1
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
2
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
4
|
Shinjyo N, Kagaya W, Pekna M. Interaction Between the Complement System and Infectious Agents - A Potential Mechanistic Link to Neurodegeneration and Dementia. Front Cell Neurosci 2021; 15:710390. [PMID: 34408631 PMCID: PMC8365172 DOI: 10.3389/fncel.2021.710390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
As part of the innate immune system, complement plays a critical role in the elimination of pathogens and mobilization of cellular immune responses. In the central nervous system (CNS), many complement proteins are locally produced and regulate nervous system development and physiological processes such as neural plasticity. However, aberrant complement activation has been implicated in neurodegeneration, including Alzheimer's disease. There is a growing list of pathogens that have been shown to interact with the complement system in the brain but the short- and long-term consequences of infection-induced complement activation for neuronal functioning are largely elusive. Available evidence suggests that the infection-induced complement activation could be protective or harmful, depending on the context. Here we summarize how various infectious agents, including bacteria (e.g., Streptococcus spp.), viruses (e.g., HIV and measles virus), fungi (e.g., Candida spp.), parasites (e.g., Toxoplasma gondii and Plasmodium spp.), and prion proteins activate and manipulate the complement system in the CNS. We also discuss the potential mechanisms by which the interaction between the infectious agents and the complement system can play a role in neurodegeneration and dementia.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
5
|
Distinct Patterns of Host Adherence by Neisseria gonorrhoeae Isolated from Experimental Gonorrhea. ACTA ACUST UNITED AC 2021; 2021:7865405. [PMID: 34093925 PMCID: PMC8140856 DOI: 10.1155/2021/7865405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/29/2022]
Abstract
Neisseria gonorrhoeae (N. gonorrhoeae, gonococci, or GC), the etiologic agent of gonorrhea, is a human-obligate bacterial pathogen. The GC surface contains pili that mediate the adherence to host cells. Studies have shown that GC pili, coded by pilin genes, undergo remarkable changes during human experimental gonorrhea, possibly generated by DNA phase variation during infection. The question that arises is whether the changes in pilins can alter the adherence capacity of N. gonorrhoeae to host cells. In this study, six variants initially isolated from male volunteers infected with one single clone of GC were examined for their adherence patterns with human Chang conjunctiva cells. In this study, we showed that the variants showed distinct adherence patterns to this cell line under light microscopy and scanning electron microscopy. Moreover, two reisolates showed higher adherence capacities than that of the input strain. The results provide an additional example as to how the pilus variation may play a role in the pathogenesis of N. gonorrhoeae.
Collapse
|
6
|
Barnier JP, Euphrasie D, Join-Lambert O, Audry M, Schonherr-Hellec S, Schmitt T, Bourdoulous S, Coureuil M, Nassif X, El Behi M. Type IV pilus retraction enables sustained bacteremia and plays a key role in the outcome of meningococcal sepsis in a humanized mouse model. PLoS Pathog 2021; 17:e1009299. [PMID: 33592056 PMCID: PMC7909687 DOI: 10.1371/journal.ppat.1009299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Neisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels. This crucial step enables dissemination into tissues and promotes deregulated inflammation and coagulation, leading to extensive necrotic purpura in the most severe cases. Adhesion to blood vessels relies on type IV pili (TFP). These long filamentous structures are highly dynamic as they can rapidly elongate and retract by the antagonistic action of two ATPases, PilF and PilT. However, the consequences of TFP dynamics on the pathophysiology and the outcome of meningococcal sepsis in vivo have been poorly studied. Here, we show that human graft microvessels are replicative niches for meningococci, that seed the bloodstream and promote sustained bacteremia and lethality in a humanized mouse model. Intriguingly, although pilus-retraction deficient N. meningitidis strain (ΔpilT) efficiently colonizes human graft tissue, this mutant did not promote sustained bacteremia nor induce mouse lethality. This effect was not due to a decreased inflammatory response, nor defects in bacterial clearance by the innate immune system. Rather, TFP-retraction was necessary to promote the release of TFP-dependent contacts between bacteria and, in turn, the detachment from colonized microvessels. The resulting sustained bacteremia was directly correlated with lethality. Altogether, these results demonstrate that pilus retraction plays a key role in the occurrence and outcome of meningococcal sepsis by supporting sustained bacteremia. These findings open new perspectives on the role of circulating bacteria in the pathological alterations leading to lethal sepsis.
Collapse
Affiliation(s)
- Jean-Philippe Barnier
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Olivier Join-Lambert
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathilde Audry
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Sophia Schonherr-Hellec
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Taliah Schmitt
- Service de chirurgie reconstructrice et plastique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Xavier Nassif
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mohamed El Behi
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| |
Collapse
|
7
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
8
|
Levy M, Aouiti Trabelsi M, Taha MK. Evidence for Multi-Organ Infection During Experimental Meningococcal Sepsis due to ST-11 Isolates in Human Transferrin-Transgenic Mice. Microorganisms 2020; 8:microorganisms8101456. [PMID: 32977487 PMCID: PMC7598264 DOI: 10.3390/microorganisms8101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
The description of invasive meningococcal disease that is provoked by Neisseria meningitidis (Nm) is frequently restricted to meningitis. However, a wide panel of clinical presentations can be encountered including severe forms with intense inflammatory reaction leading to multi-organ failure. Several human factors are involved in the development of invasive infections such as transferrin, factor H or CEACAM1. In this study, we used an experimental meningococcal infection in transgenic mice expressing the human transferrin to show multi-organ infection. Mice were infected by an intraperitoneal injection of bacterial suspension (1.5 × 107 colony-forming unit/mouse) of a bioluminescent serogroup C strain belonging to the clonal complex ST-11. Dynamic imaging and histological analysis were performed. The results showed invasion of tissues by Nm with bacteria observed, outside blood vessels, in the kidneys, the heart and the brain as well as skin involvement. These data further support the systemic aspect of invasive meningococcal disease with involvement of several organs including skin as in humans. Thus, our model can be used to study severe forms of meningococcal invasive infections with multi-organ failure.
