1
|
De Francisci M, Silvestri E, Bettinelli A, Volpi T, Goyal MS, Vlassenko AG, Cecchin D, Bertoldo A. EMATA: a toolbox for the automatic extraction and modeling of arterial inputs for tracer kinetic analysis in [ 18F]FDG brain studies. EJNMMI Phys 2024; 11:105. [PMID: 39715888 DOI: 10.1186/s40658-024-00707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
PURPOSE PET imaging is a pivotal tool for biomarker research aimed at personalized medicine. Leveraging the quantitative nature of PET requires knowledge of plasma radiotracer concentration. Typically, the arterial input function (AIF) is obtained through arterial cannulation, an invasive and technically demanding procedure. A less invasive alternative, especially for [18F]FDG, is the image-derived input function (IDIF), which, however, often requires correction for partial volume effect (PVE), usually performed via venous blood samples. The aim of this paper is to present EMATA: Extraction and Modeling of Arterial inputs for Tracer kinetic Analysis, an open-source MATLAB toolbox. EMATA automates IDIF extraction from [18F]FDG brain PET images and additionally includes a PVE correction procedure that does not require any blood sampling. METHODS To assess the toolbox generalizability and present example outputs, EMATA was applied to brain [18F]FDG dynamic data of 80 subjects, extracted from two distinct datasets (40 healthy controls, 40 glioma patients). Additionally, to compare with the reference standard, quantification using both IDIF and AIF was carried out on a third open-access dataset of 18 healthy individuals. RESULTS EMATA consistently performs IDIF extraction across all datasets, despite differences in scanners and acquisition protocols. Remarkably high agreement is observed when comparing Patlak's Ki between IDIF and AIF (R2: 0.98 ± 0.02). CONCLUSION EMATA proved adaptability to different datasets characteristics and the ability to provide arterial input functions that can be used for reliable PET quantitative analysis.
Collapse
Affiliation(s)
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Bettinelli
- Department of Information Engineering, University of Padova, Padova, Italy
- Medical Physics Department, Veneto Institute of Oncology - IOV IRCSS, Padova, Italy
| | - Tommaso Volpi
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Manu S Goyal
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrei G Vlassenko
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Diego Cecchin
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Medicine, Unit of Nuclear Medicine, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy.
- Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Chen MD, Deng CF, Chen PF, Li A, Wu HZ, Ouyang F, Hu XG, Liu JX, Wang SM, Tang D. Non-invasive metabolic biomarkers in initial cognitive impairment in patients with diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2024; 26:5519-5536. [PMID: 39233493 DOI: 10.1111/dom.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
AIM Diabetic cognitive impairment (DCI), considered one of the most severe and commonly overlooked complications of diabetes, has shown inconsistent findings regarding the metabolic profiles in DCI patients. This systematic review and meta-analysis aimed to identify dysregulated metabolites as potential biomarkers for early DCI, providing valuable insights into the underlying pathophysiological mechanisms. MATERIALS AND METHODS A systematic search of four databases, namely PubMed, Embase, Web of Science and Cochrane, was conducted up to March 2024. Subsequently, a qualitative review of clinical studies was performed followed by a meta-analysis of metabolite markers. Finally, the sources of heterogeneity were explored through subgroup and sensitivity analyses. RESULTS A total of 774 unique publications involving 4357 participants and the identification of multiple metabolites were retrieved. Of these, 13 clinical studies reported metabolite differences between the DCI and control groups. Meta-analysis was conducted for six brain metabolites and two metabolite ratios. The results revealed a significant increase in myo-inositol (MI) concentration and decreases in glutamate (Glu), Glx (glutamate and glutamine) and N-acetylaspartate/creatine (NAA/Cr) ratios in DCI, which have been identified as the most sensitive metabolic biomarkers for evaluating DCI progression. Notably, brain metabolic changes associated with cognitive impairment are more pronounced in type 2 diabetes mellitus than in type 1 diabetes mellitus, and the hippocampus emerged as the most sensitive brain region regarding metabolic changes associated with DCI. CONCLUSIONS Our results suggest that MI, Glu, and Glx concentrations and NAA/Cr ratios within the hippocampus may serve as metabolic biomarkers for patients with early-stage DCI.
