1
|
Liu D, Bandyopadhyay A, Liberton M, Pakrasi HB, Bhattacharyya-Pakrasi M. Investigation of the Cyanothece nitrogenase cluster in Synechocystis: a blueprint for engineering nitrogen-fixing photoautotrophs. mBio 2025:e0405224. [PMID: 39998212 DOI: 10.1128/mbio.04052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
The nitrogenase gene cluster of unicellular diazotrophic cyanobacteria, such as Cyanothece, is frequently selected by nature for nitrogen-fixing partnerships with eukaryotic phototrophs. The essential cluster components that confer an advantage in such partnerships remain underexplored. To use this cluster for the development of synthetic, phototrophic nitrogen-fixing systems, a thorough and systematic analysis of its constituent genes is necessary. An initial effort to assess the possibility of engineering this cluster into non-diazotrophic phototrophs led to the generation of a Synechocystis 6803 strain with significant nitrogenase activity. In the current study, a refactoring approach was taken to determine the dispensability of the non-structural genes in the cluster and define a minimal gene set for constructing a functional nitrogenase for phototrophs. Using a bottom-up strategy, the nif genes from Cyanothece 51142 were re-organized to form new operons. The genes were then seamlessly removed to determine their essentiality in the nitrogen fixation process. We demonstrate that besides the structural genes nifHDK, nifBSUENPVZTXW, as well as hesAB, are important for optimal nitrogenase function in a phototroph. We also show that optimal expression of these genes is crucial for efficient nitrogenase activity. Our findings provide a solid foundation for generating synthetic systems that will facilitate solar-powered conversion of atmospheric nitrogen into nitrogen-rich compounds, a stride toward a greener world.IMPORTANCEIntegrating nitrogen fixation genes into various photosynthetic organisms is an exciting strategy for converting atmospheric nitrogen into nitrogen-rich products in a green and energy-efficient way. In order to facilitate this process, it is essential that we understand the fundamentals of the functioning of a prokaryotic nitrogen-fixing machinery in a non-diazotrophic, photoautotrophic cell. This study examines a nitrogenase gene cluster that has been naturally selected on multiple occasions for a nitrogen-fixing partnership by eukaryotic photoautotrophs and provides a basic blueprint for designing a photosynthetic organism with nitrogen-fixing ability.
Collapse
Affiliation(s)
- Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
2
|
Wertz AE, Rosenkampff I, Ibouanga P, Huber M, Hess CR, Rüdiger O, Shafaat HS. A semisynthetic, multicofactor artificial metalloenzyme retains independent site activity. J Biol Inorg Chem 2025:10.1007/s00775-025-02095-z. [PMID: 39891686 DOI: 10.1007/s00775-025-02095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/04/2025] [Indexed: 02/03/2025]
Abstract
Native metalloenzymes are unparalleled in their ability to perform efficient small molecule activation reactions, converting simple substrates into complex products. Most of these natural systems possess multiple metallocofactors to facilitate electron transfer or cascade catalysis. While the field of artificial metalloenzymes is growing at a rapid rate, examples of artificial enzymes that leverage two distinct cofactors remain scarce. In this work, we describe a new class of artificial enzymes containing two different metallocofactors, incorporated through bioorthogonal strategies. Nickel-substituted rubredoxin (NiRd), which is a structural and functional mimic of [NiFe] hydrogenases, is used as a scaffold. Incorporation of a synthetic bimetallic inorganic complex based on a macrocyclic biquinazoline ligand (MMBQ) was accomplished using a novel chelating thioether linker. Neither the structure of the NiRd active site nor the MMBQ were altered upon attachment, and each site retained independent redox activity. Electrocatalysis was observed from each site, with the switchability of the system demonstrated through the use of catalytically inert metal centers. This MMBQ-NiRd platform offers a new avenue to create multicofactor artificial metalloenzymes in a robust system that can be easily tuned both through modifications to the protein scaffold and the synthetic moiety, with applications for redox catalysis and tandem reactivity.
Collapse
Affiliation(s)
- Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, OH, 43210, USA
| | - Ilmari Rosenkampff
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Philippe Ibouanga
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748, Garching, Germany
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Matthias Huber
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748, Garching, Germany
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Corinna R Hess
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748, Garching, Germany
- Faculty of Chemistry and Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, OH, 43210, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Narehood SM, Cook BD, Srisantitham S, Eng VH, Shiau AA, McGuire KL, Britt RD, Herzik MA, Tezcan FA. Structural basis for the conformational protection of nitrogenase from O 2. Nature 2025; 637:991-997. [PMID: 39779844 PMCID: PMC11812610 DOI: 10.1038/s41586-024-08311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/30/2024] [Indexed: 01/11/2025]
Abstract
The low reduction potentials required for the reduction of dinitrogen (N2) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O2)1-3. Such O2 sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O2-respiring organisms to support the high energy demand of catalytic N2 reduction4. To counter O2 damage to nitrogenase, diazotrophs use O2 scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O2 concentrations4-8. A last line of damage control is provided by the 'conformational protection' mechanism9, in which a [2Fe:2S] ferredoxin-family protein termed FeSII (ref. 10) is activated under O2 stress to form an O2-resistant complex with the nitrogenase component proteins11,12. Despite previous insights, the molecular basis for the conformational O2 protection of nitrogenase and the mechanism of FeSII activation are not understood. Here we report the structural characterization of the Azotobacter vinelandii FeSII-nitrogenase complex by cryo-electron microscopy. Our studies reveal a core complex consisting of two molybdenum-iron proteins (MoFePs), two iron proteins (FePs) and one FeSII homodimer, which polymerize into extended filaments. In this three-protein complex, FeSII mediates an extensive network of interactions with MoFeP and FeP to position their iron-sulphur clusters in catalytically inactive but O2-protected states. The architecture of the FeSII-nitrogenase complex is confirmed by solution studies, which further indicate that the activation of FeSII involves an oxidation-induced conformational change.
Collapse
Affiliation(s)
- Sarah M Narehood
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Brian D Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Suppachai Srisantitham
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Vanessa H Eng
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Angela A Shiau
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Kelly L McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Franke P, Freiberger S, Zhang L, Einsle O. Conformational protection of molybdenum nitrogenase by Shethna protein II. Nature 2025; 637:998-1004. [PMID: 39779845 PMCID: PMC11754109 DOI: 10.1038/s41586-024-08355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The oxygen-sensitive molybdenum-dependent nitrogenase of Azotobacter vinelandii is protected from oxidative damage by a reversible 'switch-off' mechanism1. It forms a complex with a small ferredoxin, FeSII (ref. 2) or the 'Shethna protein II'3, which acts as an O2 sensor and associates with the two component proteins of nitrogenase when its [2Fe:2S] cluster becomes oxidized4,5. Here we report the three-dimensional structure of the protective ternary complex of the catalytic subunit of Mo-nitrogenase, its cognate reductase and the FeSII protein, determined by single-particle cryo-electron microscopy. The dimeric FeSII protein associates with two copies of each component to assemble a 620 kDa core complex that then polymerizes into large, filamentous structures. This complex is catalytically inactive, but the enzyme components are quickly released and reactivated upon oxygen depletion. The first step in complex formation is the association of FeSII with the more O2-sensitive Fe protein component of nitrogenase during sudden oxidative stress. The action of this small ferredoxin represents a straightforward means of protection from O2 that may be crucial for the maintenance of recombinant nitrogenase in food crops.