Collapse
Affiliation(s)
- Michael Levy
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
- Paediatric Intensive Care Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, 75019 Paris, France
- Université de Paris, 75019 Paris, France
- Correspondence:
| | - Myriam Aouiti Trabelsi
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
| | - Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
| |
Collapse
|
9
|
Pardridge WM. The Isolated Brain Microvessel: A Versatile Experimental Model of the Blood-Brain Barrier. Front Physiol 2020; 11:398. [PMID: 32457645 PMCID: PMC7221163 DOI: 10.3389/fphys.2020.00398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
A versatile experimental model for the investigation of the blood-brain barrier (BBB), including the neuro-vascular unit, is the isolated brain microvessel preparation. Brain microvessels are primarily comprised of endothelial cells, but also include pericytes, pre-capillary arteriolar smooth muscle cells, astrocyte foot processes, and occasional nerve endings. These microvessels can be isolated from brain with a 3 h procedure, and the microvessels are free of brain parenchyma. Brain microvessels have been isolated from fresh animal brain, fresh human brain obtained at neurosurgery, as well as fresh or frozen autopsy human brain. Brain microvessels are the starting point for isolation of brain microvessel RNA, which then enables the production of BBB cDNA libraries and a genomics analysis of the brain microvasculature. Brain microvessels, combined with quantitative targeted absolute proteomics, allow for the quantitation of specific transporters or receptors expressed at the brain microvasculature. Brain microvessels, combined with specific antibodies and immune labeling of isolated capillaries, allow for the cellular location of proteins expressed within the neuro-vascular unit. Isolated brain microvessels can be used as an “in vitro” preparation of the BBB for the study of the kinetic parameters of BBB carrier-mediated transport (CMT) systems, or for the determination of dissociation constants of peptide binding to BBB receptor-mediated transport (RMT) systems expressed at either the animal or the human BBB. This review will discuss how the isolated brain microvessel model system has advanced our understanding of the organization and functional properties of the BBB, and highlight recent renewed interest in this 50 year old model of the BBB.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Li C, Lieber A. Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Lett 2019; 593:3623-3648. [PMID: 31705806 PMCID: PMC10473235 DOI: 10.1002/1873-3468.13668] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022]
Abstract
Genome editing of hematopoietic stem cells (HSCs) represents a therapeutic option for a number of hematological genetic diseases, as HSCs have the potential for self-renewal and differentiation into all blood cell lineages. This review presents advances of genome editing in HSCs utilizing adenovirus vectors as delivery vehicles. We focus on capsid-modified, helper-dependent adenovirus vectors that are devoid of all viral genes and therefore exhibit an improved safety profile. We discuss HSC genome engineering for several inherited disorders and infectious diseases including hemoglobinopathies, Fanconi anemia, hemophilia, and HIV-1 infection by ex vivo and in vivo editing in transgenic mice, nonhuman primates, as well as in human CD34+ cells. Mechanisms of therapeutic gene transfer including episomal expression of designer nucleases and base editors, transposase-mediated random integration, and targeted homology-directed repair triggered integration into selected genomic safe harbor loci are also reviewed.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: Drug Resistance, Mouse Models, and Vaccine Development. Annu Rev Microbiol 2018; 71:665-686. [PMID: 28886683 DOI: 10.1146/annurev-micro-090816-093530] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonorrhea, an obligate human infection, is on the rise worldwide and gonococcal strains resistant to many antibiotics are emerging. Appropriate antimicrobial treatment and prevention, including effective vaccines, are urgently needed. To guide investigation, an experimental model of genital tract infection has been developed in female mice to study mechanisms by which Neisseria gonorrhoeae evades host-derived antimicrobial factors and to identify protective and immunosuppressive pathways. Refinements of the animal model have also improved its use as a surrogate host of human infection and accelerated the testing of novel therapeutic and prophylactic compounds against gonococcal infection. Reviewed herein are the (a) history of antibiotic usage and resistance against gonorrhea and the consequences of resistance mechanisms that may increase gonococcal fitness and therefore the potential for spread, (b) use of gonococcal infection in the animal model system to study mechanisms of pathogenesis and host defenses, and
Collapse
Affiliation(s)
- Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322.,Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia 30033;
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland 20814-4799;
| |
Collapse
|
12
|
A Natural Mouse Model for Neisseria Colonization. Infect Immun 2018; 86:IAI.00839-17. [PMID: 29440372 PMCID: PMC5913851 DOI: 10.1128/iai.00839-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
Commensals are important for the proper functioning of multicellular organisms. How a commensal establishes persistent colonization of its host is little understood. Studies of this aspect of microbe-host interactions are impeded by the absence of an animal model. We have developed a natural small animal model for identifying host and commensal determinants of colonization and of the elusive process of persistence. Our system couples a commensal bacterium of wild mice, Neisseria musculi, with the laboratory mouse. The pairing of a mouse commensal with its natural host circumvents issues of host restriction. Studies are performed in the absence of antibiotics, hormones, invasive procedures, or genetic manipulation of the host. A single dose of N. musculi, administered orally, leads to long-term colonization of the oral cavity and gut. All mice are healthy. Susceptibility to colonization is determined by host genetics and innate immunity. For N. musculi, colonization requires the type IV pilus. Reagents and powerful tools are readily available for manipulating the laboratory mouse, allowing easy dissection of host determinants controlling colonization resistance. N. musculi is genetically related to human-dwelling commensal and pathogenic Neisseria and encodes host interaction factors and vaccine antigens of pathogenic Neisseria. Our system provides a natural approach for studying Neisseria-host interactions and is potentially useful for vaccine efficacy studies.
Collapse
|
13
|
Wu X, Li K, Xie M, Yu M, Tang S, Li Z, Hu S. Construction and protective immunogenicity of DNA vaccine pNMB0315 against Neisseria meningitidis serogroup B. Mol Med Rep 2017; 17:3178-3185. [PMID: 29257302 DOI: 10.3892/mmr.2017.8255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 10/18/2017] [Indexed: 11/05/2022] Open
Abstract
Neisseria meningitidis (N. meningitidis) is a major cause of meningitis and sepsis. Capsular polysaccharide‑based vaccines against serogroups A, C, Y, and W135 are available; however, the development of a vaccine against N. meningitidis serogroup B (NMB) has been problematic. NMB0315 is an outer membrane protein of NMB that may be a virulence factor for N. meningitidis and a possible target for functional bactericidal antibodies. The present study aimed to develop a potent DNA vaccine against NMB by cloning the NMB0135 gene into the pcDNA3.1(+) vector to construct the recombinant plasmid pcDNA3.1(+)/NMB0315 (designated pNMB0315). pNMB0315 was transfected into eukaryotic COS‑7 and RAW264.7 cells to express the recombinant (r)NMB0315 protein. Protective immunogenicity of the DNA vaccine was assessed in an in vivo mouse model. The levels of rNMB0315‑specific immunoglobulin G (IgG), IgG1 and IgG2a antibodies in the pNMB0315‑immunized group increased dramatically up to week 6 following the initial vaccination, and were significantly higher compared with the levels in the Control groups. The serum concentrations of interleukin‑4 and interferon‑γ were significantly higher in the pNMB0315‑immunized group compared with the control groups. Following intraperitoneal challenge with a lethal dose of NMB strain MC58, the survival rate in the pNMB0315 + CpG group was 70% (14 out of 20 mice) at 14 days; by contrast, all mice in the control groups succumbed within 3 days. The serum bactericidal titers of the pNMB0315 + CpG group in vitro reached 1:128 following three immunizations. The results indicated that pNMB0315 may serve as a promising DNA vaccine against NMB.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Laboratory of Anti‑infectious Immunity, Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Kaiming Li
- Laboratory of Anti‑infectious Immunity, Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meihua Xie
- Laboratory of Anti‑infectious Immunity, Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Minjun Yu
- Laboratory of Anti‑infectious Immunity, Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuangyang Tang
- Laboratory of Anti‑infectious Immunity, Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhenyu Li
- Laboratory of Anti‑infectious Immunity, Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Sihai Hu
- Laboratory of Anti‑infectious Immunity, Pathogenic Biology Institute, College of Basic Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
14
|
Weyand NJ. Neisseria models of infection and persistence in the upper respiratory tract. Pathog Dis 2017; 75:3078547. [DOI: 10.1093/femspd/ftx031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
|
15
|
Wang X, Zhang D, Sjölinder M, Wan Y, Sjölinder H. CD46 accelerates macrophage-mediated host susceptibility to meningococcal sepsis in a murine model. Eur J Immunol 2016; 47:119-130. [DOI: 10.1002/eji.201646397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/04/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Xiao Wang
- Department of Molecular Biosciences, the Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine; Shanxi Agricultural University; Taigu China
| | - Mikael Sjölinder
- Department of Molecular Biosciences, the Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Yi Wan
- Department of Molecular Biosciences, the Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Hong Sjölinder
- Department of Molecular Biosciences, the Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Cancer Center; Mälar Hospital; Eskilstuna Sweden
| |
Collapse
|
16
|
Simonis A, Schubert-Unkmeir A. Interactions of meningococcal virulence factors with endothelial cells at the human blood-cerebrospinal fluid barrier and their role in pathogenicity. FEBS Lett 2016; 590:3854-3867. [PMID: 27498906 DOI: 10.1002/1873-3468.12344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 01/06/2023]
Abstract
The Gram-negative extracellular bacterium Neisseria meningitidis is one of the most common aetiological agents of bacterial meningitis affecting predominantly young children worldwide. This bacterium is normally a quiescent coloniser of the upper respiratory tract, but in some individuals it enters the blood stream and causes invasive diseases, such as septicaemia and meningitis. Interactions of N. meningitidis with human endothelial cells are crucially involved in pathogencitiy, and great efforts have been made to understand these molecular interactions. The aim of this review article is to provide an overview of the interactions of meningococcal virulence factors with host endothelial cells at the blood-cerebrospinal fluid barrier.
