1
|
Specian Junior FC, Litchfield D, Sandars J, Cecilio-Fernandes D. Use of eye tracking in medical education. MEDICAL TEACHER 2024; 46:1502-1509. [PMID: 38382474 DOI: 10.1080/0142159x.2024.2316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Eye tracking has become increasingly applied in medical education research for studying the cognitive processes that occur during the performance of a task, such as image interpretation and surgical skills development. However, analysis and interpretation of the large amount of data obtained by eye tracking can be confusing. In this article, our intention is to clarify the analysis and interpretation of the data obtained from eye tracking. Understanding the relationship between eye tracking metrics (such as gaze, pupil and blink rate) and cognitive processes (such as visual attention, perception, memory and cognitive workload) is essential. The importance of calibration and how the limitations of eye tracking can be overcome is also highlighted.
Collapse
Affiliation(s)
| | | | - John Sandars
- Health Research Institute, Edge Hill University, Ormskirk, UK
| | - Dario Cecilio-Fernandes
- Department of Medical Psychology and Psychiatry, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Greilich J, Baumann MP, Hafed ZM. Microsaccadic suppression of peripheral perceptual detection performance as a function of foveated visual image appearance. J Vis 2024; 24:3. [PMID: 39365250 PMCID: PMC11457924 DOI: 10.1167/jov.24.11.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Microsaccades are known to be associated with a deficit in perceptual detection performance for brief probe flashes presented in their temporal vicinity. However, it is still not clear how such a deficit might depend on the visual environment across which microsaccades are generated. Here, and motivated by studies demonstrating an interaction between visual background image appearance and perceptual suppression strength associated with large saccades, we probed peripheral perceptual detection performance of human subjects while they generated microsaccades over three different visual backgrounds. Subjects fixated near the center of a low spatial frequency grating, a high spatial frequency grating, or a small white fixation spot over an otherwise gray background. When a computer process detected a microsaccade, it presented a brief peripheral probe flash at one of four locations (over a uniform gray background) and at different times. After collecting full psychometric curves, we found that both perceptual detection thresholds and slopes of psychometric curves were impaired for peripheral flashes in the immediate temporal vicinity of microsaccades, and they recovered with later flash times. Importantly, the threshold elevations, but not the psychometric slope reductions, were stronger for the white fixation spot than for either of the two gratings. Thus, like with larger saccades, microsaccadic suppression strength can show a certain degree of image dependence. However, unlike with larger saccades, stronger microsaccadic suppression did not occur with low spatial frequency textures. This observation might reflect the different spatiotemporal retinal transients associated with the small microsaccades in our study versus larger saccades.
Collapse
Affiliation(s)
- Julia Greilich
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Hunt JB, Buteau A, Hanson S, Poleg-Polsky A, Felsen G. Neural substrates for saccadic modulation of visual representations in mouse superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.613770. [PMID: 39386422 PMCID: PMC11463470 DOI: 10.1101/2024.09.21.613770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
How do sensory systems account for stimuli generated by natural behavior? We addressed this question by examining how an ethologically relevant class of saccades modulates visual representations in the mouse superior colliculus (SC), a key region for sensorimotor integration. We quantified saccadic modulation by recording SC responses to visual probes presented at stochastic saccade-probe latencies. Saccades significantly impacted population representations of the probes, with early enhancement that began prior to saccades and pronounced suppression for several hundred milliseconds following saccades, independent of units' visual response properties or directional tuning. To determine the cause of saccadic modulation, we presented fictive saccades that simulated the visual experience during saccades without motor output. Some units exhibited similar modulation by fictive and real saccades, suggesting a sensory-driven origin of saccadic modulation, while others had dissimilar modulation, indicating a motor contribution. These findings advance our understanding of the neural basis of natural visual coding.
Collapse
Affiliation(s)
- Joshua B. Hunt
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Anna Buteau
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Spencer Hanson
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | | |
Collapse
|
4
|
Pomè A, Schlichting N, Fritz C, Zimmermann E. Prediction of sensorimotor contingencies generates saccadic omission. Curr Biol 2024; 34:3215-3225.e4. [PMID: 38917799 DOI: 10.1016/j.cub.2024.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
With every movement of our eyes, the visual receptors in the retina are swiped across the visual scene. Saccades are the fastest and most frequent movements we perform, yet we remain unaware of the self-produced visual motion. Previous research has tried to identify a dedicated suppression mechanism that either actively or passively cancels vision at the time of saccades.1 Here, we investigated a novel theory, which states that saccadic omission results from habituation to the predicted sensory consequences of our own actions. We experimentally induced novel, i.e., artificial visual consequences of saccade performance by presenting gratings that were drifting faster than the flicker fusion frequency and that became visible only when participants performed saccades. We asked participants to perform more than 100 saccades in each session across these gratings to make the novel contingencies predictable for the sensorimotor system. We found that contrast sensitivity for intra-saccadic motion declined drastically after repeated exposure of such motion. The reduction in sensitivity was even specific to the saccade vector performed in habituation trials. Moreover, when subjects performed the same task in fixation, no reduction in sensitivity was observed. In a motion speed comparison task, we found that the reduction in contrast sensitivity is the consequence of silencing-predicted intra-saccadic visual motion. Our data demonstrate that the sensorimotor system selectively habituates to recurring intra-saccadic visual motion, suggesting an efficient prediction mechanism of visual stability.
Collapse
Affiliation(s)
- Antonella Pomè
- Institute for Experimental Psychologe, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Nadine Schlichting
- Institute for Experimental Psychologe, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Clara Fritz
- Institute for Experimental Psychologe, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Eckart Zimmermann
- Institute for Experimental Psychologe, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
5
|
Coudiere A, Danion FR. Eye-hand coordination all the way: from discrete to continuous hand movements. J Neurophysiol 2024; 131:652-667. [PMID: 38381528 DOI: 10.1152/jn.00314.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
The differentiation between continuous and discrete actions is key for behavioral neuroscience. Although many studies have characterized eye-hand coordination during discrete (e.g., reaching) and continuous (e.g., pursuit tracking) actions, all these studies were conducted separately, using different setups and participants. In addition, how eye-hand coordination might operate at the frontier between discrete and continuous movements remains unexplored. Here we filled these gaps by means of a task that could elicit different movement dynamics. Twenty-eight participants were asked to simultaneously track with their eyes and a joystick a visual target that followed an unpredictable trajectory and whose position was updated at different rates (from 1.5 to 240 Hz). This procedure allowed us to examine actions ranging from discrete point-to-point movements (low refresh rate) to continuous pursuit (high refresh rate). For comparison, we also tested a manual tracking condition with the eyes fixed and a pure eye tracking condition (hand fixed). The results showed an abrupt transition between discrete and continuous hand movements around 3 Hz contrasting with a smooth trade-off between fixations and smooth pursuit. Nevertheless, hand and eye tracking accuracy remained strongly correlated, with each of these depending on whether the other effector was recruited. Moreover, gaze-cursor distance and lag were smaller when eye and hand performed the task conjointly than separately. Altogether, despite some dissimilarities in eye and hand dynamics when transitioning between discrete and continuous movements, our results emphasize that eye-hand coordination continues to smoothly operate and support the notion of synergies across eye movement types.NEW & NOTEWORTHY The differentiation between continuous and discrete actions is key for behavioral neuroscience. By using a visuomotor task in which we manipulate the target refresh rate to trigger different movement dynamics, we explored eye-hand coordination all the way from discrete to continuous actions. Despite abrupt changes in hand dynamics, eye-hand coordination continues to operate via a gradual trade-off between fixations and smooth pursuit, an observation confirming the notion of synergies across eye movement types.
Collapse
Affiliation(s)
- Adrien Coudiere
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, France
| | - Frederic R Danion
- CNRS, Université de Poitiers, Université de Tours, CeRCA, Poitiers, France
| |
Collapse
|
6
|
Gonzalez JE, Nieto N, Brusco P, Gravano A, Kamienkowski JE. Speech-induced suppression during natural dialogues. Commun Biol 2024; 7:291. [PMID: 38459110 PMCID: PMC10923813 DOI: 10.1038/s42003-024-05945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
When engaged in a conversation, one receives auditory information from the other's speech but also from their own speech. However, this information is processed differently by an effect called Speech-Induced Suppression. Here, we studied brain representation of acoustic properties of speech in natural unscripted dialogues, using electroencephalography (EEG) and high-quality speech recordings from both participants. Using encoding techniques, we were able to reproduce a broad range of previous findings on listening to another's speech, and achieving even better performances when predicting EEG signal in this complex scenario. Furthermore, we found no response when listening to oneself, using different acoustic features (spectrogram, envelope, etc.) and frequency bands, evidencing a strong effect of SIS. The present work shows that this mechanism is present, and even stronger, during natural dialogues. Moreover, the methodology presented here opens the possibility of a deeper understanding of the related mechanisms in a wider range of contexts.
