1
|
Jiang S, Jiang D, Lian Z, Huang X, Li T, Zhang Y. THSD7A as a Promising Biomarker for Membranous Nephrosis. Mol Biotechnol 2024; 66:3117-3135. [PMID: 37884765 DOI: 10.1007/s12033-023-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and one of the leading causes of nephrotic syndrome. The disease exhibits heterogeneous outcomes with approximately 30% of cases progressing to end-stage renal disease. Traditionally, the standard approach of diagnosing MN involves performing a kidney biopsy. Nevertheless, kidney biopsy is an invasive procedure that poses risks for the patient including bleeding and pain, and bears greater costs for the health system. The clinical management of MN has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor (PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte surface. At present, serum anti-PLA2R antibody detection and glomerular PLA2R antigen staining have been used for clinical diagnosis and prognosis, but the related detection of THSD7A has not been widely used in clinical practice. Here, we summarized the emerging knowledge regarding the roles THSD7A plays in MN and its clinical implications as diagnostic, prognostic, and therapeutic response as well as Methods for detecting serum THSD7A antibodies.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Dehua Jiang
- Kangrun Biotech LTD, Guangzhou, 511400, Guangdong, China
| | - Zhiyuan Lian
- Kangrun Biotech LTD, Guangzhou, 511400, Guangdong, China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Ting Li
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yinan Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| |
Collapse
|
2
|
Baker JR, Gangwar RS, Platts-Mills TA. The processed milk hypothesis: A major factor in the development of eosinophilic esophagitis (EoE)? J Allergy Clin Immunol 2024; 154:1123-1126. [PMID: 39197753 DOI: 10.1016/j.jaci.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Affiliation(s)
- James R Baker
- Food Allergy Center and Michigan Nanotechnology Institute for Medicine and the Biological Sciences, Ann Arbor, Mich
| | - Roopesh Singh Gangwar
- Division of Asthma Allergy and Immunology, University of Virginia, Charlottesville, Va
| | - Thomas A Platts-Mills
- Division of Asthma Allergy and Immunology, University of Virginia, Charlottesville, Va.
| |
Collapse
|
3
|
Marchese AM, Fries L, Beyhaghi H, Vadivale M, Zhu M, Cloney-Clark S, Plested JS, Chung AW, Dunkle LM, Kalkeri R. Mechanisms and implications of IgG4 responses to SARS-CoV-2 and other repeatedly administered vaccines. J Infect 2024; 89:106317. [PMID: 39419185 DOI: 10.1016/j.jinf.2024.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Vaccine-induced immunoglobulin G (IgG) profiles can vary with respect to the predominant subclasses that characterize the response. Among IgG subclasses, IgG4 is reported to have anti-inflammatory properties, but can also exhibit reduced capacity for virus neutralization and activation of Fc-dependent effector functions. Here, we review evidence that IgG4 subclass responses can be disproportionately increased in response to some types of vaccines targeting an array of diseases, including pertussis, HIV, malaria, and COVID-19. The basis for enhanced IgG4 induction by vaccines is poorly understood but may be associated with platform- or dose regimen-specific differences in antigen exposure and/or cytokine stimulation. The clinical implications of vaccine-induced IgG4 responses remain uncertain, though collective evidence suggests that proportional increases in IgG4 might reduce vaccine antigen-specific immunity. Additional work is needed to determine underlying mechanisms and to elucidate what role IgG4 may play in modifications of vaccine-induced immunity to disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | | | | |
Collapse
|
4
|
Wu J, Bloch N, Chang AY, Bhavsar R, Wang Q, Crawford A, DiLillo DJ, Vazzana K, Mohrs K, Dudgeon D, Patel S, Ahmed H, Garg V, Amatulli M, Antao OQ, Yan Y, Wang S, Ramos W, Krueger P, Adler C, Ni M, Wei Y, Guo C, Macdonald L, Huang T, Ullman E, Hermann A, Yancopoulos GD, Murphy AJ, Davis S, Olson WC, Lin JC, Smith E, Zhang T. A PD-1-targeted, receptor-masked IL-2 immunocytokine that engages IL-2Rα strengthens T cell-mediated anti-tumor therapies. Cell Rep Med 2024; 5:101747. [PMID: 39326410 PMCID: PMC11513833 DOI: 10.1016/j.xcrm.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The clinical use of interleukin-2 (IL-2) for cancer immunotherapy is limited by severe toxicity. Emerging IL-2 therapies with reduced IL-2 receptor alpha (IL-2Rα) binding aim to mitigate toxicity and regulatory T cell (Treg) expansion but have had limited clinical success. Here, we show that IL-2Rα engagement is critical for the anti-tumor activity of systemic IL-2 therapy. A "non-α" IL-2 mutein induces systemic expansion of CD8+ T cells and natural killer (NK) cells over Tregs but exhibits limited anti-tumor efficacy. We develop a programmed cell death protein 1 (PD-1)-targeted, receptor-masked IL-2 immunocytokine, PD1-IL2Ra-IL2, which attenuates systemic IL-2 activity while maintaining the capacity to engage IL-2Rα on PD-1+ T cells. Mice treated with PD1-IL2Ra-IL2 show no systemic toxicities observed with unmasked IL-2 treatment yet achieve robust tumor growth control. Furthermore, PD1-IL2Ra-IL2 can be effectively combined with other T cell-mediated immunotherapies to enhance anti-tumor responses. These findings highlight the therapeutic potential of PD1-IL2Ra-IL2 as a targeted, receptor-masked, and "α-maintained" IL-2 therapy for cancer.
Collapse
Affiliation(s)
- Jiaxi Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Nicolin Bloch
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aaron Y Chang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Qingqing Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Hassan Ahmed
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Vidur Garg
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Olivia Q Antao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yuetian Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Shunhai Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Willy Ramos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Pamela Krueger
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Samuel Davis
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tong Zhang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
5
|
Gelderloos AT, Verheul MK, Middelhof I, de Zeeuw-Brouwer ML, van Binnendijk RS, Buisman AM, van Kasteren PB. Repeated COVID-19 mRNA vaccination results in IgG4 class switching and decreased NK cell activation by S1-specific antibodies in older adults. Immun Ageing 2024; 21:63. [PMID: 39272189 PMCID: PMC11401348 DOI: 10.1186/s12979-024-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Previous research has shown that repeated COVID-19 mRNA vaccination leads to a marked increase of SARS-CoV-2 spike-specific serum antibodies of the IgG4 subclass, indicating far-reaching immunoglobulin class switching after booster immunization. Considering that repeated vaccination has been recommended especially for older adults, the aim of this study was to investigate IgG subclass responses in the ageing population and assess their relation with Fc-mediated antibody effector functionality. RESULTS Spike S1-specific IgG subclass concentrations (expressed in arbitrary units per mL), antibody-dependent NK cell activation, complement deposition and monocyte phagocytosis were quantified in serum from older adults (n = 38-50, 65-83 years) at one month post-second, -third and -fifth vaccination. Subclass distribution in serum was compared to that in younger adults (n = 64, 18-47 years) at one month post-second and -third vaccination. Compared to younger individuals, older adults showed increased levels of IgG2 and IgG4 at one month post-third vaccination (possibly related to factors other than age) and a further increase following a fifth dose. The capacity of specific serum antibodies to mediate NK cell activation and complement deposition relative to S1-specific total IgG concentrations decreased upon repeated vaccination. This decrease associated with an increased IgG4/IgG1 ratio. CONCLUSIONS In conclusion, these findings show that, like younger individuals, older adults produce antibodies with reduced functional capacity upon repeated COVID-19 mRNA vaccination. Additional research is needed to better understand the mechanisms underlying these responses and their potential implications for vaccine effectiveness. Such knowledge is vital for the future design of optimal vaccination strategies in the ageing population.
Collapse
Affiliation(s)
- Anne T Gelderloos
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marije K Verheul
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Irene Middelhof
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robert S van Binnendijk
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anne-Marie Buisman
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Puck B van Kasteren
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
6
|
Lanzillotta M, Culver E, Sharma A, Zen Y, Zhang W, Stone JH, Della-Torre E. Fibrotic phenotype of IgG4-related disease. THE LANCET. RHEUMATOLOGY 2024; 6:e469-e480. [PMID: 38574746 DOI: 10.1016/s2665-9913(23)00299-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 04/06/2024]
Abstract
A prompt response to glucocorticoids is a clinical hallmark of IgG4-related disease. However, manifestations characterised by prominent tissue fibrosis on histological examination can be less responsive to glucocorticoid therapy than other types of IgG4-related disease. These manifestations include retroperitoneal fibrosis, fibrosing mediastinitis, Riedel thyroiditis, orbital pseudotumor, and hypertrophic pachymeningitis, among others. To explain this discrepancy, a preliminary distinction into proliferative and fibrotic phenotypes of IgG4-related disease has been proposed on the basis of clinical presentation, pathological features, and response to immunosuppressive therapy. Implications of this classification for patient management remain an important area of investigation. In this Series paper, we aim to dissect the pathophysiology of tissue fibrosis in IgG4-related disease and discuss how clinicians should approach the management of fibrotic manifestations of IgG4-related disease based on the most recent diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Marco Lanzillotta
- Università Vita-Salute San Raffaele, Milan, Italy; Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Culver
- Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Amita Sharma
- Thoracic Imaging and Intervention Division, Massachusetts General Hospital, Boston, MA, USA
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital and King's College London, London, UK
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Beijing, China
| | - John H Stone
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Emanuel Della-Torre
- Università Vita-Salute San Raffaele, Milan, Italy; Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Meudt M, Baumeister J, Mizaikoff B, Ebert S, Rosenau F, Blech M, Higel F. Comprehensive analysis and characterization of glycan pairing in therapeutic antibodies and Fc-containing biotherapeutics: Addressing current limitations and implications for N-glycan impact. Eur J Pharm Biopharm 2024; 200:114325. [PMID: 38759899 DOI: 10.1016/j.ejpb.2024.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
N-glycosylation of the Fc part is a (critical) quality attribute of therapeutic antibodies and Fc-containing biotherapeutics, that impacts their stability, immunogenicity, pharmacokinetics, and effector functions. Current glycosylation analysis methods focus on the absolute amounts of glycans, neglecting the apparent glycan distribution over the entirety of proteins. The combination of the two Fc N-glycans, herein referred to as glyco-pair, therefore remains unknown, which is a major drawback for N-glycan impact assessment. This study presents a comprehensive workflow for the analysis and characterization of Fc N-glycan pairing in biotherapeutics, addressing the limitations of current glycosylation analysis methods. The applicability of the method across various biotherapeutic proteins including antibodies, bispecific antibody formats, and a Fc-Fusion protein is demonstrated, and the impact of method conditions on glycan pairing analysis is highlighted. Moreover, the influence of the molecular format, Fc backbone, production process, and cell line on glycan pairing pattern was investigated. The results underscore the significance of comprehensive glycan pairing analysis to accurately assess the impact of N-glycans on important product quality attributes of therapeutic antibodies and Fc-containing biotherapeutics.