Collapse
Affiliation(s)
- Meng-Di Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chao-Fan Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peng-Fei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ao Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua-Ze Wu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fan Ouyang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xu-Guang Hu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua City, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Neema M, Schultz JL, Langbehn DR, Conrad AL, Epping EA, Magnotta VA, Nopoulos PC. Mutant Huntingtin Drives Development of an Advantageous Brain Early in Life: Evidence in Support of Antagonistic Pleiotropy. Ann Neurol 2024; 96:1006-1019. [PMID: 39115048 PMCID: PMC11496017 DOI: 10.1002/ana.27046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Huntington's disease (HD) is a neurodegenerative disease caused by a triplet repeat expansion within the gene huntingtin (HTT). Antagonistic pleiotropy is a theory of aging that posits that some genes, facilitating individual fitness early in life through adaptive evolutionary changes, also augment detrimental aging-related processes. Antagonistic pleiotropy theory may explain a positive evolutionary pressure toward functionally advantageous brain development that is vulnerable to rapid degeneration. The current study investigated antagonistic pleiotropy in HD using a years-to-onset paradigm in a unique sample of children and young adults at risk for HD. METHODS Cognitive, behavioral, motor, and brain structural measures from premanifest gene-expanded (n = 79) and gene nonexpanded (n = 112) participants (6-21 years) in the Kids-HD study were examined. All measures in the gene-expanded group were modeled using a mixed-effects regression approach to assess years-to-onset-based changes while controlling for normal growth. Simultaneously, structure-function associations were also examined. RESULTS Decades from motor onset, gene-expanded participants showed significantly better cognitive, behavioral, and motor scores versus gene nonexpanded controls, along with larger cerebral volumes and cortical features. After this initial peak, a prolonged deterioration was observed in both functional and structural measures. Far from onset, brain measures were positively correlated with functional measures, supporting the view that functional advantages were mediated by structural differences. INTERPRETATION Mutant HTT may drive the development of a larger than normal brain that subserves superior early-life function. These findings support the antagonistic pleiotropy theory of HTT in HD, where this gene drives early advantage followed by accelerated aging processes. ANN NEUROL 2024;96:1006-1019.
Collapse
Affiliation(s)
- Mohit Neema
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Jordan L. Schultz
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
- Department of Neurology, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Douglas R. Langbehn
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Amy L. Conrad
- Stead Family Department of Pediatrics, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Eric A. Epping
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Vincent A. Magnotta
- Department of Radiology, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| | - Peggy C. Nopoulos
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
- Department of Neurology, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
- Stead Family Department of Pediatrics, Carver College of Medicine at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| |
Collapse
|
4
|
Baram TZ, Birnie MT. Enduring memory consequences of early-life stress / adversity: Structural, synaptic, molecular and epigenetic mechanisms. Neurobiol Stress 2024; 33:100669. [PMID: 39309367 PMCID: PMC11415888 DOI: 10.1016/j.ynstr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Adverse early life experiences are strongly associated with reduced cognitive function throughout life. The link is strong in many human studies, but these do not enable assigning causality, and the limited access to the live human brain can impede establishing the mechanisms by which early-life adversity (ELA) may induce cognitive problems. In experimental models, artificially imposed chronic ELA/stress results in deficits in hippocampus dependent memory as well as increased vulnerability to the deleterious effects of adult stress on memory. This causal relation of ELA and life-long memory impairments provides a framework to probe the mechanisms by which ELA may lead to human cognitive problems. Here we focus on the consequences of a one-week exposure to adversity during early postnatal life in the rodent, the spectrum of the ensuing memory deficits, and the mechanisms responsible. We highlight molecular, cellular and circuit mechanisms using convergent trans-disciplinary approaches aiming to enable translation of the discoveries in experimental models to the clinic.
Collapse
Affiliation(s)
- Tallie Z. Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Zhao HT, Schmidt ER. Human-specific genetic modifiers of cortical architecture and function. Curr Opin Genet Dev 2024; 88:102241. [PMID: 39111228 PMCID: PMC11547859 DOI: 10.1016/j.gde.2024.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Evolution of the cerebral cortex is thought to have been critical for the emergence of our cognitive abilities. Major features of cortical evolution include increased neuron number and connectivity and altered morpho-electric properties of cortical neurons. Significant progress has been made in identifying human-specific genetic modifiers (HSGMs), some of which are involved in shaping these features of cortical architecture. But how did these evolutionary changes support the emergence of our cognitive abilities? Here, we highlight recent studies aimed at examining the impact of HSGMs on cortical circuit function and behavior. We also discuss the need for greater insight into the link between evolution of cortical architecture and the functional and computational properties of neuronal circuits, as we seek to provide a neurobiological foundation for human cognition.