Collapse
Affiliation(s)
- Joaquin E Gonzalez
- Laboratorio de Inteligencia Artificial Aplicada, Instituto de Ciencias de la Computación (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Cientificas y Tecnicas), Buenos Aires, Argentina.
| | - Nicolás Nieto
- Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i) (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Cientificas y Tecnicas), Santa Fe, Argentina
- Instituto de Matemática Aplicada del Litoral, IMAL-UNL/CONICET, Santa Fe, Argentina
| | - Pablo Brusco
- Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Gravano
- Laboratorio de Inteligencia Artificial, Universidad Torcuato Di Tella, Buenos Aires, Argentina
- Escuela de Negocios, Universidad Torcuato Di Tella, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan E Kamienkowski
- Laboratorio de Inteligencia Artificial Aplicada, Instituto de Ciencias de la Computación (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Cientificas y Tecnicas), Buenos Aires, Argentina
- Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Maestria de Explotación de Datos y Descubrimiento del Conocimiento, Facultad de Ciencias Exactas y Naturales - Facultad de Ingenieria, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Ali MA, Lischka K, Preuss SJ, Trivedi CA, Bollmann JH. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion. Nat Commun 2023; 14:7592. [PMID: 37996414 PMCID: PMC10667368 DOI: 10.1038/s41467-023-43255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
In motor control, the brain not only sends motor commands to the periphery, but also generates concurrent internal signals known as corollary discharge (CD) that influence sensory information processing around the time of movement. CD signals are important for identifying sensory input arising from self-motion and to compensate for it, but the underlying mechanisms remain unclear. Using whole-cell patch clamp recordings from neurons in the zebrafish optic tectum, we discovered an inhibitory synaptic signal, temporally locked to spontaneous and visually driven locomotion. This motor-related inhibition was appropriately timed to counteract visually driven excitatory input arising from the fish's own motion, and transiently suppressed tectal spiking activity. High-resolution calcium imaging revealed localized motor-related signals in the tectal neuropil and the upstream torus longitudinalis, suggesting that CD enters the tectum via this pathway. Together, our results show how visual processing is suppressed during self-motion by motor-related phasic inhibition. This may help explain perceptual saccadic suppression observed in many species.
Collapse
Affiliation(s)
- Mir Ahsan Ali
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina Lischka
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Stephanie J Preuss
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Springer Nature Group, Heidelberg, Germany
| | - Chintan A Trivedi
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Dept Cell and Developmental Biology, University College London, London, UK
| | - Johann H Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- Bernstein Center Freiburg, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
8
|
Willett SM, Maenner SK, Mayo JP. The perceptual consequences and neurophysiology of eye blinks. Front Syst Neurosci 2023; 17:1242654. [PMID: 37654528 PMCID: PMC10466800 DOI: 10.3389/fnsys.2023.1242654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
A hand passing in front of a camera produces a large and obvious disruption of a video. Yet the closure of the eyelid during a blink, which lasts for hundreds of milliseconds and occurs thousands of times per day, typically goes unnoticed. What are the neural mechanisms that mediate our uninterrupted visual experience despite frequent occlusion of the eyes? Here, we review the existing literature on the neurophysiology, perceptual consequences, and behavioral dynamics of blinks. We begin by detailing the kinematics of the eyelid that define a blink. We next discuss the ways in which blinks alter visual function by occluding the pupil, decreasing visual sensitivity, and moving the eyes. Then, to anchor our understanding, we review the similarities between blinks and other actions that lead to reductions in visual sensitivity, such as saccadic eye movements. The similarity between these two actions has led to suggestions that they share a common neural substrate. We consider the extent of overlap in their neural circuits and go on to explain how recent findings regarding saccade suppression cast doubt on the strong version of the shared mechanism hypothesis. We also evaluate alternative explanations of how blink-related processes modulate neural activity to maintain visual stability: a reverberating corticothalamic loop to maintain information in the face of lid closure; and a suppression of visual transients related to lid closure. Next, we survey the many areas throughout the brain that contribute to the execution of, regulation of, or response to blinks. Regardless of the underlying mechanisms, blinks drastically attenuate our visual abilities, yet these perturbations fail to reach awareness. We conclude by outlining opportunities for future work to better understand how the brain maintains visual perception in the face of eye blinks. Future work will likely benefit from incorporating theories of perceptual stability, neurophysiology, and novel behavior paradigms to address issues central to our understanding of natural visual behavior and for the clinical rehabilitation of active vision.
Collapse
Affiliation(s)
- Shawn M. Willett
- Department of Ophthalmology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah K. Maenner
- Department of Ophthalmology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - J. Patrick Mayo
- Department of Ophthalmology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Wang X, Liu Z, Angelov M, Feng Z, Li X, Li A, Yang Y, Gong H, Gao Z. Excitatory nucleo-olivary pathway shapes cerebellar outputs for motor control. Nat Neurosci 2023; 26:1394-1406. [PMID: 37474638 PMCID: PMC10400430 DOI: 10.1038/s41593-023-01387-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
The brain generates predictive motor commands to control the spatiotemporal precision of high-velocity movements. Yet, how the brain organizes automated internal feedback to coordinate the kinematics of such fast movements is unclear. Here we unveil a unique nucleo-olivary loop in the cerebellum and its involvement in coordinating high-velocity movements. Activating the excitatory nucleo-olivary pathway induces well-timed internal feedback complex spike signals in Purkinje cells to shape cerebellar outputs. Anatomical tracing reveals extensive axonal collaterals from the excitatory nucleo-olivary neurons to downstream motor regions, supporting integration of motor output and internal feedback signals within the cerebellum. This pathway directly drives saccades and head movements with a converging direction, while curtailing their amplitude and velocity via the powerful internal feedback mechanism. Our finding challenges the long-standing dogma that the cerebellum inhibits the inferior olivary pathway and provides a new circuit mechanism for the cerebellar control of high-velocity movements.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhiqiang Liu
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Milen Angelov
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhao Feng
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Anan Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Hui Gong
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Denagamage S, Morton MP, Hudson NV, Reynolds JH, Jadi MP, Nandy AS. Laminar mechanisms of saccadic suppression in primate visual cortex. Cell Rep 2023; 42:112720. [PMID: 37392385 PMCID: PMC10528056 DOI: 10.1016/j.celrep.2023.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/15/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Saccadic eye movements are known to cause saccadic suppression, a temporary reduction in visual sensitivity and visual cortical firing rates. While saccadic suppression has been well characterized at the level of perception and single neurons, relatively little is known about the visual cortical networks governing this phenomenon. Here we examine the effects of saccadic suppression on distinct neural subpopulations within visual area V4. We find subpopulation-specific differences in the magnitude and timing of peri-saccadic modulation. Input-layer neurons show changes in firing rate and inter-neuronal correlations prior to saccade onset, and putative inhibitory interneurons in the input layer elevate their firing rate during saccades. A computational model of this circuit recapitulates our empirical observations and demonstrates that an input-layer-targeting pathway can initiate saccadic suppression by enhancing local inhibitory activity. Collectively, our results provide a mechanistic understanding of how eye movement signaling interacts with cortical circuitry to enforce visual stability.
Collapse
Affiliation(s)
- Sachira Denagamage
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Mitchell P Morton
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Nyomi V Hudson
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - John H Reynolds
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Monika P Jadi
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| | - Anirvan S Nandy
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
11
|
Saleem AB, Busse L. Interactions between rodent visual and spatial systems during navigation. Nat Rev Neurosci 2023:10.1038/s41583-023-00716-7. [PMID: 37380885 DOI: 10.1038/s41583-023-00716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Many behaviours that are critical for animals to survive and thrive rely on spatial navigation. Spatial navigation, in turn, relies on internal representations about one's spatial location, one's orientation or heading direction and the distance to objects in the environment. Although the importance of vision in guiding such internal representations has long been recognized, emerging evidence suggests that spatial signals can also modulate neural responses in the central visual pathway. Here, we review the bidirectional influences between visual and navigational signals in the rodent brain. Specifically, we discuss reciprocal interactions between vision and the internal representations of spatial position, explore the effects of vision on representations of an animal's heading direction and vice versa, and examine how the visual and navigational systems work together to assess the relative distances of objects and other features. Throughout, we consider how technological advances and novel ethological paradigms that probe rodent visuo-spatial behaviours allow us to advance our understanding of how brain areas of the central visual pathway and the spatial systems interact and enable complex behaviours.
Collapse
Affiliation(s)
- Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany.
- Bernstein Centre for Computational Neuroscience Munich, Munich, Germany.
| |
Collapse
|
12
|
Burr D, Morrone MC. Vision: Neuronal mechanisms enabling stable perception. Curr Biol 2022; 32:R1338-R1340. [PMID: 36538882 DOI: 10.1016/j.cub.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eye movements cause rapid motion of the retinal image, potentially confusable with external motion. A recent study shows that neurons in mouse primary visual cortex distinguish self-generated from external motion by combining sensory input with saccade-related signals from the thalamic pulvinar nucleus.
