1
|
Agata A, Nomura T. Thermal Adaptations in Animals: Genes, Development, and Evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:253-265. [PMID: 39289287 DOI: 10.1007/978-981-97-4584-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermal adaptation to environmental temperature is a driving force in animal evolution. This chapter presents thermal adaptation in ectotherms and endotherms from the perspective of developmental biology. In ectotherms, there are known examples of temperature influencing morphological characteristics, such as seasonal color change, melanization, and sex determination. Furthermore, the timing of embryonic development also varies with environmental temperature. This review will introduce the cellular and molecular mechanisms underlying temperature-dependent embryogenesis. The evolution of thermal adaptation in endotherms is also important for survival in cold climates. Recent genome-wide studies have revealed adaptive mutations in the genomes of extant humans as well as extinct species such as woolly mammoths and Neanderthals. These studies have shown that single-nucleotide polymorphisms in physiologically related genes (e.g., CPT1A, LRP5, THATA, PRKG1, and FADS1-3) allow humans to live in cold climates. At the end of this chapter, we present the remaining questions in terms of genetic assimilation, heat shock protein Hsp90, and embryonic development.
Collapse
Affiliation(s)
- Ako Agata
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
2
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
3
|
Liebing AD, Krumbholz P, Stäubert C. Protocol to characterize G i/o and G s protein-coupled receptors in transiently transfected cells using ELISA and cAMP measurements. STAR Protoc 2023; 4:102120. [PMID: 36853674 PMCID: PMC9958081 DOI: 10.1016/j.xpro.2023.102120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Activation of Gs or Gi/o protein-coupled receptors (GPCRs) leads to changes of intracellular cyclic adenosine monophosphate (cAMP) levels. This protocol describes steps for cloning HA- and FLAG-tagged GPCRs, transient transfection of CHO-K1 or HEK293-T cells, and determination of basal and ligand-induced changes in intracellular cAMP levels. We detail enzyme-linked immunosorbent assays to determine relative GPCR plasma membrane and total expression levels. For complete details on the use and execution of this protocol, please refer to Schulze et al. (2022).1.
Collapse
Affiliation(s)
- Aenne-Dorothea Liebing
- Rudolf-Schönheimer Institute for Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Petra Krumbholz
- Rudolf-Schönheimer Institute for Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Claudia Stäubert
- Rudolf-Schönheimer Institute for Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
4
|
Schroeder L, Ackermann RR. Moving beyond the adaptationist paradigm for human evolution, and why it matters. J Hum Evol 2023; 174:103296. [PMID: 36527977 DOI: 10.1016/j.jhevol.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
The Journal of Human Evolution (JHE) was founded 50 years ago when much of the foundation for how we think about human evolution was in place or being put in place, providing the main framework for how we consider our origins today. Here, we will explore historical developments, including early JHE outputs, as they relate to our understanding of the relationship between phenotypic variation and evolutionary process, and use that as a springboard for considering our current understanding of these links as applied to human evolution. We will focus specifically on how the study of variation itself has shifted us away from taxonomic and adaptationist perspectives toward a richer understanding of the processes shaping human evolutionary history, using literature searches and specific test cases to highlight this. We argue that natural selection, gene exchange, genetic drift, and mutation should not be considered individually when considering the production of hominin diversity. In this context, we offer suggestions for future research directions and reflect on this more complex understanding of human evolution and its broader relevance to society. Finally, we end by considering authorship demographics and practices in the last 50 years within JHE and how a shift in these demographics has the potential to reshape the science of human evolution going forward.
Collapse
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Rebecca Rogers Ackermann
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa; Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
5
|
Kempf E, Landgraf K, Stein R, Hanschkow M, Hilbert A, Abou Jamra R, Boczki P, Herberth G, Kühnapfel A, Tseng YH, Stäubert C, Schöneberg T, Kühnen P, Rayner NW, Zeggini E, Kiess W, Blüher M, Körner A. Aberrant expression of agouti signaling protein (ASIP) as a cause of monogenic severe childhood obesity. Nat Metab 2022; 4:1697-1712. [PMID: 36536132 PMCID: PMC9771800 DOI: 10.1038/s42255-022-00703-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
Here we report a heterozygous tandem duplication at the ASIP (agouti signaling protein) gene locus causing ubiquitous, ectopic ASIP expression in a female patient with extreme childhood obesity. The mutation places ASIP under control of the ubiquitously active itchy E3 ubiquitin protein ligase promoter, driving the generation of ASIP in patient-derived native and induced pluripotent stem cells for all germ layers and hypothalamic-like neurons. The patient's phenotype of early-onset obesity, overgrowth, red hair and hyperinsulinemia is concordant with that of mutant mice ubiquitously expressing the homolog nonagouti. ASIP represses melanocyte-stimulating hormone-mediated activation as a melanocortin receptor antagonist, which might affect eating behavior, energy expenditure, adipocyte differentiation and pigmentation, as observed in the index patient. As the type of mutation escapes standard genetic screening algorithms, we rescreened the Leipzig Childhood Obesity cohort of 1,745 patients and identified four additional patients with the identical mutation, ectopic ASIP expression and a similar phenotype. Taken together, our data indicate that ubiquitous ectopic ASIP expression is likely a monogenic cause of human obesity.