Collapse
Affiliation(s)
- Maximilian Meudt
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany; Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Julia Baumeister
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany; Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Sybille Ebert
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach an der Riss, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Michaela Blech
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Fabian Higel
- Global CMC Experts NBE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
| |
Collapse
|
8
|
Valk AM, Keijser JBD, van Dam KPJ, Stalman EW, Wieske L, Steenhuis M, Kummer LYL, Spuls PI, Bekkenk MW, Musters AH, Post NF, Bosma AL, Horváth B, Hijnen DJ, Schreurs CRG, van Kempen ZLE, Killestein J, Volkers AG, Tas SW, Boekel L, Wolbink GJ, Keijzer S, Derksen NIL, van Deelen M, van Mierlo G, Kuijpers TW, Eftimov F, van Ham SM, Ten Brinke A, Rispens T. Suppressed IgG4 class switching in dupilumab- and TNF inhibitor-treated patients after mRNA vaccination. Allergy 2024; 79:1952-1961. [PMID: 38439527 DOI: 10.1111/all.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The noninflammatory immunoglobulin G4 (IgG4) is linked to tolerance and is unique to humans. Although poorly understood, prolonged antigenic stimulation and IL-4-signaling along the T helper 2-axis may be instrumental in IgG4 class switching. Recently, repeated SARS-CoV-2 mRNA vaccination has been linked to IgG4 skewing. Although widely used immunosuppressive drugs have been shown to only moderately affect humoral responses to SARS-CoV-2 mRNA vaccination, the effect on IgG4 switching has not been investigated. METHODS Here we study the impact of such immunosuppressive drugs, including the IL-4 receptor-blocking antibody dupilumab, on IgG4 skewing upon repeated SARS-CoV-2 mRNA vaccination. Receptor-binding domain (RBD) specific antibody responses were longitudinally measured in 600 individuals, including patients with immune-mediated inflammatory diseases treated with a TNF inhibitor (TNFi) and/or methotrexate (MTX), dupilumab, and healthy/untreated controls, after repeated mRNA vaccination. RESULTS We observed a substantial increase in the proportion of RBD-specific IgG4 antibodies (median 21%) in healthy/untreated controls after third vaccination. This IgG4 skewing was profoundly reduced in dupilumab-treated patients (<1%). Unexpectedly, an equally strong suppression of IgG4 skewing was observed in TNFi-treated patients (<1%), whereas MTX caused a modest reduction (7%). RBD-specific total IgG levels were hardly affected by these immunosuppressive drugs. Minimal skewing was observed, when primary vaccination was adenoviral vector-based. CONCLUSIONS Our results imply a critical role for IL-4/IL-13 as well as TNF in vivo IgG4 class switching. These novel findings advance our understanding of IgG4 class switch dynamics, and may benefit humoral tolerance induction strategies, treatment of IgG4 pathologies and mRNA vaccine optimization.
Collapse
Affiliation(s)
- Anika M Valk
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Jim B D Keijser
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Koos P J van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Laura Y L Kummer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phyllis I Spuls
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel W Bekkenk
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Annelie H Musters
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicoline F Post
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Angela L Bosma
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Horváth
- Department of Dermatology, UMCG Expertise Center for Blistering Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Hijnen
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Corine R G Schreurs
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Zoé L E van Kempen
- Department of Neurology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan G Volkers
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands
| | - Gerrit J Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands
| | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Melanie van Deelen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Page LJ, Pay IF, Castellana ET, Heussen R, Hoyt T, Foley J, Messmer BT. Intact natalizumab pharmacokinetics is impacted by endogenous IgG4 concentration. Mult Scler Relat Disord 2024; 87:105667. [PMID: 38759421 DOI: 10.1016/j.msard.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Natalizumab (NAT) pharmacokinetics and pharmacodynamics are complicated by arm exchange with endogenous IgG4, resulting in a mixture of a more potent intact, bivalent form and a less potent, functionally monovalent form. Total NAT and endogenous IgG4 concentrations vary considerably across patients. This study assessed the concentration of intact NAT, and how it relates to total NAT and endogenous IgG4 levels in blood and saliva. METHODS Paired serum and saliva samples from a small cohort of relapsing-remitting multiple sclerosis patients were measured for levels of intact NAT, total NAT, IgG and IgG4. RESULTS Intact NAT concentration was dependent on both total NAT and endogenous IgG4 levels. Low endogenous IgG4 led to a higher ratio of intact NAT to total NAT, while the opposite was observed in subjects with high endogenous IgG4. Serum and saliva measurements show good concordance. CONCLUSIONS Intact NAT concentration is influenced by both NAT pharmacokinetics and endogenous IgG4 levels. Patients with low IgG4 levels can have high concentrations of intact NAT even with lower levels of total NAT, which may explain cases of NAT-associated progressive multifocal leukoencephalopathy (PML) in such patients. Monitoring both forms of NAT could better guide dosing, maximizing drug efficacy and safety.
Collapse
Affiliation(s)
- Lesley J Page
- Abreos Biosciences, 3550 General Atomics Court(,) G02/rm140, San Diego, CA, USA.
| | - Iona F Pay
- Abreos Biosciences, 3550 General Atomics Court(,) G02/rm140, San Diego, CA, USA
| | - Edward T Castellana
- Abreos Biosciences, 3550 General Atomics Court(,) G02/rm140, San Diego, CA, USA
| | - Raphaela Heussen
- Abreos Biosciences, 3550 General Atomics Court(,) G02/rm140, San Diego, CA, USA
| | - Tamara Hoyt
- Rocky Mountain MS Clinic, 370 E 9th Ave, Salt Lake City, Utah 84103
| | - John Foley
- Rocky Mountain MS Clinic, 370 E 9th Ave, Salt Lake City, Utah 84103
| | - Bradley T Messmer
- Abreos Biosciences, 3550 General Atomics Court(,) G02/rm140, San Diego, CA, USA
| |
Collapse
|
10
|
Zhang W, Chen X, Chen X, Li J, Wang H, Yan X, Zha H, Ma X, Zhao C, Su M, Hong L, Li P, Ling Y, Zhao W, Xia Y, Li B, Zheng T, Gu J. Fc-Fc interactions and immune inhibitory effects of IgG4: implications for anti-PD-1 immunotherapies. J Immunother Cancer 2024; 12:e009034. [PMID: 38925680 PMCID: PMC11203076 DOI: 10.1136/jitc-2024-009034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The majority of anti-programmed cell-death 1 (PD-1) monoclonal antibodies (mAbs) use S228P mutation IgG4 as the structural basis to avoid the activation of immune cells or complement. However, little attention has been paid to the Fc-Fc interactions between IgG4 and other IgG Fc fragments that could result in adverse effects. Fc-null IgG1 framework is a potential safer alternative to avoid the undesirable Fc-Fc interactions and Fc receptor binding derived effects observed with IgG4. This study provides a comprehensive evaluation of anti-PD-1 mAbs of these two frameworks. METHODS Trastuzumab and rituximab (both IgG1), wildtype IgG1 and IgG4 were immobilized on nitrocellulose membranes, coated to microplates and biosensor chips, and bound to tumor cells as targets for Fc-Fc interactions. Wildtype IgG1 and IgG4, anti-PD-1 mAb nivolumab (IgG4 S228P), penpulimab (Fc-null IgG1), and tislelizumab (Fc-null IgG4 S228P-R409K) were assessed for their binding reactions to the immobilized IgG proteins and quantitative kinetic data were obtained. To evaluate the effects of the two anti-PD-1 mAbs on immune responses mediated by trastuzumab and rituximab in the context of combination therapy, we employed classic immune models for antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement dependent cytotoxicity. Tumor-bearing mouse models, both wildtype and humanized, were used for in vivo investigation. Furthermore, we also examined the effects of IgG1 and IgG4 on diverse immune cell populations RESULTS: Experiments demonstrated that wildtype IgG4 and nivolumab bound to immobilized IgG through Fc-Fc interactions, diminishing antibody-dependent cell-mediated cytotoxicity and phagocytosis reactions. Quantitative analysis of kinetic parameters suggests that nivolumab and wildtype IgG4 exhibit comparable binding affinities to immobilized IgG1 in both non-denatured and denatured states. IgG4 exerted inhibitory effects on various immune cell types. Wildtype IgG4 and nivolumab both promoted tumor growth in wildtype mouse models. Conversely, wildtype IgG1, penpulimab, and tislelizumab did not show similar adverse effects. CONCLUSIONS Fc-null IgG1 represents a safer choice for anti-PD-1 immunotherapies by avoiding both the adverse Fc-Fc interactions and Fc-related immune inhibitory effects of IgG4. Fc-null IgG4 S228P-R409K and Fc-null IgG1 displayed similar structural properties and benefits. This study contributes to the understanding of immunotherapy resistance and the advancement of safer immune therapies for cancer.
