
- Departments of Translational Molecular Pathology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Brittany Parker-Kerrigan
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Linghua Wang
- Department of Genomic Medicine, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology & Malignancy, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
19
|
Ghosh S, Rothlin CV. TREM2 function in glioblastoma immune microenvironment: Can we distinguish reality from illusion? Neuro Oncol 2024; 26:840-842. [PMID: 38290471 PMCID: PMC11066908 DOI: 10.1093/neuonc/noae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Zheng J, Wang L, Zhao S, Zhang W, Chang Y, Bosco DB, Huang T, Dheer A, Gao S, Xu S, Ayasoufi K, Al-Kharboosh R, Qi F, Xie M, Johnson AJ, Dong H, Quiñones-Hinojosa A, Wu LJ. TREM2 mediates MHCII-associated CD4+ T-cell response against gliomas. Neuro Oncol 2024; 26:811-825. [PMID: 37941134 PMCID: PMC11066911 DOI: 10.1093/neuonc/noad214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Myeloid cells comprise up to 50% of the total tumor mass in glioblastoma (GBM) and have been implicated in promoting tumor progression and immunosuppression. Modulating the response of myeloid cells to the tumor has emerged as a promising new approach for cancer treatment. In this regard, we focus on the Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), which has recently emerged as a novel immune modulator in peripheral tumors. METHODS We studied the TREM2 expression profile in various patient tumor samples and conducted single-cell transcriptomic analysis in both GBM patients and the GL261 mouse glioma model. We utilized multiple mouse glioma models and employed state-of-the-art techniques such as invivo 2-photon imaging, spectrum flow cytometry, and in vitro co-culture assays to study TREM2 function in myeloid cell-mediated phagocytosis of tumor cells, antigen presentation, and response of CD4+ T cells within the tumor hemispheres. RESULTS Our research revealed significantly elevated levels of TREM2 expression in brain tumors compared to other types of tumors in patients. TREM2 was predominantly localized in tumor-associated myeloid cells and was highly expressed in nearly all microglia, as well as various subtypes of macrophages. Surprisingly, in preclinical glioma models, TREM2 deficiency did not confer a beneficial effect; instead, it accelerated glioma progression. Through detailed investigations, we determined that TREM2 deficiency impaired the ability of tumor-myeloid cells to phagocytose tumor cells and led to reduced expression of MHCII. This deficiency further significantly decreased the presence of CD4+ T cells within the tumor hemispheres. CONCLUSIONS Our study unveiled a previously unrecognized protective role of tumor-myeloid TREM2. Specifically, we found that TREM2 enhances the phagocytosis of tumor cells and promotes an immune response by facilitating MHCII-associated CD4+ T-cell responses against gliomas.
Collapse
Affiliation(s)
- Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Wenjing Zhang
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Yuzhou Chang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tao Huang
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shan Gao
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Shengze Xu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Rawan Al-Kharboosh
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
21
|
Lei X, Gou YN, Hao JY, Huang XJ. Mechanisms of TREM2 mediated immunosuppression and regulation of cancer progression. Front Oncol 2024; 14:1375729. [PMID: 38725629 PMCID: PMC11079285 DOI: 10.3389/fonc.2024.1375729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer immunotherapy has recently emerged as a key strategy for cancer treatment. TREM2, a key target for regulating the tumor immune microenvironment, is important in cancer treatment and progression. TREM2 is an immune signaling hub that regulates multiple pathological pathways. It not only suppresses anti-tumor immune responses by inhibiting T cell-mediated immune responses, but it also influences tumorigenesis by affecting NK cell-mediated anti-tumor immunity. Noticeably, TREM2 expression levels also vary significantly among different tumor cells, and it can regulate tumor progression by modulating various signaling pathways. Above all, by summarizing the role of TREM2 in cancer immunotherapy and the mechanism by which TREM2 regulates tumor progression, this paper clarifies TREM2's role in both tumor progression and cancer therapy, identifying a new therapeutic target for oncology diseases.