Collapse
Affiliation(s)
- Elena Kempf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Robert Stein
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anja Hilbert
- Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Rami Abou Jamra
- University Medical Center Leipzig, Institute of Human Genetics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Paula Boczki
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Kühnapfel
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Claudia Stäubert
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Division of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - N William Rayner
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Translational Genomics, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Wieland Kiess
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- LIFE-Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany.
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
- LIFE-Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
6
|
Kanakachari M, Ashwini R, Chatterjee RN, Bhattacharya TK. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Front Genet 2022; 13:990849. [PMID: 36313432 PMCID: PMC9616467 DOI: 10.3389/fgene.2022.990849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Muscle development, egg production, and plumage colors are different between native and broiler chickens. The study was designed to investigate why improved Aseel (PD4) is colorful, stronger, and grew slowly compared with the control broiler (CB). Methods: A microarray was conducted using the 7th-day embryo (7EB) and 18th-day thigh muscle (18TM) of improved Aseel and broiler, respectively. Also, we have selected 24 Gallus gallus candidate reference genes from NCBI, and total RNA was isolated from the broiler, improved Aseel embryo tissues, and their expression profiles were studied by real-time quantitative PCR (qPCR). Furthermore, microarray data were validated with qPCR using improved Aseel and broiler embryo tissues. Results: In the differential transcripts screening, all the transcripts obtained by microarray of slow and fast growth groups were screened by fold change ≥ 1 and false discovery rate (FDR) ≤ 0.05. In total, 8,069 transcripts were differentially expressed between the 7EB and 18TM of PD4 compared to the CB. A further analysis showed that a high number of transcripts are differentially regulated in the 7EB of PD4 (6,896) and fewer transcripts are differentially regulated (1,173) in the 18TM of PD4 compared to the CB. On the 7th- and 18th-day PD4 embryos, 3,890, 3,006, 745, and 428 transcripts were up- and downregulated, respectively. The commonly up- and downregulated transcripts are 91 and 44 between the 7th- and 18th-day of embryos. In addition, the best housekeeping gene was identified. Furthermore, we validated the differentially expressed genes (DEGs) related to muscle growth, myostatin signaling and development, and fatty acid metabolism genes in PD4 and CB embryo tissues by qPCR, and the results correlated with microarray expression data. Conclusion: Our study identified DEGs that regulate the myostatin signaling and differentiation pathway; glycolysis and gluconeogenesis; fatty acid metabolism; Jak-STAT, mTOR, and TGF-β signaling pathways; tryptophan metabolism; and PI3K-Akt signaling pathways in PD4. The results revealed that the gene expression architecture is present in the improved Aseel exhibiting embryo growth that will help improve muscle development, differentiation, egg production, protein synthesis, and plumage formation in PD4 native chickens. Our findings may be used as a model for improving the growth in Aseel as well as optimizing the growth in the broiler.
Collapse
Affiliation(s)
- M. Kanakachari
- ICAR-Directorate of Poultry Research, Hyderabad, India
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - R. Ashwini
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | | | - T. K. Bhattacharya
- ICAR-Directorate of Poultry Research, Hyderabad, India
- *Correspondence: T. K. Bhattacharya,
| |
Collapse
|
7
|
Ji RL, Tao YX. Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:179-213. [PMID: 35595349 DOI: 10.1016/bs.pmbts.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor expressed in cutaneous and hair follicle melanocytes, and plays a central role in coat color determination in vertebrates. Numerous MC1R variants have been identified in diverse species. Some of these variants have been associated with specific hair and skin color phenotypes in humans as well as coat color in animals. Gain-of-function mutations of the MC1R gene cause dominant or partially dominant black/dark coat color, and loss-of-function mutations of the MC1R gene cause recessive or partially recessive red/yellow/pale coat color phenotypes. These have been well documented in a large number of mammals, including human, dog, cattle, horse, sheep, pig, and fox. Higher similarities between large mammals and humans makes them better models to understand pathogenesis of human diseases caused by MC1R mutations. High identities in MC1Rs and similar variants identified in both humans and large mammals also provide an opportunity for receptor structure and function study. In this review, we aim to summarize the naturally occurring mutations of MC1R in humans and large animals.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
8
|
Jara E, Peñagaricano F, Armstrong E, Menezes C, Tardiz L, Rodons G, Iriarte A. Identification of Long Noncoding RNAs Involved in Eyelid Pigmentation of Hereford Cattle. Front Genet 2022; 13:864567. [PMID: 35601493 PMCID: PMC9114348 DOI: 10.3389/fgene.2022.864567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Several ocular pathologies in cattle, such as ocular squamous cell carcinoma and infectious keratoconjunctivitis, have been associated with low pigmentation of the eyelids. The main objective of this study was to analyze the transcriptome of eyelid skin in Hereford cattle using strand-specific RNA sequencing technology to characterize and identify long noncoding RNAs (lncRNAs). We compared the expression of lncRNAs between pigmented and unpigmented eyelids and analyzed the interaction of lncRNAs and putative target genes to reveal the genetic basis underlying eyelid pigmentation in cattle. We predicted 4,937 putative lncRNAs mapped to the bovine reference genome, enriching the catalog of lncRNAs in Bos taurus. We found 27 differentially expressed lncRNAs between pigmented and unpigmented eyelids, suggesting their involvement in eyelid pigmentation. In addition, we revealed potential links between some significant differentially expressed lncRNAs and target mRNAs involved in the immune response and pigmentation. Overall, this study expands the catalog of lncRNAs in cattle and contributes to a better understanding of the biology of eyelid pigmentation.