Collapse
Affiliation(s)
- David Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Firenze, Italy.
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
13
|
Turner MH, Krieger A, Pang MM, Clandinin TR. Visual and motor signatures of locomotion dynamically shape a population code for feature detection in Drosophila. eLife 2022; 11:e82587. [PMID: 36300621 PMCID: PMC9651947 DOI: 10.7554/elife.82587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Natural vision is dynamic: as an animal moves, its visual input changes dramatically. How can the visual system reliably extract local features from an input dominated by self-generated signals? In Drosophila, diverse local visual features are represented by a group of projection neurons with distinct tuning properties. Here, we describe a connectome-based volumetric imaging strategy to measure visually evoked neural activity across this population. We show that local visual features are jointly represented across the population, and a shared gain factor improves trial-to-trial coding fidelity. A subset of these neurons, tuned to small objects, is modulated by two independent signals associated with self-movement, a motor-related signal, and a visual motion signal associated with rotation of the animal. These two inputs adjust the sensitivity of these feature detectors across the locomotor cycle, selectively reducing their gain during saccades and restoring it during intersaccadic intervals. This work reveals a strategy for reliable feature detection during locomotion.
Collapse
Affiliation(s)
- Maxwell H Turner
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Avery Krieger
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Michelle M Pang
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | | |
Collapse
|
14
|
Predicting Product Preferences on Retailers’ Web Shops through Measurement of Gaze and Pupil Size Dynamics. J Cogn 2022; 5:45. [PMID: 36304586 PMCID: PMC9541120 DOI: 10.5334/joc.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Previous studies used gaze behavior to predict product preference in value-based decision-making, based on gaze angle variables such as dwell time, fixation duration and the first fixated product. While the application for online retail seems obvious, research with realistic web shop stimuli has been lacking so far. Here, we studied the decision process for 60 Dutch web shops of a variety of retailers, by measuring eye movements and pupil size during the viewing of web shop images. The outcomes of an ordinal linear regression model showed that a combination of gaze angle variables accurately predicted product choice, with the total dwell time being the most predictive gaze dynamic. Although pupillometric analysis showed a positive relationship between pupil dilation and product preference, adding pupil size to the model only slightly improved the prediction accuracy. The current study holds the potential to substantially improve retargeting mechanisms in online marketing based on consumers’ gaze information. Also, gaze-based product preference proves to be a valuable metric in pre-testing product introductions for market research and prevent product launches from failure.
Collapse
|
15
|
Distinguishing externally from saccade-induced motion in visual cortex. Nature 2022; 610:135-142. [PMID: 36104560 PMCID: PMC9534749 DOI: 10.1038/s41586-022-05196-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/04/2022] [Indexed: 12/03/2022]
Abstract
Distinguishing sensory stimuli caused by changes in the environment from those caused by an animal’s own actions is a hallmark of sensory processing1. Saccades are rapid eye movements that shift the image on the retina. How visual systems differentiate motion of the image induced by saccades from actual motion in the environment is not fully understood2. Here we discovered that in mouse primary visual cortex (V1) the two types of motion evoke distinct activity patterns. This is because, during saccades, V1 combines the visual input with a strong non-visual input arriving from the thalamic pulvinar nucleus. The non-visual input triggers responses that are specific to the direction of the saccade and the visual input triggers responses that are specific to the direction of the shift of the stimulus on the retina, yet the preferred directions of these two responses are uncorrelated. Thus, the pulvinar input ensures differential V1 responses to external and self-generated motion. Integration of external sensory information with information about body movement may be a general mechanism for sensory cortices to distinguish between self-generated and external stimuli. Distinct activity patterns in the primary visual cortex distinguish movement in the environment from motion caused by eye movements.
Collapse
|
16
|
Lappi O. Gaze Strategies in Driving-An Ecological Approach. Front Psychol 2022; 13:821440. [PMID: 35360580 PMCID: PMC8964278 DOI: 10.3389/fpsyg.2022.821440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/07/2022] [Indexed: 01/16/2023] Open
Abstract
Human performance in natural environments is deeply impressive, and still much beyond current AI. Experimental techniques, such as eye tracking, may be useful to understand the cognitive basis of this performance, and "the human advantage." Driving is domain where these techniques may deployed, in tasks ranging from rigorously controlled laboratory settings through high-fidelity simulations to naturalistic experiments in the wild. This research has revealed robust patterns that can be reliably identified and replicated in the field and reproduced in the lab. The purpose of this review is to cover the basics of what is known about these gaze behaviors, and some of their implications for understanding visually guided steering. The phenomena reviewed will be of interest to those working on any domain where visual guidance and control with similar task demands is involved (e.g., many sports). The paper is intended to be accessible to the non-specialist, without oversimplifying the complexity of real-world visual behavior. The literature reviewed will provide an information base useful for researchers working on oculomotor behaviors and physiology in the lab who wish to extend their research into more naturalistic locomotor tasks, or researchers in more applied fields (sports, transportation) who wish to bring aspects of the real-world ecology under experimental scrutiny. Part of a Research Topic on Gaze Strategies in Closed Self-paced tasks, this aspect of the driving task is discussed. It is in particular emphasized why it is important to carefully separate the visual strategies driving (quite closed and self-paced) from visual behaviors relevant to other forms of driver behavior (an open-ended menagerie of behaviors). There is always a balance to strike between ecological complexity and experimental control. One way to reconcile these demands is to look for natural, real-world tasks and behavior that are rich enough to be interesting yet sufficiently constrained and well-understood to be replicated in simulators and the lab. This ecological approach to driving as a model behavior and the way the connection between "lab" and "real world" can be spanned in this research is of interest to anyone keen to develop more ecologically representative designs for studying human gaze behavior.
Collapse
Affiliation(s)
- Otto Lappi
- Cognitive Science/TRU, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
David EJ, Lebranchu P, Perreira Da Silva M, Le Callet P. What are the visuo-motor tendencies of omnidirectional scene free-viewing in virtual reality? J Vis 2022; 22:12. [PMID: 35323868 PMCID: PMC8963670 DOI: 10.1167/jov.22.4.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Central and peripheral vision during visual tasks have been extensively studied on two-dimensional screens, highlighting their perceptual and functional disparities. This study has two objectives: replicating on-screen gaze-contingent experiments removing central or peripheral field of view in virtual reality, and identifying visuo-motor biases specific to the exploration of 360 scenes with a wide field of view. Our results are useful for vision modelling, with applications in gaze position prediction (e.g., content compression and streaming). We ask how previous on-screen findings translate to conditions where observers can use their head to explore stimuli. We implemented a gaze-contingent paradigm to simulate loss of vision in virtual reality, participants could freely view omnidirectional natural scenes. This protocol allows the simulation of vision loss with an extended field of view (\(\gt \)80°) and studying the head's contributions to visual attention. The time-course of visuo-motor variables in our pure free-viewing task reveals long fixations and short saccades during first seconds of exploration, contrary to literature in visual tasks guided by instructions. We show that the effect of vision loss is reflected primarily on eye movements, in a manner consistent with two-dimensional screens literature. We hypothesize that head movements mainly serve to explore the scenes during free-viewing, the presence of masks did not significantly impact head scanning behaviours. We present new fixational and saccadic visuo-motor tendencies in a 360° context that we hope will help in the creation of gaze prediction models dedicated to virtual reality.
Collapse
Affiliation(s)
- Erwan Joël David
- Department of Psychology, Goethe-Universität, Frankfurt, Germany
| | - Pierre Lebranchu
- LS2N UMR CNRS 6004, University of Nantes and Nantes University Hospital, Nantes, France
| | | | - Patrick Le Callet
- LS2N UMR CNRS 6004, University of Nantes, Nantes, France
- http://pagesperso.ls2n.fr/~lecallet-p/index.html
| |
Collapse
|
18
|
Linear vector models of time perception account for saccade and stimulus novelty interactions. Heliyon 2022; 8:e09036. [PMID: 35265767 PMCID: PMC8899236 DOI: 10.1016/j.heliyon.2022.e09036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Various models (e.g., scalar, state-dependent network, and vector models) have been proposed to explain the global aspects of time perception, but they have not been tested against specific visual phenomena like perisaccadic time compression and novel stimulus time dilation. Here, in two separate experiments (N = 31), we tested how the perceived duration of a novel stimulus is influenced by 1) a simultaneous saccade, in combination with 2) a prior series of repeated stimuli in human participants. This yielded a novel behavioral interaction: pre-saccadic stimulus repetition neutralizes perisaccadic time compression. We then tested these results against simulations of the above models. Our data yielded low correlations against scalar model simulations, high but non-specific correlations for our feedforward neural network, and correlations that were both high and specific for a vector model based on identity of objective and subjective time. These results demonstrate the power of global time perception models in explaining disparate empirical phenomena and suggest that subjective time has a similar essence to time's physical vector.