Collapse
Affiliation(s)
- Hanzhi T Zhao
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA
| | - Ewoud Re Schmidt
- Department of Neuroscience, Medical University of South Carolina, Suite 403 BSB, MSC510, 173 Ashley Ave, Charleston, SC 29425, USA.
| |
Collapse
|
6
|
Doll HM, Risgaard RD, Thurston H, Chen RJ, Sousa AM. Evolutionary innovations in the primate dopaminergic system. Curr Opin Genet Dev 2024; 88:102236. [PMID: 39153332 PMCID: PMC11384322 DOI: 10.1016/j.gde.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/12/2024] [Indexed: 08/19/2024]
Abstract
The human brain has evolved unique capabilities compared to other vertebrates. The mechanistic basis of these derived traits remains a fundamental question in biology due to its relevance to the origin of our cognitive abilities and behavioral repertoire, as well as to human-specific aspects of neuropsychiatric and neurodegenerative diseases. Comparisons of the human brain to those of nonhuman primates and other mammals have revealed that differences in the neuromodulatory systems, especially in the dopaminergic system, may govern some of these behavioral and cognitive alterations, including increased vulnerability to certain brain disorders. In this review, we highlight and discuss recent findings of human- and primate-specific alterations of the dopaminergic system, focusing on differences in anatomy, circuitry, and molecular properties.
Collapse
Affiliation(s)
- Hannah M Doll
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan D Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Hailey Thurston
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel J Chen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - André Mm Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Serio B, Hettwer MD, Wiersch L, Bignardi G, Sacher J, Weis S, Eickhoff SB, Valk SL. Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nat Commun 2024; 15:7714. [PMID: 39231965 PMCID: PMC11375086 DOI: 10.1038/s41467-024-51942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.
Collapse
Affiliation(s)
- Bianca Serio
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Brain-Based Predictive Modeling Lab, Feinstein Institutes for Medical Research, Glen Oaks, New York, NY, USA
| | - Giacomo Bignardi
- Max Planck School of Cognition, Leipzig, Germany
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Julia Sacher
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig Center for Female Health & Gender Medicine, Medical Faculty, University Clinic Leipzig, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
8
|
Karl MT, Kim YD, Rajendran K, Manger PR, Sherwood CC. Invariance of Mitochondria and Synapses in the Primary Visual Cortex of Mammals Provides Insight Into Energetics and Function. J Comp Neurol 2024; 532:e25669. [PMID: 39291629 PMCID: PMC11412485 DOI: 10.1002/cne.25669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
The cerebral cortex accounts for substantial energy expenditure, primarily driven by the metabolic demands of synaptic signaling. Mitochondria, the organelles responsible for generating cellular energy, play a crucial role in this process. We investigated ultrastructural characteristics of the primary visual cortex in 18 phylogenetically diverse mammals, spanning a broad range of brain sizes from mouse to elephant. Our findings reveal remarkable uniformity in synapse density, postsynaptic density (PSD) length, and mitochondria density, indicating functional and metabolic constraints that maintain these fundamental features. Notably, we observed an average of 1.9 mitochondria per synapse across mammalian species. When considered together with the trend of decreasing neuron density with larger brain size, we find that brain enlargement in mammals is characterized by increasing proportions of synapses and mitochondria per cortical neuron. These results shed light on the adaptive mechanisms and metabolic dynamics that govern cortical ultrastructure across mammals.