Collapse
Affiliation(s)
- Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Eileen Armstrong
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Claudia Menezes
- Laboratorio de Endocrinología y Metabolismo Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Lucía Tardiz
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Gastón Rodons
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de La República, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- *Correspondence: Andrés Iriarte,
| |
Collapse
|
9
|
Weasel L. How Neanderthals became White: The introgression of race into contemporary human evolutionary genomics. Am Nat 2022; 200:129-139. [DOI: 10.1086/720130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Jin Y, Tong H, Shao G, Li J, Lv Y, Wo Y, Brown RP, Fu C. Dorsal Pigmentation and Its Association with Functional Variation in MC1R in a Lizard from Different Elevations on the Qinghai-Tibetan Plateau. Genome Biol Evol 2021; 12:2303-2313. [PMID: 33095228 PMCID: PMC7719228 DOI: 10.1093/gbe/evaa225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Identification of the role of the MC1R gene has provided major insights into variation in skin pigmentation in several organisms, including humans, but the evolutionary genetics of this variation is less well established. Variation in this gene and its relationship with degree of melanism was analyzed in one of the world’s highest-elevation lizards, Phrynocephalus theobaldi from the Qinghai–Tibetan Plateau. Individuals from the low-elevation group were shown to have darker dorsal pigmentation than individuals from a high-elevation group. The existence of climatic variation across these elevations was quantified, with lower elevations exhibiting higher air pressure, temperatures, and humidity, but less wind and insolation. Analysis of the MC1R gene in 214 individuals revealed amino acid differences at five sites between intraspecific sister lineages from different elevations, with two sites showing distinct fixed residues at low elevations. Three of the four single-nucleotide polymorphisms that underpinned these amino acid differences were highly significant outliers, relative to the generalized MC1R population structuring, suggestive of selection. Transfection of cells with an MC1R allele from a lighter high-elevation population caused a 43% reduction in agonist-induced cyclic AMP accumulation, and hence lowered melanin synthesis, relative to transfection with an allele from a darker low-elevation population. The high-elevation allele led to less efficient integration of the MC1R protein into melanocyte membranes. Our study identifies variation in the degree of melanism that can be explained by four or fewer MC1R substitutions. We establish a functional link between these substitutions and melanin synthesis and demonstrate elevation-associated shifts in their frequencies.
Collapse
Affiliation(s)
- Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haojie Tong
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiasheng Li
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yudie Lv
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yubin Wo
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Richard P Brown
- College of Life Sciences, China Jiliang University, Hangzhou, China.,School of Biological & Environmental Sciences, Liverpool John Moores University, United Kingdom
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
11
|
Findley AS, Zhang X, Boye C, Lin YL, Kalita CA, Barreiro L, Lohmueller KE, Pique-Regi R, Luca F. A signature of Neanderthal introgression on molecular mechanisms of environmental responses. PLoS Genet 2021; 17:e1009493. [PMID: 34570765 PMCID: PMC8509894 DOI: 10.1371/journal.pgen.1009493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/12/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Ancient human migrations led to the settlement of population groups in varied environmental contexts worldwide. The extent to which adaptation to local environments has shaped human genetic diversity is a longstanding question in human evolution. Recent studies have suggested that introgression of archaic alleles in the genome of modern humans may have contributed to adaptation to environmental pressures such as pathogen exposure. Functional genomic studies have demonstrated that variation in gene expression across individuals and in response to environmental perturbations is a main mechanism underlying complex trait variation. We considered gene expression response to in vitro treatments as a molecular phenotype to identify genes and regulatory variants that may have played an important role in adaptations to local environments. We investigated if Neanderthal introgression in the human genome may contribute to the transcriptional response to environmental perturbations. To this end we used eQTLs for genes differentially expressed in a panel of 52 cellular environments, resulting from 5 cell types and 26 treatments, including hormones, vitamins, drugs, and environmental contaminants. We found that SNPs with introgressed Neanderthal alleles (N-SNPs) disrupt binding of transcription factors important for environmental responses, including ionizing radiation and hypoxia, and for glucose metabolism. We identified an enrichment for N-SNPs among eQTLs for genes differentially expressed in response to 8 treatments, including glucocorticoids, caffeine, and vitamin D. Using Massively Parallel Reporter Assays (MPRA) data, we validated the regulatory function of 21 introgressed Neanderthal variants in the human genome, corresponding to 8 eQTLs regulating 15 genes that respond to environmental perturbations. These findings expand the set of environments where archaic introgression may have contributed to adaptations to local environments in modern humans and provide experimental validation for the regulatory function of introgressed variants.