Collapse
Affiliation(s)
- Philipp Franke
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Simon Freiberger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
5
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Yang J, Duan YF, Liu L. Crystal structure of the iron-sulfur cluster transfer protein ApbC from Escherichia coli. Biochem Biophys Res Commun 2024; 722:150167. [PMID: 38797154 DOI: 10.1016/j.bbrc.2024.150167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous and are necessary to sustain basic life processes. The intracellular Fe-S clusters do not form spontaneously and many proteins are required for their biosynthesis and delivery. The bacterial P-loop NTPase family protein ApbC participates in Fe-S cluster assembly and transfers the cluster into apoproteins, with the Walker A motif and CxxC motif being essential for functionality of ApbC in Fe-S protein biogenesis. However, the structural basis underlying the ApbC activity and the motifs' role remains unclear. Here, we report the crystal structure of Escherichia coli ApbC at 2.8 Å resolution. The dimeric structure is in a W shape and the active site is located in the 2-fold center. The function of the motifs can be annotated by structural analyses. ApbC has an additional N-terminal domain that differs from other P-loop NTPases, possibly conferring its inherent specificity in vivo.
Collapse
Affiliation(s)
- Jingyu Yang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| | - Ya-Fei Duan
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Lin Liu
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| |
Collapse
|
7
|
Maslać N, Cadoux C, Bolte P, Murken F, Gu W, Milton RD, Wagner T. Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine Methanococcales. FEBS J 2024; 291:3454-3480. [PMID: 38696373 DOI: 10.1111/febs.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The nitrogenase reductase NifH catalyses ATP-dependent electron delivery to the Mo-nitrogenase, a reaction central to biological dinitrogen (N2) fixation. While NifHs have been extensively studied in bacteria, structural information about their archaeal counterparts is limited. Archaeal NifHs are considered more ancient, particularly those from Methanococcales, a group of marine hydrogenotrophic methanogens, which includes diazotrophs growing at temperatures near 92 °C. Here, we structurally and biochemically analyse NifHs from three Methanococcales, offering the X-ray crystal structures from meso-, thermo-, and hyperthermophilic methanogens. While NifH from Methanococcus maripaludis (37 °C) was obtained through heterologous recombinant expression, the proteins from Methanothermococcus thermolithotrophicus (65 °C) and Methanocaldococcus infernus (85 °C) were natively purified from the diazotrophic archaea. The structures from M. thermolithotrophicus crystallised as isolated exhibit high flexibility. In contrast, the complexes of NifH with MgADP obtained from the three methanogens are superposable, more rigid, and present remarkable structural conservation with their homologues. They retain key structural features of P-loop NTPases and share similar electrostatic profiles with the counterpart from the bacterial model organism Azotobacter vinelandii. In comparison to the NifH from the phylogenetically distant Methanosarcina acetivorans, these reductases do not cross-react significantly with Mo-nitrogenase from A. vinelandii. However, they associate with bacterial nitrogenase when ADP·AlF 4 - is added to mimic a transient reactive state. Accordingly, detailed surface analyses suggest that subtle substitutions would affect optimal binding during the catalytic cycle between the NifH from Methanococcales and the bacterial nitrogenase, implying differences in the N2-machinery from these ancient archaea.
Collapse
Affiliation(s)
- Nevena Maslać
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Pauline Bolte
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Fenja Murken
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wenyu Gu
- Laboratory of Microbial Physiology and Resource Biorecovery, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
8
|
Cook BD, Narehood SM, McGuire KL, Li Y, Tezcan FA, Herzik MA. Preparation of oxygen-sensitive proteins for high-resolution cryoEM structure determination using (an)aerobic blot-free vitrification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604374. [PMID: 39091810 PMCID: PMC11291078 DOI: 10.1101/2024.07.19.604374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
High-quality grid preparation for single-particle cryogenic electron microscopy (cryoEM) remains a bottleneck for routinely obtaining high-resolution structures. The issues that arise from traditional grid preparation workflows are particularly exacerbated for oxygen-sensitive proteins, including metalloproteins, whereby oxygen-induced damage and alteration of oxidation states can result in protein inactivation, denaturation, and/or aggregation. Indeed, 99% of the current structures in the EMBD were prepared aerobically and limited successes for anaerobic cryoEM grid preparation exist. Current practices for anaerobic grid preparation involve a vitrification device located in an anoxic chamber, which presents significant challenges including temperature and humidity control, optimization of freezing conditions, costs for purchase and operation, as well as accessibility. Here, we present a streamlined approach that allows for the (an)aerobic vitrification of oxygen-sensitive proteins using an automated aerobic blot-free grid vitrification device - the SPT Labtech chameleon. This robust workflow allows for high-resolution structure determination of dynamic, oxygen-sensitive proteins, of varying complexity and molecular weight.
Collapse
Affiliation(s)
- Brian D. Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Sarah M. Narehood
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Kelly L. McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Yizhou Li
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| |
Collapse
|
9
|
M Meirovich M, Bachar O, Shemesh M, Cohen Y, Popik A, Yehezkeli O. Light-driven, bias-free nitrogenase-based bioelectrochemical cell for ammonia generation. Biosens Bioelectron 2024; 255:116254. [PMID: 38569252 DOI: 10.1016/j.bios.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Nitrogen fixation is a key process that sustains life on Earth. Nitrogenase is the sole enzyme capable of fixing nitrogen under ambient conditions. Extensive research efforts have been dedicated to elucidating the enzyme mechanism and its artificial activation through high applied voltage, photochemistry, or strong reducing agents. Harnessing light irradiation to minimize the required external bias can lower the process's high energy investment. Herein, we present the development of photo-bioelectrochemical cells (PBECs) utilizing BiVO4/CoP or CdS/NiO photoanodes for nitrogenase activation toward N2 fixation. The constructed PBEC based on BiVO4/CoP photoanode requires minimal external bias (200 mV) and suppresses O2 generation that allows efficient activation of the nitrogenase enzyme, using glucose as an electron donor. In a second developed PBEC configuration, CdS/NiO photoanode was used, enabling bias-free activation of the nitrogenase-based cathode to produce 100 μM of ammonia at a faradaic efficiency (FE) of 12%. The ammonia production was determined by a commonly used fluorescence probe and further validated using 1H-NMR spectroscopy. The presented PBECs lay the foundation for biotic-abiotic systems to directly activate enzymes toward value-added chemicals by light-driven reactions.
