1
|
Schliffka MF, Dumortier JG, Pelzer D, Mukherjee A, Maître JL. Inverse blebs operate as hydraulic pumps during mouse blastocyst formation. Nat Cell Biol 2024; 26:1669-1677. [PMID: 39261717 DOI: 10.1038/s41556-024-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
During preimplantation development, mouse embryos form a fluid-filled lumen. Pressurized fluid fractures cell-cell contacts and accumulates into pockets, which coarsen into a single lumen. How the embryo controls intercellular fluid movement during coarsening is unknown. Here we report inverse blebs growing into cells at adhesive contacts. Throughout the embryo we observed hundreds of inverse blebs, each filling with intercellular fluid and retracting within a minute. Inverse blebs grow due to pressure build-up resulting from fluid accumulation and cell-cell adhesion, which locally confines fluid. Inverse blebs retract due to actomyosin contraction, practically pushing fluid within the intercellular space. Importantly, inverse blebs occur infrequently at contacts formed by multiple cells, which effectively serve as fluid sinks. Manipulation of the embryo topology reveals that without sinks inverse blebs pump fluid into one another in futile cycles. We propose that inverse blebs operate as hydraulic pumps to promote luminal coarsening, thereby constituting an instrument used by cells to control fluid movement.
Collapse
Affiliation(s)
- Markus F Schliffka
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
- Carl Zeiss SAS, Marly-le-Roy, France
| | - Julien G Dumortier
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
| | - Diane Pelzer
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France
| | - Arghyadip Mukherjee
- Laboratoire de physique de l'École Normale Supérieure, CNRS UMR 8023, PSL Research University, Sorbonne Université and Université Paris Cité, Paris, France.
| | - Jean-Léon Maître
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University and Sorbonne Université, Paris, France.
| |
Collapse
|
2
|
Ciwinska M, Messal HA, Hristova HR, Lutz C, Bornes L, Chalkiadakis T, Harkes R, Langedijk NSM, Hutten SJ, Menezes RX, Jonkers J, Prekovic S, Simons BD, Scheele CLGJ, van Rheenen J. Mechanisms that clear mutations drive field cancerization in mammary tissue. Nature 2024; 633:198-206. [PMID: 39232148 PMCID: PMC11374684 DOI: 10.1038/s41586-024-07882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.
Collapse
Affiliation(s)
- Marta Ciwinska
- VIB-KULeuven Centre for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hristina R Hristova
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura Bornes
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Rolf Harkes
- Bioimaging Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nathalia S M Langedijk
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan J Hutten
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Renée X Menezes
- Biostatistics Centre and Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Prekovic
- Centre for Molecular Medicine, UMC Utrecht, Utrecht, the Netherlands
| | - Benjamin D Simons
- Gurdon Institute, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
| | | | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Koyama H, Okumura H, Otani T, Ito AM, Nakamura K, Kato K, Fujimori T. Effective mechanical potential of cell-cell interaction in tissues harboring cavity and in cell sheet toward morphogenesis. Front Cell Dev Biol 2024; 12:1414601. [PMID: 39105171 PMCID: PMC11298474 DOI: 10.3389/fcell.2024.1414601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Measuring mechanical forces of cell-cell interactions is important for studying morphogenesis in multicellular organisms. We previously reported an image-based statistical method for inferring effective mechanical potentials of pairwise cell-cell interactions by fitting cell tracking data with a theoretical model. However, whether this method is applicable to tissues with non-cellular components such as cavities remains elusive. Here we evaluated the applicability of the method to cavity-harboring tissues. Using synthetic data generated by simulations, we found that the effect of expanding cavities was added to the pregiven potentials used in the simulations, resulting in the inferred effective potentials having an additional repulsive component derived from the expanding cavities. Interestingly, simulations by using the effective potentials reproduced the cavity-harboring structures. Then, we applied our method to the mouse blastocysts, and found that the inferred effective potentials can reproduce the cavity-harboring structures. Pairwise potentials with additional repulsive components were also detected in two-dimensional cell sheets, by which curved sheets including tubes and cups were simulated. We conclude that our inference method is applicable to tissues harboring cavities and cell sheets, and the resultant effective potentials are useful to simulate the morphologies.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hisashi Okumura
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- Biomolecular Dynamics Simulation Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Tetsuhisa Otani
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Atsushi M. Ito
- National Institute for Fusion Science, National Institutes of Natural Sciences, Gifu, Japan
| | - Kazuyuki Nakamura
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan
| | - Kagayaki Kato
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
4
|
Sakurai J, Oka S, Higuchi Y, Ohsawa S, Fujimori T. Effects of blastocyst elongation and implantation chamber formation on the alignment of the embryonic axis and uterine axis in mice. Front Cell Dev Biol 2024; 12:1421222. [PMID: 38946796 PMCID: PMC11211524 DOI: 10.3389/fcell.2024.1421222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Embryo implantation involves a series of events that bring the embryo and maternal tissues into contact to support post-implantation development in mammals. During implantation, alignment of the embryonic-abembryonic (E-Ab) axis of the blastocyst with the mesometrial-antimesometrial (M-AM) axis of the uterus precedes post-implantation embryonic development and placentation. In the present study, we observed the morphological changes in blastocysts and the endometrial luminal epithelium (LE) that occur during the alignment of the embryonic and the uterine axes. We found that at the time that the blastocysts attached to the LE at the mural trophectoderm, the embryonic axis was not aligned with the uterine axis. Alignment of the embryonic E-Ab axis with the uterine M-AM axis occurred after E4.0, and the embryo was significantly elongated during the process. The depth of the implantation chamber (IC) correlated with the degree of alignment, suggesting that elongated embryos are oriented along the M-AM axis during IC formation. Transplantation of the Concanavalin A (Con A)-coated beads induced IC formation, and the alignment of two Con A-coated beads present in the same IC in the M-AM direction suggested that elongated materials can align along the M-AM axis. These data suggest that an elongated shape of the embryo and IC formation coordinate the alignment of the embryonic and uterine axes.
Collapse
Affiliation(s)
- Jun Sakurai
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Deapartment of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
| | - Yoko Higuchi
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
| | - Sonoko Ohsawa
- Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Deapartment of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
5
|
Koyama H, Okumura H, Ito AM, Nakamura K, Otani T, Kato K, Fujimori T. Effective mechanical potential of cell-cell interaction explains three-dimensional morphologies during early embryogenesis. PLoS Comput Biol 2023; 19:e1011306. [PMID: 37549166 PMCID: PMC10434874 DOI: 10.1371/journal.pcbi.1011306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/17/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Mechanical forces are critical for the emergence of diverse three-dimensional morphologies of multicellular systems. However, it remains unclear what kind of mechanical parameters at cellular level substantially contribute to tissue morphologies. This is largely due to technical limitations of live measurements of cellular forces. Here we developed a framework for inferring and modeling mechanical forces of cell-cell interactions. First, by analogy to coarse-grained models in molecular and colloidal sciences, we approximated cells as particles, where mean forces (i.e. effective forces) of pairwise cell-cell interactions are considered. Then, the forces were statistically inferred by fitting the mathematical model to cell tracking data. This method was validated by using synthetic cell tracking data resembling various in vivo situations. Application of our method to the cells in the early embryos of mice and the nematode Caenorhabditis elegans revealed that cell-cell interaction forces can be written as a pairwise potential energy in a manner dependent on cell-cell distances. Importantly, the profiles of the pairwise potentials were quantitatively different among species and embryonic stages, and the quantitative differences correctly described the differences of their morphological features such as spherical vs. distorted cell aggregates, and tightly vs. non-tightly assembled aggregates. We conclude that the effective pairwise potential of cell-cell interactions is a live measurable parameter whose quantitative differences can be a parameter describing three-dimensional tissue morphologies.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hisashi Okumura
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Biomolecular Dynamics Simulation Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Atsushi M. Ito
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu, Japan
| | - Kazuyuki Nakamura
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, Japan
- JST, PRESTO, Kawaguchi, Saitama, Japan
| | - Tetsuhisa Otani
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Division of Cell Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Kagayaki Kato
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Biological Diversity, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
6
|
Yoshida K, Hayashi S. Epidermal growth factor receptor signaling protects epithelia from morphogenetic instability and tissue damage in Drosophila. Development 2023; 150:297057. [PMID: 36897356 PMCID: PMC10108703 DOI: 10.1242/dev.201231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Dying cells in the epithelia communicate with neighboring cells to initiate coordinated cell removal to maintain epithelial integrity. Naturally occurring apoptotic cells are mostly extruded basally and engulfed by macrophages. Here, we have investigated the role of Epidermal growth factor (EGF) receptor (EGFR) signaling in the maintenance of epithelial homeostasis. In Drosophila embryos, epithelial tissues undergoing groove formation preferentially enhanced extracellular signal-regulated kinase (ERK) signaling. In EGFR mutant embryos at stage 11, sporadic apical cell extrusion in the head initiates a cascade of apical extrusions of apoptotic and non-apoptotic cells that sweeps the entire ventral body wall. Here, we show that this process is apoptosis dependent, and clustered apoptosis, groove formation, and wounding sensitize EGFR mutant epithelia to initiate massive tissue disintegration. We further show that tissue detachment from the vitelline membrane, which frequently occurs during morphogenetic processes, is a key trigger for the EGFR mutant phenotype. These findings indicate that, in addition to cell survival, EGFR plays a role in maintaining epithelial integrity, which is essential for protecting tissues from transient instability caused by morphogenetic movement and damage.