Collapse
|
19
|
Benucci A. Motor-related signals support localization invariance for stable visual perception. PLoS Comput Biol 2022; 18:e1009928. [PMID: 35286305 PMCID: PMC8947590 DOI: 10.1371/journal.pcbi.1009928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/24/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Our ability to perceive a stable visual world in the presence of continuous movements of the body, head, and eyes has puzzled researchers in the neuroscience field for a long time. We reformulated this problem in the context of hierarchical convolutional neural networks (CNNs)-whose architectures have been inspired by the hierarchical signal processing of the mammalian visual system-and examined perceptual stability as an optimization process that identifies image-defining features for accurate image classification in the presence of movements. Movement signals, multiplexed with visual inputs along overlapping convolutional layers, aided classification invariance of shifted images by making the classification faster to learn and more robust relative to input noise. Classification invariance was reflected in activity manifolds associated with image categories emerging in late CNN layers and with network units acquiring movement-associated activity modulations as observed experimentally during saccadic eye movements. Our findings provide a computational framework that unifies a multitude of biological observations on perceptual stability under optimality principles for image classification in artificial neural networks.
Collapse
Affiliation(s)
- Andrea Benucci
- RIKEN Center for Brain Science, Wako-shi, Japan
- University of Tokyo, Graduate School of Information Science and Technology, Department of Mathematical Informatics, Tokyo, Japan
| |
Collapse
|
20
|
Kaneko T, Komatsu M, Yamamori T, Ichinohe N, Okano H. Cortical neural dynamics unveil the rhythm of natural visual behavior in marmosets. Commun Biol 2022; 5:108. [PMID: 35115680 PMCID: PMC8814246 DOI: 10.1038/s42003-022-03052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Numerous studies have shown that the visual system consists of functionally distinct ventral and dorsal streams; however, its exact spatial-temporal dynamics during natural visual behavior remain to be investigated. Here, we report cerebral neural dynamics during active visual exploration recorded by an electrocorticographic array covering the entire lateral surface of the marmoset cortex. We found that the dorsal stream was activated before the primary visual cortex with saccades and followed by the alteration of suppression and activation signals along the ventral stream. Similarly, the signal that propagated from the dorsal to ventral visual areas was accompanied by a travelling wave of low frequency oscillations. Such signal dynamics occurred at an average of 220 ms after saccades, which corresponded to the timing when whole-brain activation returned to background levels. We also demonstrated that saccades could occur at any point of signal flow, indicating the parallel computation of motor commands. Overall, this study reveals the neural dynamics of active vision, which are efficiently linked to the natural rhythms of visual exploration.
Collapse
Affiliation(s)
- Takaaki Kaneko
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan. .,Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan.
| | - Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan. .,Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
21
|
Akbarian A, Clark K, Noudoost B, Nategh N. A sensory memory to preserve visual representations across eye movements. Nat Commun 2021; 12:6449. [PMID: 34750376 PMCID: PMC8575989 DOI: 10.1038/s41467-021-26756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Saccadic eye movements (saccades) disrupt the continuous flow of visual information, yet our perception of the visual world remains uninterrupted. Here we assess the representation of the visual scene across saccades from single-trial spike trains of extrastriate visual areas, using a combined electrophysiology and statistical modeling approach. Using a model-based decoder we generate a high temporal resolution readout of visual information, and identify the specific changes in neurons' spatiotemporal sensitivity that underly an integrated perisaccadic representation of visual space. Our results show that by maintaining a memory of the visual scene, extrastriate neurons produce an uninterrupted representation of the visual world. Extrastriate neurons exhibit a late response enhancement close to the time of saccade onset, which preserves the latest pre-saccadic information until the post-saccadic flow of retinal information resumes. These results show how our brain exploits available information to maintain a representation of the scene while visual inputs are disrupted.
Collapse
Affiliation(s)
- Amir Akbarian
- grid.223827.e0000 0001 2193 0096Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT USA
| | - Kelsey Clark
- grid.223827.e0000 0001 2193 0096Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Neda Nategh
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA. .,Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Nicolas G, Castet E, Rabier A, Kristensen E, Dojat M, Guérin-Dugué A. Neural correlates of intra-saccadic motion perception. J Vis 2021; 21:19. [PMID: 34698810 PMCID: PMC8556557 DOI: 10.1167/jov.21.11.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinal motion of the visual scene is not consciously perceived during ocular saccades in normal everyday conditions. It has been suggested that extra-retinal signals actively suppress intra-saccadic motion perception to preserve stable perception of the visual world. However, using stimuli optimized to preferentially activate the M-pathway, Castet and Masson (2000) demonstrated that motion can be perceived during a saccade. Based on this psychophysical paradigm, we used electroencephalography and eye-tracking recordings to investigate the neural correlates related to the conscious perception of intra-saccadic motion. We demonstrated the effective involvement during saccades of the cortical areas V1-V2 and MT-V5, which convey motion information along the M-pathway. We also showed that individual motion perception was related to retinal temporal frequency.
Collapse
Affiliation(s)
- Gaëlle Nicolas
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France.,
| | - Eric Castet
- LPC, Laboratoire de Psychologie Cognitive (UMR 7290), Aix-Marseille Univ, CNRS, LPC, Marseille, France.,
| | - Adrien Rabier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France.,
| | | | - Michel Dojat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France.,
| | - Anne Guérin-Dugué
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France.,
| |
Collapse
|
23
|
Theobald J. Insect vision: Head saccades to reset the view. Curr Biol 2021; 31:R1072-R1074. [PMID: 34582811 DOI: 10.1016/j.cub.2021.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tracking a moving scene requires you to occasionally readjust your gaze as objects slip out of sight. A new study has found how fruit flies use head-turning strategies to reset their gaze and stabilize visual images during flight.
Collapse
Affiliation(s)
- Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
24
|
Fast and nonuniform dynamics of perisaccadic vision in the central fovea. Proc Natl Acad Sci U S A 2021; 118:2101259118. [PMID: 34497123 PMCID: PMC8449317 DOI: 10.1073/pnas.2101259118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Humans shift their gaze more frequently than their heart beats. These rapid eye movements (saccades) enable high visual acuity by redirecting the tiny high-resolution region of the retina (the foveola). But in doing so, they abruptly sweep the image across receptors, raising questions on how the visual system achieves stable percepts. It is well established that visual sensitivity is transiently attenuated during saccades. However, little is known about the time course of foveal vision despite its disproportionate importance, as technical challenges have so far prevented study of how saccades affect the foveola. Here we show that saccades modulate this region in a nonuniform manner, providing stronger and faster changes at its very center, a locus with higher sensitivity. Humans use rapid eye movements (saccades) to inspect stimuli with the foveola, the region of the retina where receptors are most densely packed. It is well established that visual sensitivity is generally attenuated during these movements, a phenomenon known as saccadic suppression. This effect is commonly studied with large, often peripheral, stimuli presented during instructed saccades. However, little is known about how saccades modulate the foveola and how the resulting dynamics unfold during natural visual exploration. Here we measured the foveal dynamics of saccadic suppression in a naturalistic high-acuity task, a task designed after primates’ social grooming, which—like most explorations of fine patterns—primarily elicits minute saccades (microsaccades). Leveraging on recent advances in gaze-contingent display control, we were able to systematically map the perisaccadic time course of sensitivity across the foveola. We show that contrast sensitivity is not uniform across this region and that both the extent and dynamics of saccadic suppression vary within the foveola. Suppression is stronger and faster in the most central portion, where sensitivity is generally higher and selectively rebounds at the onset of a new fixation. These results shed light on the modulations experienced by foveal vision during the saccade-fixation cycle and explain some of the benefits of microsaccades.
Collapse
|
25
|
Pandey P, Ray S. Pupil dynamics: A potential proxy of neural preparation for goal-directed eye movement. Eur J Neurosci 2021; 54:6587-6607. [PMID: 34510602 DOI: 10.1111/ejn.15453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
The pupils reflexively constrict or dilate to regulate the influx of light on the retinae. Pupillary light reflex (PLR) is susceptible to many non-visual cognitive processes including covert orientation of attention and planning rapid saccadic eye movement. The frontal eye field (FEF) and superior colliculus (SC), which also send projections to the PLR pathway, are two important areas in primate's brain for planning saccade and orientation of attention. The saccadic reaction time (SRT) and the rate of increase in activity of movement neurons in these areas are inversely correlated. This study addressed how pupil dynamics, activity in the FEF and SC and SRT are related in a saccadic decision-making task. The rate of visually evoked pupil constriction was found inversely related to SRT. This was further verified by simulating a homeomorphic biomechanical model of pupillary muscle plants, wherein we projected signals similar to build-up activity in the FEF and SC to the parasympathetic (constriction) and sympathetic (dilation) division of the PLR pathway, respectively. A striking similarity between simulated and observed dynamics of pupil constriction suggests that PLR is a potential proxy of saccade planning by movement neurons in the FEF and SC. Indistinguishable pupil dynamics when planned saccades were elicited versus when they were cancelled eliminated the possibility that the obligatory pre-saccadic shift of attention alone influenced the rate of pupil constriction. Our study envisages a mechanism of how the oculomotor system influences the autonomic activity in an attempt to timely minimize saccadic visual transients by regulating the influx of light.