Collapse
Affiliation(s)
| | | | | | - Xiao Jun Huang
- Department of Gastroenterology, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Carvalho EM, Ding EA, Saha A, Weldy A, Zushin PJH, Stahl A, Aghi MK, Kumar S. Viscoelastic high-molecular-weight hyaluronic acid hydrogels support rapid glioblastoma cell invasion with leader-follower dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588167. [PMID: 38617333 PMCID: PMC11014578 DOI: 10.1101/2024.04.04.588167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hyaluronic acid (HA), the primary component of brain extracellular matrix, is increasingly used to model neuropathological processes, including glioblastoma (GBM) tumor invasion. While elastic hydrogels based on crosslinked low-molecular-weight (LMW) HA are widely exploited for this purpose and have proven valuable for discovery and screening, brain tissue is both viscoelastic and rich in high-MW (HMW) HA, and it remains unclear how these differences influence invasion. To address this question, hydrogels comprised of either HMW (1.5 MDa) or LMW (60 kDa) HA are introduced, characterized, and applied in GBM invasion studies. Unlike LMW HA hydrogels, HMW HA hydrogels relax stresses quickly, to a similar extent as brain tissue, and to a greater extent than many conventional HA-based scaffolds. GBM cells implanted within HMW HA hydrogels invade much more rapidly than in their LMW HA counterparts and exhibit distinct leader-follower dynamics. Leader cells adopt dendritic morphologies, similar to invasive GBM cells observed in vivo. Transcriptomic, pharmacologic, and imaging studies suggest that leader cells exploit hyaluronidase, an enzyme strongly enriched in human GBMs, to prime a path for followers. This study offers new insight into how HA viscoelastic properties drive invasion and argues for the use of highly stress-relaxing materials to model GBM.
Collapse
Affiliation(s)
- Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Atul Saha
- Department of Neurosurgery, University of California, San Francisco, CA 94158, USA
| | - Anna Weldy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley 94720, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California, San Francisco, CA 94158, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Tang W, Lo CWS, Ma W, Chu ATW, Tong AHY, Chung BHY. Revealing the role of SPP1 + macrophages in glioma prognosis and therapeutic targeting by investigating tumor-associated macrophage landscape in grade 2 and 3 gliomas. Cell Biosci 2024; 14:37. [PMID: 38515213 PMCID: PMC10956315 DOI: 10.1186/s13578-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Glioma is a highly heterogeneous brain tumor categorized into World Health Organization (WHO) grades 1-4 based on its malignancy. The suppressive immune microenvironment of glioma contributes significantly to unfavourable patient outcomes. However, the cellular composition and their complex interplays within the glioma environment remain poorly understood, and reliable prognostic markers remain elusive. Therefore, in-depth exploration of the tumor microenvironment (TME) and identification of predictive markers are crucial for improving the clinical management of glioma patients. RESULTS Our analysis of single-cell RNA-sequencing data from glioma samples unveiled the immunosuppressive role of tumor-associated macrophages (TAMs), mediated through intricate interactions with tumor cells and lymphocytes. We also discovered the heterogeneity within TAMs, among which a group of suppressive TAMs named TAM-SPP1 demonstrated a significant association with Epidermal Growth Factor Receptor (EGFR) amplification, impaired T cell response and unfavourable patient survival outcomes. Furthermore, by leveraging genomic and transcriptomic data from The Cancer Genome Atlas (TCGA) dataset, two distinct molecular subtypes with a different constitution of TAMs, EGFR status and clinical outcomes were identified. Exploiting the molecular differences between these two subtypes, we developed a four-gene-based prognostic model. This model displayed strong associations with an elevated level of suppressive TAMs and could be used to predict anti-tumor immune response and prognosis in glioma patients. CONCLUSION Our findings illuminated the molecular and cellular mechanisms that shape the immunosuppressive microenvironment in gliomas, providing novel insights into potential therapeutic targets. Furthermore, the developed prognostic model holds promise for predicting immunotherapy response and assisting in more precise risk stratification for glioma patients.