Collapse
Affiliation(s)
- Kentaro Yoshida
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| |
Collapse
|
7
|
Cockerell A, Wright L, Dattani A, Guo G, Smith A, Tsaneva-Atanasova K, Richards DM. Biophysical models of early mammalian embryogenesis. Stem Cell Reports 2023; 18:26-46. [PMID: 36630902 PMCID: PMC9860129 DOI: 10.1016/j.stemcr.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
Embryo development is a critical and fascinating stage in the life cycle of many organisms. Despite decades of research, the earliest stages of mammalian embryogenesis are still poorly understood, caused by a scarcity of high-resolution spatial and temporal data, the use of only a few model organisms, and a paucity of truly multidisciplinary approaches that combine biological research with biophysical modeling and computational simulation. Here, we explain the theoretical frameworks and biophysical processes that are best suited to modeling the early mammalian embryo, review a comprehensive list of previous models, and discuss the most promising avenues for future work.
Collapse
Affiliation(s)
- Alaina Cockerell
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Liam Wright
- Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK; EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter EX4 4QJ, UK; Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - David M Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Physics and Astronomy, University of Exeter, North Park Road, Exeter EX4 4QL, UK.
| |
Collapse
|
8
|
Koyama H, Kishi K, Mikoshiba S, Fujimori T. An ImageJ-based tool for three-dimensional registration between different types of microscopic images. Dev Growth Differ 2023; 65:65-74. [PMID: 36576380 PMCID: PMC10107647 DOI: 10.1111/dgd.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) registration (i.e., alignment) between two microscopic images is very helpful to study tissues that do not adhere to substrates, such as mouse embryos and organoids, which are often 3D rotated during imaging. However, there is no 3D registration tool easily accessible for experimental biologists. Here we developed an ImageJ-based tool which allows for 3D registration accompanied with both quantitative evaluation of the accuracy and reconstruction of 3D rotated images. In this tool, several landmarks are manually provided in two images to be aligned, and 3D rotation is computed so that the distances between the paired landmarks from the two images are minimized. By simultaneously providing multiple points (e.g., all nuclei in the regions of interest) other than the landmarks in the two images, the correspondence of each point between the two images, i.e., to which nucleus in one image a certain nucleus in another image corresponds, is quantitatively explored. Furthermore, 3D rotation is applied to one of the two images, resulting in reconstruction of 3D rotated images. We demonstrated that this tool successfully achieved 3D registration and reconstruction of images in mouse pre- and post-implantation embryos, where one image was obtained during live imaging and another image was obtained from fixed embryos after live imaging. This approach provides a versatile tool applicable for various tissues and species.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of EmbryologyNational Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, School of Life ScienceSOKENDAI (The Graduate University for Advanced Studies)OkazakiJapan
| | - Kanae Kishi
- Division of EmbryologyNational Institute for Basic BiologyOkazakiJapan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (JST‐CREST)KawaguchiJapan
| | - Seiya Mikoshiba
- Division of EmbryologyNational Institute for Basic BiologyOkazakiJapan
- Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Toshihiko Fujimori
- Division of EmbryologyNational Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, School of Life ScienceSOKENDAI (The Graduate University for Advanced Studies)OkazakiJapan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (JST‐CREST)KawaguchiJapan
| |
Collapse
|
9
|
Goissis MD, Cibelli JB. Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:59-81. [PMID: 37041329 DOI: 10.1007/978-1-0716-3064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Graham CF, Windsor S, Ajduk A, Trinh T, Vincent A, Jones C, Coward K, Kalsi D, Zernicka-Goetz M, Swann K, Thomas ALR. Dynamic shapes of the zygote and two-cell mouse and human. Biol Open 2021; 10:273839. [PMID: 34935907 PMCID: PMC8713988 DOI: 10.1242/bio.059013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Mouse zygote morphokinetics were measured during interphase, the mitotic period, cytokinesis, and two-cell stage. Sequences of rounder-distorted-rounder shapes were revealed, as were changing patterns of cross section area. A calcium chelator and an actin-disrupting agent inhibited the area changes that occurred between pronuclear envelope breakdown and cytokinesis. During cell division, two vortices developed in each nascent cell and they rotated in opposite directions at each end of the cell, a pattern that sometimes persisted for up to 10 h. Exchange with the environment may have been promoted by these shape and area cycles and persisting circulation in the cytoplasm may have a similar function between a cell's interior and periphery. Some of these movements were sporadically also seen in human zygotes with abnormal numbers of pronuclei and the two-cell stages that developed from these compromised human zygotes.
Collapse
Affiliation(s)
- Chris F Graham
- Zoology Department, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.,Nuffield Department of Women's Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Shane Windsor
- Department of Aerospace Engineering, University of Bristol, Queens Building, University Walk, Bristol, BS8 1TR, UK
| | - Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, POLAND
| | - Thanh Trinh
- Nuffield Department of Women's Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Cleveland Clinic Fertility Center, 26900 Cedar Rd., Beachwood, OH 44122, USA
| | - Anna Vincent
- Oxford Fertility, Oxford University, Oxford Business Park North, Alec Issigonis Way, Oxford, OX4 2HW, UK
| | - Celine Jones
- Nuffield Department of Women's Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Dilraj Kalsi
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9D, UK
| | | | - Karl Swann
- School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Adrian L R Thomas
- Zoology Department, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
11
|
Sato Y, Nakao M, Kimura H. Live-Cell Imaging Probes to Track Chromatin Modification Dynamics. Microscopy (Oxf) 2021; 70:415-422. [PMID: 34329472 PMCID: PMC8491620 DOI: 10.1093/jmicro/dfab030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
The spatiotemporal organization of chromatin is regulated at different levels in the nucleus. Epigenetic modifications such as DNA methylation and histone modifications are involved in chromatin regulation and play fundamental roles in genome function. While the one-dimensional epigenomic landscape in many cell types has been revealed by chromatin immunoprecipitation and sequencing, the dynamic changes of chromatin modifications and their relevance to chromatin organization and genome function remain elusive. Live-cell probes to visualize chromatin and its modifications have become powerful tools to monitor dynamic chromatin regulation. Bulk chromatin can be visualized by both small fluorescent dyes and fluorescent proteins, and specific endogenous genomic loci have been detected by adapting genome-editing tools. To track chromatin modifications in living cells, various types of probes have been developed. Protein domains that bind weakly to specific modifications, such as chromodomains for histone methylation, can be repeated to create a tighter binding probe that can then be tagged with a fluorescent protein. It has also been demonstrated that antigen-binding fragments and single-chain variable fragments from modification-specific antibodies can serve as binding probes without disturbing cell division, development and differentiation. These modification-binding modules are used in modification sensors based on fluorescence/Förster resonance energy transfer to measure the intramolecular conformational changes triggered by modifications. Other probes can be created using a bivalent binding system, such as fluorescence complementation or luciferase chemiluminescence. Live-cell chromatin modification imaging using these probes will address dynamic chromatin regulation and will be useful for assaying and screening effective epigenome drugs in cells and organisms.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Masaru Nakao
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
12
|
Firmin J, Maître JL. Morphogenesis of the human preimplantation embryo: bringing mechanics to the clinics. Semin Cell Dev Biol 2021; 120:22-31. [PMID: 34253437 DOI: 10.1016/j.semcdb.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
During preimplantation development, the human embryo forms the blastocyst, the structure enabling uterine implantation. The blastocyst consists of an epithelial envelope, the trophectoderm, encompassing a fluid-filled lumen, the blastocoel, and a cluster of pluripotent stem cells, the inner cell mass. This specific architecture is crucial for the implantation and further development of the human embryo. Furthermore, the morphology of the human embryo is a prime determinant for clinicians to assess the implantation potential of in vitro fertilized human embryos, which constitutes a key aspect of assisted reproduction technology. Therefore, it is crucial to understand how the human embryo builds the blastocyst. As any material, the human embryo changes shape under the action of forces. Here, we review recent advances in our understanding of the mechanical forces shaping the blastocyst. We discuss the cellular processes responsible for generating morphogenetic forces that were studied mostly in the mouse and review the literature on human embryos to see which of them may be conserved. Based on the specific morphological defects commonly observed in clinics during human preimplantation development, we discuss how mechanical forces and their underlying cellular processes may be affected. Together, we propose that bringing tissue mechanics to the clinics will advance our understanding of human preimplantation development, as well as our ability to help infertile couples to have babies.