Collapse
Affiliation(s)
- Pragya Pandey
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| | - Supriya Ray
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| |
Collapse
|
26
|
Spontaneous modulations of high-frequency cortical activity. Clin Neurophysiol 2021; 132:2391-2403. [PMID: 34454266 DOI: 10.1016/j.clinph.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We clarified the clinical and mechanistic significance of physiological modulations of high-frequency broadband cortical activity associated with spontaneous saccadic eye movements during a resting state. METHODS We studied 30 patients who underwent epilepsy surgery following extraoperative electrocorticography and electrooculography recordings. We determined whether high-gamma activity at 70-110 Hz preceding saccade onset would predict upcoming ocular behaviors. We assessed how accurately the model incorporating saccade-related high-gamma modulations would localize the primary visual cortex defined by electrical stimulation. RESULTS The dynamic atlas demonstrated transient high-gamma suppression in the striatal cortex before saccade onset and high-gamma augmentation subsequently involving the widespread posterior brain regions. More intense striatal high-gamma suppression predicted the upcoming saccade directed to the ipsilateral side and lasting longer in duration. The bagged-tree-ensemble model demonstrated that intense saccade-related high-gamma modulations localized the visual cortex with an accuracy of 95%. CONCLUSIONS We successfully animated the neural dynamics supporting saccadic suppression, a principal mechanism minimizing the perception of blurred vision during rapid eye movements. The primary visual cortex per se may prepare actively in advance for massive image motion expected during upcoming prolonged saccades. SIGNIFICANCE Measuring saccade-related electrocorticographic signals may help localize the visual cortex and avoid misperceiving physiological high-frequency activity as epileptogenic.
Collapse
|
27
|
Schweitzer R, Rolfs M. Intrasaccadic motion streaks jump-start gaze correction. SCIENCE ADVANCES 2021; 7:eabf2218. [PMID: 34301596 PMCID: PMC8302125 DOI: 10.1126/sciadv.abf2218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/22/2021] [Indexed: 05/09/2023]
Abstract
Rapid eye movements (saccades) incessantly shift objects across the retina. To establish object correspondence, the visual system is thought to match surface features of objects across saccades. Here, we show that an object's intrasaccadic retinal trace-a signal previously considered unavailable to visual processing-facilitates this match making. Human observers made saccades to a cued target in a circular stimulus array. Using high-speed visual projection, we swiftly rotated this array during the eyes' flight, displaying continuous intrasaccadic target motion. Observers' saccades landed between the target and a distractor, prompting secondary saccades. Independently of the availability of object features, which we controlled tightly, target motion increased the rate and reduced the latency of gaze-correcting saccades to the initial presaccadic target, in particular when the target's stimulus features incidentally gave rise to efficient motion streaks. These results suggest that intrasaccadic visual information informs the establishment of object correspondence and jump-starts gaze correction.
Collapse
Affiliation(s)
- Richard Schweitzer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
28
|
Churan J, Kaminiarz A, Schwenk JCB, Bremmer F. Action-dependent processing of self-motion in parietal cortex of macaque monkeys. J Neurophysiol 2021; 125:2432-2443. [PMID: 34010579 DOI: 10.1152/jn.00049.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Successful interaction with the environment requires the dissociation of self-induced from externally induced sensory stimulation. Temporal proximity of action and effect is hereby often used as an indicator of whether an observed event should be interpreted as a result of own actions or not. We tested how the delay between an action (press of a touch bar) and an effect (onset of simulated self-motion) influences the processing of visually simulated self-motion in the ventral intraparietal area (VIP) of macaque monkeys. We found that a delay between the action and the start of the self-motion stimulus led to a rise of activity above the baseline activity before motion onset in a subpopulation of 21% of the investigated neurons. In the responses to the stimulus, we found a significantly lower sustained activity when the press of a touch bar and the motion onset were contiguous compared to the condition when the motion onset was delayed. We speculate that this weak inhibitory effect might be part of a mechanism that sharpens the tuning of VIP neurons during self-induced motion and thus has the potential to increase the precision of heading information that is required to adjust the orientation of self-motion in everyday navigational tasks.NEW & NOTEWORTHY Neurons in macaque ventral intraparietal area (VIP) are responding to sensory stimulation related to self-motion, e.g. visual optic flow. Here, we found that self-motion induced activation depends on the sense of agency, i.e., it differed when optic flow was perceived as self- or externally induced. This demonstrates that area VIP is well suited for study of the interplay between active behavior and sensory processing during self-motion.
Collapse
Affiliation(s)
- Jan Churan
- Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Gießen, Marburg, Germany
| | - Andre Kaminiarz
- Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Gießen, Marburg, Germany
| | - Jakob C B Schwenk
- Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Gießen, Marburg, Germany
| | - Frank Bremmer
- Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Gießen, Marburg, Germany
| |
Collapse
|
29
|
Hafed ZM, Yoshida M, Tian X, Buonocore A, Malevich T. Dissociable Cortical and Subcortical Mechanisms for Mediating the Influences of Visual Cues on Microsaccadic Eye Movements. Front Neural Circuits 2021; 15:638429. [PMID: 33776656 PMCID: PMC7991613 DOI: 10.3389/fncir.2021.638429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Visual selection in primates is intricately linked to eye movements, which are generated by a network of cortical and subcortical neural circuits. When visual selection is performed covertly, without foveating eye movements toward the selected targets, a class of fixational eye movements, called microsaccades, is still involved. Microsaccades are small saccades that occur when maintaining precise gaze fixation on a stationary point, and they exhibit robust modulations in peripheral cueing paradigms used to investigate covert visual selection mechanisms. These modulations consist of changes in both microsaccade directions and frequencies after cue onsets. Over the past two decades, the properties and functional implications of these modulations have been heavily studied, revealing a potentially important role for microsaccades in mediating covert visual selection effects. However, the neural mechanisms underlying cueing effects on microsaccades are only beginning to be investigated. Here we review the available causal manipulation evidence for these effects' cortical and subcortical substrates. In the superior colliculus (SC), activity representing peripheral visual cues strongly influences microsaccade direction, but not frequency, modulations. In the cortical frontal eye fields (FEF), activity only compensates for early reflexive effects of cues on microsaccades. Using evidence from behavior, theoretical modeling, and preliminary lesion data from the primary visual cortex and microstimulation data from the lower brainstem, we argue that the early reflexive microsaccade effects arise subcortically, downstream of the SC. Overall, studying cueing effects on microsaccades in primates represents an important opportunity to link perception, cognition, and action through unaddressed cortical-subcortical neural interactions. These interactions are also likely relevant in other sensory and motor modalities during other active behaviors.
Collapse
Affiliation(s)
- Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Xiaoguang Tian
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antimo Buonocore
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tatiana Malevich
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
- Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, Tübingen University, Tübingen, Germany
| |
Collapse
|
30
|
Masselink J, Lappe M. Visuomotor learning from postdictive motor error. eLife 2021; 10:64278. [PMID: 33687328 PMCID: PMC8057815 DOI: 10.7554/elife.64278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sensorimotor learning adapts motor output to maintain movement accuracy. For saccadic eye movements, learning also alters space perception, suggesting a dissociation between the performed saccade and its internal representation derived from corollary discharge (CD). This is critical since learning is commonly believed to be driven by CD-based visual prediction error. We estimate the internal saccade representation through pre- and trans-saccadic target localization, showing that it decouples from the actual saccade during learning. We present a model that explains motor and perceptual changes by collective plasticity of spatial target percept, motor command, and a forward dynamics model that transforms CD from motor into visuospatial coordinates. We show that learning does not follow visual prediction error but instead a postdictive update of space after saccade landing. We conclude that trans-saccadic space perception guides motor learning via CD-based postdiction of motor error under the assumption of a stable world.
Collapse
Affiliation(s)
- Jana Masselink
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| |
Collapse
|
31
|
Schwenk JCB, Klingenhoefer S, Werner BO, Dowiasch S, Bremmer F. Perisaccadic encoding of temporal information in macaque area V4. J Neurophysiol 2021; 125:785-795. [PMID: 33502931 DOI: 10.1152/jn.00387.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The accurate processing of temporal information is of critical importance in everyday life. Yet, psychophysical studies in humans have shown that the perception of time is distorted around saccadic eye movements. The neural correlates of this misperception are still poorly understood. Behavioral and neural evidence suggest that it is tightly linked to other known perisaccadic modulations of visual perception. To further our understanding of how temporal processing is affected by saccades, we studied the representations of brief visual time intervals during fixation and saccades in area V4 of two awake macaques. We presented random sequences of vertical bar stimuli and extracted neural responses to double-pulse stimulation at varying interstimulus intervals. Our results show that temporal information about very brief intervals of as brief as 20 ms is reliably represented in the multiunit activity in area V4. Response latencies were not systematically modulated by the saccade. However, a general increase in perisaccadic activity altered the ratio of response amplitudes within stimulus pairs compared with fixation. In line with previous studies showing that the perception of brief time intervals is partly based on response levels, this may be seen as a possible correlate of the perisaccadic misperception of time.NEW & NOTEWORTHY We investigated for the first time how temporal information on very brief timescales is represented in area V4 around the time of saccadic eye movements. Overall, the responses showed an unexpectedly precise representation of time intervals. Our finding of a perisaccadic modulation of relative response amplitudes introduces a new possible correlate of saccade-related perceptual distortions of time.