Collapse
Affiliation(s)
- Weifeng Zhang
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xueling Chen
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xingxing Chen
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Jirui Li
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Hui Wang
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xiaomiao Yan
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| | - Han Zha
- The People's Hospital of Qijiang District Chongqing, Chongqing, China
| | - Xiaonan Ma
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Chanyuan Zhao
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Meng Su
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Liangli Hong
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Penghao Li
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| | - Yanyu Ling
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Wenhui Zhao
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Yu Xia
- Akeso Biopharma Inc, Zhongshan, China
| | | | - Tianjing Zheng
- Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, China
| | - Jiang Gu
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| |
Collapse
|
11
|
Ma C, Liu D, Wang B, Yang Y, Zhu R. Advancements and prospects of novel biologicals for myasthenia gravis: toward personalized treatment based on autoantibody specificities. Front Pharmacol 2024; 15:1370411. [PMID: 38881870 PMCID: PMC11177092 DOI: 10.3389/fphar.2024.1370411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disease with a prevalence of 150-250 cases per million individuals. Autoantibodies include long-lived antibodies against the acetylcholine receptor (AChR), mainly of the IgG1 subclass, and IgG4, produced almost exclusively by short-lived plasmablasts, which are prevalent in muscle-specific tyrosine kinase (MuSK) myasthenia gravis. Numerous investigations have demonstrated that MG patients receiving conventional medication today still do not possess satisfactory symptom control, indicating a substantial disease burden. Subsequently, based on the type of the autoantibody and the pathogenesis, we synthesized the published material to date and reached a conclusion regarding the literature related to personalized targeted therapy for MG. Novel agents for AChR MG have shown their efficacy in clinical research, such as complement inhibitors, FcRn receptor antagonists, and B-cell activating factor (BAFF) inhibitors. Rituximab, a representative drug of anti-CD20 therapy, has demonstrated benefits in treatment of MuSK MG patients. Due to the existence of low-affinity antibodies or unidentified antibodies that are inaccessible by existing methods, the treatment for seronegative MG remains complicated; thus, special testing and therapy considerations are necessary. It may be advantageous to initiate the application of novel biologicals at an early stage of the disease. Currently, therapies can also be combined and individualized according to different types of antibodies. With such a wide range of drugs, how to tailor treatment strategies to patients with various conditions and find the most suitable solution for each MG profile are our necessary and urgent aims.
Collapse
Affiliation(s)
- Chi Ma
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Benqiao Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingying Yang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Pinheiro FAG, Pereira IA, de Souza AWS, Giardini HAM, Cordeiro RA. IgG4-related disease-rare but you should not forget it. Adv Rheumatol 2024; 64:35. [PMID: 38702764 DOI: 10.1186/s42358-024-00374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Immunoglobulin G4-related disease is a systemic immune-mediated disease with insidious evolution characterized by fibroinflammatory lesions over virtually any organ system. Despite the remarkable progression of knowledge, its etiology remains undefined. Due to its relapse-remitting pattern, it could accumulate irreversible damage, increasing comorbidities and mortality. This paper emphasizes key concepts for diagnosing and treating patients with this condition.
Collapse
Affiliation(s)
- Frederico Augusto Gurgel Pinheiro
- Rheumatology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- Universidade Federal de São Paulo - Disciplina de Reumatologia, Rua Botucatu, 740, 3o andar, São Paulo, SP, 04023-062, Brazil.
| | | | | | | | - Rafael Alves Cordeiro
- Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
13
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Wallace ZS, Katz G, Hernandez-Barco YG, Baker MC. Current and future advances in practice: IgG4-related disease. Rheumatol Adv Pract 2024; 8:rkae020. [PMID: 38601138 PMCID: PMC11003820 DOI: 10.1093/rap/rkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/28/2023] [Indexed: 04/12/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is an increasingly recognized cause of fibroinflammatory lesions in patients of diverse racial and ethnic backgrounds and is associated with an increased risk of death. The aetiology of IgG4-RD is incompletely understood, but evidence to date suggests that B and T cells are important players in pathogenesis, both of which are key targets of ongoing drug development programmes. The diagnosis of IgG4-RD requires clinicopathological correlation because there is no highly specific or sensitive test. Glucocorticoids are highly effective, but their use is limited by toxicity, highlighting the need for studies investigating the efficacy of glucocorticoid-sparing agents. B cell-targeted therapies, particularly rituximab, have demonstrated benefit, but no randomized clinical trials have evaluated their efficacy. If untreated or under-treated, IgG4-RD can cause irreversible organ damage, hence close monitoring and consideration for long-term immunosuppression is warranted in certain cases.
Collapse
Affiliation(s)
- Zachary S Wallace
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guy Katz
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Yasmin G Hernandez-Barco
- Harvard Medical School, Harvard University, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew C Baker
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
15
|
Zemelka-Wiacek M, Agache I, Akdis CA, Akdis M, Casale TB, Dramburg S, Jahnz-Różyk K, Kosowska A, Matricardi PM, Pfaar O, Shamji MH, Jutel M. Hot topics in allergen immunotherapy, 2023: Current status and future perspective. Allergy 2024; 79:823-842. [PMID: 37984449 DOI: 10.1111/all.15945] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
The importance of allergen immunotherapy (AIT) is multifaceted, encompassing both clinical and quality-of-life improvements and cost-effectiveness in the long term. Key mechanisms of allergen tolerance induced by AIT include changes in memory type allergen-specific T- and B-cell responses towards a regulatory phenotype with decreased Type 2 responses, suppression of allergen-specific IgE and increased IgG1 and IgG4, decreased mast cell and eosinophil numbers in allergic tissues and increased activation thresholds. The potential of novel patient enrolment strategies for AIT is taking into account recent advances in biomarkers discoveries, molecular allergy diagnostics and mobile health applications contributing to a personalized approach enhancement that can increase AIT efficacy and compliance. Artificial intelligence can help manage and interpret complex and heterogeneous data, including big data from omics and non-omics research, potentially predict disease subtypes, identify biomarkers and monitor patient responses to AIT. Novel AIT preparations, such as synthetic compounds, innovative carrier systems and adjuvants, are also of great promise. Advances in clinical trial models, including adaptive, complex and hybrid designs as well as real-world evidence, allow more flexibility and cost reduction. The analyses of AIT cost-effectiveness show a clear long-term advantage compared to pharmacotherapy. Important research questions, such as defining clinical endpoints, biomarkers of patient selection and efficacy, mechanisms and the modulation of the placebo effect and alternatives to conventional field trials, including allergen exposure chamber studies are still to be elucidated. This review demonstrates that AIT is still in its growth phase and shows immense development prospects.
Collapse
Affiliation(s)
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Thomas B Casale
- Departments of Medicine and Pediatrics and Division of Allergy and Immunology, Joy McCann Culverhouse Clinical Research Center, University of South Florida, Tampa, Florida, USA
| | - Stephanie Dramburg
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Karina Jahnz-Różyk
- Department of Internal Diseases, Pneumonology, Allergology and Clinical Immunology, Military Institute of Medicine-National Research Institute, Warsaw, Poland
| | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Mohamed H Shamji
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
16
|
Fukuda H, Uehara T, Nakajima T, Iwaya M, Asaka S, Kurita H. A preliminary study of IgG4 expression and its prognostic significance in oral squamous cell carcinoma. BMC Cancer 2024; 24:294. [PMID: 38438903 PMCID: PMC10913618 DOI: 10.1186/s12885-024-12048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND IgG4, which plays a pivotal role in the progression of phenotypically diverse tumors, serves as a prognostic marker because of its influence on cancer immunity. Nevertheless, the functions of IgG4 in tongue squamous cell carcinoma (TSCC) remained to be identified. METHODS To evaluate the significance of IgG4 expression in TSCC, we performed immunohistochemical analysis of patients with TSCC (n = 50) to evaluate the correlation of IgG4 expression with patients' clinicopathological features and prognoses. RESULTS Higher IgG4 expression detected in TSCC tissues was associated with the less advanced mode of invasion (Yamamoto-Kohama [YK] 1-3) (P = 0.031) and with well-differentiated TSCC (P = 0.077). Kaplan-Meier analyses revealed that the higher IgG4 expression group exhibited better prognosis indicated by overall survival (OS) (P = 0.04) and recurrence-free survival (RFS) (P = 0.016). Univariate analysis of OS indicated that IgG4 expression was associated with longer OS (P = 0.061), and multivariate analysis of RFS revealed that IgG4 expression served as an independent prognostic factor for longer RFS (P = 0.005). CONCLUSION These results indicate that relatively higher IgG4 levels serve as a favorable prognostic factor for TSCC.
Collapse
Affiliation(s)
- Hironobu Fukuda
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, 390-8621, Matsumoto, Nagano, Japan.
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, 390-8621, Matsumoto, Nagano, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, 390-8621, Matsumoto, Nagano, Japan
| | - Shiho Asaka
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, 390-8621, Matsumoto, Nagano, Japan
- Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Hiroshi Kurita
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
17
|
Stone CA, Spiller BW, Smith SA. Engineering therapeutic monoclonal antibodies. J Allergy Clin Immunol 2024; 153:539-548. [PMID: 37995859 PMCID: PMC11437839 DOI: 10.1016/j.jaci.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The use of human antibodies as biologic therapeutics has revolutionized patient care throughout fields of medicine. As our understanding of the many roles antibodies play within our natural immune responses continues to advance, so will the number of therapeutic indications for which an mAb will be developed. The great breadth of function, long half-life, and modular structure allow for nearly limitless therapeutic possibilities. Human antibodies can be rationally engineered to enhance their desired immune functions and eliminate those that may result in unwanted effects. Antibody therapeutics now often start with fully human variable regions, either acquired from genetically engineered humanized mice or from the actual human B cells. These variable genes can be further engineered by widely used methods for optimization of their specificity through affinity maturation, random mutagenesis, targeted mutagenesis, and use of in silico approaches. Antibody isotype selection and deliberate mutations are also used to improve efficacy and tolerability by purposeful fine-tuning of their immune effector functions. Finally, improvements directed at binding to the neonatal Fc receptor can endow therapeutic antibodies with unbelievable extensions in their circulating half-life. The future of engineered antibody therapeutics is bright, with the global mAb market projected to exhibit compound annual growth, forecasted to reach a revenue of nearly half a trillion dollars in 2030.