Collapse
Affiliation(s)
- Julie Firmin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM, U934 Paris, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM, U934 Paris, France.
| |
Collapse
|
13
|
Schliffka MF, Tortorelli AF, Özgüç Ö, de Plater L, Polzer O, Pelzer D, Maître JL. Multiscale analysis of single and double maternal-zygotic Myh9 and Myh10 mutants during mouse preimplantation development. eLife 2021; 10:e68536. [PMID: 33871354 PMCID: PMC8096435 DOI: 10.7554/elife.68536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavage divisions, morphogenetic movements, and lineage specification. Recent studies have identified the essential role of actomyosin contractility in driving cytokinesis, morphogenesis, and fate specification, leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin II heavy chains (NMHCs) to characterize them with multiscale imaging. We found that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction, and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most of the attempts of cytokinesis. We found that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.
Collapse
Affiliation(s)
- Markus Frederik Schliffka
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
- Carl Zeiss SASMarly-le-RoyFrance
| | | | - Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | | | - Oliver Polzer
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | - Diane Pelzer
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| |
Collapse
|
14
|
Messal HA, van Rheenen J, Scheele CLGJ. An Intravital Microscopy Toolbox to Study Mammary Gland Dynamics from Cellular Level to Organ Scale. J Mammary Gland Biol Neoplasia 2021; 26:9-27. [PMID: 33945058 PMCID: PMC8217050 DOI: 10.1007/s10911-021-09487-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/18/2021] [Indexed: 02/08/2023] Open
Abstract
The architecture of the mouse mammary gland is highly dynamic and constantly remodeled during pubertal development and estrous cycle-driven sprouting and regression of alveolar side branches. During each of these developmental stages, turnover is driven by distinct subsets of mammary epithelial cells. Extensive previous research has shed light on the unique morphological and cell biological characteristics of each stage. However, technological shortcomings failed to capture the dynamics and single-cell contributions to mammary remodeling. Here, we developed in vivo imaging strategies to follow the same mammary ducts over time and quantify the dynamics of mammary gland growth and remodeling from single-cell level to organ scale. Using a combination of intravital microscopy and genetic reporter systems we show how proliferative heterogeneity drives ductal morphogenesis during different developmental stages. To visualize pubertal growth at the cellular level, we performed long-term time-lapse imaging of extending terminal end buds through a mammary imaging window. We show that single-cells within the terminal end buds are extremely motile and continuously exchange position whilst the duct is elongating. To visualize short-term remodeling in the adult mammary gland at the single cell level, we performed multi-day intravital imaging in photoconvertible Kikume Green-Red mice and fluorescent ubiquitination-based cell cycle indicator mice. We demonstrate that the contribution of single-cells to estrous-driven remodeling is highly variable between cells in the same micro-environment. To assess the effects of this dynamic proliferative contribution on the long-term stability of tissue architecture, we developed a repeated skin flap method to assess mammary gland morphology by intravital microscopy over extended time spans for up to six months. Interestingly, in contrast to the short-term dynamic remodeling, the long-term morphology of the mammary gland remains remarkably stable. Together, our tool box of imaging strategies allows to identify and map transient and continuing dynamics of single cells to the architecture of the mammary gland.
Collapse
Affiliation(s)
- Hendrik A. Messal
- grid.430814.aDivision of Molecular Pathology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- grid.430814.aDivision of Molecular Pathology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Masuda Y, Hasebe R, Kuromi Y, Kobayashi M, Iwamoto M, Hishinuma M, Ohbayashi T, Nishimura R. Three-dimensional live imaging of bovine embryos by optical coherence tomography. J Reprod Dev 2021; 67:149-154. [PMID: 33487605 PMCID: PMC8075722 DOI: 10.1262/jrd.2020-151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While embryo transfer (ET) is widely practiced, many of the transferred embryos fail to develop in cattle. To establish a more effective method for selecting
bovine embryos for ET, here we quantified morphological parameters of living embryos using three-dimensional (3D) images non-invasively captured by optical
coherence tomography (OCT). Seven Japanese Black embryos produced by in vitro fertilization that had reached the expanded blastocyst stage
after 7 days of culture were transferred after imaged by OCT. Twenty-two parameters, including thickness and volumes of the inner cell mass, trophectoderm, and
zona pellucida, and volumes of blastocoel and whole embryo, were quantified from 3D images. Four of the seven recipients became pregnant. We suggest that these
22 parameters can be potentially employed to evaluate the quality of bovine embryos before ET.
Collapse
Affiliation(s)
- Yasumitsu Masuda
- Department of Animal Science, Tottori Livestock Research Center, Tottori 689-2503, Japan
| | - Ryo Hasebe
- SCREEN Holdings Co., Ltd., Kyoto 612-8486, Japan
| | | | | | - Misaki Iwamoto
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tetsuya Ohbayashi
- Organization for Research Initiative and Promotion, Tottori University, Tottori 680-8550, Japan
| | - Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
16
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
17
|
Otomo K, Goto A, Yamanaka Y, Hori T, Nakayama H, Nemoto T. High-peak-power 918-nm laser light source based two-photon spinning-disk microscopy for green fluorophores. Biochem Biophys Res Commun 2020; 529:238-242. [PMID: 32703417 DOI: 10.1016/j.bbrc.2020.05.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
High-speed imaging of living specimen was performed using two-photon microscopy equipped with a spinning-disk scanning unit. Typically, a high-peak-power laser light source is needed to simultaneously induce two-photon excitation processes at several hundred focal points, generating the limitations of excitable fluorophores. Therefore, a high-peak-power neodymium-based 918-nm laser light source was used for intravital imaging of the most popular fluorophores, green fluorescent proteins. As a result, the proposed system obtained approximately 30 times brighter fluorescent signal than that obtained using a conventional mode-locked titanium:sapphire laser light source. Furthermore, the system visualized four-dimensional (xyz-t) calcium responses of pancreatic acinar cells agonist stimulations in the living G-CaMP7-expressing mouse with 60 million μm3 volume.
Collapse
Affiliation(s)
- Kohei Otomo
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; National Institute for Physiological Sciences, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Graduate School of Advanced Studies Sciences (SOKENDAI), 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita, Sapporo, 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, Sapporo, 001-0014, Japan.
| | - Ai Goto
- Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita, Sapporo, 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, Sapporo, 001-0014, Japan
| | - Yumi Yamanaka
- Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita, Sapporo, 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, Sapporo, 001-0014, Japan
| | - Takashi Hori
- IMRA America, Inc., 1044 Woodridge Avenue, Ann Arbor, MI, 48105, USA
| | - Hiroshi Nakayama
- Yokogawa Electric Corporation, 2-3 Hokuyoudai, Kanazawa, 920-0177, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; National Institute for Physiological Sciences, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Graduate School of Advanced Studies Sciences (SOKENDAI), 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan; Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita, Sapporo, 001-0020, Japan; Graduate School of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9, Kita, Sapporo, 001-0014, Japan
| |
Collapse
|
18
|
Płusa B, Piliszek A. Common principles of early mammalian embryo self-organisation. Development 2020; 147:147/14/dev183079. [PMID: 32699138 DOI: 10.1242/dev.183079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pre-implantation mammalian development unites extreme plasticity with a robust outcome: the formation of a blastocyst, an organised multi-layered structure ready for implantation. The process of blastocyst formation is one of the best-known examples of self-organisation. The first three cell lineages in mammalian development specify and arrange themselves during the morphogenic process based on cell-cell interactions. Despite decades of research, the unifying principles driving early mammalian development are still not fully defined. Here, we discuss the role of physical forces, and molecular and cellular mechanisms, in driving self-organisation and lineage formation that are shared between eutherian mammals.