Collapse
Affiliation(s)
- Jakob C B Schwenk
- Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus-Liebig-University Giessen, Germany
| | | | - Björn-Olaf Werner
- Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany
| | - Stefan Dowiasch
- Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg and Justus-Liebig-University Giessen, Germany
| | - Frank Bremmer
- Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
32
|
Kern M, Schulze-Bonhage A, Ball T. Blink- and saccade-related suppression effects in early visual areas of the human brain: Intracranial EEG investigations during natural viewing conditions. Neuroimage 2021; 230:117788. [PMID: 33503480 DOI: 10.1016/j.neuroimage.2021.117788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
Blinks and saccades, both ubiquitous in natural viewing conditions, cause rapid changes of visual inputs that are hardly consciously perceived. The neural dynamics in early visual areas of the human brain underlying this remarkable visual stability are still incompletely understood. We used electrocorticography (ECoG) from electrodes directly implanted on the human early visual areas V1, V2, V3d/v, V4d/v and the fusiform gyrus to investigate blink- and saccade-related neuronal suppression effects during non-experimental, free viewing conditions. We found a characteristic, biphasic, broadband gamma power decrease-increase pattern in all investigated visual areas. During saccades, a decrease in gamma power clearly preceded eye movement onset, at least in V1. This may indicate that cortical information processing is actively suppressed in human early visual areas before and during saccades, which then possibly mediates perceptual visual suppression. The following eye movement offset-related increase in gamma power may indicate the recovery of visual perception and the resumption of visual processing.
Collapse
Affiliation(s)
- Markus Kern
- Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Engelbergerstr.21, D-79106 Freiburg im Breisgau, Germany; Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Tonio Ball
- Neuromedical AI Lab, Department of Neurosurgery, Medical Center - University of Freiburg, Engelbergerstr.21, D-79106 Freiburg im Breisgau, Germany; Epilepsy Center, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Guitchounts G, Masís J, Wolff SB, Cox D. Encoding of 3D Head Orienting Movements in the Primary Visual Cortex. Neuron 2020; 108:512-525.e4. [DOI: 10.1016/j.neuron.2020.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
|
34
|
Kragel JE, Voss JL. Temporal context guides visual exploration during scene recognition. J Exp Psychol Gen 2020; 150:873-889. [PMID: 32969680 DOI: 10.1037/xge0000827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Memories for episodes are temporally structured. Cognitive models derived from list-learning experiments attribute this structure to the retrieval of temporal context information that indicates when a memory occurred. These models predict key features of memory recall, such as the strong tendency to retrieve studied items in the order in which they were first encountered. Can such models explain ecological memory behaviors, such as eye movements during encoding and retrieval of complex visual stimuli? We tested predictions from retrieved-context models using three data sets involving recognition memory and free viewing of complex scenes. Subjects reinstated sequences of eye movements from one scene-viewing episode to the next. Moreover, sequence reinstatement decayed over time and was associated with successful memory. We observed memory-driven reinstatement even after accounting for intrinsic scene properties that produced consistent eye movements. These findings confirm predictions of retrieved-context models, suggesting retrieval of temporal context influences complex behaviors generated during naturalistic memory experiences. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
35
|
Neupane S, Guitton D, Pack CC. Perisaccadic remapping: What? How? Why? Rev Neurosci 2020; 31:505-520. [PMID: 32242834 DOI: 10.1515/revneuro-2019-0097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/31/2019] [Indexed: 11/15/2022]
Abstract
About 25 years ago, the discovery of receptive field (RF) remapping in the parietal cortex of nonhuman primates revealed that visual RFs, widely assumed to have a fixed retinotopic organization, can change position before every saccade. Measuring such changes can be deceptively difficult. As a result, studies that followed have generated a fascinating but somewhat confusing picture of the phenomenon. In this review, we describe how observations of RF remapping depend on the spatial and temporal sampling of visual RFs and saccade directions. Further, we summarize some of the theories of how remapping might occur in neural circuitry. Finally, based on neurophysiological and psychophysical observations, we discuss the ways in which remapping information might facilitate computations in downstream brain areas.
Collapse
Affiliation(s)
- Sujaya Neupane
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Guitton
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A2B4, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
36
|
Abstract
Visual sensitivity, probed through perceptual detectability of very brief visual stimuli, is strongly impaired around the time of rapid eye movements. This robust perceptual phenomenon, called saccadic suppression, is frequently attributed to active suppressive signals that are directly derived from eye movement commands. Here we show instead that visual-only mechanisms, activated by saccade-induced image shifts, can account for all perceptual properties of saccadic suppression that we have investigated. Such mechanisms start at, but are not necessarily exclusive to, the very first stage of visual processing in the brain, the retina. Critically, neural suppression originating in the retina outlasts perceptual suppression around the time of saccades, suggesting that extra-retinal movement-related signals, rather than causing suppression, may instead act to shorten it. Our results demonstrate a far-reaching contribution of visual processing mechanisms to perceptual saccadic suppression, starting in the retina, without the need to invoke explicit motor-based suppression commands. Saccadic suppression is frequently attributed to active suppressive signals derived from eye movement commands. Here, the authors show that visual-only mechanisms starting in the retina can account for perceptual saccadic suppression properties without the need for motor-based suppression commands.
Collapse
|
37
|
Humans use Optokinetic Eye Movements to Track Waypoints for Steering. Sci Rep 2020; 10:4175. [PMID: 32144287 PMCID: PMC7060325 DOI: 10.1038/s41598-020-60531-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 02/13/2020] [Indexed: 11/08/2022] Open
Abstract
It is well-established how visual stimuli and self-motion in laboratory conditions reliably elicit retinal-image-stabilizing compensatory eye movements (CEM). Their organization and roles in natural-task gaze strategies is much less understood: are CEM applied in active sampling of visual information in human locomotion in the wild? If so, how? And what are the implications for guidance? Here, we directly compare gaze behavior in the real world (driving a car) and a fixed base simulation steering task. A strong and quantifiable correspondence between self-rotation and CEM counter-rotation is found across a range of speeds. This gaze behavior is "optokinetic", i.e. optic flow is a sufficient stimulus to spontaneously elicit it in naïve subjects and vestibular stimulation or stereopsis are not critical. Theoretically, the observed nystagmus behavior is consistent with tracking waypoints on the future path, and predicted by waypoint models of locomotor control - but inconsistent with travel point models, such as the popular tangent point model.
Collapse
|
38
|
Takeuchi RF, Osakada F. [Circuit mechanisms of spatial perception and visuomotor integration]. Nihon Yakurigaku Zasshi 2020; 155:99-106. [PMID: 32115486 DOI: 10.1254/fpj.19132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Animals can make appropriate decisions based on sensory information about the environment. Vision is one of the most critical ability for survival in dynamic situations in nature, particularly for mammalian species, such as primates, carnivores, and rodents. Although there is a huge computational cost involved in processing visual information, the brain can perform this task very rapidly using well-organized parallel and hierarchical neural circuits, enabling animals to rapidly sense the environment and, in turn, perform adaptive actions. Physiological, psychophysical, and clinical studies over hundreds of years have delineated the neural circuit mechanisms of the visual system. Artificial intelligence and robotics have also started making progress in this area. However, due to technical limitations, there are still many open questions that elude explanation in understanding the neural mechanism of visuomotor integration. Herein, we initially describe the anatomical structures of occipital cortices related to vision and then provide an overview of the physiological and clinical studies of the dorsal visual pathway related to spatial perception and prediction in non-human primate species. Finally, we introduce recent approaches in which rodents have been used as model species to elucidate the neural circuit mechanism of visually-guided behavior. Uncovering neural implementation of the association between visual-spatial perception and visuomotor function could provide key insights into the engineering of highly active robots and could also contribute to the development of novel therapeutic strategies addressing visual impairment and psychiatric/neurological disorders.