Collapse
Affiliation(s)
- Alexander Simonis
- Division of Hematology, University Hospital Zurich, Switzerland.,Institute of Hygiene and Microbiology, University of Wuerzburg, Germany
| | | |
Collapse
|
17
|
Neisseria meningitidis Polynucleotide Phosphorylase Affects Aggregation, Adhesion, and Virulence. Infect Immun 2016; 84:1501-1513. [PMID: 26930706 DOI: 10.1128/iai.01463-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis autoaggregation is an important step during attachment to human cells. Aggregation is mediated by type IV pili and can be modulated by accessory pilus proteins, such as PilX, and posttranslational modifications of the major pilus subunit PilE. The mechanisms underlying the regulation of aggregation remain poorly characterized. Polynucleotide phosphorylase (PNPase) is a 3'-5' exonuclease that is involved in RNA turnover and the regulation of small RNAs. In this study, we biochemically confirm that NMC0710 is the N. meningitidis PNPase, and we characterize its role in N. meningitidis pathogenesis. We show that deletion of the gene encoding PNPase leads to hyperaggregation and increased adhesion to epithelial cells. The aggregation induced was found to be dependent on pili and to be mediated by excessive pilus bundling. PNPase expression was induced following bacterial attachment to human cells. Deletion of PNPase led to global transcriptional changes and the differential regulation of 469 genes. We also demonstrate that PNPase is required for full virulence in an in vivo model of N. meningitidis infection. The present study shows that PNPase negatively affects aggregation, adhesion, and virulence in N. meningitidis.
Collapse
|
18
|
Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression. Infect Immun 2016; 84:1526-1535. [PMID: 26930708 DOI: 10.1128/iai.00163-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity.
Collapse
|
19
|
Stolp B, Melican K. Microbial pathogenesis revealed by intravital microscopy: pros, cons and cautions. FEBS Lett 2016; 590:2014-26. [PMID: 26938770 DOI: 10.1002/1873-3468.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
Intravital multiphoton imaging allows visualization of infections and pathogenic mechanisms within intact organs in their physiological context. Today, most organs of mice and rats are applicable to in vivo or ex vivo imaging, opening completely new avenues for many researchers. Advances in fluorescent labeling of pathogens and infected cells, as well as improved small animal models for human pathogens, led to the increased application of in vivo imaging in infectious diseases research in recent years. Here, we review the latest literature on intravital or ex vivo imaging of viral and bacterial infections and critically discuss requirements, benefits and drawbacks of applied animal models, labeling strategies, and imaged organs.
Collapse
Affiliation(s)
- Bettina Stolp
- Heidelberg University Hospital, Center of Infectious Diseases, Integrative Virology, Heidelberg, Germany
| | - Keira Melican
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Immune Homeostatic Macrophages Programmed by the Bacterial Surface Protein NhhA Potentiate Nasopharyngeal Carriage of Neisseria meningitidis. mBio 2016; 7:e01670-15. [PMID: 26884432 PMCID: PMC4752598 DOI: 10.1128/mbio.01670-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neisseria meningitidis colonizes the nasopharyngeal mucosa of healthy populations asymptomatically, although the bacterial surface is rich in motifs that activate the host innate immunity. What determines the tolerant host response to this bacterium in asymptomatic carriers is poorly understood. We demonstrated that the conserved meningococcal surface protein NhhA orchestrates monocyte (Mo) differentiation specifically into macrophage-like cells with a CD200Rhi phenotype (NhhA-Mφ). In response to meningococcal stimulation, NhhA-Mφ failed to produce proinflammatory mediators. Instead, they upregulated interleukin-10 (IL-10) and Th2/regulatory T cell (Treg)-attracting chemokines, such as CCL17, CCL18, and CCL22. Moreover, NhhA-Mφ were highly efficient in eliminating bacteria. The in vivo validity of these findings was corroborated using a murine model challenged with N. meningitidis systematically or intranasally. The NhhA-modulated immune response protected mice from septic shock; Mo/Mφ depletion abolished this protective effect. Intranasal administration of NhhA induced an anti-inflammatory response, which was associated with N. meningitidis persistence at the nasopharynx. In vitro studies demonstrated that NhhA-triggered Mo differentiation occurred upon engaged Toll-like receptor 1 (TLR1)/TLR2 signaling and extracellular signal-regulated kinase (ERK) and Jun N-terminal protein kinase (JNK) activation and required endogenously produced IL-10 and tumor necrosis factor alpha (TNF-α). Our findings reveal a strategy that might be adopted by N. meningitidis to maintain asymptomatic nasopharyngeal colonization. Neisseria meningitidis is an opportunistic human-specific pathogen that colonizes the nasopharyngeal mucosa asymptomatically in approximately 10% of individuals. Very little is known about how this bacterium evades immune activation during the carriage stage. Here, we observed that N. meningitidis, via the conserved surface protein NhhA, skewed monocyte differentiation into macrophages with a CD200Rhi phenotype. Both in vivo and in vitro data demonstrated that these macrophages, upon meningococcal infection, played an important role in forming a homeostatic immune microenvironment through their capacity to eliminate invading bacteria and to generate anti-inflammatory mediators. This work provides novel insight into the mechanisms underlying the commensal persistence of N. meningitidis.