Collapse
Affiliation(s)
- Berenika Płusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
19
|
Hu K. On Mammalian Totipotency: What Is the Molecular Underpinning for the Totipotency of Zygote? Stem Cells Dev 2020; 28:897-906. [PMID: 31122174 PMCID: PMC6648208 DOI: 10.1089/scd.2019.0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mammalian zygote is described as a totipotent cell in the literature, but this characterization is elusive ignoring the molecular underpinnings. Totipotency can connote genetic totipotency, epigenetic totipotency, or the reprogramming capacity of a cell to epigenetic totipotency. Here, the implications of these concepts are discussed in the context of the properties of the zygote. Although genetically totipotent as any diploid somatic cell is, a zygote seems not totipotent transcriptionally, epigenetically, or functionally. Yet, a zygote may retain most of the key factors from its parental oocyte to reprogram an implanted differentiated genome or the zygote genome toward totipotency. This totipotent reprogramming process may extend to blastomeres in the two-cell-stage embryo. Thus, a revised alternative model of mammalian cellular totipotency is proposed, in which an epigenetically totipotent cell exists after the major embryonic genome activation and before the separation of the first two embryonic lineages.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
20
|
Kawasoe R, Shinoda T, Hattori Y, Nakagawa M, Pham TQ, Tanaka Y, Sagou K, Saito K, Katsuki S, Kotani T, Sano A, Fujimori T, Miyata T. Two-photon microscopic observation of cell-production dynamics in the developing mammalian neocortex in utero. Dev Growth Differ 2020; 62:118-128. [PMID: 31943159 PMCID: PMC7027555 DOI: 10.1111/dgd.12648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Morphogenesis and organ development should be understood based on a thorough description of cellular dynamics. Recent studies have explored the dynamic behaviors of mammalian neural progenitor cells (NPCs) using slice cultures in which three‐dimensional systems conserve in vivo‐like environments to a considerable degree. However, live observation of NPCs existing truly in vivo, as has long been performed for zebrafish NPCs, has yet to be established in mammals. Here, we performed intravital two‐photon microscopic observation of NPCs in the developing cerebral cortex of H2B‐EGFP or Fucci transgenic mice in utero. Fetuses in the uterine sac were immobilized using several devices and were observed through a window made in the uterine wall and the amniotic membrane while monitoring blood circulation. Clear visibility was obtained to the level of 300 μm from the scalp surface of the fetus, which enabled us to quantitatively assess NPC behaviors, such as division and interkinetic nuclear migration, within a neuroepithelial structure called the ventricular zone at embryonic day (E) 13 and E14. In fetuses undergoing healthy monitoring in utero for 60 min, the frequency of mitoses observed at the apical surface was similar to those observed in slice cultures and in freshly fixed in vivo specimens. Although the rate and duration of successful in utero observations are still limited (33% for ≥10 min and 14% for 60 min), further improvements based on this study will facilitate future understanding of how organogenetic cellular behaviors occur or are pathologically influenced by the systemic maternal condition and/or maternal‐fetal relationships.
Collapse
Affiliation(s)
- Ryotaro Kawasoe
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyasu Shinoda
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Hattori
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mami Nakagawa
- Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Trung Quang Pham
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshihiro Tanaka
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Ken Sagou
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Saito
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Katsuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Sano
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Navabpour S, Kwapis JL, Jarome TJ. A neuroscientist's guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev 2020; 108:732-748. [PMID: 31843544 PMCID: PMC8049509 DOI: 10.1016/j.neubiorev.2019.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The past decade has produced an explosion in the number and variety of genetic tools available to neuroscientists, resulting in an unprecedented ability to precisely manipulate the genome and epigenome in behaving animals. However, no single resource exists that describes all of the tools available to neuroscientists. Here, we review the genetic, transgenic, and viral techniques that are currently available to probe the complex relationship between genes and cognition. Topics covered include types of traditional transgenic mouse models (knockout, knock-in, reporter lines), inducible systems (Cre-loxP, Tet-On, Tet-Off) and cell- and circuit-specific systems (TetTag, TRAP, DIO-DREADD). Additionally, we provide details on virus-mediated and siRNA/shRNA approaches, as well as a comprehensive discussion of the myriad manipulations that can be made using the CRISPR-Cas9 system, including single base pair editing and spatially- and temporally-regulated gene-specific transcriptional control. Collectively, this review will serve as a guide to assist neuroscientists in identifying and choosing the appropriate genetic tools available to study the complex relationship between the brain and behavior.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, College Park, PA, USA; Center for the Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, College Park, PA, USA.
| | - Timothy J Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Yao C, Zhang W, Shuai L. The first cell fate decision in pre-implantation mouse embryos. CELL REGENERATION 2019; 8:51-57. [PMID: 31844518 PMCID: PMC6895705 DOI: 10.1016/j.cr.2019.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 10/27/2022]
Abstract
Fertilization happens when sperm and oocytes meet, which is a complicated process involving many important types of biological activation. Beginning in the 2-cell stage, an important event referred to as zygotic genome activation (ZGA) occurs, which governs the subsequent development of the embryo. In ZGA, multiple epigenetic modifications are involved and critical for pre-implantation development. These changes occur after ZGA, resulting in blastomeres segregate into two different lineages. Some blastomeres develop into the inner cell mass (ICM), and others develop into the trophectoderm (TE), which is considered the first cell fate decision. How this process is initiated and the exact molecular mechanisms involved are fascinating questions that remain to be answered. In this review, we introduce some possible developmental models of the first cell fate decision and discuss the signalling pathways and transcriptional networks regulating this process.
Collapse
Affiliation(s)
- Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
23
|
Niwayama R, Moghe P, Liu YJ, Fabrèges D, Buchholz F, Piel M, Hiiragi T. A Tug-of-War between Cell Shape and Polarity Controls Division Orientation to Ensure Robust Patterning in the Mouse Blastocyst. Dev Cell 2019; 51:564-574.e6. [PMID: 31735668 PMCID: PMC6892278 DOI: 10.1016/j.devcel.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/04/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Oriented cell division patterns tissues by modulating cell position and fate. While cell geometry, junctions, cortical tension, and polarity are known to control division orientation, relatively little is known about how these are coordinated to ensure robust patterning. Here, we systematically characterize cell division, volume, and shape changes during mouse pre-implantation development by in toto live imaging. The analysis leads us to a model in which the apical domain competes with cell shape to determine division orientation. Two key predictions of the model are verified experimentally: when outside cells of the 16-cell embryo are released from cell shape asymmetry, the axis of division is guided by the apical domain. Conversely, orientation cues from the apical domain can be overcome by applied shape asymmetry in the 8-cell embryo. We propose that such interplay between cell shape and polarity in controlling division orientation ensures robust patterning of the blastocyst and possibly other tissues. Cell division, volume, and shape changes are characterized by in toto embryo imaging Cell shape and the apical domain compete to determine division orientation Two key predictions of the model are verified experimentally The tug-of-war mechanism ensures robust cell allocation and patterning
Collapse
Affiliation(s)
- Ritsuya Niwayama
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Prachiti Moghe
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yan-Jun Liu
- UMR 144 Institut Curie, Institut Pierre Gilles de Gennes for Microfluidics, Paris, France
| | - Dimitri Fabrèges
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Matthieu Piel
- UMR 144 Institut Curie, Institut Pierre Gilles de Gennes for Microfluidics, Paris, France
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
24
|
Simerly CR, Takahashi D, Jacoby E, Castro C, Hartnett C, Hewitson L, Navara C, Schatten G. Fertilization and Cleavage Axes Differ In Primates Conceived By Conventional (IVF) Versus Intracytoplasmic Sperm Injection (ICSI). Sci Rep 2019; 9:15282. [PMID: 31653971 PMCID: PMC6814755 DOI: 10.1038/s41598-019-51815-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
With nearly ten million babies conceived globally, using assisted reproductive technologies, fundamental questions remain; e.g., How do the sperm and egg DNA unite? Does ICSI have consequences that IVF does not? Here, pronuclear and mitotic events in nonhuman primate zygotes leading to the establishment of polarity are investigated by multidimensional time-lapse video microscopy and immunocytochemistry. Multiplane videos after ICSI show atypical sperm head displacement beneath the oocyte cortex and eccentric para-tangential pronuclear alignment compared to IVF zygotes. Neither fertilization procedure generates incorporation cones. At first interphase, apposed pronuclei align obliquely to the animal-vegetal axis after ICSI, with asymmetric furrows assembling from the male pronucleus. Furrows form within 30° of the animal pole, but typically, not through the ICSI injection site. Membrane flow drives polar bodies and the ICSI site into the furrow. Mitotic spindle imaging suggests para-tangential pronuclear orientation, which initiates random spindle axes and minimal spindle:cortex interactions. Parthenogenetic pronuclei drift centripetally and assemble astral spindles lacking cortical interactions, leading to random furrows through the animal pole. Conversely, androgenotes display cortex-only pronuclear interactions mimicking ICSI. First cleavage axis determination in primates involves dynamic cortex-microtubule interactions among male pronuclei, centrosomal microtubules, and the animal pole, but not the ICSI site.