Collapse
Affiliation(s)
- Ryosuke F Takeuchi
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University.,CREST, Japan Science and Technology Agency
| |
Collapse
|
39
|
The role of the posterior parietal cortex in saccadic error processing. Brain Struct Funct 2020; 225:763-784. [PMID: 32065255 DOI: 10.1007/s00429-020-02034-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Ocular saccades rapidly displace the fovea from one point of interest to another, thus minimizing the loss of visual information and ensuring the seamless continuity of visual perception. However, because of intrinsic variability in sensory-motor processing, saccades often miss their intended target, necessitating a secondary corrective saccade. Behavioral evidence suggests that the oculomotor system estimates saccadic error by relying on two sources of information: the retinal feedback obtained post-saccadically and an internal extra-retinal signal obtained from efference copy or proprioception. However, the neurophysiological mechanisms underlying this process remain elusive. We trained two rhesus monkeys to perform visually guided saccades towards a target that was imperceptibly displaced at saccade onset on some trials. We recorded activity from neurons in the lateral intraparietal area (LIP), an area implicated in visual, attentional and saccadic processing. We found that a subpopulation of neurons detect saccadic motor error by firing more strongly after an inaccurate saccade. This signal did not depend on retinal feedback or on the execution of a secondary corrective saccade. Moreover, inactivating LIP led to a large and selective increase in the latency of small (i.e., natural) corrective saccade initiation. Our results indicate a key role for LIP in saccadic error processing.
Collapse
|
40
|
Characterizing and dissociating multiple time-varying modulatory computations influencing neuronal activity. PLoS Comput Biol 2019; 15:e1007275. [PMID: 31513570 PMCID: PMC6759185 DOI: 10.1371/journal.pcbi.1007275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/24/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
In many brain areas, sensory responses are heavily modulated by factors including attentional state, context, reward history, motor preparation, learned associations, and other cognitive variables. Modelling the effect of these modulatory factors on sensory responses has proven challenging, mostly due to the time-varying and nonlinear nature of the underlying computations. Here we present a computational model capable of capturing and dissociating multiple time-varying modulatory effects on neuronal responses on the order of milliseconds. The model’s performance is tested on extrastriate perisaccadic visual responses in nonhuman primates. Visual neurons respond to stimuli presented around the time of saccades differently than during fixation. These perisaccadic changes include sensitivity to the stimuli presented at locations outside the neuron’s receptive field, which suggests a contribution of multiple sources to perisaccadic response generation. Current computational approaches cannot quantitatively characterize the contribution of each modulatory source in response generation, mainly due to the very short timescale on which the saccade takes place. In this study, we use a high spatiotemporal resolution experimental paradigm along with a novel extension of the generalized linear model framework (GLM), termed the sparse-variable GLM, to allow for time-varying model parameters representing the temporal evolution of the system with a resolution on the order of milliseconds. We used this model framework to precisely map the temporal evolution of the spatiotemporal receptive field of visual neurons in the middle temporal area during the execution of a saccade. Moreover, an extended model based on a factorization of the sparse-variable GLM allowed us to disassociate and quantify the contribution of individual sources to the perisaccadic response. Our results show that our novel framework can precisely capture the changes in sensitivity of neurons around the time of saccades, and provide a general framework to quantitatively track the role of multiple modulatory sources over time. The sensory responses of neurons in many brain areas, particularly those in higher prefrontal or parietal areas, are strongly influenced by factors including task rules, attentional state, context, reward history, motor preparation, learned associations, and other cognitive variables. These modulations often occur in combination, or on fast timescales which present a challenge for both experimental and modelling approaches aiming to describe the underlying mechanisms or computations. Here we present a computational model capable of capturing and dissociating multiple time-varying modulatory effects on spiking responses on the order of milliseconds. The model’s performance is evaluated by testing its ability to reproduce and dissociate multiple changes in visual sensitivity occurring in extrastriate visual cortex around the time of rapid eye movements. No previous model is capable of capturing these changes with as fine a resolution as that presented here. Our model both provides specific insight into the nature and time course of changes in visual sensitivity around the time of eye movements, and offers a general framework applicable to a wide variety of contexts in which sensory processing is modulated dynamically by multiple time-varying cognitive or behavioral factors, to understand the neuronal computations underpinning these modulations and make predictions about the underlying mechanisms.
Collapse
|
41
|
Schweitzer R, Watson T, Watson J, Rolfs M. The Joy of Retinal Painting: A Build-It-Yourself Device for Intrasaccadic Presentations. Perception 2019; 48:1020-1025. [DOI: 10.1177/0301006619867868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As the eyes move, they incessantly impose motion blur on the retinal image, yet our perception of the world remains undisturbed. In fact, it is often assumed that intrasaccadic visual signals are largely eliminated from processing by a dedicated suppression mechanism. Here, we describe an easy-to-build presentation device that produces a stimulus that is highly salient and well resolvable during saccades: Using LED strips with high temporal resolution, any type of text and image stimulus can be presented in an anorthoscopic fashion—as if seen through and travelling behind a narrow slit—at very short durations. Whereas these stimuli appear as a brief flash during fixation, saccades spread them across the retina, producing spatially extended and well-resolved retinal images. In fact, retinally painted images induced by saccades across a series of anorthoscopic image presentations were correctly identified by observers in 90% of all cases. So why should we suppress intrasaccadic perception if it enables us to experience the joy of retinal painting?
Collapse
Affiliation(s)
- Richard Schweitzer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tamara Watson
- School of Social Sciences and Psychology, Western Sydney University, Sydney, Australia
| | - John Watson
- Independent Researcher, North Gosford, New South Wales, Australia
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
42
|
Macaques preferentially attend to visual patterns with higher fractal dimension contours. Sci Rep 2019; 9:10592. [PMID: 31332197 PMCID: PMC6646383 DOI: 10.1038/s41598-019-46799-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
Animals' sensory systems evolved to efficiently process information from their environmental niches. Niches often include irregular shapes and rough textures (e.g., jagged terrain, canopy outlines) that must be navigated to find food, escape predators, and master other fitness-related challenges. For most primates, vision is the dominant sensory modality and thus, primates have evolved systems for processing complicated visual stimuli. One way to quantify information present in visual stimuli in natural scenes is evaluating their fractal dimension. We hypothesized that sensitivity to complicated geometric forms, indexed by fractal dimension, is an evolutionarily conserved capacity, and tested this capacity in rhesus macaques (Macaca mulatta). Monkeys viewed paired black and white images of simulated self-similar contours that systematically varied in fractal dimension while their attention to the stimuli was measured using noninvasive infrared eye tracking. They fixated more frequently on, dwelled for longer durations on, and had attentional biases towards images that contain boundary contours with higher fractal dimensions. This indicates that, like humans, they discriminate between visual stimuli on the basis of fractal dimension and may prefer viewing informationally rich visual stimuli. Our findings suggest that sensitivity to fractal dimension may be a wider ability of the vertebrate vision system.
Collapse
|
43
|
Brooks JX, Cullen KE. Predictive Sensing: The Role of Motor Signals in Sensory Processing. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:842-850. [PMID: 31401034 DOI: 10.1016/j.bpsc.2019.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
The strategy of integrating motor signals with sensory information during voluntary behavior is a general feature of sensory processing. It is required to distinguish externally applied (exafferent) from self-generated (reafferent) sensory inputs. This distinction, in turn, underlies our ability to achieve both perceptual stability and accurate motor control during everyday activities. In this review, we consider the results of recent experiments that have provided circuit-level insight into how motor-related inputs to sensory areas selectively cancel self-generated sensory inputs during active behaviors. These studies have revealed both common strategies and important differences across systems. Sensory reafference is suppressed at the earliest stages of central processing in the somatosensory, vestibular, and auditory systems, with the cerebellum and cerebellum-like structures playing key roles. Furthermore, motor-related inputs can also suppress reafferent responses at higher levels of processing such as the cortex-a strategy preferentially used in visual processing. These recent findings have important implications for understanding how the brain achieves the flexibility required to continuously calibrate relationships between motor signals and the resultant sensory feedback, a computation necessary for our subjective awareness that we control both our actions and their sensory consequences.