Collapse
Affiliation(s)
- Wenshu Tang
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Cario W S Lo
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Wei Ma
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Annie T W Chu
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Amy H Y Tong
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Brian H Y Chung
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China.
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
25
|
DeSisto J, Donson AM, Griesinger AM, Fu R, Riemondy K, Mulcahy Levy J, Siegenthaler JA, Foreman NK, Vibhakar R, Green AL. Tumor and immune cell types interact to produce heterogeneous phenotypes of pediatric high-grade glioma. Neuro Oncol 2024; 26:538-552. [PMID: 37934854 PMCID: PMC10912009 DOI: 10.1093/neuonc/noad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Pediatric high-grade gliomas (PHGG) are aggressive brain tumors with 5-year survival rates ranging from <2% to 20% depending upon subtype. PHGG presents differently from patient to patient and is intratumorally heterogeneous, posing challenges in designing therapies. We hypothesized that heterogeneity occurs because PHGG comprises multiple distinct tumor and immune cell types in varying proportions, each of which may influence tumor characteristics. METHODS We obtained 19 PHGG samples from our institution's pediatric brain tumor bank. We constructed a comprehensive transcriptomic dataset at the single-cell level using single-cell RNA-Seq (scRNA-Seq), identified known glial and immune cell types, and performed differential gene expression and gene set enrichment analysis. We conducted multi-channel immunofluorescence (IF) staining to confirm the transcriptomic results. RESULTS Our PHGG samples included 3 principal predicted tumor cell types: astrocytes, oligodendrocyte progenitors (OPCs), and mesenchymal-like cells (Mes). These cell types differed in their gene expression profiles, pathway enrichment, and mesenchymal character. We identified a macrophage population enriched in mesenchymal and inflammatory gene expression as a possible source of mesenchymal tumor characteristics. We found evidence of T-cell exhaustion and suppression. CONCLUSIONS PHGG comprises multiple distinct proliferating tumor cell types. Microglia-derived macrophages may drive mesenchymal gene expression in PHGG. The predicted Mes tumor cell population likely derives from OPCs. The variable tumor cell populations rely on different oncogenic pathways and are thus likely to vary in their responses to therapy.
Collapse
Affiliation(s)
- John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Cell Biology, Stem Cells and Development Graduate Program, Aurora, Colorado, USA
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrea M Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jean Mulcahy Levy
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Julie A Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Cell Biology, Stem Cells and Development Graduate Program, Aurora, Colorado, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
26
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. Clin Immunol 2024:109921. [PMID: 38316202 DOI: 10.1016/j.clim.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles in normal brain development, neurodegeneration, and brain cancers. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Kienzler JC, Becher B. Immunity in malignant brain tumors: Tumor entities, role of immunotherapy, and specific contribution of myeloid cells to the brain tumor microenvironment. Eur J Immunol 2024; 54:e2250257. [PMID: 37940552 DOI: 10.1002/eji.202250257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Malignant brain tumors lack effective treatment, that can improve their poor overall survival achieved with standard of care. Advancement in different cancer treatments has shifted the focus in brain tumor research and clinical trials toward immunotherapy-based approaches. The investigation of the immune cell landscape revealed a dominance of myeloid cells in the tumor microenvironment. Their exact roles and functions are the subject of ongoing research. Current evidence suggests a complex interplay of tumor cells and myeloid cells with competing functions toward support vs. control of tumor growth. Here, we provide a brief overview of the three most abundant brain tumor entities: meningioma, glioma, and brain metastases. We also describe the field of ongoing immunotherapy trials and their results, including immune checkpoint inhibitors, vaccination studies, oncolytic viral therapy, and CAR-T cells. Finally, we summarize the phenotypes of microglia, monocyte-derived macrophages, border-associated macrophages, neutrophils, and potential novel therapy targets.