Collapse
Affiliation(s)
- Calvin R Simerly
- Pittsburgh Development Center, Division of Developmental & Regenerative Medicine, and Obstetrics-Gynecology-Reproductive Sciences, Cell Biology, and Bioengineering, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue Pittsburgh, Pennsylvania, 15213, USA
| | - Diana Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Ethan Jacoby
- CCRM Houston Main Center Memorial City, 929 Gessner Rd, Suite 2300, Houston, Texas, 77024, USA
| | - Carlos Castro
- Pittsburgh Development Center, Division of Developmental & Regenerative Medicine, and Obstetrics-Gynecology-Reproductive Sciences, Cell Biology, and Bioengineering, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue Pittsburgh, Pennsylvania, 15213, USA
| | - Carrie Hartnett
- Pittsburgh Development Center, Division of Developmental & Regenerative Medicine, and Obstetrics-Gynecology-Reproductive Sciences, Cell Biology, and Bioengineering, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue Pittsburgh, Pennsylvania, 15213, USA
| | - Laura Hewitson
- The Johnson Center for Child Health and Development, Austin, Texas, 78701, USA
| | - Christopher Navara
- Department of Biology, South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, Texas, 78249, USA
| | - Gerald Schatten
- Pittsburgh Development Center, Division of Developmental & Regenerative Medicine, and Obstetrics-Gynecology-Reproductive Sciences, Cell Biology, and Bioengineering, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
25
|
Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L, Turlier H, Maître JL. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 2019; 365:465-468. [DOI: 10.1126/science.aaw7709] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
During mouse pre-implantation development, the formation of the blastocoel, a fluid-filled lumen, breaks the radial symmetry of the blastocyst. The factors that control the formation and positioning of this basolateral lumen remain obscure. We found that accumulation of pressurized fluid fractures cell-cell contacts into hundreds of micrometer-size lumens. These microlumens eventually discharge their volumes into a single dominant lumen, which we model as a process akin to Ostwald ripening, underlying the coarsening of foams. Using chimeric mutant embryos, we tuned the hydraulic fracturing of cell-cell contacts and steered the coarsening of microlumens, allowing us to successfully manipulate the final position of the lumen. We conclude that hydraulic fracturing of cell-cell contacts followed by contractility-directed coarsening of microlumens sets the first axis of symmetry of the mouse embryo.
Collapse
|
26
|
Moore EL, Wang S, Larina IV. Staging mouse preimplantation development in vivo using optical coherence microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800364. [PMID: 30578614 PMCID: PMC6470020 DOI: 10.1002/jbio.201800364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 05/19/2023]
Abstract
In mammals, preimplantation development primarily occurs in the oviduct (or fallopian tube) where fertilized oocytes migrate through, develop and divide as they prepare for implantation in the uterus. Studies of preimplantation development currently rely on ex vivo experiments with the embryos cultured outside of the oviduct, neglecting the native environment for embryonic growth. This prevents the understanding of the natural process of preimplantation development and the roles of the oviduct in early embryonic health. Here, we report an in vivo optical imaging approach enabling high-resolution visualizations of developing embryos in the mouse oviduct. By combining optical coherence microscopy (OCM) and a dorsal imaging window, the subcellular structures and morphologies of unfertilized oocytes, zygotes and preimplantation embryos can be well resolved in vivo, allowing for the staging of development. We present the results together with bright-field microscopy images to show the comparable imaging quality. As the mouse is a well-established model with a variety of genetic engineering strategies available, the in vivo imaging approach opens great opportunities to investigate how the oviduct and early embryos interact to prepare for successful implantation. This knowledge could have beneficial impact on understanding infertility and improving in vitro fertilization. OCM through a dorsal imaging window enables high-resolution imaging and staging of mouse preimplantation embryos in vivo in the oviduct.
Collapse
Affiliation(s)
- Emma L. Moore
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, U.S.A
| |
Collapse
|
27
|
Koyama H, Shi D, Fujimori T. Biophysics in oviduct: Planar cell polarity, cilia, epithelial fold and tube morphogenesis, egg dynamics. Biophys Physicobiol 2019; 16:89-107. [PMID: 30923666 PMCID: PMC6435019 DOI: 10.2142/biophysico.16.0_89] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Organs and tissues in multi-cellular organisms exhibit various morphologies. Tubular organs have multi-scale morphological features which are closely related to their functions. Here we discuss morphogenesis and the mechanical functions of the vertebrate oviduct in the female reproductive tract, also known as the fallopian tube. The oviduct functions to convey eggs from the ovary to the uterus. In the luminal side of the oviduct, the epithelium forms multiple folds (or ridges) well-aligned along the longitudinal direction of the tube. In the epithelial cells, cilia are formed orienting toward the downstream of the oviduct. The cilia and the folds are supposed to be involved in egg transportation. Planar cell polarity (PCP) is developed in the epithelium, and the disruption of the Celsr1 gene, a PCP related-gene, causes randomization of both cilia and fold orientations, discontinuity of the tube, inefficient egg transportation, and infertility. In this review article, we briefly introduce various biophysical and biomechanical issues in the oviduct, including physical mechanisms of formation of PCP and organized cilia orientation, epithelial cell shape regulation, fold pattern formation generated by mechanical buckling, tubulogenesis, and egg transportation regulated by fluid flow. We also mention about possible roles of the oviducts in egg shape formation and embryogenesis, sinuous patterns of tubes, and fold and tube patterns observed in other tubular organs such as the gut, airways, etc.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
28
|
Welling M, Mohr MA, Ponti A, Rullan Sabater L, Boni A, Kawamura YK, Liberali P, Peters AH, Pelczar P, Pantazis P. Primed Track, high-fidelity lineage tracing in mouse pre-implantation embryos using primed conversion of photoconvertible proteins. eLife 2019; 8:44491. [PMID: 30663981 PMCID: PMC6340703 DOI: 10.7554/elife.44491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 11/13/2022] Open
Abstract
Accurate lineage reconstruction of mammalian pre-implantation development is essential for inferring the earliest cell fate decisions. Lineage tracing using global fluorescence labeling techniques is complicated by increasing cell density and rapid embryo rotation, which hampers automatic alignment and accurate cell tracking of obtained four-dimensional imaging data sets. Here, we exploit the advantageous properties of primed convertible fluorescent proteins (pr-pcFPs) to simultaneously visualize the global green and the photoconverted red population in order to minimize tracking uncertainties over prolonged time windows. Confined primed conversion of H2B-pr-mEosFP-labeled nuclei combined with light-sheet imaging greatly facilitates segmentation, classification, and tracking of individual nuclei from the 4-cell stage up to the blastocyst. Using green and red labels as fiducial markers, we computationally correct for rotational and translational drift, reduce overall data size, and accomplish high-fidelity lineage tracing even for increased imaging time intervals – addressing major concerns in the field of volumetric embryo imaging. A mouse embryo starts with one cell, which divides to create identical daughters that quickly start to multiply. Within three to four days, certain cells begin to specialize and take on specific roles. Scientists want to track these early events to understand how they give rise to an individual formed of huge numbers of cells organized in specialized tissues. To do so, researchers genetically manipulate embryos so that each cell produces fluorescent molecules that ‘glow’ under light. These embryos are grown inside a special microscope for several days. Images are taken regularly and then processed by specialized software that automatically tracks the fluorescent cells and their daughters over time. This helps reconstruct the history of each cell, and which structures they give rise to. However, many embryos move and turn around between images, and so software packages often lose track of which cell was which. Taking images more frequently is not possible because each imaging event exposes the embryo to light, which can damage its fragile cells. To address this problem, Welling, Mohr et al. made embryonic cells produce a special fluorescent marker, which is normally green but can be converted to red. Then, a technique known as primed conversion was used so that only one cell in a four-cell embryo would glow red. Welling, Mohr et al. designed a piece of software, baptized ‘primed Track’, that can use this red cell (and its daughters) to reorient the embryo during image analysis and reliably identify and match any mother cell to its daughters. The new approach means the experiments require fewer imaging events, but also fewer embryos because even the ones that move a lot can be studied. This should help scientists look into how early life processes give rise to specialized cells, and even explore the fate of cells in other tissues.
