1
|
Peterson KA, Murray SA. Progress towards completing the mutant mouse null resource. Mamm Genome 2022; 33:123-134. [PMID: 34698892 PMCID: PMC8913489 DOI: 10.1007/s00335-021-09905-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022]
Abstract
The generation of a comprehensive catalog of null alleles covering all protein-coding genes is the goal of the International Mouse Phenotyping Consortium. Over the past 20 years, significant progress has been made towards achieving this goal through the combined efforts of many large-scale programs that built an embryonic stem cell resource to generate knockout mice and more recently employed CRISPR/Cas9-based mutagenesis to delete critical regions predicted to result in frameshift mutations, thus, ablating gene function. The IMPC initiative builds on prior and ongoing work by individual research groups creating gene knockouts in the mouse. Here, we analyze the collective efforts focusing on the combined null allele resource resulting from strains developed by the research community and large-scale production programs. Based upon this pooled analysis, we examine the remaining fraction of protein-coding genes focusing on clearly defined mouse-human orthologs as the highest priority for completing the mutant mouse null resource. In summary, we find that there are less than 3400 mouse-human orthologs remaining in the genome without a targeted null allele that can be further prioritized to achieve our overall goal of the complete functional annotation of the protein-coding portion of a mammalian genome.
Collapse
|
2
|
Cowley AW, Dwinell MR. Chromosomal Substitution Strategies to Localize Genomic Regions Related to Complex Traits. Compr Physiol 2020; 10:365-388. [PMID: 32163204 DOI: 10.1002/cphy.c180029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromosomal substitution strategies provide a powerful tool to anonymously reveal the relationship between DNA sequence variants and a normal or disease phenotype of interest. Even in this age of CRISPR-Cas9 genome engineering, the knockdown or overexpression of a gene provides relevant information to our understanding of complex disease only when a close association of an allelic variant with the phenotype has first been established. Limitations of genetic linkage approaches led to the development of more efficient breeding strategies to substitute chromosomal segments from one animal strain into the genetic background of a different strain, enabling a direct comparison of the phenotypes of the strains with variant(s) that differ only at a defined locus. This substitution can be a whole chromosome (consomic), a part of a chromosome (congenic), or as small as only a single or several alleles (subcongenics). In contrast to complete knockout of a specific candidate gene of interest, which simply studies the effects of complete elimination of the gene, the substitution of naturally occurring variants can provide special insights into the functional actions of wild-type alleles. Strategies for production of these inbred strains are reviewed, and a number of examples are used to illustrate the utility of these model systems. Consomic/congenic strains provide a number of experimental advantages in the study of functions of genes and their variants, which are emphasized in this article, such as replication of experimental studies; determination of temporal relationships throughout a life; rigorously controlled experiments in which relations between genotype and phenotype can be tested with the confounding effects of heterogeneous genetic backgrounds, both targeted and multilayered; and "omic" studies performed at many levels of functionality, from molecules to organelles, cells to organs, and organs to organismal behavior across the life span. The application of chromosomal substitution strategies and development of consomic/congenic rat and mouse strains have greatly expanded our knowledge of genomic variants and their phenotypic relationship to physiological functions and to complex diseases such as hypertension and cancer. © 2020 American Physiological Society. Compr Physiol 10:365-388, 2020.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
4
|
Gurumurthy CB, Lloyd KCK. Generating mouse models for biomedical research: technological advances. Dis Model Mech 2019; 12:dmm029462. [PMID: 30626588 PMCID: PMC6361157 DOI: 10.1242/dmm.029462] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, new methods and procedures have been developed to generate genetically engineered mouse models of human disease. This At a Glance article highlights several recent technical advances in mouse genome manipulation that have transformed our ability to manipulate and study gene expression in the mouse. We discuss how conventional gene targeting by homologous recombination in embryonic stem cells has given way to more refined methods that enable allele-specific manipulation in zygotes. We also highlight advances in the use of programmable endonucleases that have greatly increased the feasibility and ease of editing the mouse genome. Together, these and other technologies provide researchers with the molecular tools to functionally annotate the mouse genome with greater fidelity and specificity, as well as to generate new mouse models using faster, simpler and less costly techniques.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
| | - Kevin C Kent Lloyd
- Department of Surgery, School of Medicine, University of California, Davis, CA 95618, USA
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| |
Collapse
|
5
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
6
|
Moore SC, Park MA, Liu Z, Lyon MC, Johnson LC, Lushear VH, Westberg JG, Metzler SD. Design of a dual-resolution collimator for preclinical cardiac SPECT with a stationary triple-detector system. Med Phys 2016; 43:6336. [PMID: 27908172 PMCID: PMC5097051 DOI: 10.1118/1.4966697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/17/2016] [Accepted: 10/11/2016] [Indexed: 11/07/2022] Open
Abstract
PURPOSE One approach to preclinical single-photon emission computed tomography (SPECT) imaging that provides both high resolution and high sensitivity is based on imaging a mouse inside a collimating tube; many magnified pinhole projection images from a small target region, e.g., the heart, can be recorded simultaneously on multiple detectors with little multiplexing since each pinhole aperture's opening angle is restricted to view mostly the target organ. However, to obtain complete data for reconstruction, it may be necessary to scan the mouse through the target region of the tube. The authors are developing a different approach based on acquisition and reconstruction of both low-resolution and high-resolution projection data acquired sequentially through many pinholes embedded in two tungsten tube sections of different diameters, a "scout" section and a high-resolution section, placed end-to-end along the axis of a triple-head clinical SPECT scanner. This paper describes the design procedures used to determine the geometric parameters of two new collimator-tube sections, as well as one approach for joint reconstruction of data acquired from both sections. METHODS The high-resolution section was designed by projecting as many pinhole views of a simulated mouse heart as possible over each detector's camera, with no overlapping of heart projections and minimal overlapping between adjacent "hot" organ and cardiac projections. The authors then jointly optimized the geometric design of the scout section for a triple-detector camera system, as well as the number of maximum-likelihood expectation maximization (MLEM) iterations required to provide minimum mean-squared error of reconstructed voxel counts throughout a 7-cm axial range, with the constraints of fixed, 2.4-mm scout system resolution at the tube center for all apertures, limited multiplexing, and no detector motion. Simulated mouse projection data from both tube sections were then reconstructed to illustrate a simple approach for using high-resolution data to improve the whole-body scout images within a cylindrical region surrounding the heart. RESULTS The 2-cm-inner-radius high-resolution tube section accommodated 87 platinum-iridium pinhole inserts, each with a 0.3-mm square aperture; their radial distances from the centerline of the system ranged from 2.2 to 3.0 cm. The optimal radial distance to the closest scout pinhole and optimal number of MLEM iterations were 4.4 cm and 35 iterations, respectively, and the radial distances of the 39 scout pinholes ranged from 4.4 to 4.8 cm; aperture sizes ranged from 1.1 to 1.7 mm transaxially and 0.9-1.5 mm axially. After including data from the high-resolution section viewing the heart region into whole-body mouse reconstructions from scout data, the authors obtained high-resolution images of the heart, embedded within lower resolution images of the body, with minimal artifacts. CONCLUSIONS The authors have optimized a dual-resolution collimator tube that provides both whole-body projections of a mouse and more targeted projections centered on the heart that can be jointly reconstructed to obtain high-resolution images of the heart embedded within lower-resolution whole-body images.