Collapse
Affiliation(s)
- Anthony S. Findley
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Xinjun Zhang
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
| | - Carly Boye
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Yen Lung Lin
- Genetics Section, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cynthia A. Kalita
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Luis Barreiro
- Genetics Section, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
12
|
Kukla-Bartoszek M, Teisseyre P, Pośpiech E, Karłowska-Pik J, Zieliński P, Woźniak A, Boroń M, Dąbrowski M, Zubańska M, Jarosz A, Płoski R, Grzybowski T, Spólnicka M, Mielniczuk J, Branicki W. Searching for improvements in predicting human eye colour from DNA. Int J Legal Med 2021; 135:2175-2187. [PMID: 34259936 PMCID: PMC8523394 DOI: 10.1007/s00414-021-02645-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 01/29/2023]
Abstract
Increasing understanding of human genome variability allows for better use of the predictive potential of DNA. An obvious direct application is the prediction of the physical phenotypes. Significant success has been achieved, especially in predicting pigmentation characteristics, but the inference of some phenotypes is still challenging. In search of further improvements in predicting human eye colour, we conducted whole-exome (enriched in regulome) sequencing of 150 Polish samples to discover new markers. For this, we adopted quantitative characterization of eye colour phenotypes using high-resolution photographic images of the iris in combination with DIAT software analysis. An independent set of 849 samples was used for subsequent predictive modelling. Newly identified candidates and 114 additional literature-based selected SNPs, previously associated with pigmentation, and advanced machine learning algorithms were used. Whole-exome sequencing analysis found 27 previously unreported candidate SNP markers for eye colour. The highest overall prediction accuracies were achieved with LASSO-regularized and BIC-based selected regression models. A new candidate variant, rs2253104, located in the ARFIP2 gene and identified with the HyperLasso method, revealed predictive potential and was included in the best-performing regression models. Advanced machine learning approaches showed a significant increase in sensitivity of intermediate eye colour prediction (up to 39%) compared to 0% obtained for the original IrisPlex model. We identified a new potential predictor of eye colour and evaluated several widely used advanced machine learning algorithms in predictive analysis of this trait. Our results provide useful hints for developing future predictive models for eye colour in forensic and anthropological studies.
Collapse
Affiliation(s)
- Magdalena Kukla-Bartoszek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland. .,Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland.
| | - Paweł Teisseyre
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Joanna Karłowska-Pik
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna Woźniak
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Michał Boroń
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Zubańska
- Faculty of Law and Administration, Department of Criminology and Forensic Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.,Unit of Forensic Sciences, Faculty of Internal Security, Police Academy, Szczytno, Poland
| | - Agata Jarosz
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Tomasz Grzybowski
- Division of Molecular and Forensic Genetics, Department of Forensic Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | | | - Jan Mielniczuk
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland. .,Central Forensic Laboratory of the Police, Warsaw, Poland.
| |
Collapse
|
13
|
Palmal S, Adhikari K, Mendoza-Revilla J, Fuentes-Guajardo M, Silva de Cerqueira CC, Bonfante B, Chacón-Duque JC, Sohail A, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Lozano RB, Everardo-Martínez P, Gómez-Valdés J, Villamil-Ramírez H, Hünemeier T, Ramallo V, Parolin ML, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Balding D, Faux P, Ruiz-Linares A. Prediction of eye, hair and skin colour in Latin Americans. Forensic Sci Int Genet 2021; 53:102517. [PMID: 33865096 DOI: 10.1016/j.fsigen.2021.102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.