Collapse
Affiliation(s)
- Jenny C Kienzler
- Institute of Experimental Immunology, Inflammation Research Lab, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research Lab, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Balak CD, Han CZ, Glass CK. Deciphering microglia phenotypes in health and disease. Curr Opin Genet Dev 2024; 84:102146. [PMID: 38171044 DOI: 10.1016/j.gde.2023.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Microglia are the major immune cells of the central nervous system (CNS) that perform numerous adaptive functions required for normal CNS development and homeostasis but are also linked to neurodegenerative and behavioral diseases. Microglia development and function are strongly influenced by brain environmental signals that are integrated at the level of transcriptional enhancers to drive specific programs of gene expression. Here, we describe a conceptual framework for how lineage-determining and signal-dependent transcription factors interact to select and regulate the ensembles of enhancers that determine microglia development and function. We then highlight recent findings that advance these concepts and conclude with a consideration of open questions that represent some of the major hurdles to be addressed in the future.
Collapse
Affiliation(s)
- Christopher D Balak
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Biomedical Sciences Graduate Program, University of California, San Diego, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Department of Medicine, University of California, San Diego, USA.
| |
Collapse
|
29
|
Bhat-Nakshatri P, Khatpe AS, Chen D, Batic K, Mang H, Herodotou C, McGuire PC, Xuei X, Erdogan C, Gao H, Liu Y, Sandusky G, Storniolo AM, Nakshatri H. Signaling Pathway Alterations Driven by BRCA1 and BRCA2 Germline Mutations are Sufficient to Initiate Breast Tumorigenesis by the PIK3CAH1047R Oncogene. CANCER RESEARCH COMMUNICATIONS 2024; 4:38-54. [PMID: 38059556 PMCID: PMC10774565 DOI: 10.1158/2767-9764.crc-23-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Single-cell transcriptomics studies have begun to identify breast epithelial cell and stromal cell specific transcriptome differences between BRCA1/2 mutation carriers and non-carriers. We generated a single-cell transcriptome atlas of breast tissues from BRCA1, BRCA2 mutation carriers and compared this single-cell atlas of mutation carriers with our previously described single-cell breast atlas of healthy non-carriers. We observed that BRCA1 but not BRCA2 mutations altered the ratio between basal (basal-myoepithelial), luminal progenitor (luminal adaptive secretory precursor, LASP), and mature luminal (luminal hormone sensing) cells in breast tissues. A unique subcluster of cells within LASP cells is underrepresented in case of BRCA1 and BRCA2 mutation carriers compared with non-carriers. Both BRCA1 and BRCA2 mutations specifically altered transcriptomes in epithelial cells which are an integral part of NFκB, LARP1, and MYC signaling. Signaling pathway alterations in epithelial cells unique to BRCA1 mutations included STAT3, BRD4, SMARCA4, HIF2A/EPAS1, and Inhibin A signaling. BRCA2 mutations were associated with upregulation of IL6, PDK1, FOXO3, and TNFSF11 signaling. These signaling pathway alterations are sufficient to alter sensitivity of BRCA1/BRCA2-mutant breast epithelial cells to transformation as epithelial cells from BRCA1 mutation carriers overexpressing hTERT + PIK3CAH1047R generated adenocarcinomas, whereas similarly modified mutant BRCA2 cells generated basal carcinomas in NSG mice. Thus, our studies provide a high-resolution transcriptome atlas of breast epithelial cells of BRCA1 and BRCA2 mutation carriers and reveal their susceptibility to PIK3CA mutation-driven transformation. SIGNIFICANCE This study provides a single-cell atlas of breast tissues of BRCA1/2 mutation carriers and demonstrates that aberrant signaling due to BRCA1/2 mutations is sufficient to initiate breast cancer by mutant PIK3CA.