Collapse
Affiliation(s)
- Stephen C Moore
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Mi-Ae Park
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Zhe Liu
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | | | - Lindsay C Johnson
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | - Scott D Metzler
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
7
|
Kumagai K, Takanashi M, Ohno SI, Kuroda M, Sudo K. An improved Red/ET recombineering system and mouse ES cells culture conditions for the generation of targeted mutant mice. Exp Anim 2016; 66:125-136. [PMID: 27890869 PMCID: PMC5411299 DOI: 10.1538/expanim.16-0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Targeted mutant mice generated on a C57BL/6 background are powerful tools for analysis of
the biological functions of genes, and gene targeting technologies using mouse embryonic
stem (ES) cells have been used to generate such mice. Recently, a bacterial artificial
chromosome (BAC) recombineering system was established for the construction of targeting
vectors. However, gene retrieval from BACs for the generation of gene targeting vectors
using this system remains difficult. Even when construction of a gene targeting vector is
successful, the efficiency of production of targeted mutant mice from ES cells derived
from C57BL/6 mice are poor. Therefore, in this study, we first improved the strategy for
the retrieval of genes from BACs and their transfer into a DT-A plasmid, for the
generation of gene targeting vectors using the BAC recombineering system. Then, we
attempted to generate targeted mutant mice from ES cell lines derived from C57BL/6 mice,
by culturing in serum-free medium. In conclusion, we established an improved strategy for
the efficient generation of targeted mutant mice on a C57BL/6 background, which are useful
for the in vivo analysis of gene functions and regulation.
Collapse
Affiliation(s)
- Katsuyoshi Kumagai
- Pre-Clinical Research Center, University-related Facilities, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | - Masahiko Kuroda
- Department of Pathology, Tokyo Medical University, Tokyo, Japan
| | - Katsuko Sudo
- Pre-Clinical Research Center, University-related Facilities, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
8
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|
9
|
Current challenges in genome annotation through structural biology and bioinformatics. Curr Opin Struct Biol 2012; 22:594-601. [PMID: 22884875 DOI: 10.1016/j.sbi.2012.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 01/25/2023]
Abstract
With the huge volume in genomic sequences being generated from high-throughout sequencing projects the requirement for providing accurate and detailed annotations of gene products has never been greater. It is proving to be a huge challenge for computational biologists to use as much information as possible from experimental data to provide annotations for genome data of unknown function. A central component to this process is to use experimentally determined structures, which provide a means to detect homology that is not discernable from just the sequence and permit the consequences of genomic variation to be realized at the molecular level. In particular, structures also form the basis of many bioinformatics methods for improving the detailed functional annotations of enzymes in combination with similarities in sequence and chemistry.
Collapse
|
10
|
Unique profile of ordered arrangements of repetitive elements in the C57BL/6J mouse genome implicating their functional roles. PLoS One 2012; 7:e35156. [PMID: 22529984 PMCID: PMC3329453 DOI: 10.1371/journal.pone.0035156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/09/2012] [Indexed: 12/18/2022] Open
Abstract
The entirety of all protein coding sequences is reported to represent a small fraction (∼2%) of the mouse and human genomes; the vast majority of the rest of the genome is presumed to be repetitive elements (REs). In this study, the C57BL/6J mouse reference genome was subjected to an unbiased RE mining to establish a whole-genome profile of RE occurrence and arrangement. The C57BL/6J mouse genome was fragmented into an initial set of 5,321 units of 0.5 Mb, and surveyed for REs using unbiased self-alignment and dot-matrix protocols. The survey revealed that individual chromosomes had unique profiles of RE arrangement structures, named RE arrays. The RE populations in certain genomic regions were arranged into various forms of complexly organized structures using combinations of direct and/or inverse repeats. Some of these RE arrays spanned stretches of over 2 Mb, which may contribute to the structural configuration of the respective genomic regions. There were substantial differences in RE density among the 21 chromosomes, with chromosome Y being the most densely populated. In addition, the RE array population in the mouse chromosomes X and Y was substantially different from those of the reference human chromosomes. Conversion of the dot-matrix data pertaining to a tandem 13-repeat structure within the Ch7.032 genome unit into a line map of known REs revealed a repeat unit of ∼11.3 Kb as a mosaic of six different RE types. The data obtained from this study allowed for a comprehensive RE profiling, including the establishment of a library of RE arrays, of the reference mouse genome. Some of these RE arrays may participate in a spectrum of normal and disease biology that are specific for mice.
Collapse
|
11
|
|
12
|
Now and future of mouse mutagenesis for human disease models. J Genet Genomics 2010; 37:559-72. [DOI: 10.1016/s1673-8527(09)60076-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 11/20/2022]
|
13
|
Beckers J, Wurst W, de Angelis MH. Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 2010; 10:371-80. [PMID: 19434078 DOI: 10.1038/nrg2578] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mouse is the leading mammalian model organism for basic genetic research and for studying human diseases. Coordinated international projects are currently in progress to generate a comprehensive map of mouse gene functions - the first for any mammalian genome. There are still many challenges ahead to maximize the value of the mouse as a model, particularly for human disease. These involve generating mice that are better models of human diseases at the genotypic level, systemic (assessing all organ systems) and systematic (analysing all mouse lines) phenotyping of existing and new mouse mutant resources, and assessing the effects of the environment on phenotypes.
Collapse
Affiliation(s)
- Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, GmbH, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
14
|
Smith CL, Eppig JT. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:390-399. [PMID: 20052305 PMCID: PMC2801442 DOI: 10.1002/wsbm.44] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse has long been an important model for the study of human genetic disease. Through the application of genetic engineering and mutagenesis techniques, the number of unique mutant mouse models and the amount of phenotypic data describing them are growing exponentially. Describing phenotypes of mutant mice in a computationally useful manner that will facilitate data mining is a major challenge for bioinformatics. Here we describe a tool, the Mammalian Phenotype Ontology (MP), for classifying and organizing phenotypic information related to the mouse and other mammalian species. The MP Ontology has been applied to mouse phenotype descriptions in the Mouse Genome Informatics Database (MGI, http://www.informatics.jax.org/), the Rat Genome Database (RGD, http://rgd.mcw.edu), the Online Mendelian Inheritance in Animals (OMIA, http://omia.angis.org.au/) and elsewhere. Use of this ontology allows comparisons of data from diverse sources, can facilitate comparisons across mammalian species, assists in identifying appropriate experimental disease models, and aids in the discovery of candidate disease genes and molecular signaling pathways.
Collapse
Affiliation(s)
- Cynthia L Smith
- The Jackson Laboratory, Box 24, 600 Main Street, Bar Harbor, ME 04605, USA
| | - Janan T Eppig
- The Jackson Laboratory, Box 24, 600 Main Street, Bar Harbor, ME 04605, USA
| |
Collapse
|
15
|
Horsch M, Schädler S, Gailus-Durner V, Fuchs H, Meyer H, de Angelis MH, Beckers J. Systematic gene expression profiling of mouse model series reveals coexpressed genes. Proteomics 2008; 8:1248-56. [PMID: 18338826 DOI: 10.1002/pmic.200700725] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major aim of the Human Brain Proteome Project (HBPP) is a better understanding of the molecular etiology and progression of neurodegenerative diseases. Transgenic and loss-of-function mouse mutant lines (MMLs) serve as experimental models. Transcriptome and proteome regulate each other in a complex and controlled way, and their comparative analysis is an essential aspect. As a fundamental study, we have assessed transcript profiles using a microarray containing 21 000 cDNA probes in a series of disease models within the German Mouse Clinic (GMC). Seventeen distinct organs of one adult stage were systematically collected for each submitted MML. Samples for gene expression profiling are individually selected based on conspicuous phenotypes in at least one of 14 GMC phenotype screens or on previous knowledge of the mutant phenotype. By microarray experiments expression patterns of 90 organs from 46 MMLs were analysed, identifying up to 232 differentially expressed genes in 45 organs. Here we present an overview of the results of all MMLs analysed and demonstrate the efficiency of systematic genome-wide expression profiling for the detection of molecular phenotypes in organs of a mammalian model organism. We identify the recurring regulation of particular genes and groups of coexpressed genes in apparently unrelated MMLs.