Collapse
Affiliation(s)
- Sagnik Palmal
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú; Unit of Human Evolutionary Genetics, Institut Pasteur, Paris 75015, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000000, Chile
| | | | - Betty Bonfante
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France
| | - Juan Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Anood Sohail
- Department of Biotechnology, Kinnaird College for Women, 93 - Jail Road, Lahore 54000, Pakistan
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Claudia Jaramillo
- Department of Biotechnology, Kinnaird College for Women, 93 - Jail Road, Lahore 54000, Pakistan; GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Rodrigo Barquera Lozano
- National Institute of Anthropology and History, Mexico City 6600, Mexico; Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena 07745, Germany
| | | | - Jorge Gómez-Valdés
- National Institute of Anthropology and History, Mexico City 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil; Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Maria-Laura Parolin
- Instituto de Diversidad y Evolución Austral (IDEAus), Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | | | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Gabriel Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; Programa de Genetica Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Arica 1000000, Chile
| | - David Balding
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK; Melbourne Integrative Genomics, Schools of BioSciences and Mathematics & Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Pierre Faux
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France.
| | - Andrés Ruiz-Linares
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille 13005, France; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London WC1E 6BT, UK; Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, China.
| |
Collapse
|
14
|
Cooper A, Turney CSM, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey AM, Heaton TJ, Russell JM, McCracken K, Anet JG, Rozanov E, Friedel M, Suter I, Peter T, Muscheler R, Adolphi F, Dosseto A, Faith JT, Fenwick P, Fogwill CJ, Hughen K, Lipson M, Liu J, Nowaczyk N, Rainsley E, Bronk Ramsey C, Sebastianelli P, Souilmi Y, Stevenson J, Thomas Z, Tobler R, Zech R. A global environmental crisis 42,000 years ago. Science 2021; 371:811-818. [PMID: 33602851 DOI: 10.1126/science.abb8677] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
Collapse
Affiliation(s)
- Alan Cooper
- South Australian Museum, Adelaide, SA 5000, Australia. .,BlueSky Genetics, PO Box 287, Adelaide, SA 5137, Australia
| | - Chris S M Turney
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jonathan Palmer
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alan Hogg
- Radiocarbon Dating Laboratory, University of Waikato, Hamilton 3240, New Zealand
| | - Matt McGlone
- Landcare Research, PO Box 69040, Lincoln, New Zealand
| | - Janet Wilmshurst
- Landcare Research, PO Box 69040, Lincoln, New Zealand.,School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew M Lorrey
- National Institute of Water and Atmospheric Research Ltd, Auckland 1010, New Zealand
| | - Timothy J Heaton
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - James M Russell
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Ken McCracken
- University of New South Wales, Sydney, NSW 2052, Australia
| | - Julien G Anet
- Zurich University of Applied Sciences, Centre for Aviation, 8401 Winterthur, Switzerland
| | - Eugene Rozanov
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland.,Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, 7260 Davos, Switzerland.,Department of Physics of Earth, Faculty of Physics, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Marina Friedel
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland
| | - Ivo Suter
- Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland
| | - Raimund Muscheler
- Department of Geology, Quaternary Sciences, Lund University, 22362 Lund, Sweden
| | - Florian Adolphi
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - J Tyler Faith
- Natural History Museum of Utah and Department of Anthropology, University of Utah, Salt Lake City, UT 84108, USA
| | - Pavla Fenwick
- Gondwana Tree-Ring Laboratory, PO Box 14, Little River, Canterbury 7546, New Zealand
| | - Christopher J Fogwill
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire ST5 5BG, UK
| | - Konrad Hughen
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mathew Lipson
- Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiabo Liu
- Southern University of Science and Technology, Department of Ocean Science and Engineering, Shenzhen 518055, China
| | - Norbert Nowaczyk
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.3, 14473 Potsdam, Germany
| | - Eleanor Rainsley
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire ST5 5BG, UK
| | - Christopher Bronk Ramsey
- Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, OX1 3TG, UK
| | - Paolo Sebastianelli
- Faculty of Mathematics, Astronomy and Physics (FAMAF), National University of Cordoba, X5000HUA, Argentina
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Janelle Stevenson
- Archaeology and Natural History, School of Culture History and Language, ANU College of Asia and the Pacific, Canberra, ACT 2601, Australia.,Australia ARC Centre of Excellence for Australian Biodiversity and Heritage, Australian National University, ACT 2601, Australia
| | - Zoë Thomas
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Roland Zech
- Institute of Geography, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| |
Collapse
|
15
|
Abstract
Urbanization, pollution and the modification of natural landscapes are characteristics of modern society, where the change in human relations with the environment and the impact on biodiversity are environmental determinants that affect the health-disease relationship. The skin is an organ that has a strong interface with the environment and, therefore, the prevalence patterns of dermatoses may reflect these environmental changes. In this article, aspects related to deforestation, fires, urbanization, large-scale agriculture, extensive livestock farming, pollution and climatic changes are discussed regarding their influence on the epidemiology of skin diseases. It is important that dermatologists be aware of their social responsibility in order to promote sustainable practices in their community, in addition to identifying the impacts of environmental imbalances on different dermatoses, which is essential for the prevention and treatment of these diseases.