Collapse
Affiliation(s)
- Maaike Welling
- Department for Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Manuel Alexander Mohr
- Department for Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
| | - Aaron Ponti
- Department for Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland
| | - Lluc Rullan Sabater
- Department for Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland
| | - Andrea Boni
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models (CTM), University of Basel, Basel, Switzerland
| | - Periklis Pantazis
- Department for Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland.,Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Kiyonari H, Kaneko M, Abe T, Shioi G, Aizawa S, Furuta Y, Fujimori T. Dynamic organelle localization and cytoskeletal reorganization during preimplantation mouse embryo development revealed by live imaging of genetically encoded fluorescent fusion proteins. Genesis 2019; 57:e23277. [PMID: 30597711 PMCID: PMC6590263 DOI: 10.1002/dvg.23277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 01/29/2023]
Abstract
Live imaging is one of the most powerful technologies for studying the behaviors of cells and molecules in living embryos. Previously, we established a series of reporter mouse lines in which specific organelles are labeled with various fluorescent proteins. In this study, we examined the localizations of fluorescent signals during preimplantation development of these mouse lines, as well as a newly established one, by time‐lapse imaging. Each organelle was specifically marked with fluorescent fusion proteins; fluorescent signals were clearly visible during the whole period of time‐lapse observation, and the expression of the reporters did not affect embryonic development. We found that some organelles dramatically change their sub‐cellular distributions during preimplantation stages. In addition, by crossing mouse lines carrying reporters of two distinct colors, we could simultaneously visualize two types of organelles. These results confirm that our reporter mouse lines can be valuable genetic tools for live imaging of embryonic development.
Collapse
Affiliation(s)
- Hiroshi Kiyonari
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mari Kaneko
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaya Abe
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Go Shioi
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shinichi Aizawa
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toshihiko Fujimori
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| |
Collapse
|
30
|
Barui A, Datta P. Biophysical factors in the regulation of asymmetric division of stem cells. Biol Rev Camb Philos Soc 2018; 94:810-827. [PMID: 30467934 DOI: 10.1111/brv.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ananya Barui
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| | - Pallab Datta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| |
Collapse
|
31
|
Abstract
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Collapse
Affiliation(s)
- Hui Ting Zhang
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
32
|
Shinotsuka N, Yamaguchi Y, Nakazato K, Matsumoto Y, Mochizuki A, Miura M. Caspases and matrix metalloproteases facilitate collective behavior of non-neural ectoderm after hindbrain neuropore closure. BMC DEVELOPMENTAL BIOLOGY 2018; 18:17. [PMID: 30064364 PMCID: PMC6069860 DOI: 10.1186/s12861-018-0175-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
Background Mammalian brain is formed through neural tube closure (NTC), wherein both ridges of opposing neural folds are fused in the midline and remodeled in the roof plate of the neural tube and overlying non-neural ectodermal layer. Apoptosis is widely observed from the beginning of NTC at the neural ridges and is crucial for the proper progression of NTC, but its role after the closure remains less clear. Results Here, we conducted live-imaging analysis of the mid-hindbrain neuropore (MHNP) closure and revealed unexpected collective behavior of cells surrounding the MHNP. The cells first gathered to the closing point and subsequently relocated as if they were released from the point. Inhibition of caspases or matrix metalloproteases with chemical inhibitors impaired the cell relocation. Conclusions These lines of evidence suggest that apoptosis-mediated degradation of extracellular matrix might facilitate the final process of neuropore closure. Electronic supplementary material The online version of this article (10.1186/s12861-018-0175-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naomi Shinotsuka
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, 060-0819, Japan.
| | - Kenichi Nakazato
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yudai Matsumoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan.,Laboratory of Mathematical Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
33
|
Chen Q, Shi J, Tao Y, Zernicka-Goetz M. Tracing the origin of heterogeneity and symmetry breaking in the early mammalian embryo. Nat Commun 2018; 9:1819. [PMID: 29739935 PMCID: PMC5940674 DOI: 10.1038/s41467-018-04155-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 04/06/2018] [Indexed: 01/02/2023] Open
Abstract
A fundamental question in developmental and stem cell biology concerns the origin and nature of signals that initiate asymmetry leading to pattern formation and self-organization. Instead of having prominent pre-patterning determinants as present in model organisms (worms, sea urchin, frog), we propose that the mammalian embryo takes advantage of more subtle cues such as compartmentalized intracellular reactions that generate micro-scale inhomogeneity, which is gradually amplified over several cellular generations to drive pattern formation while keeping developmental plasticity. It is therefore possible that by making use of compartmentalized information followed by its amplification, mammalian embryos would follow general principle of development found in other organisms in which the spatial cue is more robustly presented.
Collapse
Affiliation(s)
- Qi Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Junchao Shi
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Yi Tao
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Magdalena Zernicka-Goetz
- Mammalian Development and Stem Cell Group, Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
34
|
Mohr MA, Pantazis P. Primed Conversion: The New Kid on the Block for Photoconversion. Chemistry 2018; 24:8268-8274. [PMID: 29430743 DOI: 10.1002/chem.201705651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 11/07/2022]
Abstract
In 2015, a novel way to convert photoconvertible fluorescent proteins was reported that uses the intercept of blue and far-red light instead of traditional violet or near-UV light illumination. This Minireview describes and contrasts this distinct two-step mechanism termed primed conversion with traditional photoconversion. We provide a comprehensive overview of what is known to date about primed conversion and focus on the molecular requirements for it to take place. We provide examples of its application to axially confined photoconversion in complex tissues as well as super-resolution microscopy. Further, we describe why and when it is useful, including its advantages and disadvantages, and give an insight into potential future development in the field.
Collapse
Affiliation(s)
- Manuel Alexander Mohr
- Department for Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Periklis Pantazis
- Department for Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, 4058, Basel, Switzerland
| |
Collapse
|
35
|
Sepulveda-Rincon LP, Islam N, Marsters P, Campbell BK, Beaujean N, Maalouf WE. Embryo cell allocation patterns are not altered by biopsy but can be linked with further development. Reproduction 2017; 154:807-814. [PMID: 28971891 PMCID: PMC5747100 DOI: 10.1530/rep-17-0514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/15/2017] [Accepted: 09/28/2017] [Indexed: 11/08/2022]
Abstract
It has been suggested that first embryo cleavage can be related with the embryonic-abembryonic axis at blastocyst stage in mice. Thus, cells of the 2-cell embryo might be already biased to form the inner cell mass or trophectoderm. This study was conducted to observe the possible effects of embryo biopsy on cell allocation patterns during embryo preimplantation in two different mouse strains and the effects of these patterns on further development. First, one blastomere of the 2-cell embryo was injected with a lipophilic tracer and cell allocation patterns were observed at blastocyst stage. Blastocysts were classified into orthogonal, deviant or random pattern. For the first experiment, embryos were biopsied at 8-cell stage and total cell counts (TCC) were annotated. Furthermore, non-biopsied blastocysts were transferred into foster mothers. Then, pups and their organs were weighed two weeks after birth. Random pattern was significantly recurrent (≈60%), against orthogonal (<22%) and deviant (<22%) patterns among groups. These patterns were not affected by biopsy procedure. However, TCC on deviant embryos were reduced after biopsy. Moreover, no differences were found between patterns for implantation rates, litter size, live offspring and organ weights (lungs, liver, pancreas and spleen). However, deviant pups presented heavier hearts and orthogonal pups presented lighter kidneys among the group. In conclusion, these results suggest that single blastomere removal does not disturb cell allocation patterns during pre-implantation. Nonetheless, the results suggest that embryos following different cell allocation patterns present different coping mechanisms against in vitro manipulations and further development might be altered.