Collapse
Affiliation(s)
- Cosby A Stone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Benjamin W Spiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tenn; Department of Pharmacology, Vanderbilt University, Nashville, Tenn
| | - Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tenn.
| |
Collapse
|
18
|
Motta RV, Culver EL. IgG4 autoantibodies and autoantigens in the context of IgG4-autoimmune disease and IgG4-related disease. Front Immunol 2024; 15:1272084. [PMID: 38433835 PMCID: PMC10904653 DOI: 10.3389/fimmu.2024.1272084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Immunoglobulins are an essential part of the humoral immune response. IgG4 antibodies are the least prevalent subclass and have unique structural and functional properties. In this review, we discuss IgG4 class switch and B cell production. We review the importance of IgG4 antibodies in the context of allergic responses, helminth infections and malignancy. We discuss their anti-inflammatory and tolerogenic effects in allergen-specific immunotherapy, and ability to evade the immune system in parasitic infection and tumour cells. We then focus on the role of IgG4 autoantibodies and autoantigens in IgG4-autoimmune diseases and IgG4-related disease, highlighting important parallels and differences between them. In IgG4-autoimmune diseases, pathogenesis is based on a direct role of IgG4 antibodies binding to self-antigens and disturbing homeostasis. In IgG4-related disease, where affected organs are infiltrated with IgG4-expressing plasma cells, IgG4 antibodies may also directly target a number of self-antigens or be overexpressed as an epiphenomenon of the disease. These antigen-driven processes require critical T and B cell interaction. Lastly, we explore the current gaps in our knowledge and how these may be addressed.
Collapse
Affiliation(s)
- Rodrigo V. Motta
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma L. Culver
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
19
|
Peng J, Huang J, Tan H, Kuang Y, Yang G, Huang Z. Model-Informed Dose Selection for a Novel Human Immunoglobulin G4 Derived Monoclonal Antibody Targeting Proprotein Convertase Kwashiorkor Type 9: Insights from Population Pharmacokinetics-Pharmacodynamics and Systems Pharmacology. ACS Pharmacol Transl Sci 2024; 7:406-420. [PMID: 38357287 PMCID: PMC10863431 DOI: 10.1021/acsptsci.3c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
Monoclonal antibody drugs targeting proprotein convertase kwashiorkor type 9 (PCSK9) have recently demonstrated remarkable success in lipid-lowering therapies. Specifically, antibodies derived from immunoglobulin G1 (IgG1, alirocumab) and IgG2 (evolocumab) have been successfully utilized for this purpose. Recently, a novel recombinant fully human anti-PCSK9 monoclonal antibody, originally derived from IgG4 and designated as SAL003, was developed. This study aimed to explore the pharmacokinetics, efficacy, and safety of SAL003 in both single and multiple administrations. The investigation included both healthy individuals and individuals with hyperlipidemia. To comprehensively grasp the pharmacokinetic (PK) and pharmacodynamic (PD) attributes of SAL003, this study employed population PK-PD (popPK-PD) and mechanistic systems pharmacology (MSP) modeling. These models were employed for predicting low-density lipoprotein cholesterol (LDLc) concentrations and appropriate dosages across diverse potential clinical scenarios. The research results indicated that SAL003 demonstrated comparable pharmacokinetic properties to evolocumab, exhibited notable effectiveness in reducing lipid levels, and was confirmed to be safe and well-tolerated in both healthy individuals and individuals with hyperlipidemia. Notably, SAL003 displayed differing effectiveness between patients and healthy populations. This discrepancy was observed in the popPK-PD model, with a positive population influence on Emax, and the MSP model, indicating elevated PCSK9 clearance and LDLr-related LDLc clearance in the healthy group. Simulation results from the popPK-PD and MSP models indicated a dosage of 140 mg of Q4W and 420 mg of Q8W for phase II/III clinical trials. Reducing the drug dose or extending the dosing intervals may result in treatment failure. Additionally, the simultaneous use of statins led to elevated PCSK9 levels and intensified fluctuations in steady-state LDLc levels during SAL003 treatment.
Collapse
Affiliation(s)
- Jinfu Peng
- Center
for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
- Xiangya
School of Pharmaceutical Sciences, Central
South University, Changsha 410031 Hunan, China
| | - Jie Huang
- Center
for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Hongyi Tan
- Center
for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Yun Kuang
- Center
for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Guoping Yang
- Center
for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
- Xiangya
School of Pharmaceutical Sciences, Central
South University, Changsha 410031 Hunan, China
- National
Engineering Research Center of Personalized Diagnostic and Therapeutic
Technology, Changsha 410008 Hunan, China
| | - Zhijun Huang
- Center
for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
- National
Engineering Research Center of Personalized Diagnostic and Therapeutic
Technology, Changsha 410008 Hunan, China
| |
Collapse
|
20
|
Barron N, Dickgiesser S, Fleischer M, Bachmann AN, Klewinghaus D, Hannewald J, Ciesielski E, Kusters I, Hammann T, Krause V, Fuchs SW, Siegmund V, Gross AW, Mueller-Pompalla D, Krah S, Zielonka S, Doerner A. A Generic Approach for Miniaturized Unbiased High-Throughput Screens of Bispecific Antibodies and Biparatopic Antibody-Drug Conjugates. Int J Mol Sci 2024; 25:2097. [PMID: 38396776 PMCID: PMC10889805 DOI: 10.3390/ijms25042097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The toolbox of modern antibody engineering allows the design of versatile novel functionalities exceeding nature's repertoire. Many bispecific antibodies comprise heterodimeric Fc portions recently validated through the approval of several bispecific biotherapeutics. While heterodimerization methodologies have been established for low-throughput large-scale production, few approaches exist to overcome the bottleneck of large combinatorial screening efforts that are essential for the identification of the best possible bispecific antibody. This report presents a novel, robust and miniaturized heterodimerization process based on controlled Fab-arm exchange (cFAE), which is applicable to a variety of heterodimeric formats and compatible with automated high-throughput screens. Proof of applicability was shown for two therapeutic molecule classes and two relevant functional screening read-outs. First, the miniaturized production of biparatopic anti-c-MET antibody-drug conjugates served as a proof of concept for their applicability in cytotoxic screenings on tumor cells with different target expression levels. Second, the automated workflow enabled a large unbiased combinatorial screening of biparatopic antibodies and the identification of hits mediating potent c-MET degradation. The presented workflow utilizes standard equipment and may serve as a facile, efficient and robust method for the discovery of innovative therapeutic agents in many laboratories worldwide.
Collapse
Affiliation(s)
- Nadine Barron
- Protein and Cell Sciences, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stephan Dickgiesser
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Markus Fleischer
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Daniel Klewinghaus
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jens Hannewald
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Elke Ciesielski
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ilja Kusters
- Protein Engineering and Antibody Technologies, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Til Hammann
- Discovery Pharmacology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Volker Krause
- Discovery Pharmacology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Vanessa Siegmund
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Alec W. Gross
- Protein Engineering and Antibody Technologies, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Dirk Mueller-Pompalla
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Simon Krah
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stefan Zielonka
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Achim Doerner
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
21
|
Jain S, Kumar S, Lai L, Linderman S, Malik AA, Ellis ML, Godbole S, Solis D, Sahoo MK, Bechnak K, Paredes I, Tanios R, Kazzi B, Dib SM, Litvack MB, Wimalasena ST, Ciric C, Rostad C, West R, Teng IT, Wang D, Edupuganti S, Kwong PD, Rouphael N, Pinsky BA, Douek DC, Wrammert J, Moreno A, Suthar MS. XBB.1.5 monovalent booster improves antibody binding and neutralization against emerging SARS-CoV-2 Omicron variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578771. [PMID: 38370837 PMCID: PMC10871242 DOI: 10.1101/2024.02.03.578771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The rapid emergence of divergent SARS-CoV-2 variants has led to an update of the COVID-19 booster vaccine to a monovalent version containing the XBB.1.5 spike. To determine the neutralization breadth following booster immunization, we collected blood samples from 24 individuals pre- and post-XBB.1.5 mRNA booster vaccination (∼1 month). The XBB.1.5 booster improved both neutralizing activity against the ancestral SARS-CoV-2 strain (WA1) and the circulating Omicron variants, including EG.5.1, HK.3, HV.1, XBB.1.5 and JN.1. Relative to the pre-boost titers, the XBB.1.5 monovalent booster induced greater total IgG and IgG subclass binding, particular IgG4, to the XBB.1.5 spike as compared to the WA1 spike. We evaluated antigen-specific memory B cells (MBCs) using either spike or receptor binding domain (RBD) probes and found that the monovalent booster largely increases non-RBD cross-reactive MBCs. These data suggest that the XBB.1.5 monovalent booster induces cross-reactive antibodies that neutralize XBB.1.5 and related Omicron variants.