Collapse
|
21
|
Wörmann ME, Horien CL, Johnson E, Liu G, Aho E, Tang CM, Exley RM. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms. MICROBIOLOGY-SGM 2016; 162:487-502. [PMID: 26813911 DOI: 10.1099/mic.0.000248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.
Collapse
Affiliation(s)
- Mirka E Wörmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Corey L Horien
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ellen Aho
- Department of Biology, Concordia College, Moorhead, MN, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
22
|
Liu Y, Zhang D, Engström Å, Merényi G, Hagner M, Yang H, Kuwae A, Wan Y, Sjölinder M, Sjölinder H. Dynamic niche-specific adaptations in Neisseria meningitidis during infection. Microbes Infect 2015; 18:109-17. [PMID: 26482500 DOI: 10.1016/j.micinf.2015.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/30/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
Neisseria meningitidis is an opportunistic human pathogen that usually colonizes the nasopharyngeal mucosa asymptomatically. Upon invasion into the blood and central nervous system, this bacterium triggers a fulminant inflammatory reaction with the manifestations of septicemia and meningitis, causing high morbidity and mortality. To reveal the bacterial adaptations to specific and dynamic host environments, we performed a comprehensive proteomic survey of N. meningitidis isolated from the nasal mucosa, CSF and blood of a mouse disease model. We could identify 51 proteins whose expression pattern has been changed during infection, many of which have not yet been characterized. The abundance of proteins was markedly lower in the bacteria isolated from the nasal mucosa compared to the bacteria from the blood and CSF, indicating that initiating adhesion is the harshest challenge for meningococci. The high abundance of the glutamate dehydrogenase (GdhA) and Opa1800 proteins in all bacterial isolates suggests their essential role in bacterial survival in vivo. To evaluate the biological relevance of our proteomic findings, four candidate proteins from representative functional groups, such as the bacterial chaperone GroEL, IMP dehydrogenase GuaB, and membrane proteins PilQ and NMC0101, were selected and their impact on bacterial fitness was investigated by mutagenesis assays. This study provides an integrated picture of bacterial niche-specific adaptations during consecutive infection processes.
Collapse
Affiliation(s)
- Yan Liu
- School of Life Sciences, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Ding Zhang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Åke Engström
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gábor Merényi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Matthias Hagner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Hairu Yang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Asaomi Kuwae
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Yi Wan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Mikael Sjölinder
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Hong Sjölinder
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
23
|
Douam F, Gaska JM, Winer BY, Ding Q, von Schaewen M, Ploss A. Genetic Dissection of the Host Tropism of Human-Tropic Pathogens. Annu Rev Genet 2015; 49:21-45. [PMID: 26407032 DOI: 10.1146/annurev-genet-112414-054823] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infectious diseases are the second leading cause of death worldwide. Although the host multitropism of some pathogens has rendered their manipulation possible in animal models, the human-restricted tropism of numerous viruses, bacteria, fungi, and parasites has seriously hampered our understanding of these pathogens. Hence, uncovering the genetic basis underlying the narrow tropism of such pathogens is critical for understanding their mechanisms of infection and pathogenesis. Moreover, such genetic dissection is essential for the generation of permissive animal models that can serve as critical tools for the development of therapeutics or vaccines against challenging human pathogens. In this review, we describe different experimental approaches utilized to uncover the genetic foundation regulating pathogen host tropism as well as their relevance for studying the tropism of several important human pathogens. Finally, we discuss the current and future uses of this knowledge for generating genetically modified animal models permissive for these pathogens.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Jenna M Gaska
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Markus von Schaewen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544; , , , , ,
| |
Collapse
|
24
|
Bradley DT, Bourke TW, Fairley DJ, Borrow R, Shields MD, Zipfel PF, Hughes AE. Susceptibility to invasive meningococcal disease: polymorphism of complement system genes and Neisseria meningitidis factor H binding protein. PLoS One 2015; 10:e0120757. [PMID: 25798599 PMCID: PMC4370764 DOI: 10.1371/journal.pone.0120757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH) is associated with altered risk of invasive meningococcal disease (IMD). We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP) affected the risk association. METHODS We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student's T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test. RESULTS Rs12085435 A in C8B was associated with odds ratio (OR) of IMD (0.35 [95% CI 0.19-0.67]; P = 0.03 after correction). A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42-0.76], P = 1.6x10⁻⁴). There was no bacterial load (CtrA cycle threshold) difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025). DISCUSSION The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become important.
Collapse
Affiliation(s)
- Declan T. Bradley
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Public Health Agency, Belfast, United Kingdom
- * E-mail:
| | - Thomas W. Bourke
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Derek J. Fairley
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Raymond Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester, United Kingdom
- Inflammation Sciences Research Group, School of Translational Medicine, University of Manchester, Manchester, United Kingdom
| | - Michael D. Shields
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Anne E. Hughes
- Formerly of Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Khairalla AS, Omer SA, Mahdavi J, Aslam A, Dufailu OA, Self T, Jonsson AB, Geörg M, Sjölinder H, Royer PJ, Martinez-Pomares L, Ghaemmaghami AM, Wooldridge KG, Oldfield NJ, Ala'Aldeen DAA. Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cell Microbiol 2015; 17:1008-20. [PMID: 25600171 PMCID: PMC5024080 DOI: 10.1111/cmi.12417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 01/13/2023]
Abstract
Neisseria meningitidis, a major cause of bacterial meningitis and septicaemia, secretes multiple virulence factors, including the adhesion and penetration protein (App) and meningococcal serine protease A (MspA). Both are conserved, immunogenic, type Va autotransporters harbouring S6‐family serine endopeptidase domains. Previous work suggested that both could mediate adherence to human cells, but their precise contribution to meningococcal pathogenesis was unclear. Here, we confirm that App and MspA are in vivo virulence factors since human CD46‐expressing transgenic mice infected with meningococcal mutants lacking App, MspA or both had improved survival rates compared with mice infected with wild type. Confocal imaging showed that App and MspA were internalized by human cells and trafficked to the nucleus. Cross‐linking and enzyme‐linked immuno assay (ELISA) confirmed that mannose receptor (MR), transferrin receptor 1 (TfR1) and histones interact with MspA and App. Dendritic cell (DC) uptake could be blocked using mannan and transferrin, the specific physiological ligands for MR and TfR1, whereas in vitro clipping assays confirmed the ability of both proteins to proteolytically cleave the core histone H3. Finally, we show that App and MspA induce a dose‐dependent increase in DC death via caspase‐dependent apoptosis. Our data provide novel insights into the roles of App and MspA in meningococcal infection.