Collapse
|
16
|
Missaggia BO, Reales G, Cybis GB, Hünemeier T, Bortolini MC. Adaptation and co-adaptation of skin pigmentation and vitamin D genes in native Americans. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:1060-1077. [PMID: 33325159 DOI: 10.1002/ajmg.c.31873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/06/2022]
Abstract
We carried out an exhaustive review regarding human skin color variation and how much it may be related to vitamin D metabolism and other photosensitive molecules. We discuss evolutionary contexts that modulate this variability and hypotheses postulated to explain them; for example, a small amount of melanin in the skin facilitates vitamin D production, making it advantageous to have fair skin in an environment with little radiation incidence. In contrast, more melanin protects folate from degradation in an environment with a high incidence of radiation. Some Native American populations have a skin color at odds with what would be expected for the amount of radiation in the environment in which they live, a finding challenging the so-called "vitamin D-folate hypothesis." Since food is also a source of vitamin D, dietary habits should also be considered. Here we argue that a gene network approach provides tools to explain this phenomenon since it indicates potential alleles co-evolving in a compensatory way. We identified alleles of the vitamin D metabolism and pigmentation pathways segregated together, but in different proportions, in agriculturalists and hunter-gatherers. Finally, we highlight how an evolutionary approach can be useful to understand current topics of medical interest.
Collapse
Affiliation(s)
- Bruna Oliveira Missaggia
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela B Cybis
- Statistics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Department of Genetics and Evolutionary Biology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cátira Bortolini
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Grogan KE, Perry GH. Studying human and nonhuman primate evolutionary biology with powerful in vitro and in vivo functional genomics tools. Evol Anthropol 2020; 29:143-158. [PMID: 32142200 PMCID: PMC10574139 DOI: 10.1002/evan.21825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
In recent years, tools for functional genomic studies have become increasingly feasible for use by evolutionary anthropologists. In this review, we provide brief overviews of several exciting in vitro techniques that can be paired with "-omics" approaches (e.g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) for potentially powerful evolutionary insights. These in vitro techniques include ancestral protein resurrection, cell line experiments using primary, immortalized, and induced pluripotent stem cells, and CRISPR-Cas9 genetic manipulation. We also discuss how several of these methods can be used in vivo, for transgenic organism studies of human and nonhuman primate evolution. Throughout this review, we highlight example studies in which these approaches have already been used to inform our understanding of the evolutionary biology of modern and archaic humans and other primates while simultaneously identifying future opportunities for anthropologists to use this toolkit to help answer additional outstanding questions in evolutionary anthropology.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
18
|
Jarrett P, Scragg R. Evolution, Prehistory and Vitamin D. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020646. [PMID: 31963858 PMCID: PMC7027011 DOI: 10.3390/ijerph17020646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Aspects of human evolutionary biology and prehistory are discussed in relation to vitamin D. The evolution of hairlessness, combined with the need for efficient eccrine sweat production for cooling, provided evolutionary pressure to protect the skin from ultraviolet damage by developing cutaneous pigmentation. There was a subsequent loss of pigmentation as humans journeyed to northern latitudes. Their increasing mastery of technology outstripped evolution's finite pace as further dispersal occurred around the globe. A timeline for the development of clothing to provide warmth, and the consequent shielding from ultraviolet light, which diminished vitamin D synthesis, can be inferred by an examination of mutations in the human louse.
Collapse
Affiliation(s)
- Paul Jarrett
- Department of Dermatology, Middlemore Hospital, Auckland 2025, New Zealand
- Department of Medicine, The University of Auckland, Auckland 1023, New Zealand
| | - Robert Scragg
- Department of Population Health, The University of Auckland, Auckland 1072, New Zealand;
| |
Collapse
|
19
|
Sunlight, UV Radiation, Vitamin D, and Skin Cancer: How Much Sunlight Do We Need? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:19-36. [PMID: 32918212 DOI: 10.1007/978-3-030-46227-7_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin D is the sunshine vitamin for good reason. During exposure to sunlight, the ultraviolet B photons enter the skin and photolyze 7-dehydrocholesterol to previtamin D3 which in turn is isomerized by the body's temperature to vitamin D3. Most humans have depended on sun for their vitamin D requirement. Skin pigment, sunscreen use, aging, time of day, season, and latitude dramatically affect previtamin D3 synthesis. Vitamin D deficiency was thought to have been conquered, but it is now recognized that more than 50% of the world's population is at risk for vitamin D deficiency. This deficiency is in part due to the inadequate fortification of foods with vitamin D and the misconception that a healthy diet contains an adequate amount of vitamin D. Vitamin D deficiency causes growth retardation and rickets in children and will precipitate and exacerbate osteopenia, osteoporosis and increase risk of fracture in adults. The vitamin D deficiency pandemic has other serious consequences including increased risk of common cancers, autoimmune diseases, infectious diseases, and cardiovascular disease. There needs to be a renewed appreciation of the beneficial effect of moderate sensible sunlight for providing all humans with their vitamin D requirement for health.