Collapse
Affiliation(s)
| | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Patrick C. McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaoling Xuei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cihat Erdogan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- VA Roudebush Medical Center, Indianapolis, Indiana
| |
Collapse
|
30
|
Shi J, Huang S. Comparative Insight into Microglia/Macrophages-Associated Pathways in Glioblastoma and Alzheimer's Disease. Int J Mol Sci 2023; 25:16. [PMID: 38203185 PMCID: PMC10778632 DOI: 10.3390/ijms25010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Microglia and macrophages are pivotal to the brain's innate immune response and have garnered considerable attention in the context of glioblastoma (GBM) and Alzheimer's disease (AD) research. This review delineates the complex roles of these cells within the neuropathological landscape, focusing on a range of signaling pathways-namely, NF-κB, microRNAs (miRNAs), and TREM2-that regulate the behavior of tumor-associated macrophages (TAMs) in GBM and disease-associated microglia (DAMs) in AD. These pathways are critical to the processes of neuroinflammation, angiogenesis, and apoptosis, which are hallmarks of GBM and AD. We concentrate on the multifaceted regulation of TAMs by NF-κB signaling in GBM, the influence of TREM2 on DAMs' responses to amyloid-beta deposition, and the modulation of both TAMs and DAMs by GBM- and AD-related miRNAs. Incorporating recent advancements in molecular biology, immunology, and AI techniques, through a detailed exploration of these molecular mechanisms, we aim to shed light on their distinct and overlapping regulatory functions in GBM and AD. The review culminates with a discussion on how insights into NF-κB, miRNAs, and TREM2 signaling may inform novel therapeutic approaches targeting microglia and macrophages in these neurodegenerative and neoplastic conditions. This comparative analysis underscores the potential for new, targeted treatments, offering a roadmap for future research aimed at mitigating the progression of these complex diseases.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, Department of Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | - Shiwei Huang
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Shao S, Miao H, Ma W. Unraveling the enigma of tumor-associated macrophages: challenges, innovations, and the path to therapeutic breakthroughs. Front Immunol 2023; 14:1295684. [PMID: 38035068 PMCID: PMC10682717 DOI: 10.3389/fimmu.2023.1295684] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are integral to the tumor microenvironment (TME), influencing cancer progression significantly. Attracted by cancer cell signals, TAMs exhibit unparalleled adaptability, aligning with the dynamic tumor milieu. Their roles span from promoting tumor growth and angiogenesis to modulating metastasis. While substantial research has explored the fundamentals of TAMs, comprehending their adaptive behavior, and leveraging it for novel treatments remains challenging. This review delves into TAM polarization, metabolic shifts, and the complex orchestration of cytokines and chemokines determining their functions. We highlight the complexities of TAM-targeted research focusing on their adaptability and potential variability in therapeutic outcomes. Moreover, we discuss the synergy of integrating TAM-focused strategies with established cancer treatments, such as chemotherapy, and immunotherapy. Emphasis is laid on pioneering methods like TAM reprogramming for cancer immunotherapy and the adoption of single-cell technologies for precision intervention. This synthesis seeks to shed light on TAMs' multifaceted roles in cancer, pinpointing prospective pathways for transformative research and enhancing therapeutic modalities in oncology.
Collapse
Affiliation(s)
- Shengwen Shao
- Clinical Research Center, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Hepatobiliary Surgery, Liaobu Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
32
|
Chen X, Zhao Y, Huang Y, Zhu K, Zeng F, Zhao J, Zhang H, Zhu X, Kettenmann H, Xiang X. TREM2 promotes glioma progression and angiogenesis mediated by microglia/brain macrophages. Glia 2023; 71:2679-2695. [PMID: 37641212 DOI: 10.1002/glia.24456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Triggering receptor expressed on myeloid cell 2 (TREM2), a myeloid cell-specific signaling molecule, controls essential functions of microglia and impacts on the pathogenesis of Alzheimer's disease and other neurodegenerative disorders. TREM2 is also highly expressed in tumor-associated macrophages in different types of cancer. Here, we studied whether TREM2 influences glioma progression. We found a gender-dependent effect of glioma growth in wild-type (WT) animals injected with GL261-EGFP glioma cells. Most importantly, TREM2 promotes glioma progression in male but not female animals. The accumulation of glioma-associated microglia/macrophages (GAMs) and CD31+ blood vessel density is reduced in male TREM2-deficient mice. A transcriptomic analysis of glioma tissue revealed that TREM2 deficiency suppresses immune-related genes. In an organotypic slice model devoid of functional vascularization and immune components from periphery, the tumor size was not affected by TREM2-deficiency. In human resection samples from glioblastoma, TREM2 is upregulated in GAMs. Based on the Cancer Genome Atlas Program (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases, the TREM2 expression levels were negatively correlated with survival. Thus, the TREM2-dependent crosstalk between GAMs and the vasculature formation promotes glioma growth.