Collapse
|
22
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
23
|
Boretti A. mRNA vaccine boosters and impaired immune system response in immune compromised individuals: a narrative review. Clin Exp Med 2024; 24:23. [PMID: 38280109 PMCID: PMC10821957 DOI: 10.1007/s10238-023-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/29/2024]
Abstract
Over the last 24 months, there has been growing evidence of a correlation between mRNA COVID-19 vaccine boosters and increased prevalence of COVID-19 infection and other pathologies. Recent works have added possible causation to correlation. mRNA vaccine boosters may impair immune system response in immune compromised individuals. Multiple doses of the mRNA COVID-19 vaccines may result in much higher levels of IgG 4 antibodies, or also impaired activation of CD4 + and CD8 + T cells. The opportunity for mRNA vaccine boosters to impair the immune system response needs careful consideration, as this impacts the cost-to-benefit ratio of the boosters' practice.
Collapse
Affiliation(s)
- Alberto Boretti
- Melbourne Institute of Technology, The Argus, 288 La Trobe St, Melbourne, VIC 3000, Australia.
| |
Collapse
|
24
|
Yao X, Xie M, Ben Y, Zhu Y, Yang G, Kwong SCW, Zhang Z, Chiu ML. Large scale controlled Fab exchange GMP process to prepare bispecific antibodies. Front Bioeng Biotechnol 2024; 11:1298890. [PMID: 38283167 PMCID: PMC10812119 DOI: 10.3389/fbioe.2023.1298890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
Objective: Bispecific antibodies (BsAbs) have demonstrated significant therapeutic impacts for the treatment of a broad spectrum of diseases that include oncology, auto-immune, and infectious diseases. However, the large-scale production of clinical batches of bispecific antibodies still has many challenges that include having low yield, poor stability, and laborious downstream purification processes. To address such challenges, we describe the optimization of the controlled Fab arm exchange (cFAE) process for the efficient generation of BsAbs. Methods: The process optimization of a large-scale good manufacturing practice (GMP) cFAE strategy to prepare BsAbs was based on screening the parameters of temperature, reduction, oxidation, and buffer exchange. We include critical quality standards for the reducing agent cysteamine hydrochloride. Results: This large-scale production protocol enabled the generation of bispecific antibodies with >90% exchange yield and at >95% purity. The subsequent downstream processing could use typical mAb procedures. Furthermore, we demonstrated that the bispecific generation protocol can be scaled up to ∼60 L reaction scale using parental monoclonal antibodies that were expressed in a 200 L bioreactor. Conclusion: We presented a robust development strategy for the cFAE process that can be used for a larger scale GMP BsAb production.
Collapse
Affiliation(s)
- Xia Yao
- Tavotek Biotherapeutics, Suzhou, China
| | | | | | - Yixiang Zhu
- Bioworkshops (Suzhou) Limited, Suzhou, China
| | | | | | | | - Mark L. Chiu
- Tavotek Biotherapeutics, Suzhou, China
- Tavotek Biotherapeutics, Lower Gwynedd, PA, United States
| |
Collapse
|
25
|
Storni F, Vogel M, Bachmann MF, Engeroff P. IgG in the control of FcεRI activation: a battle on multiple fronts. Front Immunol 2024; 14:1339171. [PMID: 38274816 PMCID: PMC10808611 DOI: 10.3389/fimmu.2023.1339171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
The rising global incidence of IgE-mediated allergic reactions poses a significant challenge to the quality of life of affected individuals and to healthcare systems, with current treatments being limited in effectiveness, safety, and disease-modifying capabilities. IgE acts by sensitizing the high-affinity IgE receptor FcεRI expressed by mast cells and basophils, tuning these cells for inflammatory degranulation in response to future allergen encounters. In recent years, IgG has emerged as an essential negative regulator of IgE-dependent allergic inflammation. Mechanistically, studies have proposed different pathways by which IgG can interfere with the activation of IgE-mediated inflammation. Here, we briefly summarize the major proposed mechanisms of action by which IgG controls the IgE-FcεRI inflammatory axis and how those mechanisms are currently applied as therapeutic interventions for IgE-mediated inflammation.
Collapse
Affiliation(s)
- Federico Storni
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Monique Vogel
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Paul Engeroff
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
26
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
27
|
Zou W, Luo X, Gao M, Yu C, Wan X, Yu S, Wu Y, Wang A, Fenical W, Wei Z, Zhao Y, Lu Y. Optimization of cancer immunotherapy on the basis of programmed death ligand-1 distribution and function. Br J Pharmacol 2024; 181:257-272. [PMID: 36775813 PMCID: PMC11080663 DOI: 10.1111/bph.16054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint blockade as a breakthrough in cancer immunotherapy has shown unprecedented positive outcomes in the clinic. However, the overall effectiveness of PD-L1 antibody is less than expected. An increasing number of studies have demonstrated that PD-L1 is widely distributed and expressed not only on the cell membrane but also on the inside of the cells as well as on the extracellular vesicles secreted by tumour cells. Both endogenous and exogenous PD-L1 play significant roles in influencing the therapeutic effect of anti-tumour immunity. Herein, we mainly focused on the distribution and function of PD-L1 and further summarized the potential targeted therapeutic strategies. More importantly, in addition to taking the overall expression abundance of PD-L1 as a predictive indicator for selecting corresponding PD-1/PD-L1 monoclonal antibodies (mAbs), we also proposed that personalized combination therapies based on the different distribution of PD-L1 are worth attention to achieve more efficient and effective therapeutic outcomes in cancer patients. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyuan Gao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Wan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
29
|
Liu Y, Wang Y, Hu M, Xu S, Jiang F, Han Y, Liu Z. The role of IgG4 in systemic lupus erythematosus: Implications for pathogenesis and therapy. J Biochem Mol Toxicol 2024; 38:e23626. [PMID: 38229315 DOI: 10.1002/jbt.23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Immunoglobulin (Ig) G4 has a distinctive nature, and its involvement in autoimmune disorders is a subject of ongoing debate and uncertainty. A growing body of evidence indicates that IgG4 may play a pathogenic role in the development of systemic lupus erythematosus (SLE). The IgG4 autoantibodies have the capability to bind autoantigens in a competitive manner with other Ig classes, thereby forming immune complexes (ICs) that are noninflammatory in nature. This is due to the low affinity of IgG4 for both the Fc receptors and the C1 complement molecule, which results in a diminished inflammatory response in individuals with SLE. The present study aims to elucidate the significance of IgG4 in SLE. The present discourse pertains to the nascent and suggested modalities through which IgG4 might participate in the pathogenesis of SLE and the potential ramifications for therapeutic interventions in SLE.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Tannemaat MR, Huijbers MG, Verschuuren JJGM. Myasthenia gravis-Pathophysiology, diagnosis, and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:283-305. [PMID: 38494283 DOI: 10.1016/b978-0-12-823912-4.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males. Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes. Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test. Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.
Collapse
Affiliation(s)
- Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
31
|
Croote D, Wong JJW, Pecalvel C, Leveque E, Casanovas N, Kamphuis JBJ, Creeks P, Romero J, Sohail S, Bedinger D, Nadeau KC, Chinthrajah RS, Reber LL, Lowman HB. Widespread monoclonal IgE antibody convergence to an immunodominant, proanaphylactic Ara h 2 epitope in peanut allergy. J Allergy Clin Immunol 2024; 153:182-192.e7. [PMID: 37748654 PMCID: PMC10766438 DOI: 10.1016/j.jaci.2023.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Despite their central role in peanut allergy, human monoclonal IgE antibodies have eluded characterization. OBJECTIVE We sought to define the sequences, affinities, clonality, and functional properties of human monoclonal IgE antibodies in peanut allergy. METHODS We applied our single-cell RNA sequencing-based SEQ SIFTER discovery platform to samples from allergic individuals who varied by age, sex, ethnicity, and geographic location in order to understand commonalities in the human IgE response to peanut allergens. Select antibodies were then recombinantly expressed and characterized for their allergen and epitope specificity, affinity, and functional properties. RESULTS We found striking convergent evolution of IgE monoclonal antibodies (mAbs) from several clonal families comprising both memory B cells and plasmablasts. These antibodies bound with subnanomolar affinity to the immunodominant peanut allergen Ara h 2, specifically a linear, repetitive motif. Further characterization of these mAbs revealed their ability to single-handedly cause affinity-dependent degranulation of human mast cells and systemic anaphylaxis on peanut allergen challenge in humanized mice. Finally, we demonstrated that these mAbs, reengineered as IgGs, inhibit significant, but variable, amounts of Ara h 2- and peanut-mediated degranulation of mast cells sensitized with allergic plasma. CONCLUSIONS Convergent evolution of IgE mAbs in peanut allergy is a common phenomenon that can reveal immunodominant epitopes on major allergenic proteins. Understanding the functional properties of these molecules is key to developing therapeutics, such as competitive IgG inhibitors, that are able to stoichiometrically outcompete endogenous IgE for allergen and thereby prevent allergic cascade in cases of accidental allergen exposure.
Collapse
Affiliation(s)
| | | | - Cyprien Pecalvel
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Edouard Leveque
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Natacha Casanovas
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Jasper B J Kamphuis
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | | | | | | | | | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Rebecca S Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | | |
Collapse
|
32
|
Lekki-Jóźwiak J, Bąska P. The Roles of Various Immune Cell Populations in Immune Response against Helminths. Int J Mol Sci 2023; 25:420. [PMID: 38203591 PMCID: PMC10778651 DOI: 10.3390/ijms25010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Helminths are multicellular parasites that are a substantial problem for both human and veterinary medicine. According to estimates, 1.5 billion people suffer from their infection, resulting in decreased life quality and burdens for healthcare systems. On the other hand, these infections may alleviate autoimmune diseases and allergy symptoms. The immune system is programmed to combat infections; nevertheless, its effector mechanisms may result in immunopathologies and exacerbate clinical symptoms. This review summarizes the role of the immune response against worms, with an emphasis on the Th2 response, which is a hallmark of helminth infections. We characterize non-immune cells (enteric tuft cells-ETCs) responsible for detecting parasites, as well as the role of hematopoietic-derived cells (macrophages, basophils, eosinophils, neutrophils, innate lymphoid cells group 2-ILC2s, mast cells, T cells, and B cells) in initiating and sustaining the immune response, as well as the functions they play in granulomas. The aim of this paper is to review the existing knowledge regarding the immune response against helminths, to attempt to decipher the interactions between cells engaged in the response, and to indicate the gaps in the current knowledge.