Collapse
Affiliation(s)
- Molly T Karl
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Young Do Kim
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Kavita Rajendran
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Feng T, Yang Y, Wang Y, Wei PH, Fan X, Zhang H, An Y, Wang T, Huang Y, Chen S, Piao Y, Xiao F, Duncan JS, Shan Y, Zhao G. Delineating structural and metabolic abnormalities in amygdala and hippocampal subfields for different seizure-onset patterns via stereotactic electroencephalography. CNS Neurosci Ther 2024; 30:e14905. [PMID: 39248455 PMCID: PMC11382356 DOI: 10.1111/cns.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
AIMS We aimed to investigate mesial temporal lobe abnormalities in mesial temporal lobe epilepsy (MTLE) patients with hypersynchronous (HYP) and low-voltage fast rhythms (LVF) onset identified by stereotactic electroencephalography (SEEG) and evaluate their diagnostic and prognostic value. METHODS Fifty-one MTLE patients were categorized as HYP or LVF by SEEG. High-resolution MRI volume-based analysis and 18F-FDG-PET standard uptake values of hippocampal and amygdala subfields were quantified and compared with 57 matched controls. Further analyses were conducted to delineate the distinct pathological characteristics differentiating the two groups. Diagnostic and prognostic prediction performance of these biomarkers were assessed using receiver operating characteristic curves. RESULTS LVF-onset individuals demonstrated ipsilateral amygdala enlargement (p = 0.048) and contralateral hippocampus hypermetabolism (p = 0.042), pathological results often accompany abnormalities in the temporal lobe cortex, while HYP-onset subjects had significant atrophy (p < 0.001) and hypometabolism (p = 0.013) in ipsilateral hippocampus and its subfields, as well as amygdala atrophy (p < 0.001), pathological results are highly correlated with hippocampal sclerosis. Severe fimbria atrophy was observed in cases of HYP-onset MTLE with poor prognosis (AUC = 0.874). CONCLUSION Individuals with different seizure-onset patterns display specific morphological and metabolic abnormalities in the amygdala and hippocampus. Identifying these subfield abnormalities can improve diagnostic and prognostic precision, guiding surgical strategies for MTLE.
Collapse
Affiliation(s)
- Tao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Huaqiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yang An
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Tianren Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yuda Huang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Sichang Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yueshan Piao
- China International Neuroscience Institute (CHINA-INI), Beijing, China
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fenglai Xiao
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK
| | - John S Duncan
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont Saint Peter, UK
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
- Institute for Brain Disorder, Beijing, China
| |
Collapse
|
10
|
Clairis N, Barakat A, Brochard J, Xin L, Sandi C. A neurometabolic mechanism involving dmPFC/dACC lactate in physical effort-based decision-making. Mol Psychiatry 2024:10.1038/s41380-024-02726-y. [PMID: 39215184 DOI: 10.1038/s41380-024-02726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Motivation levels vary across individuals, yet the underlying mechanisms driving these differences remain elusive. The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) and the anterior insula (aIns) play crucial roles in effort-based decision-making. Here, we investigate the influence of lactate, a key metabolite involved in energy metabolism and signaling, on decisions involving both physical and mental effort, as well as its effects on neural activation. Using proton magnetic resonance spectroscopy and functional MRI in 63 participants, we find that higher lactate levels in the dmPFC/dACC are associated with reduced motivation for physical effort, a relationship mediated by neural activity within this region. Additionally, plasma and dmPFC/dACC lactate levels correlate, suggesting a systemic influence on brain metabolism. Supported by path analysis, our results highlight lactate's role as a modulator of dmPFC/dACC activity, hinting at a neurometabolic mechanism that integrates both peripheral and central metabolic states with brain function in effort-based decision-making.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Arthur Barakat
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jules Brochard
- Transdisciplinary Research Areas, Life and Health, University of Bonn, Bonn, Germany
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
11
|
Wang W, Zhao J, Li Z, Kang X, Li T, Isaev NK, Smirnova EA, Shen H, Liu L, Yu Y. L-DOPA ameliorates hippocampus-based mitochondria respiratory dysfunction caused by GCI/R injury. Biomed Pharmacother 2024; 175:116664. [PMID: 38678966 DOI: 10.1016/j.biopha.2024.116664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Mitochondrial dysmorphology/dysfunction follow global cerebral ischemia-reperfusion (GCI/R) injury, leading to neuronal death. Our previous researches demonstrated that Levodopa (L-DOPA) improves learning and memory impairment in GCI/R rats by increasing synaptic plasticity of hippocampal neurons. This study investigates if L-DOPA, used in Parkinson's disease treatment, alleviates GCI/R-induced cell death by enhancing mitochondrial quality. Metabolomics and transcriptomic results showed that GCI/R damage affected the Tricarboxylic acid (TCA) cycle in the hippocampus. The results of this study show that L-DOPA stabilized mitochondrial membrane potential and ultrastructure in hippocampus of GCI/R rats, increased dopamine level in hippocampus, decreased succinic acid level, and stabilized Ca2+ level in CA1 subregion of hippocampus. As a precursor of dopamine, L-DOPA is presumed to improves mitochondrial function in hippocampus of GCI/R rats. However, dopamine cannot cross the blood-brain barrier, so L-DOPA is used in clinical therapy to supplement dopamine. In this investigation, OGD/R models were established in isolated mouse hippocampal neurons (HT22) and primary rat hippocampal neurons. Notably, dopamine exhibited a multifaceted impact, demonstrating inhibition of mitochondrial reactive oxygen species (mitoROS) production, stabilization of mitochondrial membrane potential and Ca2+ level, facilitation of TCA circulation, promotion of aerobic respiratory metabolism, and downregulation of succinic acid-related gene expression. Consistency between in vitro and in vivo results underscores dopamine's significant neuroprotective role in mitigating mitochondrial dysfunction following global cerebral hypoxia and ischemia injury. Supplement dopamine may represent a promising therapy to the cognitive impairment caused by GCI/R injury.