Collapse
Affiliation(s)
- Matan M Meirovich
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Oren Bachar
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Mor Shemesh
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yifat Cohen
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Alice Popik
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Omer Yehezkeli
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
10
|
Xie ZL, Jin WT, Zhou ZH. Analyses of the electronic structures of FeFe-cofactors compared with those of FeMo- and FeV-cofactors and their P-clusters. Dalton Trans 2024; 53:6529-6536. [PMID: 38299993 DOI: 10.1039/d3dt04126c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The electronic structures of FeFe-cofactors (FeFe-cos) in resting and turnover states, together with their PN clusters from iron-only nitrogenases, have been calculated using the bond valence method, and their crystallographic data were reported recently and deposited in the Protein Data Bank (PDB codes: 8BOQ and 8OIE). The calculated results have also been compared with those of their homologous Mo- and V-nitrogenases. For FeFe-cos in the resting state, Fe1/2/4/5/6/7/8 atoms are prone to Fe3+, while the Fe3 atom shows different degrees of mixed valences. The results support that the Fe8 atom at the terminal positions of FeFe-cos possesses the same oxidation states as the Mo3+/V3+ atoms of FeMo-/FeV-cos. In the turnover state, the overall oxidation state of FeFe-co is slightly reduced than those in the resting species, and its electronic configuration is rearranged after the substitution of S2B with OH, compatible with those found in CO-bound FeV-co. Moreover, the calculations give the formal oxidation states of 6Fe2+-2Fe3+ for the electronic structures of PN clusters in Fe-nitrogenases. By the comparison of Mo-, V- and Fe-nitrogenases, the overall oxidation levels of 7Fe atoms (Fe1-Fe7) for both FeFe- and FeMo-cos in resting states are found to be higher than that of FeV-co. For the PN clusters in MoFe-, VFe- and FeFe-proteins, they all exhibit a strong reductive character.
Collapse
Affiliation(s)
- Zhen-Lang Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Wan-Ting Jin
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
11
|
Badalyan A, Yang ZY, Seefeldt LC. A voltammetric study of nitrogenase MoFe-protein using low-potential electron transfer mediators. Bioelectrochemistry 2024; 155:108575. [PMID: 37738860 DOI: 10.1016/j.bioelechem.2023.108575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
The molybdenum-iron protein (MoFeP), a component of the enzyme nitrogenase, catalyzes the reduction of an array of small molecules, including N2 to NH3. In microorganisms, during the catalytic cycle, MoFeP receives electrons from the obligate biological redox partner iron protein (FeP) in a process coupled to the hydrolysis of two MgATP per one electron transferred. Despite the favorable redox properties of the cofactors, the requirement of the MgATP hydrolysis significantly decreases the energy efficiency of MoFeP. Therefore, remarkable efforts have been devoted to electrochemically activating MoFeP without FeP and MgATP. Previously, MoFeP was adsorbed on an electrode surface and revealed a slow catalysis with and without electron transfer mediators. However, enzyme adsorption can cause conformational and structural changes in a fragile protein molecule and alter its catalytic activity. In this work, MoFeP was electrochemically studied in solution. Various electron transfer mediators with potentials ranging from -0.3 V to -1 V (vs. NHE) were examined with MoFeP using cyclic voltammetry. No significant catalytic activity of the MoFeP was observed with any of the tested mediators. This indicates that efficient electrochemical activation of MoFeP cannot be achieved exclusively by increasing the driving force between the MoFeP redox cofactors and an electron donor.
Collapse
Affiliation(s)
- Artavazd Badalyan
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, USA.
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, USA
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|
12
|
Schmidt FV, Schulz L, Zarzycki J, Prinz S, Oehlmann NN, Erb TJ, Rebelein JG. Structural insights into the iron nitrogenase complex. Nat Struct Mol Biol 2024; 31:150-158. [PMID: 38062208 PMCID: PMC10803253 DOI: 10.1038/s41594-023-01124-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2024]
Abstract
Nitrogenases are best known for catalyzing the reduction of dinitrogen to ammonia at a complex metallic cofactor. Recently, nitrogenases were shown to reduce carbon dioxide (CO2) and carbon monoxide to hydrocarbons, offering a pathway to recycle carbon waste into hydrocarbon products. Among the three nitrogenase isozymes, the iron nitrogenase has the highest wild-type activity for the reduction of CO2, but the molecular architecture facilitating these activities has remained unknown. Here, we report a 2.35-Å cryogenic electron microscopy structure of the ADP·AlF3-stabilized iron nitrogenase complex from Rhodobacter capsulatus, revealing an [Fe8S9C-(R)-homocitrate] cluster in the active site. The enzyme complex suggests that the iron nitrogenase G subunit is involved in cluster stabilization and substrate channeling and confers specificity between nitrogenase reductase and catalytic component proteins. Moreover, the structure highlights a different interface between the two catalytic halves of the iron and the molybdenum nitrogenase, potentially influencing the intrasubunit 'communication' and thus the nitrogenase mechanism.
Collapse
Affiliation(s)
- Frederik V Schmidt
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Luca Schulz
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Simone Prinz
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Niels N Oehlmann
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johannes G Rebelein
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
13
|
Solomon JB, Liu YA, Górecki K, Quechol R, Lee CC, Jasniewski AJ, Hu Y, Ribbe MW. Heterologous expression of a fully active Azotobacter vinelandii nitrogenase Fe protein in Escherichia coli. mBio 2023; 14:e0257223. [PMID: 37909748 PMCID: PMC10746259 DOI: 10.1128/mbio.02572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The heterologous expression of a fully active Azotobacter vinelandii Fe protein (AvNifH) has never been accomplished. Given the functional importance of this protein in nitrogenase catalysis and assembly, the successful expression of AvNifH in Escherichia coli as reported herein supplies a key element for the further development of heterologous expression systems that explore the catalytic versatility of the Fe protein, either on its own or as a key component of nitrogenase, for nitrogenase-based biotechnological applications in the future. Moreover, the "clean" genetic background of the heterologous expression host allows for an unambiguous assessment of the effect of certain nif-encoded protein factors, such as AvNifM described in this work, in the maturation of AvNifH, highlighting the utility of this heterologous expression system in further advancing our understanding of the complex biosynthetic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew J. Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
| |
Collapse
|
14
|
Warmack RA, Rees DC. Nitrogenase beyond the Resting State: A Structural Perspective. Molecules 2023; 28:7952. [PMID: 38138444 PMCID: PMC10745740 DOI: 10.3390/molecules28247952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Nitrogenases have the remarkable ability to catalyze the reduction of dinitrogen to ammonia under physiological conditions. How does this happen? The current view of the nitrogenase mechanism focuses on the role of hydrides, the binding of dinitrogen in a reductive elimination process coupled to loss of dihydrogen, and the binding of substrates to a binuclear site on the active site cofactor. This review focuses on recent experimental characterizations of turnover relevant forms of the enzyme determined by cryo-electron microscopy and other approaches, and comparison of these forms to the resting state enzyme and the broader family of iron sulfur clusters. Emerging themes include the following: (i) The obligatory coupling of protein and electron transfers does not occur in synthetic and small-molecule iron-sulfur clusters. The coupling of these processes in nitrogenase suggests that they may involve unique features of the cofactor, such as hydride formation on the trigonal prismatic arrangement of irons, protonation of belt sulfurs, and/or protonation of the interstitial carbon. (ii) Both the active site cofactor and protein are dynamic under turnover conditions; the changes are such that more highly reduced forms may differ in key ways from the resting-state structure. Homocitrate appears to play a key role in coupling cofactor and protein dynamics. (iii) Structural asymmetries are observed in nitrogenase under turnover-relevant conditions by cryo-electron microscopy, although the mechanistic relevance of these states (such as half-of-sites reactivity) remains to be established.