Collapse
Affiliation(s)
- Janina Lekki-Jóźwiak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
33
|
Pan Y, Rohde M, Zeitler J, Namburi SVS, Cao L, Hu J, Meyer K, Lu Y. A sensitive AAV transduction inhibition assay assists evaluation of critical factors for detection and concordance of pre-existing antibodies. Mol Ther Methods Clin Dev 2023; 31:101126. [PMID: 37920239 PMCID: PMC10618111 DOI: 10.1016/j.omtm.2023.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Pre-existing antibodies to viral capsids may have a negative impact on the efficacy and safety of adeno-associated virus (AAV)-based gene therapies. Total antibody (TAb) and/or cell-based transduction inhibition (TI) assays have been used to exclude seropositive individuals in clinical studies. Published AAV seroprevalence and patient enrollment criteria regarding antibody status lack comparability between assay formats, hindering a direct cross-study comparison. To identify critical factors impacting TI assay detection of AAV neutralizing antibodies (NAbs), we created a reporter construct expressing NanoLuc® luciferase (Nluc) that enabled a more sensitive and robust detection of AAV6 NAbs than using firefly luciferase. Assessment of additional factors including multiplicity of infection, cell lines, viral production, and capsid purity revealed the reporter is the major determinant of assay sensitivity impacting NAb detection. The Nluc reporter was further used to assess seroprevalence to AAV5, 8, and 9. Last, we compared AAV6 Nluc TI with two TAb assay formats. A higher correlation of Nluc TI was observed with direct binding (90%) than with the more sensitive bridging TAb assay (65%), suggesting both assay sensitivity and TAb formats contribute to AAV seropositivity concordance. Our results support a need to standardize assay formats to ensure proper assessment of pre-existing AAV immunity.
Collapse
Affiliation(s)
- Yonghua Pan
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Michelle Rohde
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Jennifer Zeitler
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | | | - Liching Cao
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Jing Hu
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Kathleen Meyer
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| | - Yanmei Lu
- Sangamo Therapeutics, Inc, 7000 Marina Boulevard, Brisbane, CA 94005, USA
| |
Collapse
|
34
|
Oskam N, den Boer MA, Lukassen MV, Ooijevaar-de Heer P, Veth TS, van Mierlo G, Lai SH, Derksen NIL, Yin V, Streutker M, Franc V, Šiborová M, Damen MJA, Kos D, Barendregt A, Bondt A, van Goudoever JB, de Haas CJC, Aerts PC, Muts RM, Rooijakkers SHM, Vidarsson G, Rispens T, Heck AJR. CD5L is a canonical component of circulatory IgM. Proc Natl Acad Sci U S A 2023; 120:e2311265120. [PMID: 38055740 PMCID: PMC10723121 DOI: 10.1073/pnas.2311265120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L.
Collapse
Affiliation(s)
- Nienke Oskam
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Maurits A. den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marie V. Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Tim S. Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Gerard van Mierlo
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Ninotska I. L. Derksen
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marij Streutker
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Marta Šiborová
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Mirjam J. A. Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Dorien Kos
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Johannes B. van Goudoever
- Amsterdam University Medical Center, Vrije Universiteit, University of Amsterdam, Emma Children's Hospital, Amsterdam1105 AZ, the Netherlands
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht3584 CX, the Netherlands
| | - Gestur Vidarsson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, Amsterdam1066 CX, the Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| |
Collapse
|
35
|
Eriksen C, Moll JM, Myers PN, Pinto ARA, Danneskiold-Samsøe NB, Dehli RI, Rosholm LB, Dalgaard MD, Penders J, Jonkers DM, Pan-Hammarström Q, Hammarström L, Kristiansen K, Brix S. IgG and IgM cooperate in coating of intestinal bacteria in IgA deficiency. Nat Commun 2023; 14:8124. [PMID: 38065985 PMCID: PMC10709418 DOI: 10.1038/s41467-023-44007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Immunoglobulin A (IgA) is acknowledged to play a role in the defence of the mucosal barrier by coating microorganisms. Surprisingly, IgA-deficient humans exhibit few infection-related complications, raising the question if the more specific IgG may help IgM in compensating for the lack of IgA. Here we employ a cohort of IgA-deficient humans, each paired with IgA-sufficient household members, to investigate multi-Ig bacterial coating. In IgA-deficient humans, IgM alone, and together with IgG, recapitulate coating of most bacterial families, despite an overall 3.6-fold lower Ig-coating. Bacterial IgG coating is dominated by IgG1 and IgG4. Single-IgG2 bacterial coating is sparse and linked to enhanced Escherichia coli load and TNF-α. Although single-IgG2 coating is 1.6-fold more prevalent in IgA deficiency than in healthy controls, it is 2-fold less prevalent than in inflammatory bowel disease. Altogether we demonstrate that IgG assists IgM in coating of most bacterial families in the absence of IgA and identify single-IgG2 bacterial coating as an inflammatory marker.
Collapse
Affiliation(s)
- Carsten Eriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Janne Marie Moll
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pernille Neve Myers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana Rosa Almeida Pinto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Rasmus Ibsen Dehli
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lisbeth Buus Rosholm
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School for Nutrition and Translational Research in Metabolism & Care and Public Health Research Institute CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daisy Mae Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karsten Kristiansen
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, Shandong, China
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| |
Collapse
|
36
|
Paardekooper LM, Fillié-Grijpma YE, van der Sluijs-Gelling AJ, Zlei M, van Doorn R, Vermeer MH, Paunovic M, Titulaer MJ, van der Maarel SM, van Dongen JJM, Verschuuren JJ, Huijbers MG. Autoantibody subclass predominance is not driven by aberrant class switching or impaired B cell development. Clin Immunol 2023; 257:109817. [PMID: 37925120 DOI: 10.1016/j.clim.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.
Collapse
Affiliation(s)
| | | | | | - Mihaela Zlei
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manuela Paunovic
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
37
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
38
|
Rispens T, Huijbers MG. The unique properties of IgG4 and its roles in health and disease. Nat Rev Immunol 2023; 23:763-778. [PMID: 37095254 PMCID: PMC10123589 DOI: 10.1038/s41577-023-00871-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
IgG4 is the least abundant subclass of IgG in human serum and has unique functional features. IgG4 is largely unable to activate antibody-dependent immune effector responses and, furthermore, undergoes Fab (fragment antigen binding)-arm exchange, rendering it bispecific for antigen binding and functionally monovalent. These properties of IgG4 have a blocking effect, either on the immune response or on the target protein of IgG4. In this Review, we discuss the unique structural characteristics of IgG4 and how these contribute to its roles in health and disease. We highlight how, depending on the setting, IgG4 responses can be beneficial (for example, in responses to allergens or parasites) or detrimental (for example, in autoimmune diseases, in antitumour responses and in anti-biologic responses). The development of novel models for studying IgG4 (patho)physiology and understanding how IgG4 responses are regulated could offer insights into novel treatment strategies for these IgG4-associated disease settings.
Collapse
Affiliation(s)
- Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
39
|
Kappen J, Diamant Z, Agache I, Bonini M, Bousquet J, Canonica GW, Durham SR, Guibas GV, Hamelmann E, Jutel M, Papadopoulos NG, Roberts G, Shamji MH, Zieglmayer P, Gerth van Wijk R, Pfaar O. Standardization of clinical outcomes used in allergen immunotherapy in allergic asthma: An EAACI position paper. Allergy 2023; 78:2835-2850. [PMID: 37449468 DOI: 10.1111/all.15817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION In allergic asthma patients, one of the more common phenotypes might benefit from allergen immunotherapy (AIT) as add-on intervention to pharmacological treatment. AIT is a treatment with disease-modifying modalities, the evidence for efficacy is based on controlled clinical trials following standardized endpoint measures. However, so far there is a lack of a consensus for asthma endpoints in AIT trials. The aim of a task force (TF) of the European Academy of Allergy and Clinical Immunology (EAACI) is evaluating several outcome measures for AIT in allergic asthma. METHODS The following domains of outcome measures in asthmatic patients have been evaluated for this position paper (PP): (i) exacerbation rate, (ii) lung function, (iii) ICS withdrawal, (iv) symptoms and rescue medication use, (v) questionnaires (PROMS), (vi) bronchial/nasal provocation, (vii) allergen exposure chambers (AEC) and (viii) biomarkers. RESULTS Exacerbation rate can be used as a reliable objective primary outcome; however, there is limited evidence due to different definitions of exacerbation. The time after ICS withdrawal to first exacerbation is considered a primary outcome measure. Besides, the advantages and disadvantages and clinical implications of further domains of asthma endpoints in AIT trials are elaborated in this PP. CONCLUSION This EAACI-PP aims to highlight important aspects of current asthma measures by critically evaluating their applicability for controlled trials of AIT.