Collapse
Affiliation(s)
- L P Sepulveda-Rincon
- Division of Child HealthObstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - N Islam
- Division of Child HealthObstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - P Marsters
- Division of Child HealthObstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - B K Campbell
- Division of Child HealthObstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - N Beaujean
- Univ LyonUniversité Claude Bernard Lyon 1, Inserm, INRA, Stem Cell and Brain Research Institute U1208, USC1361, 69500 Bron, France
| | - W E Maalouf
- Division of Child HealthObstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
36
|
Bissiere S, Gasnier M, Alvarez YD, Plachta N. Cell Fate Decisions During Preimplantation Mammalian Development. Curr Top Dev Biol 2017; 128:37-58. [PMID: 29477170 DOI: 10.1016/bs.ctdb.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The early mouse embryo offers a phenomenal system to dissect how changes in the mechanisms controlling cell fate are integrated with morphogenetic events at the single-cell level. New technologies based on live imaging have enabled the discovery of dynamic changes in the regulation of single genes, transcription factors, and epigenetic mechanisms directing early cell fate decision in the early embryo. Here, we review recent progress in linking molecular dynamic events occurring at the level of the single cell in vivo, to some of the key morphogenetic changes regulating early mouse development.
Collapse
Affiliation(s)
| | - Maxime Gasnier
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Yanina D Alvarez
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, Argentina
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; National University of Singapore, Singapore, Singapore.
| |
Collapse
|
37
|
Jaber M, Sebban S, Buganim Y. Acquisition of the pluripotent and trophectoderm states in the embryo and during somatic nuclear reprogramming. Curr Opin Genet Dev 2017; 46:37-43. [DOI: 10.1016/j.gde.2017.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
|
38
|
Hosseini SM, Moulavi F, TanhaieVash N, Shams-Esfandabadi N, Nasr-Esfahani MH, Shirazi A. Evidence of Oocyte Polarity in Bovine; Implications for Intracytoplasmic Sperm Injection and Somatic Cell Nuclear Transfer. CELL JOURNAL 2017; 19:482-491. [PMID: 28836411 PMCID: PMC5570413 DOI: 10.22074/cellj.2017.4887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 09/19/2016] [Indexed: 12/03/2022]
Abstract
Objective We recently demonstrated spatial regionalization of maternal transcripts and
proteins within unfertilized ovine oocyte. Here, we investigated the likelihood of oocyte
polarity for the first time in bovine. Materials and Methods In this experimental study, in vitro matured bovine oocytes were
used for manual bisection [into oocyte halve that were near-to (HNS) and far-from (FS)
spindle] or trisection [into MII-spindle (S), the spindle-side half (NS), and the distal half
unassociated with the spindle (FS)]. Prepared pools of oocyte substructures were used
for comparative quantitative real-time polymerase chain reaction (RT-qPCR). To map the
possible preferential sperm entry point (SEP), the spatial relationship between SEP and
MII-spindle was measured 5 hours post-fertilization. Results The proportional amount of maternal mRNA in S oocyte fragment was estimated
to be 6 to 11-fold higher than NS and FS counterparts. The relative abundances
of Nanog, Oct4, Fgf4 and Tead4 were significantly higher in HNS oocyte fragment
compared t0 FS. The relative abundances of Ctnb, Carm1, Rex1, Sox2 and Cdx2 were
comparable between HNS and NS oocyte fragments. FS oocyte fragment possessed significantly
higher transcripts of Gata4 compared to HNS. The distribution of certain transcripts
related to pluripotency and lineage commitment were different depending upon the
region of the oocyte; either enriched at S (Tead4, Nanog, Ctnb and Sox2), NS (Oct4), or
FS (Gata6). The SEP in almost (90%) fertilized oocytes was located in MII-hemisphere. Conclusion The observation of spatial restriction of mRNAs and SEP within MII-oocyte
may indicate that the principal forces of oocyte polarity are evolutionary conserved. This
may in turn highlight the need for refinements in the methodology of intracytoplasmic
sperm injection (where a sperm is injected far from the MII-spindle) and somatic cell nuclear
transfer (where a major amount of regulative mRNAs that are associated with MIIspindle
is removed during enucleation).
Collapse
Affiliation(s)
- Seyed Morteza Hosseini
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.,Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fariba Moulavi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima TanhaieVash
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Abolfazl Shirazi
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
39
|
Totipotency segregates between the sister blastomeres of two-cell stage mouse embryos. Sci Rep 2017; 7:8299. [PMID: 28811525 PMCID: PMC5557898 DOI: 10.1038/s41598-017-08266-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 11/09/2022] Open
Abstract
Following fertilization in mammals, it is generally accepted that totipotent cells are exclusive to the zygote and to each of the two blastomeres originating from the first mitotic division. This model of totipotency was inferred from a minority of cases in which blastomeres produced monozygotic twins in mice. Was this due to experimental limitation or biological constraint? Here we removed experimental obstacles and achieved reliable quantification of the prevalence of dual totipotency among mouse two-cell stage blastomeres. We separated the blastomeres of 1,252 two-cell embryos, preserving 1,210 of the pairs. Two classes of monozygotic twins became apparent at the blastocyst stage: 27% formed a functional epiblast in both members (concordant), and 73% did so in only one member of the pair (discordant) - a partition that proved insensitive to oocyte quality, sperm-entry point, culture environment and pattern of cleavage. In intact two-cell embryos, the ability of sister blastomeres to generate epiblast was also skewed. Class discovery clustering of the individual blastomeres' and blastocysts' transcriptomes points to an innate origin of concordance and discordance rather than developmental acquisition. Our data place constraints on the commonly accepted idea that totipotency is allocated equally between the two-cell stage blastomeres in mice.
Collapse
|
40
|
Maître JL. Mechanics of blastocyst morphogenesis. Biol Cell 2017; 109:323-338. [DOI: 10.1111/boc.201700029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jean-Léon Maître
- Institut Curie; PSL Research University; CNRS UMR3215, INSERM U934; Paris France
| |
Collapse
|
41
|
Shioi G, Hoshino H, Abe T, Kiyonari H, Nakao K, Meng W, Furuta Y, Fujimori T, Aizawa S. Apical constriction in distal visceral endoderm cells initiates global, collective cell rearrangement in embryonic visceral endoderm to form anterior visceral endoderm. Dev Biol 2017; 429:20-30. [PMID: 28712875 DOI: 10.1016/j.ydbio.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
Abstract
The behavior of visceral endoderm cells was examined as the anterior visceral endoderm (AVE) formed from the distal visceral endoderm (DVE) using the mouse lines R26-H2B-EGFP and R26-PHA7-EGFP to visualize cell nuclei and adherens junction, respectively. The analysis using R26-H2B-EGFP demonstrated global cell rearrangement that was not specific to the DVE cells in the monolayer embryonic visceral endoderm sheet; each population of the endoderm cells moved collectively in a swirling movement as a whole. Most of the AVE cells at E6.5 were not E5.5 DVE cells but were E5.5 cells that were located caudally behind them, as previously reported (Hoshino et al., 2015; Takaoka et al., 2011). In the rearrangement, the posterior embryonic visceral endoderm cells did not move, as extraembryonic visceral endoderm cells did not, and they constituted a distinct population during the process of anterior-posterior axis formation. The analysis using R26-PHA7-EGFP suggested that constriction of the apical surfaces of the cells in prospective anterior portion of the DVE initiated the global cellular movement of the embryonic visceral endoderm to drive AVE formation.