Collapse
Affiliation(s)
- Marion Horsch
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Medico E. Translational and Functional Oncogenomics. From Cancer-Oriented Genomic Screenings to New Diagnostic Tools and Improved Cancer Treatment. TUMORI JOURNAL 2008; 94:172-8. [DOI: 10.1177/030089160809400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present here an experimental pipeline for the systematic identification and functional characterization of genes with high potential diagnostic and therapeutic value in human cancer. Complementary competences and resources have been brought together in the TRANSFOG Consortium to reach the following integrated research objectives: 1) execution of cancer-oriented genomic screenings on tumor tissues and experimental models and merging of the results to generate a prioritized panel of candidate genes involved in cancer progression and metastasis; 2) setup of systems for high-throughput delivery of full-length cDNAs, for gain-of-function analysis of the prioritized candidate genes; 3) collection of vectors and oligonucleotides for systematic, RNA interference-mediated down-regulation of the candidate genes; 4) adaptation of existing cell-based and model organism assays to a systematic analysis of gain and loss of function of the candidate genes, for identification and preliminary validation of novel potential therapeutic targets; 5) proteomic analysis of signal transduction and protein-protein interaction for better dissection of aberrant cancer signaling pathways; 6) validation of the diagnostic potential of the identified cancer genes towards the clinical use of diagnostic molecular signatures; 7) generation of a shared informatics platform for data handling and gene functional annotation. The results of the first three years of activity of the TRANSFOG Consortium are also briefly presented and discussed.
Collapse
Affiliation(s)
- Enzo Medico
- Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Turin, Italy
| | | |
Collapse
|
17
|
Patel R, LeBrun LA, Wang S, Howett LJ, Thompson PA, Appleman JR, Li B. ATLAS—A High-Throughput Affinity-Based Screening Technology for Soluble Proteins: Technology Application Using p38 MAP Kinase. Assay Drug Dev Technol 2008; 6:55-68. [DOI: 10.1089/adt.2007.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rupal Patel
- Department of Biology, Anadys Pharmaceuticals, Inc., San Diego, California
| | - Laurie A. LeBrun
- Department of Biology, Anadys Pharmaceuticals, Inc., San Diego, California
| | - Shaohui Wang
- Department of Biology, Anadys Pharmaceuticals, Inc., San Diego, California
| | - Lindsay J. Howett
- Department of Biology, Anadys Pharmaceuticals, Inc., San Diego, California
| | - Peggy A. Thompson
- Department of Biology, Anadys Pharmaceuticals, Inc., San Diego, California
| | - James R. Appleman
- Department of Biology, Anadys Pharmaceuticals, Inc., San Diego, California
| | - Bin Li
- Department of Biology, Anadys Pharmaceuticals, Inc., San Diego, California
| |
Collapse
|
18
|
Kallnik M, Elvert R, Ehrhardt N, Kissling D, Mahabir E, Welzl G, Faus-Kessler T, de Angelis MH, Wurst W, Schmidt J, Hölter SM. Impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ and C57BL/6J mice. Mamm Genome 2007; 18:173-86. [PMID: 17431719 DOI: 10.1007/s00335-007-9002-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 01/19/2007] [Indexed: 11/28/2022]
Abstract
Housing conditions are known to influence laboratory animal behavior. However, it is not known whether housing mice in individually ventilated cages (IVCs) to maintain optimal hygienic conditions alters behavioral baselines established in conventional housing. This issue is important with regard to comparability and reproducibility of data. Therefore, we investigated the impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ (C3H) and C57BL/6J (B6J) mice housed singly either in conventional type II cages with wire bar lids (Conventional), or in IVCs of the same size, but with smooth, untextured lids (IVC classic), thus acoustically attenuated from external stimuli and with limited climbing facilities compared to Conventional. To evaluate the role of climbing, additional mice were kept in IVCs with lids having wire bars ("grid") added to the inner surface (IVC grid). Spontaneous behavior, sensorimotor behavior, and fear learning were measured. IVC housing reduced activity and enhanced anxiety-related behavior in both strains, whereas grooming latency was reduced in B6J only. IVC housing increased Acoustic Startle Response in C3H but not in B6J mice. The "grid" did not compensate for these IVC housing effects. In contrast, B6J mice in IVC grid performed best in fear potentiated startle while B6J mice in IVC classic performed the worst, suggesting that climbing facilities combined with IVC housing facilitate FPS performance in singly-housed B6J males. Our data show that IVC housing can affect behavioral performance and can modulate behavioral parameters in a general and a strain-specific manner, thus having an impact on mouse functional genomics.
Collapse
Affiliation(s)
- Magdalena Kallnik
- Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bao L, Peirce JL, Zhou M, Li H, Goldowitz D, Williams RW, Lu L, Cui Y. An integrative genomics strategy for systematic characterization of genetic loci modulating phenotypes. Hum Mol Genet 2007; 16:1381-90. [PMID: 17428815 DOI: 10.1093/hmg/ddm089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Naturally occurring genetic variations may affect certain phenotypes through influencing transcript levels of the genes that are causally related to those phenotypes. Genomic regions harboring common sequence variants that modulate gene expression can be mapped as quantitative trait loci (QTLs) using a newly developed genetical genomics approach. This enables a new strategy for systematically mapping novel genetic loci underlying various phenotypes. In this work, we started from a seed set of genes with variants that are known to affect behavioral and neurological phenotypes (as recorded in Mammalian Phenotype Ontology Database) and used microarrays to analyze their expression levels in brain samples of a panel of BXD recombinant inbred mouse strains. We then systematically mapped the QTLs controlling the expression of these genes. Candidate causal genes in the QTL intervals were evaluated for evidence of functional genetic polymorphisms. Using this method, we were able to predict novel genetic loci and causal genes for a number of behavioral and neurological phenotypes. Lines of independent evidence supporting some of our results were provided by transcription factor binding site analysis and by biomedical literature. This strategy integrates gene-phenotype relations from decades of experimental mutagenesis studies and new genomic resources to provide an approach to rapidly expand knowledge on genetic loci modulating phenotypes.