Collapse
Affiliation(s)
- Jasper Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
| | - Zuzana Diamant
- Departmentt of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | | | - Matteo Bonini
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Clinical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Jean Bousquet
- Charite Universitatsmedizin Berlin Campus Berlin Buch, MASK-air, Montpellier, France
| | - G Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic Humanitas University & Research Hospital-IRCCS, Milan, Italy
| | - Stephen R Durham
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - George V Guibas
- Department of Allergy and Clinical Immunology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, UK
| | - Eckard Hamelmann
- Children's Center Bethel, University Hospital Bielefeld, University Bielefeld, Bielefeld, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | | | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, UK
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Petra Zieglmayer
- Karl Landsteiner University, Competence Center for Allergology and Immunology, Krems, Austria
| | - Roy Gerth van Wijk
- Section of Allergology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
40
|
Xiang D, Li N, Liu L, Yu H, Li X, Zhao T, Liu D, Gong X. Development and validation of enzyme-linked immunosorbent assays for the measurement of infliximab and anti-drug antibody levels. Heliyon 2023; 9:e21858. [PMID: 38034789 PMCID: PMC10682623 DOI: 10.1016/j.heliyon.2023.e21858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Infliximab and its anti-drug antibody (ADA) serum concentrations exhibit a strong correlation with clinical response and loss of response. The use of therapeutic drug monitoring to measure the concentration of infliximab and ADA can facilitate clinical decision-making, helping patients attain optimal therapeutic effects. However, there are still limitations to the existing infliximab and its ADA detection methods. Therefore, this study aimed to develop and validate enzyme-linked immunosorbent assay (ELISA)-based methods for measuring infliximab and its ADA levels in human plasma according to the general recommendations for immunoassays. Free infliximab is bound by recombinant TNF-α and detected using HRP-labeled anti-human antibody. The ADA is captured by on-plate-coated infliximab and recognized by biotin-labeled infliximab. Two bridging ELISA assays were developed and after assay optimization and validation, these assays have been applied in ten patients with inflammatory bowel disease (IBD). In infliximab detection assay, a standard curve ranging from 0.10 μg/mL to 8.0 μg/mL with great precision and accuracy has been established. Drug tolerance of the ADA assay was that 100 ng/mL ADA could tolerate at least 5.0 μg/mL infliximab in the plasma using a commercially available monoclonal anti-infliximab antibody as the positive control. The ADA screening and confirmatory assays achieved a sensitivity of 36.74 ng/mL and 37.15 ng/mL, respectively. All other assay characteristics met the requirements. The mean concentration of infliximab in eight patients with IBD was 7.88 (1.87-21.1) μg/mL, and the ADA levels were all negative. Moreover, the concentrations of infliximab in the remaining two patients were below the LLOQ and the ADAs were positive. Thus, accurate and sensitive ELISA methods have been developed and validated for the detection of infliximab and its ADA concentrations and have been successfully applied to clinical therapeutic drug monitoring.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ninghong Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pharmacy, Nanchang First Hospital, Nanchang, 330008, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiping Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tinghui Zhao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
41
|
Kadkhoda K. Post-COVID mRNA-vaccine IgG4 shift: worrisome? mSphere 2023; 8:e0008523. [PMID: 37191589 PMCID: PMC10449502 DOI: 10.1128/msphere.00085-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
COVID-19 vaccines play a key role in ending the pandemic. Unraveling the immunological phenomena involved in offering protective immunity is the cornerstone of achieving such success. This perspective evaluates the possible mechanisms and implications of IgG4 production in response to mRNA-based COVID-19 vaccines.
Collapse
Affiliation(s)
- Kamran Kadkhoda
- Immunopathology Laboratory, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
42
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
43
|
Tolmacheva AS, Onvumere MK, Sedykh SE, Timofeeva AM, Nevinsky GA. Catalase Activity of IgGs of Patients Infected with SARS-CoV-2. Int J Mol Sci 2023; 24:10081. [PMID: 37373231 DOI: 10.3390/ijms241210081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by the SARS-CoV-2 coronavirus, leads to various manifestations of the post-COVID syndrome, including diabetes, heart and kidney disease, thrombosis, neurological and autoimmune diseases and, therefore, remains, so far, a significant public health problem. In addition, SARS-CoV-2 infection can lead to the hyperproduction of reactive oxygen species (ROS), causing adverse effects on oxygen transfer efficiency, iron homeostasis, and erythrocytes deformation, contributing to thrombus formation. In this work, the relative catalase activity of the serum IgGs of patients recovered from COVID-19, healthy volunteers vaccinated with Sputnik V, vaccinated with Sputnik V after recovering from COVID-19, and conditionally healthy donors were analyzed for the first time. Previous reports show that along with canonical antioxidant enzymes, the antibodies of mammals with superoxide dismutase, peroxidase, and catalase activities are involved in controlling reactive oxygen species levels. We here show that the IgGs from patients who recovered from COVID-19 had the highest catalase activity, and this was statistically significantly higher each compared to the healthy donors (1.9-fold), healthy volunteers vaccinated with Sputnik V (1.4-fold), and patients vaccinated after recovering from COVID-19 (2.1-fold). These data indicate that COVID-19 infection may stimulate the production of antibodies that degrade hydrogen peroxide, which is harmful at elevated concentrations.
Collapse
Affiliation(s)
- Anna S Tolmacheva
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Margarita K Onvumere
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Anna M Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
44
|
Underwood MI, Alwan F, Thomas MR, Scully MA, Crawley JTB. Autoantibodies enhance ADAMTS-13 clearance in patients with immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2023; 21:1544-1552. [PMID: 36813118 DOI: 10.1016/j.jtha.2023.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Severe deficiency in ADAMTS-13 (<10%) and the loss of von Willebrand factor-cleaving function can precipitate microvascular thrombosis associated with thrombotic thrombocytopenic purpura (TTP). Patients with immune-mediated TTP (iTTP) have anti-ADAMTS-13 immunoglobulin G antibodies that inhibit ADAMTS-13 function and/or increase ADAMTS-13 clearance. Patients with iTTP are treated primarily by plasma exchange (PEX), often in combination with adjunct therapies that target either the von Willebrand factor-dependent microvascular thrombotic processes (caplacizumab) or the autoimmune components (steroids or rituximab) of the disease. OBJECTIVES To investigate the contributions of autoantibody-mediated ADAMTS-13 clearance and inhibition in patients with iTTP at presentation and through the course of the PEX therapy. PATIENTS/METHODS Anti-ADAMTS-13 immunoglobulin G antibodies, ADAMTS-13 antigen, and activity were measured before and after each PEX in 17 patients with iTTP and 20 acute TTP episodes. RESULTS At presentation, 14 out of 15 patients with iTTP had ADAMTS-13 antigen levels of <10%, suggesting a major contribution of ADAMTS-13 clearance to the deficiency state. After the first PEX, both ADAMTS-13 antigen and activity levels increased similarly, and the anti-ADAMTS-13 autoantibody titer decreased in all patients, revealing ADAMTS-13 inhibition to be a modest modifier of the ADAMTS-13 function in iTTP. Analysis of ADAMTS-13 antigen levels between consecutive PEX treatments revealed that the rate of ADAMTS-13 clearance in 9 out of 14 patients analyzed was 4- to 10-fold faster than the estimated normal rate of clearance. CONCLUSION These data reveal, both at presentation and during PEX treatment, that antibody-mediated clearance of ADAMTS-13 is the major pathogenic mechanism that causes ADAMTS-13 deficiency in iTTP. Understanding the kinetics of ADAMTS-13 clearance in iTTP may now enable further optimization of treatment of patients with iTTP.
Collapse
Affiliation(s)
- Mary I Underwood
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Ferras Alwan
- Haemophilia Centre, Imperial College Healthcare Trust, London, United Kingdom; University College Hospital, London, United Kingdom
| | | | | | - James T B Crawley
- Centre for Haematology, Imperial College London, London, United Kingdom.
| |
Collapse
|
45
|
Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2023; 11:vaccines11050991. [PMID: 37243095 DOI: 10.3390/vaccines11050991] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Less than a year after the global emergence of the coronavirus SARS-CoV-2, a novel vaccine platform based on mRNA technology was introduced to the market. Globally, around 13.38 billion COVID-19 vaccine doses of diverse platforms have been administered. To date, 72.3% of the total population has been injected at least once with a COVID-19 vaccine. As the immunity provided by these vaccines rapidly wanes, their ability to prevent hospitalization and severe disease in individuals with comorbidities has recently been questioned, and increasing evidence has shown that, as with many other vaccines, they do not produce sterilizing immunity, allowing people to suffer frequent re-infections. Additionally, recent investigations have found abnormally high levels of IgG4 in people who were administered two or more injections of the mRNA vaccines. HIV, Malaria, and Pertussis vaccines have also been reported to induce higher-than-normal IgG4 synthesis. Overall, there are three critical factors determining the class switch to IgG4 antibodies: excessive antigen concentration, repeated vaccination, and the type of vaccine used. It has been suggested that an increase in IgG4 levels could have a protecting role by preventing immune over-activation, similar to that occurring during successful allergen-specific immunotherapy by inhibiting IgE-induced effects. However, emerging evidence suggests that the reported increase in IgG4 levels detected after repeated vaccination with the mRNA vaccines may not be a protective mechanism; rather, it constitutes an immune tolerance mechanism to the spike protein that could promote unopposed SARS-CoV2 infection and replication by suppressing natural antiviral responses. Increased IgG4 synthesis due to repeated mRNA vaccination with high antigen concentrations may also cause autoimmune diseases, and promote cancer growth and autoimmune myocarditis in susceptible individuals.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - William Makis
- Cross Cancer Institute, Alberta Health Services, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| |
Collapse
|
46
|
Manso T, Kushwaha A, Abdollahi N, Duroux P, Giudicelli V, Kossida S. Mechanisms of action of monoclonal antibodies in oncology integrated in IMGT/mAb-DB. Front Immunol 2023; 14:1129323. [PMID: 37215135 PMCID: PMC10196129 DOI: 10.3389/fimmu.2023.1129323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Cancer cells activate different immune checkpoint (IC) pathways in order to evade immunosurveillance. Immunotherapies involving ICs either block or stimulate these pathways and enhance the efficiency of the immune system to recognize and attack cancer cells. In this way, the development of monoclonal antibodies (mAbs) targeting ICs has significant success in cancer treatment. Recently, a systematic description of the mechanisms of action (MOA) of the mAbs has been introduced in IMGT/mAb-DB, the IMGT® database dedicated to mAbs for therapeutic applications. The characterization of these antibodies provides a comprehensive understanding of how mAbs work in cancer. Methods In depth biocuration taking advantage of the abundant literature data as well as amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, allowed to define a standardized and consistent description of the MOA of mAbs targeting immune checkpoints in cancer therapy. Results A fine description and a standardized graphical representation of the MOA of selected mAbs are integrated within IMGT/mAb-DB highlighting two main mechanisms in cancer immunotherapy, either Blocking or Agonist. In both cases, the mAbs enhance cytotoxic T lymphocyte (CTL)-mediated anti-tumor immune response (Immunostimulant effect) against tumor cells. On the one hand, mAbs targeting co-inhibitory receptors may have a functional Fc region to increase anti-tumor activity by effector properties that deplete Treg cells (Fc-effector function effect) or may have limited FcγR binding to prevent Teff cells depletion and reduce adverse events. On the other hand, agonist mAbs targeting co-stimulatory receptors may bind to FcγRs, resulting in antibody crosslinking (FcγR crosslinking effect) and substantial agonism. Conclusion In IMGT/mAb-DB, mAbs for cancer therapy are characterized by their chains, domains and sequence and by several therapeutic metadata, including their MOA. MOAs were recently included as a search criterion to query the database. IMGT® is continuing standardized work to describe the MOA of mAbs targeting additional immune checkpoints and novel molecules in cancer therapy, as well as expanding this study to other clinical domains.