Collapse
Affiliation(s)
| | - Sherko A Omer
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jafar Mahdavi
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Akhmed Aslam
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Osman A Dufailu
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tim Self
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Miriam Geörg
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Hong Sjölinder
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | | | | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
26
|
|
27
|
Ricci S, Grandgirard D, Wenzel M, Braccini T, Salvatore P, Oggioni MR, Leib SL, Koedel U. Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis. BMC Infect Dis 2014; 14:726. [PMID: 25551808 PMCID: PMC4300156 DOI: 10.1186/s12879-014-0726-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately 7% of survivors from meningococcal meningitis (MM) suffer from neurological sequelae due to brain damage in the course of meningitis. The present study focuses on the role of matrix metalloproteinases (MMPs) in a novel mouse model of MM-induced brain damage. METHODS The model is based on intracisternal infection of BALB/c mice with a serogroup C Neisseria meningitidis strain. Mice were infected with meningococci and randomised for treatment with the MMP inhibitor batimastat (BB-94) or vehicle. Animal survival, brain injury and host-response biomarkers were assessed 48 h after meningococcal challenge. RESULTS Mice that received BB-94 presented significantly diminished MMP-9 levels (p < 0.01), intracerebral bleeding (p < 0.01), and blood-brain barrier (BBB) breakdown (p < 0.05) in comparison with untreated animals. In mice suffering from MM, the amount of MMP-9 measured by zymography significantly correlated with both intracerebral haemorrhage (p < 0.01) and BBB disruption (p < 0.05). CONCLUSIONS MMPs significantly contribute to brain damage associated with experimental MM. Inhibition of MMPs reduces intracranial complications in mice suffering from MM, representing a potential adjuvant strategy in MM post-infection sequelae.
Collapse
|
28
|
Duprex WP, Fouchier RAM, Imperiale MJ, Lipsitch M, Relman DA. Gain-of-function experiments: time for a real debate. Nat Rev Microbiol 2014; 13:58-64. [PMID: 25482289 PMCID: PMC7097416 DOI: 10.1038/nrmicro3405] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The debate on whether to allow experiments that increase the transmission and/or pathogenicity of potential pandemic pathogens has recently gained renewed attention, particularly as a result of studies on influenza viruses. Here, five experts discuss the benefits and risks associated with these gain-of-function experiments, and how the ongoing debate affects the scientific community and the general public. According to the WHO, dual use research of concern (DURC) is “life sciences research that is intended for benefit, but which might easily be misapplied to do harm”. Recent studies, particularly those on influenza viruses, have led to renewed attention on DURC, as there is an ongoing debate over whether the benefits of gain-of-function (GOF) experiments that result in an increase in the transmission and/or pathogenicity of potential pandemic pathogens (PPPs) are outweighed by concerns over biosecurity and biosafety. In this Viewpoint article, proponents and opponents of GOF experiments discuss the benefits and risks associated with these studies, as well as the implications of the current debate for the scientific community and the general public, and suggest how the current discussion should move forward.
Collapse
Affiliation(s)
- W Paul Duprex
- Boston University School of Medicine and the National Emerging Infectious Diseases Laboratories (NEIDL), Boston, Massachusetts 02118, USA
| | - Ron A M Fouchier
- Department of Viroscience of Erasmus MC Rotterdam, 3015 GE Rotterdam, The Netherlands
| | | | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - David A Relman
- Departments of Medicine, and of Microbiology and Immunology, and the Center for International Security and Cooperation at Stanford University, California 94305, USA; and at the Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| |
Collapse
|
29
|
Asmat TM, Tenenbaum T, Jonsson AB, Schwerk C, Schroten H. Impact of calcium signaling during infection of Neisseria meningitidis to human brain microvascular endothelial cells. PLoS One 2014; 9:e114474. [PMID: 25464500 PMCID: PMC4252121 DOI: 10.1371/journal.pone.0114474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023] Open
Abstract
The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.
Collapse
Affiliation(s)
- Tauseef M. Asmat
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
30
|
Melican K, Aubey F, Duménil G. Humanized mouse model to study bacterial infections targeting the microvasculature. J Vis Exp 2014. [PMID: 24747976 PMCID: PMC4161007 DOI: 10.3791/51134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream.
Collapse
Affiliation(s)
- Keira Melican
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes
| | - Flore Aubey
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes
| | - Guillaume Duménil
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes;
| |
Collapse
|
31
|
Inhibition of the alternative pathway of nonhuman infant complement by porin B2 contributes to virulence of Neisseria meningitidis in the infant rat model. Infect Immun 2014; 82:2574-84. [PMID: 24686052 DOI: 10.1128/iai.01517-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats.
Collapse
|
32
|
Pan X, Yang Y, Zhang JR. Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 2014; 3:e23. [PMID: 26038515 PMCID: PMC3974339 DOI: 10.1038/emi.2014.23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/08/2023]
Abstract
Pathogenic bacteria display various levels of host specificity or tropism. While many bacteria can infect a wide range of hosts, certain bacteria have strict host selectivity for humans as obligate human pathogens. Understanding the genetic and molecular basis of host specificity in pathogenic bacteria is important for understanding pathogenic mechanisms, developing better animal models and designing new strategies and therapeutics for the control of microbial diseases. The molecular mechanisms of bacterial host specificity are much less understood than those of viral pathogens, in part due to the complexity of the molecular composition and cellular structure of bacterial cells. However, important progress has been made in identifying and characterizing molecular determinants of bacterial host specificity in the last two decades. It is now clear that the host specificity of bacterial pathogens is determined by multiple molecular interactions between the pathogens and their hosts. Furthermore, certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature. This review focuses on selected human pathogenic bacteria and our current understanding of their host specificity.
Collapse
Affiliation(s)
- Xiaolei Pan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Yang Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| |
Collapse
|
33
|
Stahel PF, Barnum SR. The role of the complement system in CNS inflammatory diseases. Expert Rev Clin Immunol 2014; 2:445-56. [DOI: 10.1586/1744666x.2.3.445] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Metz B, van den Dobbelsteen G, van Els C, van der Gun J, Levels L, van der Pol L, Rots N, Kersten G. Quality-control issues and approaches in vaccine development. Expert Rev Vaccines 2014; 8:227-38. [DOI: 10.1586/14760584.8.2.227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Bai X, Borrow R. Genetic shifts ofNeisseria meningitidisserogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines 2014; 9:1203-17. [DOI: 10.1586/erv.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Mahdavi J, Royer PJ, Sjölinder HS, Azimi S, Self T, Stoof J, Wheldon LM, Brännström K, Wilson R, Moreton J, Moir JWB, Sihlbom C, Borén T, Jonsson AB, Soultanas P, Ala'Aldeen DAA. Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence. Open Biol 2013; 3:130048. [PMID: 24107297 PMCID: PMC3814720 DOI: 10.1098/rsob.130048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interactions between commensal pathogens and hosts are critical for disease development but the underlying mechanisms for switching between the commensal and virulent states are unknown. We show that the human pathogen Neisseria meningitidis, the leading cause of pyogenic meningitis, can modulate gene expression via uptake of host pro-inflammatory cytokines leading to increased virulence. This uptake is mediated by type IV pili (Tfp) and reliant on the PilT ATPase activity. Two Tfp subunits, PilE and PilQ, are identified as the ligands for TNF-α and IL-8 in a glycan-dependent manner, and their deletion results in decreased virulence and increased survival in a mouse model. We propose a novel mechanism by which pathogens use the twitching motility mode of the Tfp machinery for sensing and importing host elicitors, aligning with the inflamed environment and switching to the virulent state.