Collapse
Affiliation(s)
- Lei Bao
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Nieman BJ, Flenniken AM, Adamson SL, Henkelman RM, Sled JG. Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiol Genomics 2007; 24:154-62. [PMID: 16410543 DOI: 10.1152/physiolgenomics.00217.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since genetically modified mice have become more common in biomedical research as models of human disease, a need has also grown for efficient and quantitative methods to assess mouse phenotype. One powerful means of phenotyping is characterization of anatomy in mutant vs. normal populations. Anatomical phenotyping requires visualization of structures in situ, quantification of complex shape differences between mouse populations, and detection of subtle or diffuse abnormalities during high-throughput survey work. These aims can be achieved with imaging techniques adapted from clinical radiology, such as magnetic resonance imaging and computed tomography. These imaging technologies provide an excellent nondestructive method for visualization of anatomy in live individuals or specimens. The computer-based analysis of these images then allows thorough anatomical characterizations. We present an automated method for analyzing multiple-image data sets. This method uses image registration to identify corresponding anatomy between control and mutant groups. Within- and between-group shape differences are used to map regions of significantly differing anatomy. These regions are highlighted and represented quantitatively by displacements and volume changes. This methodology is demonstrated for a partially characterized mouse mutation generated by N-ethyl-N-nitrosourea mutagenesis that is a putative model of the human syndrome oculodentodigital dysplasia, caused by point mutations in the gene encoding connexin 43.
Collapse
Affiliation(s)
- Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | |
Collapse
|
22
|
Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL. The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 2007; 8:58-69. [PMID: 17173058 DOI: 10.1038/nrg2025] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mouse has been a powerful force in elucidating the genetic basis of human physiology and pathophysiology. From its beginnings as the model organism for cancer research and transplantation biology to the present, when dissection of the genetic basis of complex disease is at the forefront of genomics research, an enormous and remarkable mouse resource infrastructure has accumulated. This review summarizes those resources and provides practical guidelines for their use, particularly in the analysis of quantitative traits.
Collapse
Affiliation(s)
- Luanne L Peters
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Over the past years new vectors and methodologies have been developed to carry out large-scale genome-wide insertional mutagenesis screens in the mouse. Gene trapping, the most commonly used technique, is based on the insertion of a retroviral- or plasmid-based vector into a gene, resulting in a loss-of-function mutation, while simultaneously reporting its expression pattern and providing a molecular tag to facilitate cloning. The discovery of vertebrate DNA transposons in the mouse and recent improvements has also led to their increased use in insertional mutagenesis screens. Several public resources have been set-up recently by the academic community to distribute information and materials generated from these large-scale screens. These new resources should accelerate the study and understanding of biological and developmental processes.
Collapse
Affiliation(s)
- Christopher S Raymond
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
24
|
Huang YH, Barouch-Bentov R, Herman A, Walker J, Sauer K. Integrating traditional and postgenomic approaches to investigate lymphocyte development and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 584:245-76. [PMID: 16802612 DOI: 10.1007/0-387-34132-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Yina Hsing Huang
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
25
|
Wang J, Hannenhalli S. A mammalian promoter model links cis elements to genetic networks. Biochem Biophys Res Commun 2006; 347:166-77. [PMID: 16806065 DOI: 10.1016/j.bbrc.2006.06.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
An accurate identification of gene promoters remains an important challenge. Computational approaches for this problem rely on promoter sequence attributes that are believed to be critical for transcription initiation. Here we report a probabilistic model that captures two important properties of promoters, not used by previous methods, viz., the location preference and co-occurrence of promoter elements. Additionally, we found that many of the position-specific DNA elements are strongly linked with the function of the gene product. For instance, a highly conserved motif CCTTT at -1 position is strongly associated with protein synthesis, cellular and tissue development. Our comparative analysis of promoter classes reveals that the promoters devoid of CpG islands are more conserved and have fewer alternative transcription start sites. The discovered links between promoter elements and gene function allows us to infer genetic networks from promoter elements. The web server for the PSPA promoter predictor is available at /PSPA.
Collapse
Affiliation(s)
- Junwen Wang
- Penn Center for Bioinformatics and Department of Genetics, University of Pennsylvania, Philadelphia, 19104-6021, USA.
| | | |
Collapse
|
26
|
Bao L, Wei L, Peirce JL, Homayouni R, Li H, Zhou M, Chen H, Lu L, Williams RW, Pfeffer LM, Goldowitz D, Cui Y. Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory relationships. Mamm Genome 2006; 17:575-83. [PMID: 16783639 DOI: 10.1007/s00335-005-0172-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 02/21/2006] [Indexed: 01/17/2023]
Abstract
Gene expression QTL (eQTL) mapping can suggest candidate regulatory relationships between genes. Recent advances in mammalian phenotype annotation such as mammalian phenotype ontology (MPO) enable systematic analysis of the phenotypic spectrum subserved by many genes. In this study we combined eQTL mapping and phenotypic spectrum analysis to predict gene regulatory relationships. Five pairs of genes with similar phenotypic effects and potential regulatory relationships suggested by eQTL mapping were identified. Lines of evidence supporting some of the predicted regulatory relationships were obtained from biological literature. A particularly notable example is that promoter sequence analysis and real-time PCR assays support the predicted regulation of protein kinase C epsilon (Prkce) by cAMP responsive element binding protein 1 (Creb1). Our results show that the combination of gene eQTL mapping and phenotypic spectrum analysis may provide a valuable approach to uncovering gene regulatory relations underlying mammalian phenotypes.
Collapse
Affiliation(s)
- Lei Bao
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Greber B, Tandara H, Lehrach H, Himmelbauer H. Comparison of PCR-based mutation detection methods and application for identification of mouse Sult1a1 mutant embryonic stem cell clones using pooled templates. Hum Mutat 2006; 25:483-90. [PMID: 15832303 DOI: 10.1002/humu.20168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reverse genetic approaches to generate mutants of model species are useful tools to assess functions of unknown genes. Recent work has demonstrated the feasibility of such strategies in several organisms, exploiting the power of chemical mutagenesis to disrupt genes randomly throughout the genome. To increase the throughput of gene-driven mutant identification, efficient mutation screening protocols are needed. Given the availability of sequence information for large numbers of unknown genes in many species, mutation detection protocols are preferably based on PCR. Using a set of defined mutations in the Hprt1 gene of mouse embryonic stem (ES) cells, we have systematically compared several PCR-based point mutation and deletion detection methods available for their ability to identify lesions in pooled samples, which is a major criterion for an efficient large-scale mutation screening assay. Results indicate that point mutations are most effectively identified by heteroduplex cleavage using CEL I endonuclease. Small deletions can most effectively be detected employing the recently described "poison" primer PCR technique. Further, we employed the CEL I assay followed by conventional agarose gel electrophoresis analysis for screening a library of chemically mutagenized ES cell clones. This resulted in the isolation of several clones harboring mutations in the mouse Sult1a1 locus, demonstrating the high-throughput compatibility of this approach using simple and inexpensive laboratory equipment.
Collapse
Affiliation(s)
- Boris Greber
- Max-Planck-Institute of Molecular Genetics, Berlin, Germany
| | | | | | | |
Collapse
|
28
|
Kreutzberger J. Protein microarrays: a chance to study microorganisms? Appl Microbiol Biotechnol 2006; 70:383-90. [PMID: 16489452 PMCID: PMC7080167 DOI: 10.1007/s00253-006-0312-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/23/2005] [Accepted: 12/24/2005] [Indexed: 11/30/2022]
Abstract
Within the last 5 years, protein microarrays have been developed and applied to multiple approaches: identification of protein-protein interactions or protein-small molecule interactions, cancer profiling, detection of microorganisms and toxins, and identification of antibodies due to allergens, autoantigens, and pathogens. Protein microarrays are small size (typically in the microscopy slide format) planar analytical devices with probes arranged in high density to provide the ability to screen several hundred to thousand known substrates (e.g., proteins, peptides, antibodies) simultaneously. Due to their small size, only minute amounts of spotted probes and analytes (e.g., serum) are needed; this is a particularly important feature, for these are limited or expensive. In this review, different types of protein microarrays are reviewed: protein microarrays (PMAs), with spotted proteins or peptides; antibody microarrays (AMAs), with spotted antibodies or antibody fragments (e.g., scFv); reverse phase protein microarrays (RPMAs), a special form of PMA where crude protein mixtures (e.g., cell lysates, fractions) are spotted; and nonprotein microarrays (NPMAs) where macromolecules other than proteins and nucleic acids (e.g., carbohydrates, monosaccharides, lipopolysaccharides) are spotted. In this study, exemplary experiments for all types of protein arrays are discussed wherever applicable with regard to investigations of microorganisms.