Collapse
|
47
|
Zhang W, Quan Y, Ma X, Zeng L, Li J, Chen S, Su M, Hong L, Li P, Wang H, Xu Q, Zhao C, Zhu X, Geng Y, Yan X, Fang Z, Chen M, Tian D, Su M, Chen X, Gu J. Synergistic effect of glutathione and IgG4 in immune evasion and the implication for cancer immunotherapy. Redox Biol 2023; 60:102608. [PMID: 36681047 PMCID: PMC9868885 DOI: 10.1016/j.redox.2023.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We recently reported a novel IgG4-centered immune evasion mechanism in cancer, and this was achieved mostly through the Fc-Fc reaction of increased IgG4 to cancer-bound IgG in cancer microenvironment. The mechanism was suggested to be related to cancer hyperprogressive disease (HPD) which is a side-effect often associated to IgG4 subtype PD-1 antibody immunotherapy. HPD was reported to occur in cancers with certain mutated genes including KRAS and such mutations are often associated to glutathione (GSH) synthesis. Therefore, we hypothesize that IgG4 and GSH may play a synergistic role in local immunosuppression of cancer. METHODS Quantitatively analyzed the distribution and abundance of GSH and IgG4 in human cancer samples with ELISA and immunohistochemistry. The interactions between GSH and IgG4 were examined with Electrophoresis and Western Blot. The synergistic effects of the two on classic immune responses were investigated in vitro. The combined effects were also tested in a lung cancer model and a skin graft model in mice. RESULTS We detected significant increases of both GSH and IgG4 in the microenvironment of lung cancer, esophageal cancer, and colon cancer tissues. GSH disrupted the disulfide bond of IgG4 heavy chain and enhanced IgG4's ability of Fc-Fc reaction to immobilized IgG subtypes. Combined administration of IgG4 and GSH augmented the inhibitory effect of IgG4 on the classic ADCC, ADCP, and CDC reactions. Local administration of IgG4/GSH achieved the most obvious effect of accelerating cancer growth in the mouse lung cancer model. The same combination prolonged the survival of skin grafts between two different strains of mouse. In both models, immune cells and several cytokines were found to shift to the state of immune tolerance. CONCLUSION Combined application of GSH and IgG4 can promote tumor growth and protect skin graft. The mechanism may be achieved through the effect of the Fc-Fc reaction between IgG4 and other tissue-bound IgG subtypes resulting in local immunosuppression. This reaction was facilitated by increased GSH to dissociate the two heavy chains of IgG4 Fc fragment at its disulfide bonds. Our findings unveiled the interaction between the redox system and the immune systems in cancer microenvironment. It offers a sensible explanation for HPD and provides new possibilities for manipulating this mechanism for cancer immunotherapy.
Collapse
Affiliation(s)
- Weifeng Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Quan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaonan Ma
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liting Zeng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jirui Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shuqi Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Meng Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liangli Hong
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Penghao Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China
| | - Hui Wang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Xu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Chanyuan Zhao
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoqing Zhu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yiqun Geng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaomiao Yan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China
| | - Zheng Fang
- Motic China Group Co, Ltd, Xiamen, China
| | | | - Dongping Tian
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Min Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xueling Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China.
| |
Collapse
|
48
|
Abstract
Repeated doses of mRNA vaccines for COVID-19 result in increased proportions of anti-spike antibodies of the IgG4 subclass, which are known to neutralize well and to form mixed immune complexes with IgG1 but, in a pure form, might be less effective than IgG1 or IgG3 antibodies in facilitating opsonization by phagocytes, complement fixation, and NK cell-dependent elimination of infected cells (see related Research Article by Irrgang et al.).
Collapse
Affiliation(s)
- Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
49
|
Taieb G, Jentzer A, Vegezzi E, Lleixà C, Illa I, Querol L, Devaux JJ. Effect of monovalency on anti-contactin-1 IgG4. Front Immunol 2023; 14:1021513. [PMID: 36999029 PMCID: PMC10045471 DOI: 10.3389/fimmu.2023.1021513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionAutoimmune nodopathies (AN) have been diagnosed in a subset of patients fulfilling criteria for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) who display no or poor response to intravenous immunoglobulins. Biomarkers of AN are autoantibodies, mainly IgG4, directed against the ternary paranodal complex composed by neurofascin-155, contactin-1 (CNTN1), and Contactin-associated-protein-1 (CASPR1) or against the nodal isoforms of neurofascin. IgG4 can undergo a Fab-arm exchange (FAE) which results in functionally monovalent antibody. This phenomenon differentially affects the pathogenicity of IgG4 depending on the target of autoantibodies. Here, we have evaluated this issue by examining the impact of valency on anti-CNTN1 IgG4 which induces paranodal destruction through a function blocking activity.MethodsSera were obtained from 20 patients with AN associated with anti-CNTN1 antibodies. The proportion of monospecific/bispecific anti-CNTN1 antibodies was estimated in each patient by ELISA by examining the ability of serum antibodies to cross-link untagged CNTN1 with biotinylated CNTN1. To determine the impact of monovalency, anti-CNTN1 IgG4 were enzymatically digested into monovalent Fab and tested in vitro on cell aggregation assay. Also, intraneural injections were performed to determine whether monovalent Fab and native IgG4 may penetrate paranode, and antibody infiltration was monitored 1- and 3-days post injection.Results and discussionWe found that the percentage of monospecific antibodies were lower than 5% in 14 out of 20 patients (70%), suggesting that IgG4 have undergone extensive FAE in situ. The levels of monospecific antibodies correlated with the titers of anti-CNTN1 antibodies. However, no correlation was found with clinical severity, and patients with low or high percentage of monospecific antibodies similarly showed a severe phenotype. Native anti-CNTN1 IgG4 were shown to inhibit the interaction between cells expressing CNTN1/CASPR1 and cells expressing neurofascin-155 using an in vitro aggregation assay. Similarly, monovalent Fab significantly inhibited the interaction between CNTN1/CASPR1 and neurofascin-155. Intraneural injections of Fab and native anti-CNTN1 IgG4 indicated that both mono- and bivalent anti-CNTN1 IgG4 potently penetrated the paranodal regions and completely invaded this region by day 3. Altogether, these data indicate anti-CNTN1 IgG4 are mostly bispecific in patients, and that functionally monovalent anti-CNTN1 antibodies have the pathogenic potency to alter paranode.
Collapse
Affiliation(s)
- Guillaume Taieb
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurology, CHU Montpellier, Hôpital Gui de Chauliac, Montpellier, France
| | - Alexandre Jentzer
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Department of Immunology, CHU Montpellier, Hôpital Saint-Eloi, Montpellier, France
| | - Elisa Vegezzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Luis Querol
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jérôme J. Devaux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- *Correspondence: Jérôme J. Devaux,
| |
Collapse
|
50
|
Qin Y, Wu G, Jin J, Wang H, Zhang J, Liu L, Zhao H, Wang J, Yang X. A fully human connective tissue growth factor blocking monoclonal antibody ameliorates experimental rheumatoid arthritis through inhibiting angiogenesis. BMC Biotechnol 2023; 23:6. [PMID: 36869335 PMCID: PMC9985226 DOI: 10.1186/s12896-023-00776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Connective tissue growth factor (CTGF) plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA) by facilitating angiogenesis and is a promising therapeutic target for RA treatment. Herein, we generated a fully human CTGF blocking monoclonal antibody (mAb) through phage display technology. RESULTS A single-chain fragment variable (scFv) with a high affinity to human CTGF was isolated through screening a fully human phage display library. We carried out affinity maturation to elevate its affinity for CTGF and reconstructed it into a full-length IgG1 format for further optimization. Surface plasmon resonance (SPR) data showed that full-length antibody IgG mut-B2 bound to CTGF with a dissociation constant (KD) as low as 0.782 nM. In the collagen-induced arthritis (CIA) mice, IgG mut-B2 alleviated arthritis and decreased the level of pro-inflammatory cytokines in a dose-dependent manner. Furthermore, we confirmed that the TSP-1 domain of CTGF is essential for the interaction. Additionally, the results of Transwell assays, tube formation experiments, and chorioallantoic membrane (CAM) assays showed that IgG mut-B2 could effectively inhibit angiogenesis. CONCLUSION The fully human mAb that antagonizes CTGF could effectively alleviate arthritis in CIA mice, and its mechanism is tightly associated with the TSP-1 domain of CTGF.
Collapse
Affiliation(s)
- Yang Qin
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Gan Wu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.,Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying, Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Jin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Hao Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Heping Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China. .,Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying, Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|