Collapse
Affiliation(s)
- Jafar Mahdavi
- School of Life Sciences, Molecular Bacteriology and Immunology Group, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yamamoto H, Fara AF, Dasgupta P, Kemper C. CD46: the 'multitasker' of complement proteins. Int J Biochem Cell Biol 2013; 45:2808-20. [PMID: 24120647 DOI: 10.1016/j.biocel.2013.09.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Complement is undeniably quintessential for innate immunity by detecting and eliminating infectious microorganisms. Recent work, however, highlights an equally profound impact of complement on the induction and regulation of a wide range of immune cells. In particular, the complement regulator CD46 emerges as a key sensor of immune activation and a vital modulator of adaptive immunity. In this review, we summarize the current knowledge of CD46-mediated signalling events and their functional consequences on immune-competent cells with a specific focus on those in CD4(+) T cells. We will also discuss the promises and challenges that potential therapeutic modulation of CD46 may hold and pose.
Collapse
Affiliation(s)
- Hidekazu Yamamoto
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, UK; The Urology Centre, Guy's and St. Thomas' NHS Foundations Trust, London SE1 9RT, UK
| | | | | | | |
Collapse
|
38
|
Abstract
Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
39
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
40
|
Johswich KO, McCaw SE, Islam E, Sintsova A, Gu A, Shively JE, Gray-Owen SD. In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa. PLoS Pathog 2013; 9:e1003509. [PMID: 23935487 PMCID: PMC3723569 DOI: 10.1371/journal.ppat.1003509] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis (Nme) asymptomatically colonizes the human nasopharynx, yet can initiate rapidly-progressing sepsis and meningitis in rare instances. Understanding the meningococcal lifestyle within the nasopharyngeal mucosa, a phase of infection that is prerequisite for disease, has been hampered by the lack of animal models. Herein, we compare mice expressing the four different human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) that can bind the neisserial Opa protein adhesins, and find that expression of human CEACAM1 is necessary and sufficient to establish intranasal colonization. During infection, in vivo selection for phase variants expressing CEACAM1-specific Opa proteins occurs, allowing mucosal attachment and entry into the subepithelial space. Consistent with an essential role for Opa proteins in this process, Opa-deficient meningococci were unable to colonize the CEACAM1-humanized mice. While simple Opa-mediated attachment triggered an innate response regardless of meningococcal viability within the inoculum, persistence of viable Opa-expressing bacteria within the CEACAM1-humanized mice was required for a protective memory response to be achieved. Parenteral immunization with a capsule-based conjugate vaccine led to the accumulation of protective levels of Nme-specific IgG within the nasal mucus, yet the sterilizing immunity afforded by natural colonization was instead conferred by Nme-specific IgA without detectable IgG. Considered together, this study establishes that the availability of CEACAM1 helps define the exquisite host specificity of this human-restricted pathogen, displays a striking example of in vivo selection for the expression of desirable Opa variants, and provides a novel model in which to consider meningococcal infection and immunity within the nasopharyngeal mucosa. Neisseria meningitidis (Nme), a common cause of bacterial meningitis, are carried asymptomatically in the nasopharynx by a substantial proportion of healthy individuals. Their strict adaptation to the human as host has so far impeded the development of animal models to study the meningococcal lifestyle in vivo. While several human CEACAMs are recognized by the neisserial Opa protein adhesins, we show here that the expression of human CEACAM1 in transgenic mice is necessary and sufficient to allow nasal colonization by Nme. The dependence on human CEACAM1 is attributable to the Opa proteins, since intranasal infection with Opa-negative colonies of Nme selects for bacteria expressing Opa proteins, and genetically Opa-deficient meningococci are unable to colonize these animals. We use this new mouse model to examine how innate immune factors such as neutrophils and complement limit colonization. Furthermore, we compare how adaptive responses elicited by colonization and those generated by parenteral vaccination differentially confer sterilizing immunity. Together, this work provides the first evidence of the critical nature of Opa-CEACAM1 binding in vivo, demonstrates that this is a major determinant of the host restriction by Nme, and reveals a clear disparity between immune correlates of sterilizing immunity conferred by natural colonization versus parenteral immunization.
Collapse
Affiliation(s)
- Kay O Johswich
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Sanders H, Kaaijk P, van den Dobbelsteen GP. Preclinical evaluation of MenB vaccines: prerequisites for clinical development. Expert Rev Vaccines 2013; 12:31-42. [PMID: 23256737 DOI: 10.1586/erv.12.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the widespread use of polysaccharide and conjugate vaccines against disease caused by several serogroups of Neisseria meningitidis, vaccines targeting meningococci expressing the serogroup B capsule (MenB) have focused on subcapsular antigens, due to crossreactivity of the polysaccharide with human glycoproteins. Protein vaccines composed of outer membrane vesicles have been used successfully to control epidemics of MenB disease in several countries; however, these are specific for epidemic strains. Currently, a single serogroup B vaccine, aiming to provide comprehensive coverage, has been approved for use, and several others are undergoing clinical trials. Data on potential new vaccine candidates, from discovery to initial preclinical evaluation, are regularly published. In this review, the data required to progress from preclinical to clinical development of MenB vaccines are outlined, with reference to relevant regulatory guidelines. The issues caused by a lack of reliable animal models, particularly with respect to determination of protective efficacy, are also discussed.