Collapse
Affiliation(s)
- Jürgen Kreutzberger
- Department Lehrach, Max Planck Institute for molecular Genetics, Berlin, Germany.
| |
Collapse
|
29
|
Vitaterna MH, Pinto LH, Takahashi JS. Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice. Trends Neurosci 2006; 29:233-40. [PMID: 16519954 PMCID: PMC3761413 DOI: 10.1016/j.tins.2006.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 12/20/2005] [Accepted: 02/17/2006] [Indexed: 11/20/2022]
Abstract
Significant developments have occurred in our understanding of the mammalian genome thanks to informatics, expression profiling and sequencing of the human and rodent genomes. However, although these facets of genomic analysis are being addressed, analysis of in vivo gene function remains a formidable task. Evaluation of the phenotype of mutants provides powerful access to gene function, and this approach is particularly relevant to the nervous system and behavior. Here, we discuss the complementary mouse genetic approaches of gene-driven, targeted mutagenesis and phenotype-driven, chemical mutagenesis. We highlight an NIH-supported large-scale effort to use phenotype-driven mutagenesis screens to identify mouse mutants with neural and behavioral alterations. Such single-gene mutations can then be used for gene identification using positional candidate gene-cloning methods.
Collapse
Affiliation(s)
- Martha Hotz Vitaterna
- Center for Functional Genomics and Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
30
|
Outeiro TF, Giorgini F. Yeast as a drug discovery platform in Huntington's and Parkinson's diseases. Biotechnol J 2006; 1:258-69. [PMID: 16897706 DOI: 10.1002/biot.200500043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The high degree of conservation of cellular and molecular processes between the budding yeast Saccharomyces cerevisiae and higher eukaryotes have made it a valuable system for numerous studies of the basic mechanisms behind devastating illnesses such as cancer, infectious disease, and neurodegenerative disorders. Several studies in yeast have already contributed to our basic understanding of cellular dysfunction in both Huntington's and Parkinson's disease. Functional genomics approaches currently being undertaken in yeast may lead to novel insights into the genes and pathways that modulate neuronal cell dysfunction and death in these diseases. In addition, the budding yeast constitutes a valuable system for identification of new drug targets, both via target-based and non-target-based drug screening. Importantly, yeast can be used as a cellular platform to analyze the cellular effects of candidate compounds, which is critical for the development of effective therapeutics. While the molecular mechanisms that underlie neurodegeneration will ultimately have to be tested in neuronal and animal models, there are several distinct advantages to using simple model organisms to elucidate fundamental aspects of protein aggregation, amyloid toxicity, and cellular dysfunction. Here, we review recent studies that have shown that amyloid formation by disease-causing proteins and many of the resulting cellular deficits can be faithfully recapitulated in yeast. In addition, we discuss new yeast-based techniques for screening candidate therapeutic compounds for Huntington's and Parkinson's diseases.
Collapse
|
31
|
Abstract
The house mouse has been used as a privileged model organism since the early days of genetics, and the numerous experiments made with this small mammal have regularly contributed to enrich our knowledge of mammalian biology and pathology, ranging from embryonic development to metabolic disease, histocompatibility, immunology, behavior, and cancer. Over the past two decades, a number of large-scale integrated and concerted projects have been undertaken that will probably open a new era in the genetics of the species. The sequencing of the genome, which will allow researchers to make comparisons with other mammals and identify regions conserved by evolution, is probably the most important project, but many other initiatives, such as the massive production of point or chromosomal mutations associated with comprehensive and standardized phenotyping of the mutant phenotypes, will help annotation of the approximately 25,000 genes packed in the mouse genome. In the same way, and as another consequence of the sequencing, the discovery of many single nucleotide polymorphisms and the development of new tools and resources, like the Collaborative Cross, will contribute to the development of modern quantitative genetics. It is clear that mouse genetics has changed dramatically over the last 10-15 years and its future looks promising.
Collapse
Affiliation(s)
- Jean Louis Guénet
- Département de Biologie du Développement, Institut Pasteur, 75724 Paris Cedex 15, France.
| |
Collapse
|
32
|
Augustin M, Sedlmeier R, Peters T, Huffstadt U, Kochmann E, Simon D, Schöniger M, Garke-Mayerthaler S, Laufs J, Mayhaus M, Franke S, Klose M, Graupner A, Kurzmann M, Zinser C, Wolf A, Voelkel M, Kellner M, Kilian M, Seelig S, Koppius A, Teubner A, Korthaus D, Nehls M, Wattler S. Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm Genome 2005; 16:405-13. [PMID: 16075367 DOI: 10.1007/s00335-004-3028-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Accepted: 03/03/2005] [Indexed: 11/30/2022]
Abstract
Mice with targeted genetic alterations are the most effective tools for deciphering organismal gene function. We generated an ENU-based parallel C3HeB/FeJ sperm and DNA archive characterized by a high probability to identify allelic variants of target genes as well as high efficiencies in allele retrieval and model revitalization. Our archive size of over 17,000 samples contains approximately 340,000 independent alleles (20 functional mutations per individual sample). Based on an estimated number of approximately 30,000 mouse genes, the parallel sperm/DNA archive should permit the identification and recovery of ten or more alleles per average target gene which translates to a calculated 99% success rate in the discovery of five allelic variants for any given average gene. The low rate of unrelated ENU-induced passenger mutations has no practical impact on the analysis of the allele-specific phenotype at the G3 generation because of dilution and free segregation of such unrelated passenger mutations. To date 39 mouse models representing 33 different genes have been recovered from our archive using in vitro fertilization techniques. The generation time for a murine model heterozygous for a mutation in a gene of interest is less than 2 months, i.e., three to four times faster compared with current embryonic stem-cell-based technologies. We conclude that ENU-based targeted mutagenesis is a powerful tool for the fast and high-throughput production of murine gene-specific models for biomedical research.
Collapse
Affiliation(s)
- M Augustin
- Ingenium Pharmaceuticals AG, Fraunhoferstr.13, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nieman BJ, Bock NA, Bishop J, Sled JG, Josette Chen X, Mark Henkelman R. Fast spin-echo for multiple mouse magnetic resonance phenotyping. Magn Reson Med 2005; 54:532-7. [PMID: 16086298 DOI: 10.1002/mrm.20590] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-resolution magnetic resonance imaging is emerging as a powerful tool for phenotyping mice in biologic studies of genetic expression, development, and disease progression. In several applications, notably random mutagenesis trials, large cohorts of mice must be examined for abnormalities that may occur in any part of the body. In the aim of establishing a protocol for imaging multiple mice simultaneously in a standardized high-throughput fashion, this study investigates variations of a three-dimensional fast spin-echo sequence that implements driven equilibrium, modified refocusing, and partial excitation pulses. Sequence variations are compared by simulated and experimental measurements in phantoms and mice. Results indicate that when using a short repetition time (TR<or=T1) a sequence employing a partial excitation tip angle provides both improved signal and good T2 contrast compared with standard fast spin-echo imaging. This sequence is used to simultaneously acquire four live mouse head images at 100 microm isotropic resolution with a scan time under 3 h at 7 T.