Collapse
|
20
|
Hofreiter M, Hartmann S. Reconstructing protein-coding sequences from ancient DNA. Methods Enzymol 2020; 642:21-33. [DOI: 10.1016/bs.mie.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Mata X, Renaud G, Mollereau C. The repertoire of family A-peptide GPCRs in archaic hominins. Peptides 2019; 122:170154. [PMID: 31560950 DOI: 10.1016/j.peptides.2019.170154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/30/2022]
Abstract
Given the importance of G-protein coupled receptors in the regulation of many physiological functions, deciphering the relationships between genotype and phenotype in past and present hominin GPCRs is of main interest to understand the evolutionary process that contributed to the present-day variability in human traits and health. Here, we carefully examined the publicly available genomic and protein sequence databases of the archaic hominins (Neanderthal and Denisova) to draw up the catalog of coding variations in GPCRs for peptide ligands, in comparison with living humans. We then searched in the literature the functional changes, phenotypes and risk of disease possibly associated with the detected variants. Our survey suggests that Neanderthal and Denisovan hominins were likely prone to lower risk of obesity, to enhanced platelet aggregation in response to thrombin, to better response to infection, to less anxiety and aggressiveness and to favorable sociability. While some archaic variants were likely advantageous in the past, they might be responsible for maladaptive disorders today in the context of modern life and/or specific regional distribution. For example, an archaic haplotype in the neuromedin receptor 2 is susceptible to confer risk of diabetic nephropathy in type 1 diabetes in present-day Europeans. Paying attention to the pharmacological properties of some of the archaic variants described in this study may be helpful to understand the variability of therapeutic efficacy between individuals or ethnic groups.
Collapse
Affiliation(s)
- Xavier Mata
- Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gabriel Renaud
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Catherine Mollereau
- Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
22
|
The Evolutionary History of Human Skin Pigmentation. J Mol Evol 2019; 88:77-87. [PMID: 31363820 DOI: 10.1007/s00239-019-09902-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Skin pigmentation is a complex, conspicuous, highly variable human trait that exhibits a remarkable correlation with latitude. The evolutionary history and genetic basis of skin color variation has been the subject of intense research in the last years. This article reviews the major hypotheses explaining skin color diversity and explores the implications of recent findings about the genes associated with skin pigmentation for understanding the evolutionary forces that have shaped the current patterns of skin color variation. A major aspect of these findings is that the genetic basis of skin color is less simple than previously thought and that geographic variation in skin pigmentation was influenced by the concerted action of different types of natural selection, rather than just by selective sweeps in a few key genes.
Collapse
|
23
|
Nelson DA. Evolutionary Origins of the Differences in Osteoporosis Risk in US Populations. J Clin Densitom 2019; 22:301-304. [PMID: 29657023 DOI: 10.1016/j.jocd.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/29/2018] [Indexed: 11/15/2022]
Abstract
Over the past 50 years, it has been increasingly evident that there are population differences in bone mass and the risk of osteoporosis. In the United States, many studies have reported a lower prevalence of osteoporosis in African Americans compared with people of European descent. If we trace the trajectory of changes in lifeways from the earliest migrations of early Homo out of Africa over the past two million years or so, to include lower vitamin D levels in higher latitudes; more meat in the diet; increasing sedentism; and a longer lifespan/longer postmenopausal period, it is not surprising that osteoporosis occurs more frequently in populations of European descent. While many scholars have explored the apparent "paradox" of higher bone mass, lower vitamin D levels, and higher parathyroid hormone levels among African Americans, this brief review of evolutionary shifts that affected our species may change the approach to understanding the current population differences in the United States.
Collapse
Affiliation(s)
- Dorothy A Nelson
- Department of Sociology, Anthropology, Social Work, and Criminal Justice, Oakland University, Rochester, MI, USA.
| |
Collapse
|
24
|
Zaorska K, Zawierucha P, Nowicki M. Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches. Hum Genet 2019; 138:635-647. [PMID: 30980179 PMCID: PMC6554257 DOI: 10.1007/s00439-019-02012-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as Forensic DNA Phenotyping. Systems based on single nucleotide polymorphisms for accurate prediction of iris, hair and skin color in global population, independent of bio-geographical ancestry, have recently been introduced. Here, we analyzed 14 SNPs for distinct skin pigmentation traits in a homogeneous cohort of 222 Polish subjects. We compared three different algorithms: General Linear Model based on logistic regression, Random Forest and Neural Network in 18 developed prediction models. We demonstrate Random Forest to be the most accurate algorithm for 3- and 4-category estimations (total of 58.3% correct calls for skin color prediction, 47.2% for tanning prediction, 50% for freckling prediction). Binomial Logistic Regression was the best approach in 2-category estimations (total of 69.4% correct calls, AUC = 0.673 for tanning prediction; total of 52.8% correct calls, AUC = 0.537 for freckling prediction). Our study confirms the association of rs12913832 (HERC2) with all three skin pigmentation traits, but also variants associated solely with certain pigmentation traits, namely rs6058017 and rs4911414 (ASIP) with skin sensitivity to sun and tanning abilities, rs12203592 (IRF4) with freckling and rs4778241 and rs4778138 (OCA2) with skin color and tanning. Finally, we assessed significant differences in allele frequencies in comparison with CEU data and our study provides a starting point for the development of prediction models for homogeneous populations with less internal differentiation than in the global predictive testing.