Collapse
Affiliation(s)
- Holly Sanders
- Bacterial Vaccines, Crucell Holland, Leiden, The Netherlands
| | | | | |
Collapse
|
42
|
Dual pili post-translational modifications synergize to mediate meningococcal adherence to platelet activating factor receptor on human airway cells. PLoS Pathog 2013; 9:e1003377. [PMID: 23696740 PMCID: PMC3656113 DOI: 10.1371/journal.ppat.1003377] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 04/05/2013] [Indexed: 12/02/2022] Open
Abstract
Pili of pathogenic Neisseria are major virulence factors associated with adhesion, twitching motility, auto-aggregation, and DNA transformation. Pili of N. meningitidis are subject to several different post-translational modifications. Among these pilin modifications, the presence of phosphorylcholine (ChoP) and a glycan on the pilin protein are phase-variable (subject to high frequency, reversible on/off switching of expression). In this study we report the location of two ChoP modifications on the C-terminus of N. meningitidis pilin. We show that the surface accessibility of ChoP on pili is affected by phase variable changes to the structure of the pilin-linked glycan. We identify for the first time that the platelet activating factor receptor (PAFr) is a key, early event receptor for meningococcal adherence to human bronchial epithelial cells and tissue, and that synergy between the pilin-linked glycan and ChoP post-translational modifications is required for pili to optimally engage PAFr to mediate adherence to human airway cells. Neisseria meningitidis is an important human pathogen that can cause rapidly progressing, life threatening meningitis and sepsis in humans. There is no fully protective vaccine against this pathogen in current use and the key processes that dictate the transition from harmless carriage of the bacterium in the airway (the case for the vast majority of colonised hosts) to invasive disease are largely undefined. A key missing link in this organism's interaction with the human host is the identity of the receptor that is the first point of contact for the organism within the airway. In this study, we report that the receptor for this important human pathogen on airway epithelial cells is the platelet activating factor receptor (PAFr), an immunomodulatory molecule shown by others to play a role in promoting bacterial sepsis. We also show that two post-translational modifications, glycosylation and phosphorylcholine, are subject to phase-variation (high frequency, reversible switching of gene expression). They are closely associated on adjacent pilin subunits, and synergy between both are required for the efficient engagement with the PAFr. These data define a new role for these post-translational modifications in meningococcal adherence and also provide an insight into the selective pressures that underlie their phase variable expression.
Collapse
|
43
|
Melican K, Michea Veloso P, Martin T, Bruneval P, Duménil G. Adhesion of Neisseria meningitidis to dermal vessels leads to local vascular damage and purpura in a humanized mouse model. PLoS Pathog 2013; 9:e1003139. [PMID: 23359320 PMCID: PMC3554624 DOI: 10.1371/journal.ppat.1003139] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022] Open
Abstract
Septic shock caused by Neisseria meningitidis is typically rapidly evolving and often fatal despite antibiotic therapy. Further understanding of the mechanisms underlying the disease is necessary to reduce fatality rates. Postmortem samples from the characteristic purpuric rashes of the infection show bacterial aggregates in close association with microvessel endothelium but the species specificity of N. meningitidis has previously hindered the development of an in vivo model to study the role of adhesion on disease progression. Here we introduced human dermal microvessels into SCID/Beige mice by xenografting human skin. Bacteria injected intravenously exclusively associated with the human vessel endothelium in the skin graft. Infection was accompanied by a potent inflammatory response with the secretion of human inflammatory cytokines and recruitment of inflammatory cells. Importantly, infection also led to local vascular damage with hemostasis, thrombosis, vascular leakage and finally purpura in the grafted skin, replicating the clinical presentation for the first time in an animal model. The adhesive properties of the type IV pili of N. meningitidis were found to be the main mediator of association with the dermal microvessels in vivo. Bacterial mutants with altered type IV pili function also did not trigger inflammation or lead to vascular damage. This work demonstrates that local type IV pili mediated adhesion of N. meningitidis to the vascular wall, as opposed to circulating bacteria, determines vascular dysfunction in meningococcemia.
Collapse
Affiliation(s)
- Keira Melican
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Paula Michea Veloso
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Tiffany Martin
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Patrick Bruneval
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Guillaume Duménil
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
44
|
Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 2012; 36:1046-82. [PMID: 22545799 PMCID: PMC3421059 DOI: 10.1111/j.1574-6976.2012.00342.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/08/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | |
Collapse
|
45
|
Johnson S, Tan L, van der Veen S, Caesar J, Goicoechea De Jorge E, Harding RJ, Bai X, Exley RM, Ward PN, Ruivo N, Trivedi K, Cumber E, Jones R, Newham L, Staunton D, Ufret-Vincenty R, Borrow R, Pickering MC, Lea SM, Tang CM. Design and evaluation of meningococcal vaccines through structure-based modification of host and pathogen molecules. PLoS Pathog 2012; 8:e1002981. [PMID: 23133374 PMCID: PMC3486911 DOI: 10.1371/journal.ppat.1002981] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/04/2012] [Indexed: 11/18/2022] Open
Abstract
Neisseria meningitis remains a leading cause of sepsis and meningitis, and vaccines are required to prevent infections by this important human pathogen. Factor H binding protein (fHbp) is a key antigen that elicits protective immunity against the meningococcus and recruits the host complement regulator, fH. As the high affinity interaction between fHbp and fH could impair immune responses, we sought to identify non-functional fHbps that could act as effective immunogens. This was achieved by alanine substitution of fHbps from all three variant groups (V1, V2 and V3 fHbp) of the protein; while some residues affected fH binding in each variant group, the distribution of key amino underlying the interaction with fH differed between the V1, V2 and V3 proteins. The atomic structure of V3 fHbp in complex with fH and of the C-terminal barrel of V2 fHbp provide explanations to the differences in the precise nature of their interactions with fH, and the instability of the V2 protein. To develop transgenic models to assess the efficacy of non-functional fHbps, we determined the structural basis of the low level of interaction between fHbp and murine fH; in addition to changes in amino acids in the fHbp binding site, murine fH has a distinct conformation compared with the human protein that would sterically inhibit binding to fHbp. Non-functional V1 fHbps were further characterised by binding and structural studies, and shown in non-transgenic and transgenic mice (expressing chimeric fH that binds fHbp and precisely regulates complement system) to retain their immunogenicity. Our findings provide a catalogue of non-functional fHbps from all variant groups that can be included in new generation meningococcal vaccines, and establish proof-in-principle for clinical studies to compare their efficacy with wild-type fHbps. Vaccines are currently available against several serogroups of Neisseria meningitidis. However broadly effective serogroup B vaccines are still required as capsule-based approaches cannot be implemented with this serogroup because of the risks of auto-immunity. As a result, vaccines based on proteins in the bacterial outer membrane are being developed. Factor H binding protein (fHbp) is an important meningococcal immunogen which is able to bind the human complement regulator factor H (fH) at high affinity; this interaction could impair the efficacy of fHbp-based vaccines. Here we perform structure:function analyses to define non-functional fHbps and to explain the basis for the host specificity of the fHbp:fH interaction. The vaccine candidacy of non-functional fHbps was compared with wild-type proteins in a relevant transgenic model. These findings should allow the design and evaluation of future fHbp vaccines against this important human pathogen.