Collapse
Affiliation(s)
- Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Champy MF, Selloum M, Piard L, Zeitler V, Caradec C, Chambon P, Auwerx J. Mouse functional genomics requires standardization of mouse handling and housing conditions. Mamm Genome 2005; 15:768-83. [PMID: 15520880 DOI: 10.1007/s00335-004-2393-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 05/27/2004] [Indexed: 11/27/2022]
Abstract
The study of mouse models is crucial for the functional annotation of the human genome. The recent improvements in mouse genetics now moved the bottleneck in mouse functional genomics from the generation of mutant mice lines to the phenotypic analysis of these mice lines. Simple, validated, and reproducible phenotyping tests are a prerequisite to improving this phenotyping bottleneck. We analyzed here the impact of simple variations in animal handling and housing procedures, such as cage density, diet, gender, length of fasting, as well as site (retro-orbital vs. tail), timing, and anesthesia used during venipuncture, on biochemical, hematological, and metabolic/endocrine parameters in adult C57BL/6J mice. Our results, which show that minor changes in procedures can profoundly affect biological variables, underscore the importance of establishing uniform and validated animal procedures to improve reproducibility of mouse phenotypic data.
Collapse
|
35
|
Forrai A, Robb L. The gene trap resource: a treasure trove for hemopoiesis research. Exp Hematol 2005; 33:845-56. [PMID: 16038776 DOI: 10.1016/j.exphem.2005.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
The laboratory mouse is an invaluable tool for functional gene discovery because of its genetic malleability and a biological similarity to human systems that facilitates identification of human models of disease. A number of mutagenic technologies are being used to elucidate gene function in the mouse. Gene trapping is an insertional mutagenesis strategy that is being undertaken by multiple research groups, both academic and private, in an effort to introduce mutations across the mouse genome. Large-scale, publicly funded gene trap programs have been initiated in several countries with the International Gene Trap Consortium coordinating certain efforts and resources. We outline the methodology of mammalian gene trapping and how it can be used to identify genes expressed in both primitive and definitive blood cells and to discover hemopoietic regulator genes. Mouse mutants with hematopoietic phenotypes derived using gene trapping are described. The efforts of the large-scale gene trapping consortia have now led to the availability of libraries of mutagenized ES cell clones. The identity of the trapped locus in each of these clones can be identified by sequence-based searching via the world wide web. This resource provides an extraordinary tool for all researchers wishing to use mouse genetics to understand gene function.
Collapse
Affiliation(s)
- Ariel Forrai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
36
|
Tagalakis AD, Owen JS, Simons JP. Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev 2005; 71:140-4. [PMID: 15791601 DOI: 10.1002/mrd.20250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are numerous reports of the use of RNA-DNA oligonucleotides (chimeraplasts) to correct point mutations in vitro and in vivo, including the human apolipoprotein E gene (ApoE). Despite the absence of selection for targeting, high efficiency conversion has been reported. Although mainly used to revert deleterious mutations for gene therapy applications, successful use of this approach would have the potential to greatly facilitate the production of defined mutations in mice and other species. We have attempted to create a point mutation in the mouse ApoE gene by microinjection of chimeraplast into the pronuclei of 1-cell mouse eggs. Following transfer of microinjected eggs we analysed 139 E12.5 embryos, but obtained no evidence for successful conversion.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Department of Anatomy and Developmental Biology, Hampstead Campus, University College London, London, United Kingdom
| | | | | |
Collapse
|
37
|
Carlson CM, Largaespada DA. Insertional mutagenesis in mice: new perspectives and tools. Nat Rev Genet 2005; 6:568-80. [PMID: 15995698 DOI: 10.1038/nrg1638] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insertional mutagenesis has been at the core of functional genomics in many species. In the mouse, improved vectors and methodologies allow easier genome-wide and phenotype-driven insertional mutagenesis screens. The ability to generate homozygous diploid mutations in mouse embryonic stem cells allows prescreening for specific null phenotypes prior to in vivo analysis. In addition, the discovery of active transposable elements in vertebrates, and their development as genetic tools, has led to in vivo forward insertional mutagenesis screens in the mouse. These new technologies will greatly contribute to the speed and ease with which we achieve complete functional annotation of the mouse genome.
Collapse
Affiliation(s)
- Corey M Carlson
- Department of Genetics, Cell Biology, and Development, University of Minnesota Cancer Center, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
38
|
Dybbs M, Ngai J, Kaplan JM. Using microarrays to facilitate positional cloning: identification of tomosyn as an inhibitor of neurosecretion. PLoS Genet 2005; 1:6-16. [PMID: 16103915 PMCID: PMC1183521 DOI: 10.1371/journal.pgen.0010002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 02/01/2005] [Indexed: 12/03/2022] Open
Abstract
Forward genetic screens have been used as a powerful strategy to dissect complex biological pathways in many model systems. A significant limitation of this approach has been the time-consuming and costly process of positional cloning and molecular characterization of the mutations isolated in these screens. Here, the authors describe a strategy using microarray hybridizations to facilitate positional cloning. This method relies on the fact that premature stop codons (i.e., nonsense mutations) constitute a frequent class of mutations isolated in screens and that nonsense mutant messenger RNAs are efficiently degraded by the conserved nonsense-mediated decay pathway. They validate this strategy by identifying two previously uncharacterized mutations: (1) tom-1, a mutation found in a forward genetic screen for enhanced acetylcholine secretion in Caenorhabditis elegans, and (2) an apparently spontaneous mutation in the hif-1 transcription factor gene. They further demonstrate the broad applicability of this strategy using other known mutants in C. elegans,Arabidopsis, and mouse. Characterization of tom-1 mutants suggests that TOM-1, the C. elegans ortholog of mammalian tomosyn, functions as an endogenous inhibitor of neurotransmitter secretion. These results also suggest that microarray hybridizations have the potential to significantly reduce the time and effort required for positional cloning. Genetic screens are commonly used to figure out which genes are involved in a biological process. The first step in a genetic screen is to isolate mutant animals that are defective in the process being studied. The next step is to find which of the thousands of genes has the mutation that causes the observed defect. Positional cloning, the tried-and-true method for locating mutations, is slow and expensive. The authors propose using microarray hybridizations to speed the process. Their approach relies on the fact that a large fraction of the mutations found in screens are the results of premature stop codons, a particularly severe type of mutation. In cells, messages containing premature stop codons are rapidly destroyed by a protective pathway, called nonsense-mediated decay, thus making them directly detectable by microarray hybridization. The authors apply this strategy retrospectively to known mutants in Caenorhabditis elegans, Arabidopsis, and mouse. They identify two uncharacterized mutations in C. elegans, including one, tom-1, found in a forward genetic screen for enhancers of neurotransmission. Interestingly, their characterization of tom-1 mutants suggests that the highly conserved protein tomosyn inhibits neurotransmission in neurons. This study shows that microarray hybridizations will help reduce the time and effort required for positional cloning.