Collapse
Affiliation(s)
- Rebeccah A. Warmack
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Einsle O. On the Shoulders of Giants-Reaching for Nitrogenase. Molecules 2023; 28:7959. [PMID: 38138449 PMCID: PMC10745432 DOI: 10.3390/molecules28247959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Only a single enzyme system-nitrogenase-carries out the conversion of atmospheric N2 into bioavailable ammonium, an essential prerequisite for all organismic life. The reduction of this inert substrate at ambient conditions poses unique catalytic challenges that strain our mechanistic understanding even after decades of intense research. Structural biology has added its part to this greater tapestry, and in this review, I provide a personal (and highly biased) summary of the parts of the story to which I had the privilege to contribute. It focuses on the crystallographic analysis of the three isoforms of nitrogenases at high resolution and the binding of ligands and inhibitors to the active-site cofactors of the enzyme. In conjunction with the wealth of available biochemical, biophysical, and spectroscopic data on the protein, this has led us to a mechanistic hypothesis based on an elementary mechanism of repetitive hydride formation and insertion.
Collapse
Affiliation(s)
- Oliver Einsle
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Einsle O. Catalysis and structure of nitrogenases. Curr Opin Struct Biol 2023; 83:102719. [PMID: 37802004 DOI: 10.1016/j.sbi.2023.102719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
In providing bioavailable nitrogen as building blocks for all classes of biomacromolecules, biological nitrogen fixation is an essential process for all organismic life. Only a single enzyme, nitrogenase, performs this task at ambient conditions and with ATP as an energy source. The assembly of the complex iron-sulfur enzyme nitrogenase and its catalytic mechanism remains a matter of intense study. Recent progress in the structural analysis of the three known isoforms of nitrogenase-differentiated primarily by the heterometal in their active site cofactor-has revealed a degree of structural plasticity of these clusters that suggest two distinct binding sites for substrates and reaction intermediates. A mechanistic proposal based on this finding integrates most of the available experimental data. Furthermore, the first applications of high-resolution cryo-electron microscopy have highlighted further dynamic conformational changes. Structures obtained under turnover conditions support the proposed alternating half-site reactivity in the C2-symmetric nitrogenase complex.
Collapse
Affiliation(s)
- Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
17
|
Pellows LM, Willis MA, Ruzicka JL, Jagilinki BP, Mulder DW, Yang ZY, Seefeldt LC, King PW, Dukovic G, Peters JW. High Affinity Electrostatic Interactions Support the Formation of CdS Quantum Dot:Nitrogenase MoFe Protein Complexes. NANO LETTERS 2023; 23:10466-10472. [PMID: 37930772 DOI: 10.1021/acs.nanolett.3c03205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Nitrogenase MoFe protein can be coupled with CdS nanocrystals (NCs) to enable photocatalytic N2 reduction. The nature of interactions that support complex formation is of paramount importance in intermolecular electron transfer that supports catalysis. In this work we have employed microscale thermophoresis to examine binding interactions between 3-mercaptopropionate capped CdS quantum dots (QDs) and MoFe protein over a range of QD diameters (3.4-4.3 nm). The results indicate that the interactions are largely electrostatic, with the strength of interactions similar to that observed for the physiological electron donor. In addition, the strength of interactions is sensitive to the QD diameter, and the binding interactions are significantly stronger for QDs with smaller diameters. The ability to quantitatively assess NC protein interactions in biohybrid systems supports strategies for understanding properties and reaction parameters that are important for obtaining optimal rates of catalysis in biohybrid systems.
Collapse
Affiliation(s)
- Lauren M Pellows
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark A Willis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Jesse L Ruzicka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Bhanu P Jagilinki
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
18
|
Tokmina-Lukaszewska M, Huang Q, Berry L, Kallas H, Peters JW, Seefeldt LC, Raugei S, Bothner B. Fe protein docking transduces conformational changes to MoFe nitrogenase active site in a nucleotide-dependent manner. Commun Chem 2023; 6:254. [PMID: 37980448 PMCID: PMC10657360 DOI: 10.1038/s42004-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
The reduction of dinitrogen to ammonia catalyzed by nitrogenase involves a complex series of events, including ATP hydrolysis, electron transfer, and activation of metal clusters for N2 reduction. Early evidence shows that an essential part of the mechanism involves transducing information between the nitrogenase component proteins through conformational dynamics. Here, millisecond time-resolved hydrogen-deuterium exchange mass spectrometry was used to unravel peptide-level protein motion on the time scale of catalysis of Mo-dependent nitrogenase from Azotobacter vinelandii. Normal mode analysis calculations complemented this data, providing insights into the specific signal transduction pathways that relay information across protein interfaces at distances spanning 100 Å. Together, these results show that conformational changes induced by protein docking are rapidly transduced to the active site, suggesting a specific mechanism for activating the metal cofactor in the enzyme active site.
Collapse
Affiliation(s)
| | - Qi Huang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Hayden Kallas
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - John W Peters
- Institute of Biological Chemistry, The University of Oklahoma, Norman, OK, USA
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
19
|
Kang W. Unveiling Nature's Nitrogen-Fixing Secrets. Mol Cells 2023; 46:535-537. [PMID: 37691259 PMCID: PMC10495689 DOI: 10.14348/molcells.2023.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Wonchull Kang
- Department of Chemistry and Integrative Institute of Basic Science, College of Natural Sciences, Soongsil University, Seoul 06978, Korea
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
20
|
Maggiolo AO, Mahajan S, Rees DC, Clemons WM. Intradimeric Walker A ATPases: Conserved Features of A Functionally Diverse Family. J Mol Biol 2023; 435:167965. [PMID: 37330285 DOI: 10.1016/j.jmb.2023.167965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/19/2023]
Abstract
Nucleoside-triphosphate hydrolases (NTPases) are a diverse, but essential group of enzymes found in all living organisms. NTPases that have a G-X-X-X-X-G-K-[S/T] consensus sequence (where X is any amino acid), known as the Walker A or P-loop motif, constitute a superfamily of P-loop NTPases. A subset of ATPases within this superfamily contains a modified Walker A motif, X-K-G-G-X-G-K-[S/T], wherein the first invariant lysine residue is essential to stimulate nucleotide hydrolysis. Although the proteins in this subset have vastly differing functions, ranging from electron transport during nitrogen fixation to targeting of integral membrane proteins to their correct membranes, they have evolved from a shared ancestor and have thus retained common structural features that affect their functions. These commonalities have only been disparately characterized in the context of their individual proteins systems, but have not been generally annotated as features that unite the members of this family. In this review, we report an analysis based on the sequences, structures, and functions of several members in this family that highlight their remarkable similarities. A principal feature of these proteins is their dependence on homodimerization. Since their functionalities are heavily influenced by changes that happen in conserved elements at the dimer interface, we refer to the members of this subclass as intradimeric Walker A ATPases.