Collapse
Affiliation(s)
- Xuezhen Chen
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kaichuan Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Zeng
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junyi Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhou Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Helmut Kettenmann
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xianyuan Xiang
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
33
|
Schlepckow K, Morenas-Rodríguez E, Hong S, Haass C. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer's disease. Lancet Neurol 2023; 22:1048-1060. [PMID: 37863592 DOI: 10.1016/s1474-4422(23)00247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 10/22/2023]
Abstract
Neurodegenerative disorders, including Alzheimer's disease, are associated with microgliosis. Microglia have long been considered to have detrimental roles in Alzheimer's disease. However, functional analyses of genes encoding risk factors that are linked to late-onset Alzheimer's disease, and that are enriched or exclusively expressed in microglia, have revealed unexpected protective functions. One of the major risk genes for Alzheimer's disease is TREM2. Risk variants of TREM2 are loss-of-function mutations affecting chemotaxis, phagocytosis, lipid and energy metabolism, and survival and proliferation. Agonistic anti-TREM2 antibodies have been developed to boost these protective functions in patients with intact TREM2 alleles. Several anti-TREM2 antibodies are in early clinical trials, and current efforts aim to achieve more efficient transport of these antibodies across the blood-brain barrier. PET imaging could be used to monitor target engagement. Data from animal models, and biomarker studies in patients, further support a rationale for boosting TREM2 functions during the preclinical stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Kai Schlepckow
- German Centre for Neurodegenerative Diseases, Munich, Germany
| | - Estrella Morenas-Rodríguez
- Memory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain; Group of Neurogenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Christian Haass
- German Centre for Neurodegenerative Diseases, Munich, Germany; Metabolic Biochemistry, Biomedical Centre, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
34
|
Singh S, Joshi V, Upadhyay A. Amyloids and brain cancer: molecular linkages and crossovers. Biosci Rep 2023; 43:BSR20230489. [PMID: 37335084 PMCID: PMC10548166 DOI: 10.1042/bsr20230489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Amyloids are high-order proteinaceous formations deposited in both intra- and extracellular spaces. These aggregates have tendencies to deregulate cellular physiology in multiple ways; for example, altered metabolism, mitochondrial dysfunctions, immune modulation, etc. When amyloids are formed in brain tissues, the endpoint often is death of neurons. However, interesting but least understood is a close connection of amyloids with another set of conditions in which brain cells proliferate at an extraordinary rate and form tumor inside brain. Glioblastoma is one such condition. Increasing number of evidence indicate a possible link between amyloid formation and depositions in brain tumors. Several proteins associated with cell cycle regulation and apoptotic pathways themselves have shown to possess high tendencies to form amyloids. Tumor suppressor protein p53 is one prominent example that mutate, oligomerize and form amyloids leading to loss- or gain-of-functions and cause increased cell proliferation and malignancies. In this review article, we present available examples, genetic links and common pathways that indicate that possibly the two distantly placed pathways: amyloid formation and developing cancers in the brain have similarities and are mechanistically intertwined together.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| | - Vibhuti Joshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Arun Upadhyay
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| |
Collapse
|
35
|