Collapse
Affiliation(s)
- Michael Dybbs
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Molecular and Cell Biology, Functional Genomics Laboratory, Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - John Ngai
- Department of Molecular and Cell Biology, Functional Genomics Laboratory, Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Metzler SD, Jaszczak RJ, Patil NH, Vemulapalli S, Akabani G, Chin BB. Molecular imaging of small animals with a triple-head SPECT system using pinhole collimation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2005; 24:853-62. [PMID: 16011314 DOI: 10.1109/tmi.2005.848357] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pinhole collimation yields high sensitivity when the distance from the object to the aperture is small, as in the case of imaging small animals. Fine-resolution images may be obtained when the magnification is large since this mitigates the effect of detector resolution. Large magnifications in pinhole single-photon emission computed tomography (SPECT) may be obtained by using a collimator whose focal length is many times the radius of rotation. This may be achieved without truncation if the gamma camera is large. We describe a commercially available clinical scanner mated with pinhole collimation and an external linear stage. The pinhole collimation gives high magnification. The linear stage allows for helical pinhole SPECT. We have used the system to image radiolabeled molecules in phantoms and small animals.
Collapse
Affiliation(s)
- S D Metzler
- Department of Radiology, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
40
|
Seltmann M, Horsch M, Drobyshev A, Chen Y, de Angelis MH, Beckers J. Assessment of a systematic expression profiling approach in ENU-induced mouse mutant lines. Mamm Genome 2005; 16:1-10. [PMID: 15674728 DOI: 10.1007/s00335-004-3012-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 09/09/2004] [Indexed: 10/25/2022]
Abstract
Comparative genomewide expression profiling is a powerful tool in the effort to annotate the mouse genome with biological function. The systematic analysis of RNA expression data of mouse lines from the Munich ENU mutagenesis screen might support the understanding of the molecular biology of such mutants and provide new insights into mammalian gene function. In a direct comparison of DNA microarray experiments of individual versus pooled RNA samples of organs from ENU-induced mouse mutants, we provide evidence that individual RNA samples may outperform pools in some aspects. Genes with high biological variability in their expression levels (noisy genes) are identified as false positives in pooled samples. Evidence suggests that highly stringent housing conditions and standardized procedures for the isolation of organs significantly reduce biological variability in gene expression profiling experiments. Data on wild-type individuals demonstrate the positive effect of controlling variables such as social status, food intake before organ sampling, and stress with regard to reproducibility of gene expression patterns. Analyses of several organs from various ENU-induced mutant lines in general show low numbers of differentially expressed genes. We demonstrate the feasibility to detect transcriptionally affected organs employing RNA expression profiling as a tool for molecular phenotyping.
Collapse
Affiliation(s)
- Matthias Seltmann
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, Neuherberg, D-85764, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Monica J Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza S413, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Clark AT, Goldowitz D, Takahashi JS, Vitaterna MH, Siepka SM, Peters LL, Frankel WN, Carlson GA, Rossant J, Nadeau JH, Justice MJ. Implementing large-scale ENU mutagenesis screens in North America. Genetica 2005; 122:51-64. [PMID: 15619961 PMCID: PMC3774779 DOI: 10.1007/s10709-004-1436-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A step towards annotating the mouse genome is to use forward genetics in phenotype-driven screens to saturate the genome with mutations. The purpose of this article is to highlight the new projects in North America that are focused on isolating mouse mutations after ENU mutagenesis and phenotype screening.
Collapse
Affiliation(s)
- Amander T. Clark
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | | | | | - Sandra M. Siepka
- Center for Functional Genomics, Northwestern University, Evanston, IL
| | - Luanne L. Peters
- Center for Mouse Models of Heart, Lung, Blood and Sleep Disorders, The Jackson Laboratory, Bar Harbor, ME
| | - Wayne N. Frankel
- Neuroscience Mutagenesis Facility, The Jackson Laboratory, Bar Harbor, ME
| | - George A. Carlson
- McLaughlin Research Institute for Biomedical Sciences, Great Falls, MT, USA
| | - Janet Rossant
- The Center for Modeling Human Disease, Toronto, Canada
| | - Joseph H. Nadeau
- Case Western Reserve University/University Hospitals of Cleveland, Cleveland, OH, USA
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Author for correspondence: Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA (Phone: +1-713-798-5440; Fax: +1-713-798-1445; )
| |
Collapse
|
43
|
Beckers J, Herrmann F, Rieger S, Drobyshev AL, Horsch M, Hrabé de Angelis M, Seliger B. Identification and validation of novel ERBB2 (HER2, NEU) targets including genes involved in angiogenesis. Int J Cancer 2005; 114:590-7. [PMID: 15609325 DOI: 10.1002/ijc.20798] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2; synonyms HER2, NEU) encodes a transmembrane glycoprotein with tyrosine kinase-specific activity that acts as a major switch in different signal-transduction processes. ERBB2 amplification and overexpression have been found in a number of human cancers, including breast, ovary and kidney carcinoma. Our aim was to detect ERBB2-regulated target genes that contribute to its tumorigenic effect on a genomewide scale. The differential gene expression profile of ERBB2-transfected and wild-type mouse fibroblasts was monitored employing DNA microarrays. Regulated expression of selected genes was verified by RT-PCR and validated by Western blot analysis. Genome wide gene expression profiling identified (i) known targets of ERBB2 signaling, (ii) genes implicated in tumorigenesis but so far not associated with ERBB2 signaling as well as (iii) genes not yet associated with oncogenic transformation, including novel genes without functional annotation. We also found that at least a fraction of coexpressed genes are closely linked on the genome. ERBB2 overexpression suppresses the transcription of antiangiogenic factors (e.g., Sparc, Timp3, Serpinf1) but induces expression of angiogenic factors (e.g., Klf5, Tnfaip2, Sema3c). Profiling of ERBB2-dependent gene regulation revealed a compendium of potential diagnostic markers and putative therapeutic targets. Identification of coexpressed genes that colocalize in the genome may indicate gene regulatory mechanisms that require further study to evaluate functional coregulation. (Supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.)
Collapse
Affiliation(s)
- Johannes Beckers
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Munroe RJ, Ackerman SL, Schimenti JC. Genomewide two-generation screens for recessive mutations by ES cell mutagenesis. Mamm Genome 2005; 15:960-5. [PMID: 15599554 DOI: 10.1007/s00335-004-2406-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 08/24/2004] [Indexed: 10/24/2022]
Abstract
Forward genetic mutation screens in mice are typically begun by mutagenizing the germline of male mice with N-ethyl-N-nitrosourea (ENU). Genomewide recessive mutations transmitted by these males can be rendered homozygous after three generations of breeding, at which time phenotype screens can be performed. An alternative strategy for randomly mutagenizing the mouse genome is by chemical treatment of embryonic stem (ES) cells. Here we demonstrate the feasibility of performing genome-wide mutation screens with only two generations of breeding. Mice potentially homozygous for mutations were obtained by crossing chimeras derived from ethylmethane sulfonate (EMS)-mutagenized ES cells to their daughters, or by intercrossing offspring of chimeras. This strategy was possible because chimeras transmit variations of the same mutagenized diploid genome, whereas ENU-treated males transmit numerous unrelated genomes. This also results in a doubling of screenable mutations in a pedigree compared to germline ENU mutagenesis. Coupled with the flexibility to treat ES cells with a variety of potent mutagens and the ease of producing distributable, quality-controlled, long-term supplies of cells in a single experiment, this strategy offers a number of advantages for conducting forward genetic screens in mice.