Collapse
Affiliation(s)
- Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lionel Tan
- Centre for Molecular Microbiology and Infection, Imperial College, London, United Kingdom
| | - Stijn van der Veen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Joseph Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Elena Goicoechea De Jorge
- Centre for Complement and Inflammation Research (CCIR), Department of Medicine, Imperial College, London, United Kingdom
| | - Rachel J. Harding
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Xilian Bai
- Vaccine Evaluation Unit, Public Health Laboratory, Manchester Medical Microbiology Partnership, Manchester, United Kingdom
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Philip N. Ward
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nicola Ruivo
- Centre for Molecular Microbiology and Infection, Imperial College, London, United Kingdom
| | - Kaushali Trivedi
- Centre for Molecular Microbiology and Infection, Imperial College, London, United Kingdom
| | - Elspeth Cumber
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rhian Jones
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Luke Newham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - David Staunton
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rafael Ufret-Vincenty
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ray Borrow
- Vaccine Evaluation Unit, Public Health Laboratory, Manchester Medical Microbiology Partnership, Manchester, United Kingdom
| | - Matthew C. Pickering
- Centre for Complement and Inflammation Research (CCIR), Department of Medicine, Imperial College, London, United Kingdom
- * E-mail: (MCP); (SML); (CMT)
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (MCP); (SML); (CMT)
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Centre for Molecular Microbiology and Infection, Imperial College, London, United Kingdom
- * E-mail: (MCP); (SML); (CMT)
| |
Collapse
|
46
|
Chen Y, Sjölinder M, Wang X, Altenbacher G, Hagner M, Berglund P, Gao Y, Lu T, Jonsson AB, Sjölinder H. Thyroid hormone enhances nitric oxide-mediated bacterial clearance and promotes survival after meningococcal infection. PLoS One 2012; 7:e41445. [PMID: 22844479 PMCID: PMC3402396 DOI: 10.1371/journal.pone.0041445] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/21/2012] [Indexed: 12/04/2022] Open
Abstract
Euthyroid sick syndrome characterized by reduced levels of thyroid hormones (THs) is observed in patients with meningococcal shock. It has been found that the level of THs reflects disease severity and is predictive for mortality. The present study was conducted to investigate the impact of THs on host defense during meningococcal infection. We found that supplementation of thyroxine to mice infected with Neisseria meningitidis enhanced bacterial clearance, attenuated the inflammatory responses and promoted survival. In vitro studies with macrophages revealed that THs enhanced bacteria-cell interaction and intracellular killing of meningococci by stimulating inducible nitric oxide synthase (iNos)-mediated NO production. TH treatment did not activate expression of TH receptors in macrophages. Instead, the observed TH-directed actions were mediated through nongenomic pathways involving the protein kinases PI3K and ERK1/2 and initiated at the membrane receptor integrin αvβ3. Inhibition of nongenomic TH signaling prevented iNos induction, NO production and subsequent intracellular bacterial killing by macrophages. These data demonstrate a beneficial role of THs in macrophage-mediated N. meningitidis clearance. TH replacement might be a novel option to control meningococcal septicemia.
Collapse
Affiliation(s)
- Yao Chen
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Mikael Sjölinder
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Xiao Wang
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Georg Altenbacher
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Matthias Hagner
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Pernilla Berglund
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Yumin Gao
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Ting Lu
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Hong Sjölinder
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
47
|
Lettiero B, Andersen AJ, Hunter AC, Moghimi SM. Complement system and the brain: Selected pathologies and avenues toward engineering of neurological nanomedicines. J Control Release 2012; 161:283-9. [DOI: 10.1016/j.jconrel.2011.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
|
48
|
Johswich KO, Zhou J, Law DKS, St. Michael F, McCaw SE, Jamieson FB, Cox AD, Tsang RSW, Gray-Owen SD. Invasive potential of nonencapsulated disease isolates of Neisseria meningitidis. Infect Immun 2012; 80:2346-53. [PMID: 22508859 PMCID: PMC3416473 DOI: 10.1128/iai.00293-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/03/2012] [Indexed: 01/07/2023] Open
Abstract
The capsule of Neisseria meningitidis is the major virulence factor that enables this bacterium to overcome host immunity elicited by complement and phagocytes, rendering it capable of surviving in blood. As such, nonencapsulated N. meningitidis isolates are generally considered nonpathogenic. Here, we consider the inherent virulence of two nonencapsulated N. meningitidis isolates obtained from our national surveillance of infected blood cultures in Canada. Capsule deficiency of both strains was confirmed by serology and PCR for the ctrA to ctrD genes and siaA to siaC genes, as well as siaD genes specific to serogroups B, C, Y, and W135. In both strains, the capsule synthesis genes were replaced by the capsule null locus, cnl-2. In accordance with a lack of capsule, both strains were fully susceptible to killing by both human and baby rabbit complement. However, in the presence of cytidine-5' monophospho-N-acetylneuraminic acid (CMP-NANA), allowing for lipooligosaccharide (LOS) sialylation, a significant increase of resistance to complement killing was observed. Mass spectrometry of purified LOS did not reveal any uncommon modifications that would explain their invasive phenotype. Finally, in a mouse intraperitoneal challenge model, these nonencapsulated isolates displayed enhanced virulence relative to an isogenic mutant of serogroup B strain MC58 lacking capsule (MC58ΔsiaD). Virulence of all nonencapsulated isolates tested was below that of encapsulated serogroup B strains MC58 and B16B6. However, whereas no mortality was observed with MC58ΔsiaD, 5/10 mice succumbed to infection with strain 2275 and 2/11 mice succumbed to strain 2274. Our results suggest the acquisition of a new virulence phenotype by these nonencapsulated strains.
Collapse
Affiliation(s)
- Kay O. Johswich
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jianwei Zhou
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Dennis K. S. Law
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Frank St. Michael
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Shannon E. McCaw
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrew D. Cox
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Raymond S. W. Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Loss of meningococcal PilU delays microcolony formation and attenuates virulence in vivo. Infect Immun 2012; 80:2538-47. [PMID: 22508857 DOI: 10.1128/iai.06354-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis is a major cause of sepsis and bacterial meningitis worldwide. This bacterium expresses type IV pili (Tfp), which mediate important virulence traits such as the formation of bacterial aggregates, host cell adhesion, twitching motility, and DNA uptake. The meningococcal PilT protein is a hexameric ATPase that mediates pilus retraction. The PilU protein is produced from the pilT-pilU operon and shares a high degree of homology with PilT. The function of PilT in Tfp biology has been studied extensively, whereas the role of PilU remains poorly understood. Here we show that pilU mutants have delayed microcolony formation on host epithelial cells compared to the wild type, indicating that bacterium-bacterium interactions are affected. In normal human serum, the pilU mutant survived at a higher rate than that for wild-type bacteria. However, in a murine model of disease, mice infected with the pilT mutant demonstrated significantly reduced bacterial blood counts and survived at a higher rate than that for mice infected with the wild type. Infection of mice with the pilU mutant resulted in a trend of lower bacteremia, and still a significant increase in survival, than that of the wild type. In conclusion, these data suggest that PilU promotes timely microcolony formation and that both PilU and PilT are required for full bacterial virulence.
Collapse
|
50
|
Abstract
Neisseria meningitidis is a human specific organism that causes severe sepsis and/or meningitis with high mortality. The disease scenario is rapid and much remains unknown about the disease process and host-pathogen interaction. In this chapter, we describe a protocol for generating a bioluminescently labeled N. meningitidis strain in order to advance our understanding of meningococcal disease progression. We also describe how in vivo bioluminescence imaging (BLI) can be used to observe novel features of the disease dynamics during meningococcal infection.
Collapse
Affiliation(s)
- Hong Sjölinder
- Department of Genetics, Microbiology, and Toxicology (GMT), Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|