Collapse
Affiliation(s)
- Ailiena O Maggiolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Shivansh Mahajan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
21
|
Abstract
The Fischer-Tropsch (FT) process converts a mixture of CO and H2 into liquid hydrocarbons as a major component of the gas-to-liquid technology for the production of synthetic fuels. Contrary to the energy-demanding chemical FT process, the enzymatic FT-type reactions catalyzed by nitrogenase enzymes, their metalloclusters, and synthetic mimics utilize H+ and e- as the reducing equivalents to reduce CO, CO2, and CN- into hydrocarbons under ambient conditions. The C1 chemistry exemplified by these FT-type reactions is underscored by the structural and electronic properties of the nitrogenase-associated metallocenters, and recent studies have pointed to the potential relevance of this reactivity to nitrogenase mechanism, prebiotic chemistry, and biotechnological applications. This review will provide an overview of the features of nitrogenase enzymes and associated metalloclusters, followed by a detailed discussion of the activities of various nitrogenase-derived FT systems and plausible mechanisms of the enzymatic FT reactions, highlighting the versatility of this unique reactivity while providing perspectives onto its mechanistic, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Joseph B. Solomon
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| |
Collapse
|
22
|
Utreja D. Sulfonamide functionalized silica nano-composite: characterization and fluorescence "turn-on" detection of Fe 3+ ions in aqueous samples. Photochem Photobiol Sci 2023:10.1007/s43630-023-00421-5. [PMID: 37186235 DOI: 10.1007/s43630-023-00421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
We have synthesized novel sulfonamide-based nano-composite (SAN) for selective and sensitive detection of Fe3+ ions in aqueous samples. Morphological characterization of SAN was carried out with TGA, FT-IR, UV-Vis, ninhydrin assay, FE-SEM, pXRD, BET, EDX, and elemental analysis. The sensing nature, effect of pH, sensor concentration and response time analysis were accomplished with the help of emission spectral studies and SAN was assessed as "turn-on" emission detector for the biologically important Fe3+ ions. Here, the LOD and LOQ were computed to be 26.68 nM and 88.93 nM, respectively, and it was found to be much lower than the permissible limit of Fe3+ ions in drinking water. The accuracy of the sensor (SAN) was determined by testing the aqueous samples spiked with known concentrations of Fe3+ ions and results demonstrated 98.00-99.66% recovery, which made SAN a reliable, selective and sensitive chemosensor for the quantification of Fe3+ ions in fully aqueous media.
Collapse
Affiliation(s)
- Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
23
|
Martin Del Campo JS, Rigsbee J, Bueno Batista M, Mus F, Rubio LM, Einsle O, Peters JW, Dixon R, Dean DR, Dos Santos PC. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. Crit Rev Biochem Mol Biol 2023; 57:492-538. [PMID: 36877487 DOI: 10.1080/10409238.2023.2181309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.
Collapse
Affiliation(s)
| | - Jack Rigsbee
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Oliver Einsle
- Department of Biochemistry, University of Freiburg, Freiburg, Germany
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
24
|
Ribbe MW, Górecki K, Grosch M, Solomon JB, Quechol R, Liu YA, Lee CC, Hu Y. Nitrogenase Fe Protein: A Multi-Tasking Player in Substrate Reduction and Metallocluster Assembly. Molecules 2022; 27:molecules27196743. [PMID: 36235278 PMCID: PMC9571451 DOI: 10.3390/molecules27196743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
The Fe protein of nitrogenase plays multiple roles in substrate reduction and metallocluster assembly. Best known for its function to transfer electrons to its catalytic partner during nitrogenase catalysis, the Fe protein is also a key player in the biosynthesis of the complex metalloclusters of nitrogenase. In addition, it can function as a reductase on its own and affect the ambient reduction of CO2 or CO to hydrocarbons. This review will provide an overview of the properties and functions of the Fe protein, highlighting the relevance of this unique FeS enzyme to areas related to the catalysis, biosynthesis, and applications of the fascinating nitrogenase system.
Collapse
Affiliation(s)
- Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
- Correspondence: (M.W.R.); (Y.H.)
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Correspondence: (M.W.R.); (Y.H.)
| |
Collapse
|
25
|
Rutledge HL, Cook BD, Nguyen HPM, Herzik MA, Tezcan FA. Structures of the nitrogenase complex prepared under catalytic turnover conditions. Science 2022; 377:865-869. [PMID: 35901182 PMCID: PMC9949965 DOI: 10.1126/science.abq7641] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The enzyme nitrogenase couples adenosine triphosphate (ATP) hydrolysis to the multielectron reduction of atmospheric dinitrogen into ammonia. Despite extensive research, the mechanistic details of ATP-dependent energy transduction and dinitrogen reduction by nitrogenase are not well understood, requiring new strategies to monitor its structural dynamics during catalytic action. Here, we report cryo-electron microscopy structures of the nitrogenase complex prepared under enzymatic turnover conditions. We observe that asymmetry governs all aspects of the nitrogenase mechanism, including ATP hydrolysis, protein-protein interactions, and catalysis. Conformational changes near the catalytic iron-molybdenum cofactor are correlated with the nucleotide-hydrolysis state of the enzyme.
Collapse
Affiliation(s)
- Hannah L. Rutledge
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Brian D. Cook
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Hoang P. M. Nguyen
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA,Corresponding author. (FAT), (MAH)
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA,Corresponding author. (FAT), (MAH)
| |
Collapse
|
26
|
Abstract
Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.
Collapse
|
27
|
Analysis of the Ammonia Production Rates by Nitrogenase. Catalysts 2022. [DOI: 10.3390/catal12080844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ammonia (NH3) is produced industrially by the Haber–Bosch process from dinitrogen (N2) and dihydrogen (H2) using high temperature and pressure with an iron catalyst. In contrast to the extreme conditions used in the Haber–Bosch process, biology has evolved nitrogenase enzymes, which operate at ambient temperature and pressure. In biological settings, nitrogenase requires large amounts of energy in the form of ATP, using at least 13 GJ ton−1 of ammonia. In 2016, Brown et al. reported ATP-free ammonia production by nitrogenase. This result led to optimism that the energy demands of nitrogenase could be reduced. More recent reports confirmed the ATP-free production of ammonia; however, the rates of reaction are at least an order of magnitude lower. A more detailed understanding of the role of ATP in nitrogenase catalysis is required to develop ATP-free catalytic systems with higher ammonia production rates. Finally, we calculated the theoretical maximal ammonia production rate by nitrogenase and compared it to currently used Haber–Bosch catalysts. Somewhat surprisingly, nitrogenase has a similar theoretical maximum rate to the Haber–Bosch catalysts; however, strategies need to be developed to allow the enzyme to maintain operation at its optimal rate.
Collapse
|
28
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
29
|
Solomon JB, Tanifuji K, Lee CC, Jasniewski AJ, Hedman B, Hodgson KO, Hu Y, Ribbe MW. Characterization of a Nitrogenase Iron Protein Substituted with a Synthetic [Fe 4 Se 4 ] Cluster. Angew Chem Int Ed Engl 2022; 61:e202202271. [PMID: 35218104 PMCID: PMC9038695 DOI: 10.1002/anie.202202271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Abstract
The Fe protein of nitrogenase plays multiple roles in substrate reduction and cluster maturation via its redox-active [Fe4 S4 ] cluster. Here we report the synthesis and characterization of a water-soluble [Fe4 Se4 ] cluster that is used to substitute the [Fe4 S4 ] cluster of the Azotobacter vinelandii Fe protein (AvNifH). Biochemical, EPR and XAS/EXAFS analyses demonstrate the ability of the [Fe4 Se4 ] cluster to adopt the super-reduced, all-ferrous state upon its incorporation into AvNifH. Moreover, these studies reveal that the [Fe4 Se4 ] cluster in AvNifH already assumes a partial all-ferrous state ([Fe4 Se4 ]0 ) in the presence of dithionite, where its [Fe4 S4 ] counterpart in AvNifH exists solely in the reduced state ([Fe4 S4 ]1+ ). Such a discrepancy in the redox properties of the AvNifH-associated [Fe4 Se4 ] and [Fe4 S4 ] clusters can be used to distinguish the differential redox requirements for the substrate reduction and cluster maturation of nitrogenase, pointing to the utility of chalcogen-substituted FeS clusters in future mechanistic studies of nitrogenase catalysis and assembly.