Collapse
|
45
|
Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL. Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis 2005; 39:100-4. [PMID: 15170695 DOI: 10.1002/gene.20031] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
C57BL/6 is a well-characterized mouse strain that is used extensively for immunological and neurological research. The establishment of C57BL/6 ES cell lines has facilitated the study of gene-altered mice in a pure genetic background-however, relatively few such lines exist. Using a defined media supplement, knockout serum replacement (KSR) with knockout DMEM (KSR-KDMEM), we find that we can readily establish ES cell lines from blastocysts of C57BL/6J mice. Six lines were established, all of which were karyotypically normal and could be maintained in the undifferentiated state on mouse embryonic fibroblast (MEF) feeders. One line was further tested and found to be karyotypically stable and germline competent, both prior to manipulation and after gene targeting. For this cell line, efficiencies of cell cloning and chimera generation were greater when maintained in KSR-KDMEM. Our work suggests that the use of defined serum-free media may facilitate the generation of ES cells from inbred mouse strains.
Collapse
Affiliation(s)
- Jun Cheng
- Genetic Diseases Research Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
46
|
Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique. BMC DEVELOPMENTAL BIOLOGY 2004; 4:16. [PMID: 15615595 PMCID: PMC545075 DOI: 10.1186/1471-213x-4-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 12/22/2004] [Indexed: 11/10/2022]
Abstract
BACKGROUND Congenital heart defects are the leading non-infectious cause of death in children. Genetic studies in the mouse have been crucial to uncover new genes and signaling pathways associated with heart development and congenital heart disease. The identification of murine models of congenital cardiac malformations in high-throughput mutagenesis screens and in gene-targeted models is hindered by the opacity of the mouse embryo. RESULTS We developed and optimized a novel method for high-throughput multi-embryo magnetic resonance imaging (MRI). Using this approach we identified cardiac malformations in phosphatidylserine receptor (Ptdsr) deficient embryos. These included ventricular septal defects, double-outlet right ventricle, and hypoplasia of the pulmonary artery and thymus. These results indicate that Ptdsr plays a key role in cardiac development. CONCLUSIONS Our novel multi-embryo MRI technique enables high-throughput identification of murine models for human congenital cardiopulmonary malformations at high spatial resolution. The technique can be easily adapted for mouse mutagenesis screens and, thus provides an important new tool for identifying new mouse models for human congenital heart diseases.
Collapse
|
47
|
The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol 2004; 6:R7. [PMID: 15642099 PMCID: PMC549068 DOI: 10.1186/gb-2004-6-1-r7] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 11/15/2004] [Accepted: 11/17/2004] [Indexed: 11/26/2022] Open
Abstract
The Mammalian Phenotype (MP) Ontology enables robust annotation of mammalian phenotypes in the context of mutations, quantitative trait loci and strains that are used as models of human biology and disease. The Mammalian Phenotype (MP) Ontology enables robust annotation of mammalian phenotypes in the context of mutations, quantitative trait loci and strains that are used as models of human biology and disease. The MP Ontology supports different levels and richness of phenotypic knowledge and flexible annotations to individual genotypes. It continues to develop dynamically via collaborative input from research groups, mutagenesis consortia, and biological domain experts. The MP Ontology is currently used by the Mouse Genome Database and Rat Genome Database to represent phenotypic data.
Collapse
|
48
|
Chen YT, Liu P, Bradley A. Inducible gene trapping with drug-selectable markers and Cre/loxP to identify developmentally regulated genes. Mol Cell Biol 2004; 24:9930-41. [PMID: 15509795 PMCID: PMC525470 DOI: 10.1128/mcb.24.22.9930-9941.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gene trapping in mouse embryonic stem cells is an important genetic approach that allows simultaneous mutation of genes and generation of corresponding mutant mice. We designed a selection scheme with drug selection markers and Cre/loxP technology which allows screening of gene trap events that responded to a signaling molecule in a 96-well format. Nine hundred twenty gene trap clones were assayed, and 258 were classified as gene traps induced by in vitro differentiation. Sixty-five of the in vitro differentiation-inducible gene traps were also responsive to retinoic acid treatment. In vivo analysis revealed that 85% of the retinoic acid-inducible gene traps trapped developmentally regulated genes, consistent with the observation that genes induced by retinoic acid treatment are likely to be developmentally regulated. Our results demonstrate that the inducible gene trapping system described here can be used to enrich in vitro for traps in genes of interest. Furthermore, we demonstrate that the cre reporter is extremely sensitive and can be used to explore chromosomal regions that are not detectable with neo as a selection cassette.
Collapse
Affiliation(s)
- You-Tzung Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
49
|
Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, Mitsakakis N, Mohammad N, Robinson MD, Zirngibl R, Somogyi E, Laurin N, Eftekharpour E, Sat E, Grigull J, Pan Q, Peng WT, Krogan N, Greenblatt J, Fehlings M, van der Kooy D, Aubin J, Bruneau BG, Rossant J, Blencowe BJ, Frey BJ, Hughes TR. The functional landscape of mouse gene expression. J Biol 2004; 3:21. [PMID: 15588312 PMCID: PMC549719 DOI: 10.1186/jbiol16] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 10/13/2004] [Accepted: 10/18/2004] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. RESULTS We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. CONCLUSIONS We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.
Collapse
Affiliation(s)
- Wen Zhang
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Quaid D Morris
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Department of Electrical and Computer Engineering, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Richard Chang
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ofer Shai
- Department of Electrical and Computer Engineering, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Malina A Bakowski
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Nicholas Mitsakakis
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Naveed Mohammad
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Mark D Robinson
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ralph Zirngibl
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Eszter Somogyi
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Nancy Laurin
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Eftekhar Eftekharpour
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Eric Sat
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jörg Grigull
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Qun Pan
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wen-Tao Peng
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Nevan Krogan
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Michael Fehlings
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Division of Cell and Molecular Biology, Toronto Western Research Institute and Krembil Neuroscience Center, 399 Bathurst St., Toronto, ON M5T 2S8, Canada
| | - Derek van der Kooy
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jane Aubin
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Benoit G Bruneau
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Janet Rossant
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Benjamin J Blencowe
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Brendan J Frey
- Department of Electrical and Computer Engineering, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Timothy R Hughes
- Banting and Best Department of Medical Research, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
50
|
Auwerx J, Avner P, Baldock R, Ballabio A, Balling R, Barbacid M, Berns A, Bradley A, Brown S, Carmeliet P, Chambon P, Cox R, Davidson D, Davies K, Duboule D, Forejt J, Granucci F, Hastie N, de Angelis MH, Jackson I, Kioussis D, Kollias G, Lathrop M, Lendahl U, Malumbres M, von Melchner H, Müller W, Partanen J, Ricciardi-Castagnoli P, Rigby P, Rosen B, Rosenthal N, Skarnes B, Stewart AF, Thornton J, Tocchini-Valentini G, Wagner E, Wahli W, Wurst W. The European dimension for the mouse genome mutagenesis program. Nat Genet 2004; 36:925-7. [PMID: 15340424 PMCID: PMC2716028 DOI: 10.1038/ng0904-925] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The European Mouse Mutagenesis Consortium is the European initiative contributing to the international effort on functional annotation of the mouse genome. Its objectives are to establish and integrate mutagenesis platforms, gene expression resources, phenotyping units, storage and distribution centers and bioinformatics resources. The combined efforts will accelerate our understanding of gene function and of human health and disease.
Collapse
Affiliation(s)
- Johan Auwerx
- Mouse Clinical Institute (MCI), Illkirch, Strasbourg, France [corrected]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|