Bartos LM, Kirchleitner SV, Kolabas ZI, Quach S, Beck A, Lorenz J, Blobner J, Mueller SA, Ulukaya S, Hoeher L, Horvath I, Wind-Mark K, Holzgreve A, Ruf VC, Gold L, Kunze LH, Kunte ST, Beumers P, Park HE, Antons M, Zatcepin A, Briel N, Hoermann L, Schaefer R, Messerer D, Bartenstein P, Riemenschneider MJ, Lindner S, Ziegler S, Herms J, Lichtenthaler SF, Ertürk A, Tonn JC, von Baumgarten L, Albert NL, Brendel M. Deciphering sources of PET signals in the tumor microenvironment of glioblastoma at cellular resolution. SCIENCE ADVANCES 2023; 9:eadi8986. [PMID: 37889970 PMCID: PMC10610915 DOI: 10.1126/sciadv.adi8986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Various cellular sources hamper interpretation of positron emission tomography (PET) biomarkers in the tumor microenvironment (TME). We developed an approach of immunomagnetic cell sorting after in vivo radiotracer injection (scRadiotracing) with three-dimensional (3D) histology to dissect the cellular allocation of PET signals in the TME. In mice with implanted glioblastoma, translocator protein (TSPO) radiotracer uptake per tumor cell was higher compared to tumor-associated microglia/macrophages (TAMs), validated by protein levels. Translation of in vitro scRadiotracing to patients with glioma immediately after tumor resection confirmed higher single-cell TSPO tracer uptake of tumor cells compared to immune cells. Across species, cellular radiotracer uptake explained the heterogeneity of individual TSPO-PET signals. In consideration of cellular tracer uptake and cell type abundance, tumor cells were the main contributor to TSPO enrichment in glioblastoma; however, proteomics identified potential PET targets highly specific for TAMs. Combining cellular tracer uptake measures with 3D histology facilitates precise allocation of PET signals and serves to validate emerging novel TAM-specific radioligands.
Collapse
Affiliation(s)
- Laura M. Bartos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital of Munich, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Alexander Beck
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Jens Blobner
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stephan A. Mueller
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
- Faculty of Biology, Master of Science Program in Molecular and Cellular Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Luciano Hoeher
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
- School of Computation, Information and Technology (CIT), TUM, Boltzmannstr. 3, 85748 Garching, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lea H. Kunze
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sebastian T. Kunte
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Philipp Beumers
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ha Eun Park
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Melissa Antons
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
| | - Nils Briel
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
| | - Leonie Hoermann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Rebecca Schaefer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Denise Messerer
- Department of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan F. Lichtenthaler
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital of Munich, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joerg C. Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
36
|
Murillo Carrasco AG, Giovanini G, Ramos AF, Chammas R, Bustos SO. Insights from a Computational-Based Approach for Analyzing Autophagy Genes across Human Cancers. Genes (Basel) 2023; 14:1550. [PMID: 37628602 PMCID: PMC10454514 DOI: 10.3390/genes14081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In the last decade, there has been a boost in autophagy reports due to its role in cancer progression and its association with tumor resistance to treatment. Despite this, many questions remain to be elucidated and explored among the different tumors. Here, we used omics-based cancer datasets to identify autophagy genes as prognostic markers in cancer. We then combined these findings with independent studies to further characterize the clinical significance of these genes in cancer. Our observations highlight the importance of innovative approaches to analyze tumor heterogeneity, potentially affecting the expression of autophagy-related genes with either pro-tumoral or anti-tumoral functions. In silico analysis allowed for identifying three genes (TBC1D12, KERA, and TUBA3D) not previously described as associated with autophagy pathways in cancer. While autophagy-related genes were rarely mutated across human cancers, the expression profiles of these genes allowed the clustering of different cancers into three independent groups. We have also analyzed datasets highlighting the effects of drugs or regulatory RNAs on autophagy. Altogether, these data provide a comprehensive list of targets to further the understanding of autophagy mechanisms in cancer and investigate possible therapeutic targets.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Guilherme Giovanini
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, Brazil; (G.G.); (A.F.R.)
| | - Alexandre Ferreira Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, Brazil; (G.G.); (A.F.R.)
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Silvina Odete Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|