Collapse
Affiliation(s)
- Joseph B Solomon
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
| | - Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Keith O Hodgson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| |
Collapse
|
30
|
Solomon J, Tanifuji K, Lee CC, Jasniewski A, Hedman B, Hodgson K, Hu Y, Ribbe M. Characterization of a Nitrogenase Iron Protein Substituted with a Synthetic [Fe4Se4] Cluster. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kazuki Tanifuji
- Kyoto University Institute for Chemical Research UNITED STATES
| | - Chi Chung Lee
- University of California Irvine Molecular Biology and Biochemistry UNITED STATES
| | - Andrew Jasniewski
- University of California Irvine Molecular Biology and Biochemistry UNITED STATES
| | - Britt Hedman
- Stanford University Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory UNITED STATES
| | | | - Yilin Hu
- University of California Irvine Molecular Biology and Biochemistry UNITED STATES
| | - Markus Ribbe
- Irvine Molecular Biology & Biochemistry 2236 McGaugh Hall 92697 Irvine UNITED STATES
| |
Collapse
|
31
|
Yuan C, Jin WT, Zhou ZH. Statistical analysis of P N clusters in Mo/VFe protein crystals using a bond valence method toward their electronic structures. RSC Adv 2022; 12:5214-5224. [PMID: 35425536 PMCID: PMC8981338 DOI: 10.1039/d1ra08507g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Nowadays, large numbers of MoFe proteins have been reported and their crystal data obtained by X-ray crystallography and uploaded to the Protein Data Bank (PDB). By big data analysis using a bond valence method, we make conclusions based on 79 selected PN in all 119 P-clusters of 53 MoFe proteins and 10 P-clusters of 5 VFe proteins from all deposited crystallographic data of the PDB. In the condition of MoFe protein crystals, the resting state PN clusters are proposed to have the formal oxidation state of 2Fe(iii)6Fe(ii), hiding two oxidized electron holes with high electron delocalization. The calculations show that Fe1, Fe2, Fe5, Fe6 and Fe7 perform unequivocally as Fe2+, and Fe3 is remarkably prone to Fe(iii), while Fe4 and Fe8 have different degrees of mixed valences. For PN clusters in VFe protein crystals, Fe1, Fe2, Fe4, Fe5 and Fe6 tend to be Fe2+, but the electron distributions rearrange with Fe7 and Fe8 being more oxidized mixed valences, and Fe3 presenting a little more reductive mixed valence than that in MoFe proteins. In terms of spatial location, Fe3 and Fe6 in P-clusters of MoFe proteins are calculated as the most oxidized and reduced irons, which have the shortest distances from homocitrate in the FeMo-cofactor and [Fe4S4] cluster, respectively, and thus could function as potential electron transport sites. This work shows different electron distributions of PN clusters in Mo/VFe protein crystals, from those obtained from previous data from solution with excess reducing agent from which it was concluded that PN clusters are all ferrous according to Mössbauer and electron paramagnetic resonance spectra.
Collapse
Affiliation(s)
- Chang Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Wan-Ting Jin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhao-Hui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
32
|
Boncella AE, Sabo ET, Santore RM, Carter J, Whalen J, Hudspeth JD, Morrison CN. The expanding utility of iron-sulfur clusters: Their functional roles in biology, synthetic small molecules, maquettes and artificial proteins, biomimetic materials, and therapeutic strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Bigness A, Vaddypally S, Zdilla MJ, Mendoza-Cortes JL. Ubiquity of cubanes in bioinorganic relevant compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
So M, Stiban J, Ciesielski GL, Hovde SL, Kaguni LS. Implications of Membrane Binding by the Fe-S Cluster-Containing N-Terminal Domain in the Drosophila Mitochondrial Replicative DNA Helicase. Front Genet 2021; 12:790521. [PMID: 34950192 PMCID: PMC8688847 DOI: 10.3389/fgene.2021.790521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent evidence suggests that iron-sulfur clusters (ISCs) in DNA replicative proteins sense DNA-mediated charge transfer to modulate nuclear DNA replication. In the mitochondrial DNA replisome, only the replicative DNA helicase (mtDNA helicase) from Drosophila melanogaster (Dm) has been shown to contain an ISC in its N-terminal, primase-like domain (NTD). In this report, we confirm the presence of the ISC and demonstrate the importance of a metal cofactor in the structural stability of the Dm mtDNA helicase. Further, we show that the NTD also serves a role in membrane binding. We demonstrate that the NTD binds to asolectin liposomes, which mimic phospholipid membranes, through electrostatic interactions. Notably, membrane binding is more specific with increasing cardiolipin content, which is characteristically high in the mitochondrial inner membrane (MIM). We suggest that the N-terminal domain of the mtDNA helicase interacts with the MIM to recruit mtDNA and initiate mtDNA replication. Furthermore, Dm NUBPL, the known ISC donor for respiratory complex I and a putative donor for Dm mtDNA helicase, was identified as a peripheral membrane protein that is likely to execute membrane-mediated ISC delivery to its target proteins.
Collapse
Affiliation(s)
- Minyoung So
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine
| | - Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.,Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | - Stacy L Hovde
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
35
|
Meirovich MM, Bachar O, Nandi R, Amdursky N, Yehezkeli O. Tailoring Quantum Dot Sizes for Optimal Photoinduced Catalytic Activation of Nitrogenase. CHEMSUSCHEM 2021; 14:5410-5416. [PMID: 34612599 DOI: 10.1002/cssc.202101676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Many efforts have been directed towards elucidating the nitrogenase structure, its biocatalytic activity, and methods to artificially activate it by external stimuli. Here, we investigated how semiconductor nanoparticles (NPs) with sizes ranging between 2.3-3.5 nm form nano-biohybrids with the nitrogenase enzyme and enable its photoinduced biocatalytic activity. We examined two homogenously synthesized quantum dots (QDs), CdS, CdSe, and two nitrogenase variants, the wild-type and a cysteine-mutated. We show that the cysteine-mutated variant does not enhance the hydrogen generation amounts, as compared with the wild type. Nevertheless, we show that the 2.3 nm-sized CdSe NPs facilitate an eightfold increase compared with larger CdSe NPs. The obtained results were investigated using electrochemical techniques, transmission electron microscopy, and further confirmed by time-resolved spectroscopic measurements, which allow us to determine the electron tranfer rate constant (kET ) of the different configurations.