Collapse
Affiliation(s)
- Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Hideharu Hoshino
- Laboratory for Vertebrate Body Plan, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Kiyonari
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Animal Resource Development Unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuki Nakao
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine (CDBIM), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yasuhide Furuta
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Animal Resource Development Unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Toshihiko Fujimori
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Division of Embryology, National Institute for Basic Biology (NIBB), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinichi Aizawa
- Genetic Engineering Team, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Vertebrate Body Plan, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
42
|
Hewetson A, Do HQ, Myers C, Muthusubramanian A, Sutton RB, Wylie BJ, Cornwall GA. Functional Amyloids in Reproduction. Biomolecules 2017; 7:biom7030046. [PMID: 28661450 PMCID: PMC5618227 DOI: 10.3390/biom7030046] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022] Open
Abstract
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Hoa Quynh Do
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Archana Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Benjamin J Wylie
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
43
|
Koyama H, Shi D, Suzuki M, Ueno N, Uemura T, Fujimori T. Mechanical Regulation of Three-Dimensional Epithelial Fold Pattern Formation in the Mouse Oviduct. Biophys J 2017; 111:650-665. [PMID: 27508448 DOI: 10.1016/j.bpj.2016.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 11/29/2022] Open
Abstract
Epithelia exhibit various three-dimensional morphologies linked to organ function in animals. However, the mechanisms of three-dimensional morphogenesis remain elusive. The luminal epithelium of the mouse oviduct forms well-aligned straight folds along the longitudinal direction of the tubes. Disruption of the Celsr1 gene, a planar cell polarity-related gene, causes ectopically branched folds. Here, we evaluated the mechanical contributions of the epithelium to the fold pattern formation. In the mutant oviduct, the epithelium was more intricate along the longitudinal direction than in the wild-type, suggesting a higher ratio of the longitudinal length of the epithelial layer to that of the surrounding smooth muscle (SM) layer (L-Epi/SM ratio). Our mathematical modeling and computational simulations suggested that the L-Epi/SM ratio could explain the differences in fold branching between the two genotypes. Longitudinal epithelial tensions were increased in well-aligned folds compared with those in disorganized folds both in the simulations and in experimental estimations. Artificially increasing the epithelial tensions suppressed the branching in simulations, suggesting that the epithelial tensions can regulate fold patterning. The epithelial tensions could be explained by the combination of line tensions along the epithelial cell-cell boundaries with the polarized cell arrays observed in vivo. These results suggest that the fold pattern is associated with the polarized cell array through the longitudinal epithelial tension. Further simulations indicated that the L-Epi/SM ratio could contribute to fold pattern diversity, suggesting that the L-Epi/SM ratio is a critical parameter in the fold patterning in tubular organs.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan.
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Makoto Suzuki
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Naoto Ueno
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
44
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|
45
|
Munevver S, Findikli N, Bahceci M. New Horizons/Developments in Time-Lapse Morphokinetic Analysis of Mammalian Embryos. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
Sepulveda-Rincon LP, Dube D, Adenot P, Laffont L, Ruffini S, Gall L, Campbell BK, Duranthon V, Beaujean N, Maalouf WE. Random Allocation of Blastomere Descendants to the Trophectoderm and ICM of the Bovine Blastocyst. Biol Reprod 2016; 95:123. [PMID: 27760750 PMCID: PMC5333943 DOI: 10.1095/biolreprod.116.141200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 10/17/2016] [Indexed: 01/27/2023] Open
Abstract
The first lineage specification during mammalian embryo development can be visually distinguished at the blastocyst stage. Two cell lineages are observed on the embryonic-abembryonic axis of the blastocyst: the inner cell mass and the trophectoderm. The timing and mechanisms driving this process are still not fully understood. In mouse embryos, cells seem prepatterned to become certain cell lineage because the first cleavage plane has been related with further embryonic-abembryonic axis at the blastocyst stage. Nevertheless, this possibility has been very debatable. Our objective was to determine whether this would be the case in another mammalian species, the bovine. To achieve this, cells of in vitro produced bovine embryos were traced from the 2-cell stage to the blastocyst stage. Blastocysts were then classified according to the allocation of the labeled cells in the embryonic and/or abembryonic part of the blastocyst. Surprisingly, we found that there is a significant percentage of the embryos (∼60%) with labeled and nonlabeled cells randomly distributed and intermingled. Using time-lapse microscopy, we have identified the emergence of this random pattern at the third to fourth cell cycle, when cells started to intermingle. Even though no differences were found on morphokinetics among different embryos, these random blastocysts and those with labeled cells separated by the embryonic-abembryonic axis (deviant pattern) are significantly bigger; moreover deviant embryos have a significantly higher number of cells. Interestingly, we observed that daughter cells allocation at the blastocyst stage is not affected by biopsies performed at an earlier stage.
Collapse
Affiliation(s)
- Lessly P Sepulveda-Rincon
- Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Delphine Dube
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Pierre Adenot
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Ludivine Laffont
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Sylvie Ruffini
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Laurence Gall
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Bruce K Campbell
- Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
- Univ Lyon, Université de Lyon 1, Inserm, Bron, France
| | - Walid E Maalouf
- Child Health, Obstetrics and Gynecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
47
|
Ipponjima S, Hibi T, Nemoto T. Three-Dimensional Analysis of Cell Division Orientation in Epidermal Basal Layer Using Intravital Two-Photon Microscopy. PLoS One 2016; 11:e0163199. [PMID: 27657513 PMCID: PMC5033459 DOI: 10.1371/journal.pone.0163199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023] Open
Abstract
Epidermal structures are different among body sites, and proliferative keratinocytes in the epidermis play an important role in the maintenance of the epidermal structures. In recent years, intravital skin imaging has been used in mammalian skin research for the investigation of cell behaviors, but most of these experiments were performed with rodent ears. Here, we established a non-invasive intravital imaging approach for dorsal, ear, hind paw, or tail skin using R26H2BEGFP hairless mice. Using four-dimensional (x, y, z, and time) imaging, we successfully visualized mitotic cell division in epidermal basal cells. A comparison of cell division orientation relative to the basement membrane in each body site revealed that most divisions in dorsal and ear epidermis occurred in parallel, whereas the cell divisions in hind paw and tail epidermis occurred both in parallel and oblique orientations. Based on the quantitative analysis of the four-dimensional images, we showed that the epidermal thickness correlated with the basal cell density and the rate of the oblique divisions.
Collapse
Affiliation(s)
- Sari Ipponjima
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Terumasa Hibi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
48
|
White MD, Angiolini JF, Alvarez YD, Kaur G, Zhao ZW, Mocskos E, Bruno L, Bissiere S, Levi V, Plachta N. Long-Lived Binding of Sox2 to DNA Predicts Cell Fate in the Four-Cell Mouse Embryo. Cell 2016; 165:75-87. [PMID: 27015308 DOI: 10.1016/j.cell.2016.02.032] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Transcription factor (TF) binding to DNA is fundamental for gene regulation. However, it remains unknown how the dynamics of TF-DNA interactions change during cell-fate determination in vivo. Here, we use photo-activatable FCS to quantify TF-DNA binding in single cells of developing mouse embryos. In blastocysts, the TFs Oct4 and Sox2, which control pluripotency, bind DNA more stably in pluripotent than in extraembryonic cells. By contrast, in the four-cell embryo, Sox2 engages in more long-lived interactions than does Oct4. Sox2 long-lived binding varies between blastomeres and is regulated by H3R26 methylation. Live-cell tracking demonstrates that those blastomeres with more long-lived binding contribute more pluripotent progeny, and reducing H3R26 methylation decreases long-lived binding, Sox2 target expression, and pluripotent cell numbers. Therefore, Sox2-DNA binding predicts mammalian cell fate as early as the four-cell stage. More generally, we reveal the dynamic repartitioning of TFs between DNA sites driven by physiological epigenetic changes. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Juan F Angiolini
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Yanina D Alvarez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Gurpreet Kaur
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ziqing W Zhao
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Esteban Mocskos
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Luciana Bruno
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Stephanie Bissiere
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Valeria Levi
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina.
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
49
|
Lim CY, Knowles BB, Solter D, Messerschmidt DM. Epigenetic Control of Early Mouse Development. Curr Top Dev Biol 2016; 120:311-60. [PMID: 27475856 DOI: 10.1016/bs.ctdb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life.
Collapse
Affiliation(s)
- C Y Lim
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - B B Knowles
- Emerita, The Jackson Laboratory, Bar Harbor, ME, United States; Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand
| | - D Solter
- Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand; Emeritus, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - D M Messerschmidt
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
50
|
Jain R, Tikoo S, Weninger W. Recent advances in microscopic techniques for visualizing leukocytes in vivo. F1000Res 2016; 5:F1000 Faculty Rev-915. [PMID: 27239292 PMCID: PMC4874443 DOI: 10.12688/f1000research.8127.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo.
Collapse
Affiliation(s)
- Rohit Jain
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Shweta Tikoo
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute, University of Sydney, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|