Collapse
Affiliation(s)
- Wenzhu Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, PR China; Wenzhou Medical University, Wenzhou, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Jingyu Zhao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, PR China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Xiaoyu Kang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, PR China
| | - Ting Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China
| | - Nickolay K Isaev
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia; Research Center of Neurology, Moscow, Russia
| | - Elena A Smirnova
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia; Department of Biology, MSU-BIT University, Shenzhen, PR China
| | - Hui Shen
- Dept of Cellular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, PR China.
| | - Lixu Liu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, PR China; School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China.
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China; School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China.
| |
Collapse
|
12
|
Baciu M, Roger E. Finding the Words: How Does the Aging Brain Process Language? A Focused Review of Brain Connectivity and Compensatory Pathways. Top Cogn Sci 2024. [PMID: 38734967 DOI: 10.1111/tops.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
As people age, there is a natural decline in cognitive functioning and brain structure. However, the relationship between brain function and cognition in older adults is neither straightforward nor uniform. Instead, it is complex, influenced by multiple factors, and can vary considerably from one person to another. Reserve, compensation, and maintenance mechanisms may help explain why some older adults can maintain high levels of performance while others struggle. These mechanisms are often studied concerning memory and executive functions that are particularly sensitive to the effects of aging. However, language abilities can also be affected by age, with changes in production fluency. The impact of brain changes on language abilities needs to be further investigated to understand the dynamics and patterns of aging, especially successful aging. We previously modeled several compensatory profiles of language production and lexical access/retrieval in aging within the Lexical Access and Retrieval in Aging (LARA) model. In the present paper, we propose an extended version of the LARA model, called LARA-Connectivity (LARA-C), incorporating recent evidence on brain connectivity. Finally, we discuss factors that may influence the strategies implemented with aging. The LARA-C model can serve as a framework to understand individual performance and open avenues for possible personalized interventions.
Collapse
Affiliation(s)
- Monica Baciu
- LPNC, Psychology Department, Grenoble Alps University
- Neurology Department, Grenoble Alps University Hospital
| | - Elise Roger
- LPNC, Psychology Department, Grenoble Alps University
- Communication and Aging Laboratory, Research Center of the University Institute of Geriatrics of Montreal
- Faculty of Medicine, University of Montreal
| |
Collapse
|
13
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
14
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, Thiebaut de Schotten M, Picard M. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. RESEARCH SQUARE 2024:rs.3.rs-4047706. [PMID: 38562777 PMCID: PMC10984021 DOI: 10.21203/rs.3.rs-4047706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A. Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gorazd B. Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J. Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - J. John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, France
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
15
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, de Schotten MT, Picard M. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583623. [PMID: 38496679 PMCID: PMC10942385 DOI: 10.1101/2024.03.05.583623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A. Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gorazd B. Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J. Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - J. John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, France
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
16
|
Saheli M, Moshrefi M, Baghalishahi M, Mohkami A, Firouzi Y, Suzuki K, Khoramipour K. Cognitive Fitness: Harnessing the Strength of Exerkines for Aging and Metabolic Challenges. Sports (Basel) 2024; 12:57. [PMID: 38393277 PMCID: PMC10891799 DOI: 10.3390/sports12020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Addressing cognitive impairment (CI) represents a significant global challenge in health and social care. Evidence suggests that aging and metabolic disorders increase the risk of CI, yet promisingly, physical exercise has been identified as a potential ameliorative factor. Specifically, there is a growing understanding that exercise-induced cognitive improvement may be mediated by molecules known as exerkines. This review delves into the potential impact of aging and metabolic disorders on CI, elucidating the mechanisms through which various exerkines may bolster cognitive function in this context. Additionally, the discussion extends to the role of exerkines in facilitating stem cell mobilization, offering a potential avenue for improving cognitive impairment.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Mandana Moshrefi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Masoumeh Baghalishahi
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Amirhossein Mohkami
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Yaser Firouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| |
Collapse
|