Collapse
Affiliation(s)
- Matan M Meirovich
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Oren Bachar
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Ramesh Nandi
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Omer Yehezkeli
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
- The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| |
Collapse
|
36
|
Structural analysis of the reductase component AnfH of iron-only nitrogenase from Azotobacter vinelandii. J Inorg Biochem 2021; 227:111690. [PMID: 34929539 DOI: 10.1016/j.jinorgbio.2021.111690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Biological nitrogen fixation, the conversion of atmospheric dinitrogen into bioavailable ammonium, is exclusively catalyzed by the enzyme nitrogenase that is present in nitrogen-fixing organisms, the diazotrophs. So far, three different nitrogenase variants, encoded in their corresponding, distinct gene clusters, have been found in nature. Each one of these consists of a catalytic dinitrogenase component and a unique, ATP-dependent reductase, the Fe protein. The three variant nitrogenases differ in the composition of the active site and contain either molybdenum, vanadium or only iron in the dinitrogenase component. Here we present the 2.0 Å resolution crystal structure of the ADP-bound reductase component AnfH of the iron-only nitrogenase from the model diazotroph Azotobacter vinelandii. A comparison of this structure with the ones reported for the two other Fe protein homologs NifH and VnfH in the ADP-bound state shows that all are adopting the same conformation. However, cross-reactivity assays with the three nitrogenase homologs revealed AnfH to be compatible with iron-only nitrogenase and to a lesser degree with the vanadium-containing enzyme, but not with molybdenum nitrogenase.
Collapse
|
37
|
Ekta, Utreja D, Singh K, Sharma S. A Schiff‐Base Molecular Keypad LockandTurn‐On Sensor for Selective Detection of Fe
3+
with INHIBIT Logic Behaviour. ChemistrySelect 2021. [DOI: 10.1002/slct.202103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ekta
- Department of Chemistry Punjab Agricultural University Ludhiana 141004 India
| | - Divya Utreja
- Department of Chemistry Punjab Agricultural University Ludhiana 141004 India
| | - Kamaljit Singh
- Department of Chemistry Guru Nanak Dev University Amritsar 143004 India
| | - Sucheta Sharma
- Department of Biochemistry Punjab Agricultural University Ludhiana 141004 India
| |
Collapse
|
38
|
Moula G, Nagasaki A, Matsumoto T, Miehlich ME, Meyer K, Cramer RE, Tatsumi K. Synthesis of a Nitrogenase P
N
‐Cluster Model with [Fe
8
S
7
(μ‐S
thiolate
)
2
] Core from the All‐Ferric [Fe
4
S
4
(S
thiolate
)
4
] Cubane Synthon. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Golam Moula
- Research Center for Materials Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Ayaka Nagasaki
- Research Center for Materials Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Tsuyoshi Matsumoto
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Matthias E. Miehlich
- Department of Chemistry and Pharmacy Inorganic Chemistry Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Egerlandstrasse 1 91058 Erlangen Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy Inorganic Chemistry Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Egerlandstrasse 1 91058 Erlangen Germany
| | - Roger E. Cramer
- Department of Chemistry University of Hawaii Honolulu HI 96822 USA
| | - Kazuyuki Tatsumi
- Research Center for Materials Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
39
|
Moula G, Nagasaki A, Matsumoto T, Miehlich ME, Meyer K, Cramer RE, Tatsumi K. Synthesis of a Nitrogenase P N -Cluster Model with [Fe 8 S 7 (μ-S thiolate ) 2 ] Core from the All-Ferric [Fe 4 S 4 (S thiolate ) 4 ] Cubane Synthon. Angew Chem Int Ed Engl 2021; 60:15792-15797. [PMID: 33928749 DOI: 10.1002/anie.202102369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Indexed: 11/06/2022]
Abstract
Constructing synthetic models of the nitrogenase PN -cluster has been a long-standing synthetic challenge. Here, we report an optimal nitrogenase PN -cluster model [{(TbtS)(OEt2 )Fe4 S3 }2 (μ-STbt)2 (μ6 -S)] (2) [Tbt=2,4,6-tris{bis(trimethylsilyl)methyl}phenyl] that is the closest synthetic mimic constructed to date. Of note is that two thiolate ligands and one hexacoordinated sulfide are connecting the two Fe4 S3 incomplete cubanes similar to the native PN -cluster, which has never been achieved. Cluster 2 has been characterized by X-ray crystallography and relevant physico-chemical methods. The variable temperature magnetic moments of 2 indicate a singlet ground state (S=0). The Mössbauer spectrum of 2 exhibits two doublets with an intensity ratio of 3:1, which suggests the presence of two types of iron sites. The synthetic pathway of the cluster 2 could indicate the native PN -cluster maturation process as it has been achieved from the Fe4 S4 cubane Fe4 S4 (STbt)4 (1).
Collapse
Affiliation(s)
- Golam Moula
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Ayaka Nagasaki
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tsuyoshi Matsumoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Matthias E Miehlich
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Roger E Cramer
- Department of Chemistry, University of Hawaii, Honolulu, HI, 96822, USA
| | - Kazuyuki Tatsumi
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
40
|
Neumann F, Dobbek H. ATP Binding and a Second Reduction Enables a Conformationally Gated Uphill Electron Transfer. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felix Neumann
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
41
|
Medina MS, Bretzing KO, Aviles RA, Chong KM, Espinoza A, Garcia CNG, Katz BB, Kharwa RN, Hernandez A, Lee JL, Lee TM, Lo Verde C, Strul MW, Wong EY, Owens CP. CowN sustains nitrogenase turnover in the presence of the inhibitor carbon monoxide. J Biol Chem 2021; 296:100501. [PMID: 33667548 PMCID: PMC8047169 DOI: 10.1016/j.jbc.2021.100501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022] Open
Abstract
Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, CowN restores nearly full nitrogenase activity. Our results further indicate that CowN's protection mechanism involves decreasing the binding affinity of CO to nitrogenase's active site approximately tenfold without interrupting substrate turnover. Taken together, our work suggests CowN is an important auxiliary protein in nitrogen fixation that engenders CO tolerance to nitrogenase.
Collapse
Affiliation(s)
- Michael S Medina
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Kevin O Bretzing
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Richard A Aviles
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Kiersten M Chong
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Alejandro Espinoza
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Chloe Nicole G Garcia
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Ruchita N Kharwa
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Andrea Hernandez
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Justin L Lee
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Terrence M Lee
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Christine Lo Verde
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Max W Strul
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Emily Y Wong
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Cedric P Owens
- Schmid College of Science and Technology, Chapman University, Orange, California, USA.
| |
Collapse
|
42
|
Mechanical coupling in the nitrogenase complex. PLoS Comput Biol 2021; 17:e1008719. [PMID: 33661889 PMCID: PMC7963043 DOI: 10.1371/journal.pcbi.1008719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/16/2021] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
The enzyme nitrogenase reduces dinitrogen to ammonia utilizing electrons, protons, and energy obtained from the hydrolysis of ATP. Mo-dependent nitrogenase is a symmetric dimer, with each half comprising an ATP-dependent reductase, termed the Fe Protein, and a catalytic protein, known as the MoFe protein, which hosts the electron transfer P-cluster and the active-site metal cofactor (FeMo-co). A series of synchronized events for the electron transfer have been characterized experimentally, in which electron delivery is coupled to nucleotide hydrolysis and regulated by an intricate allosteric network. We report a graph theory analysis of the mechanical coupling in the nitrogenase complex as a key step to understanding the dynamics of allosteric regulation of nitrogen reduction. This analysis shows that regions near the active sites undergo large-scale, large-amplitude correlated motions that enable communications within each half and between the two halves of the complex. Computational predictions of mechanically regions were validated against an analysis of the solution phase dynamics of the nitrogenase complex via hydrogen-deuterium exchange. These regions include the P-loops and the switch regions in the Fe proteins, the loop containing the residue β-188Ser adjacent to the P-cluster in the MoFe protein, and the residues near the protein-protein interface. In particular, it is found that: (i) within each Fe protein, the switch regions I and II are coupled to the [4Fe-4S] cluster; (ii) within each half of the complex, the switch regions I and II are coupled to the loop containing β-188Ser; (iii) between the two halves of the complex, the regions near the nucleotide binding pockets of the two Fe proteins (in particular the P-loops, located over 130 Å apart) are also mechanically coupled. Notably, we found that residues next to the P-cluster (in particular the loop containing β-188Ser) are important for communication between the two halves.