Collapse
Affiliation(s)
- Jessica X Brooks
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
44
|
Zhang WH, Wang H, Chen A, Gu Y, Lee TS, Wong KM, Wu S. Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. eLife 2019; 8:43753. [PMID: 31120416 PMCID: PMC6565362 DOI: 10.7554/elife.43753] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
Our brain perceives the world by exploiting multisensory cues to extract information about various aspects of external stimuli. The sensory cues from the same stimulus should be integrated to improve perception, and otherwise segregated to distinguish different stimuli. In reality, however, the brain faces the challenge of recognizing stimuli without knowing in advance the sources of sensory cues. To address this challenge, we propose that the brain conducts integration and segregation concurrently with complementary neurons. Studying the inference of heading-direction via visual and vestibular cues, we develop a network model with two reciprocally connected modules modeling interacting visual-vestibular areas. In each module, there are two groups of neurons whose tunings under each sensory cue are either congruent or opposite. We show that congruent neurons implement integration, while opposite neurons compute cue disparity information for segregation, and the interplay between two groups of neurons achieves efficient multisensory information processing.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong.,Center of the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States
| | - He Wang
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai, China
| | - Yong Gu
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Tai Sing Lee
- Center of the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States
| | - Ky Michael Wong
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong
| | - Si Wu
- School of Electronics Engineering and Computer Science, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
45
|
Abstract
Making predictions and validating the predictions against actual sensory information is thought to be one of the most fundamental functions of the nervous system. A growing body of evidence shows that the neural mechanisms controlling behavior, both in motor and non-motor domains, rely on prediction errors, the discrepancy between predicted and actual information. The cerebellum has been viewed as a key component of the motor system providing predictions about upcoming movements and receiving feedback about motor errors. Consequentially, studies of cerebellar function have focused on the motor domain with less consideration for the wider context in which movements are generated. However, motor learning experiments show that cognition makes important contributions to motor adaptation that involves the cerebellum. One of the more successful theoretical frameworks for understanding motor control and cerebellar function is the forward internal model which states that the cerebellum predicts the sensory consequences of the motor commands and is involved in computing sensory prediction errors by comparing the predictions to the sensory feedback. The forward internal model was applied and tested mainly for effector movements, raising the question whether cerebellar encoding of behavior reflects task performance measures associated with cognitive involvement. Electrophysiological studies based on pseudo-random tracking in monkeys show that the discharge of Purkinje cell, the sole output neurons of the cerebellar cortex, encodes predictive and feedback signals not only of the effector kinematics but also of task performance. The implications are that the cerebellum implements both effector and task performance forward models and the latter are consistent with the cognitive contributions observed during motor learning. The implications of these findings include insights into recent psychophysical observations on moving with reduced feedback and motor learning. The findings also support the cerebellum's place in hierarchical generative models that work in concert to refine predictions about behavior and the world. Therefore, cerebellar representations bridge motor and non-motor domains and provide a better understanding of cerebellar function within the functional architecture of the brain.
Collapse
Affiliation(s)
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
46
|
Sadeh M, Sajad A, Wang H, Yan X, Crawford JD. The Influence of a Memory Delay on Spatial Coding in the Superior Colliculus: Is Visual Always Visual and Motor Always Motor? Front Neural Circuits 2018; 12:74. [PMID: 30405361 PMCID: PMC6204359 DOI: 10.3389/fncir.2018.00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
The memory-delay saccade task is often used to separate visual and motor responses in oculomotor structures such as the superior colliculus (SC), with the assumption that these same responses would sum with a short delay during immediate "reactive" saccades to visual stimuli. However, it is also possible that additional signals (suppression, delay) alter visual and/or motor response in the memory delay task. Here, we compared the spatiotemporal properties of visual and motor responses of the same SC neurons recorded during both the reactive and memory-delay tasks in two head-unrestrained monkeys. Comparing tasks, visual (aligned with target onset) and motor (aligned on saccade onset) responses were highly correlated across neurons, but the peak response of visual neurons and peak motor responses (of both visuomotor (VM) and motor neurons) were significantly higher in the reactive task. Receptive field organization was generally similar in both tasks. Spatial coding (along a Target-Gaze (TG) continuum) was also similar, with the exception that pure motor cells showed a stronger tendency to code future gaze location in the memory delay task, suggesting a more complete transformation. These results suggest that the introduction of a trained memory delay alters both the vigor and spatial coding of SC visual and motor responses, likely due to a combination of saccade suppression signals and greater signal noise accumulation during the delay in the memory delay task.
Collapse
Affiliation(s)
- Morteza Sadeh
- York Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- York Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
- Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada
- Departments of Psychology, Biology and Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Amirsaman Sajad
- York Centre for Vision Research, York University, Toronto, ON, Canada
- York Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
- Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada
- Departments of Psychology, Biology and Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Hongying Wang
- York Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Xiaogang Yan
- York Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - John Douglas Crawford
- York Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- York Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
- Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada
- Departments of Psychology, Biology and Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
47
|
Danion FR, Flanagan JR. Different gaze strategies during eye versus hand tracking of a moving target. Sci Rep 2018; 8:10059. [PMID: 29968806 PMCID: PMC6030130 DOI: 10.1038/s41598-018-28434-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022] Open
Abstract
The ability to visually track, using smooth pursuit eye movements, moving objects is critical in both perceptual and action tasks. Here, by asking participants to view a moving target or track it with their hand, we tested whether different task demands give rise to different gaze strategies. We hypothesized that during hand tracking, in comparison to eye tracking, the frequency of catch-up saccades would be lower, and the smooth pursuit gain would be greater, because it limits the loss of stable retinal and extra-retinal information due to saccades. In our study participants viewed a visual target that followed a smooth but unpredictable trajectory in a horizontal plane and were instructed to either track the target with their gaze or with a cursor controlled by a manipulandum. Although the mean distance between gaze and target was comparable in both tasks, we found, consistent with our hypothesis, an increase in smooth pursuit gain and a decrease in the frequency of catch-up saccades during hand tracking. We suggest that this difference in gaze behavior arises from different tasks demands. Whereas keeping gaze close to the target is important in both tasks, obtaining stable retinal and extra-retinal information is critical for guiding hand movement.
Collapse
Affiliation(s)
- Frederic R Danion
- Aix Marseille University, CNRS, Institut de Neurosciences de la Timone, Marseille, France.
| | - J Randall Flanagan
- Department of Psychology and Centre for Neurosciences Studies, Queen's University, Ontario, Canada
| |
Collapse
|
48
|
Akbarian A, Niknam K, Parsa M, Clark K, Noudoost B, Nategh N. Developing a Nonstationary Computational Framework With Application to Modeling Dynamic Modulations in Neural Spiking Responses. IEEE Trans Biomed Eng 2018; 65:241-253. [PMID: 29035203 PMCID: PMC5796416 DOI: 10.1109/tbme.2017.2762687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This paper aims to develop a computational model that incorporates the functional effects of modulatory covariates (such as context, task, or behavior), which dynamically alter the relationship between the stimulus and the neural response. METHODS We develop a general computational approach along with an efficient estimation procedure in the widely used generalized linear model (GLM) framework to characterize such nonstationary dynamics in spiking response and spatiotemporal characteristics of a neuron at the level of individual trials. The model employs a set of modulatory components, which nonlinearly interact with other stimulus-related signals to reproduce such nonstationary effects. RESULTS The model is tested for its ability to predict the responses of neurons in the middle temporal cortex of macaque monkeys during an eye movement task. The fitted model proves successful in capturing the fast temporal modulations in the response, reproducing the spike response temporal statistics, and accurately accounting for the neurons' dynamic spatiotemporal sensitivities, during eye movements. CONCLUSION The nonstationary GLM framework developed in this study can be used in cases where a time-varying behavioral or cognitive component makes GLM-based models insufficient to describe the dependencies of neural responses on the stimulus-related covariates. SIGNIFICANCE In addition to being quite powerful in encoding time-varying response modulations, this general framework also enables a readout of the neural code while dissociating the influence of other nonstimulus covariates. This framework will advance our ability to understand sensory processing in higher brain areas when modulated by several behavioral or cognitive variables.
Collapse
|
49
|
|
50
|
Golan T, Davidesco I, Meshulam M, Groppe DM, Mégevand P, Yeagle EM, Goldfinger MS, Harel M, Melloni L, Schroeder CE, Deouell LY, Mehta AD, Malach R. Increasing suppression of saccade-related transients along the human visual hierarchy. eLife 2017; 6. [PMID: 28850030 PMCID: PMC5576487 DOI: 10.7554/elife.27819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
A key hallmark of visual perceptual awareness is robustness to instabilities arising from unnoticeable eye and eyelid movements. In previous human intracranial (iEEG) work (Golan et al., 2016) we found that excitatory broadband high-frequency activity transients, driven by eye blinks, are suppressed in higher-level but not early visual cortex. Here, we utilized the broad anatomical coverage of iEEG recordings in 12 eye-tracked neurosurgical patients to test whether a similar stabilizing mechanism operates following small saccades. We compared saccades (1.3°−3.7°) initiated during inspection of large individual visual objects with similarly-sized external stimulus displacements. Early visual cortex sites responded with positive transients to both conditions. In contrast, in both dorsal and ventral higher-level sites the response to saccades (but not to external displacements) was suppressed. These findings indicate that early visual cortex is highly unstable compared to higher-level visual regions which apparently constitute the main target of stabilizing extra-retinal oculomotor influences.
Collapse
Affiliation(s)
- Tal Golan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ido Davidesco
- Department of Psychology, New York University, New York, United States
| | - Meir Meshulam
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - David M Groppe
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States.,The Feinstein Institute for Medical Research, Manhasset, United States.,The Krembil Neuroscience Centre, Toronto, Canada
| | - Pierre Mégevand
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States.,The Feinstein Institute for Medical Research, Manhasset, United States
| | - Erin M Yeagle
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States.,The Feinstein Institute for Medical Research, Manhasset, United States
| | - Matthew S Goldfinger
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States.,The Feinstein Institute for Medical Research, Manhasset, United States
| | - Michal Harel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Lucia Melloni
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,NYU Comprehensive Epilepsy Center, Department of Neurology, School of Medicine, New York University, New York, United States
| | - Charles E Schroeder
- Department of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, United States.,Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, United States
| | - Leon Y Deouell
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States.,The Feinstein Institute for Medical Research, Manhasset, United States
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|