Collapse
|
43
|
Pence N, Lewis N, Alleman AB, Seefeldt LC, Peters JW. Revealing a role for the G subunit in mediating interactions between the nitrogenase component proteins. J Inorg Biochem 2020; 214:111273. [PMID: 33086169 DOI: 10.1016/j.jinorgbio.2020.111273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Azotobacter vinelandii contains three forms of nitrogenase known as the Mo-, V-, and Fe-nitrogenases. They are all two-component enzyme systems, where the catalytic component, referred to as NifDK, VnfDGK, and AnfDGK, associates with the reductase component, the Fe protein or NifH, VnfH, and AnfH respectively. AnfDGK and VnfDGK have an additional subunit compared to NifDK, termed gamma or AnfG and VnfG, whose role is unknown. The expression of each nitrogenase is tightly regulated by metal availability, however it is known that there is crosstalk between the Mo- and V‑nitrogenases but the Fe‑nitrogenase components cannot support substrate reduction with its Mo‑nitrogenase counterparts. Here, docking models for the nitrogenase complexes were generated in ClusPro 2.0 based on the crystal structure of the Mo‑nitrogenase and refined using the HADDOCK 2.2 refinement interface to identify structural determinants that enable crosstalk between the Mo- and V‑nitrogenase but not the Fe‑nitrogenase. Differing salt bridge interactions were identified at the binding interface of each complex. Specifically, positively charged residues of VnfG enable complementary interactions with NifH and VnfH but not AnfH. Similarly, negatively charged residues of AnfG enable interactions with AnfH but not NifH or VnfH. A role for the G subunit is revealed where VnfG could be mediating crosstalk between the Mo- and V‑nitrogenases while the AnfG subunit on AnfDGK makes interactions with NifH and VnfH unfavorable, reducing competition with NifDK and funneling electrons to the most efficient nitrogenase.
Collapse
Affiliation(s)
- Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States of America
| | - Nathan Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America
| | - Alexander B Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States of America
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America.
| |
Collapse
|
44
|
Artificial, Photoinduced Activation of Nitrogenase Using Directed and Mediated Electron Transfer Processes. Catalysts 2020. [DOI: 10.3390/catal10090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitrogenase, a bacteria-based enzyme, is the sole enzyme that is able to generate ammonia by atmospheric nitrogen fixation. Thus, improved understanding of its utilization and developing methods to artificially activate it may contribute to basic research, as well as to the design of future artificial systems. Here, we present methods to artificially activate nitrogenase using photoinduced reactions. Two nitrogenase variants originating from Azotobacter vinelandii were examined using photoactivated CdS nanoparticles (NPs) capped with thioglycolic acid (TGA) or 2-mercaptoethanol (ME) ligands. The effect of methyl viologen (MV) as a redox mediator of hydrogen and ammonia generation was tested and analyzed. We further determined the NPs conductive band edges and their effect on the nitrogenase photoactivation. The nano-biohybrid systems comprising CdS NPs and nitrogenase were further imaged by transmission electron microscopy, visualizing their formation for the first time. Our results show that the ME-capped CdS NPs–nitrogenase enzyme biohybrid system with added MV as a redox mediator leads to a five-fold increase in the production of ammonia compared with the non-mediated biohybrid system; nevertheless, it stills lag behind the natural process rate. On the contrary, a maximal hydrogen generation amount was achieved by the αL158C MoFe-P and the ME-capped CdS NPs.
Collapse
|
45
|
Li Q, Guo Z, Zhao X, Zhang T, Chen J, Wei Y. One-pot synthesis of 2,2'-dipicolylamine derived highly photoluminescent nitrogen-doped carbon quantum dots for Fe 3+ detection and fingermark detection. NANOTECHNOLOGY 2020; 31:335501. [PMID: 32357348 DOI: 10.1088/1361-6528/ab8f4b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The novel nitrogen-doped carbon quantum dots (N-CQDs) with high fluorescence quantum yield of 23.2% were successfully prepared via a simple hydrothermal reaction with citric acid and 2,2'-dipicolylamine. The as-prepared blue fluorescent N-CQDs had excellent water dispersibility, and showed pH and excitation-dependent emission behaviors. Noticeably, owing to the strong interaction between the residual 2,2'-dipicolylamine group on the surface of N-CQDs and Fe3+, the N-CQDs could be used as a turn off fluorescence probe for Fe3+ sensing through an electron transfer process. Moreover, the photoluminescent N-CQDs/poly(vinyl alcohol) film was further applied for latent fingermark imaging.
Collapse
Affiliation(s)
- Quan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Beijing, Chaoyang District 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Jasniewski AJ, Lee CC, Ribbe MW, Hu Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem Rev 2020; 120:5107-5157. [PMID: 32129988 PMCID: PMC7491575 DOI: 10.1021/acs.chemrev.9b00704] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
47
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
48
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
49
|
Jasper J, Ramos JV, Trncik C, Jahn D, Einsle O, Layer G, Moser J. Chimeric Interaction of Nitrogenase-Like Reductases with the MoFe Protein of Nitrogenase. Chembiochem 2020; 21:1733-1741. [PMID: 31958206 PMCID: PMC7317204 DOI: 10.1002/cbic.201900759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Indexed: 11/24/2022]
Abstract
The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2 , is an imminent problem. Nitrogenase-like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2 , respectively. Chimeric protein-protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide-dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild-type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2 MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase.
Collapse
Affiliation(s)
- Jan Jasper
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - José V. Ramos
- Institut für Pharmazeutische WissenschaftenPharmazeutische Biologie und BiotechnologieAlbert-Ludwigs-Universität FreiburgStefan-Meier-Str. 1979104FreiburgGermany
| | - Christian Trncik
- Institut für BiochemieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Dieter Jahn
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - Oliver Einsle
- Institut für BiochemieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Gunhild Layer
- Institut für Pharmazeutische WissenschaftenPharmazeutische Biologie und BiotechnologieAlbert-Ludwigs-Universität FreiburgStefan-Meier-Str. 1979104FreiburgGermany
| | - Jürgen Moser
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| |
Collapse
|
50
|
Affiliation(s)
- Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena California 91125, United States
| |
Collapse
|