Collapse
Affiliation(s)
- Katarzyna Zaorska
- Department of Histology and Embryology, University of Medical Sciences, 60-781, Poznan, Poland.
| | - Piotr Zawierucha
- Department of Anatomy, University of Medical Sciences, 60-781, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, University of Medical Sciences, 60-781, Poznan, Poland
| |
Collapse
|
25
|
Jablonski NG, Chaplin G. The roles of vitamin D and cutaneous vitamin D production in human evolution and health. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 23:54-59. [PMID: 29606375 DOI: 10.1016/j.ijpp.2018.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Most of the vitamin D necessary for the maintenance of human health and successful reproduction is made in the skin under the influence of a narrow portion of the electromagnetic spectrum emitted from the sun, namely ultraviolet B radiation (UVB). During the course of human evolution, skin pigmentation has evolved to afford protection against high levels of UVR while still permitting cutaneous production of vitamin D. Similar pigmentation phenotypes evolved repeatedly as the result of independent genetic events when isolated human populations dispersed into habitats of extremely low or high UVB. The gradient of skin color seen in modern human populations is evidence of the operation of two clines, one favoring photoprotection near the equator, the other favoring vitamin D production nearer the poles. Through time, human adaptations to different solar regimes have become more cultural than biological. Rapid human migrations, increasing urbanization, and changes in lifestyle have created mismatches between skin pigmentation and environmental conditions leading to vitamin D deficiency. The prevalence and significance for health of vitamin D deficiencies, and the definition of optimal levels of vitamin D in the bloodstream are subjects of intense research and debate, but two of the causes of vitamin D deficiency - lack of sun exposure and abandonment of vitamin D rich foods in the diet - are traceable to changes in human lifestyles accompanying urbanization in prehistory.
Collapse
Affiliation(s)
- Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, United States.
| | - George Chaplin
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, United States
| |
Collapse
|
26
|
Intragenus (Homo) variation in a chemokine receptor gene (CCR5). PLoS One 2018; 13:e0204989. [PMID: 30278065 PMCID: PMC6168169 DOI: 10.1371/journal.pone.0204989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have a comparatively higher rate of more polymorphisms in regulatory regions of the primate CCR5 gene, an immune system gene with both general and specific functions. This has been interpreted as allowing flexibility and diversity of gene expression in response to varying disease loads. A broad expression repertoire is useful to humans-the only globally distributed primate-due to our unique adaptive pattern that increased pathogen exposure and disease loads (e.g., sedentism, subsistence practices). The main objective of the study was to determine if the previously observed human pattern of increased variation extended to other members of our genus, Homo. The data for this study are mined from the published genomes of extinct hominins (four Neandertals and two Denisovans), an ancient human (Ust'-Ishim), and modern humans (1000 Genomes). An average of 15 polymorphisms per individual were found in human populations (with a total of 262 polymorphisms). There were 94 polymorphisms identified across extinct Homo (an average of 13 per individual) with 41 previously observed in modern humans and 53 novel polymorphisms (32 in Denisova and 21 in Neandertal). Neither the frequency nor distribution of polymorphisms across gene regions exhibit significant differences within the genus Homo. Thus, humans are not unique with regards to the increased frequency of regulatory polymorphisms and the evolution of variation patterns across CCR5 gene appears to have originated within the genus. A broader evolutionary perspective on regulatory flexibility may be that it provided an advantage during the transition to confrontational foraging (and later hunting) that altered human-environment interaction as well as during migration to Eurasia and encounters with novel pathogens.
Collapse
|
27
|
Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. Proc Natl Acad Sci U S A 2018; 115:E4426-E4432. [PMID: 29686092 PMCID: PMC5948952 DOI: 10.1073/pnas.1711788115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The frequency of the human-specific EDAR V370A isoform is highly elevated in North and East Asian populations. The gene is known to have several pleiotropic effects, among which are sweat gland density and ductal branching in the mammary gland. The former has led some geneticists to argue that the near-fixation of this allele was caused by selection for modulation of thermoregulatory sweating. We provide an alternative hypothesis, that selection instead acted on the allele’s effect of increasing ductal branching in the mammary gland, thereby amplifying the transfer of critical nutrients to infants via mother’s milk. This is likely to have occurred during the Last Glacial Maximum when a human population was genetically isolated in the high-latitude environment of the Beringia. Because of the ubiquitous adaptability of our material culture, some human populations have occupied extreme environments that intensified selection on existing genomic variation. By 32,000 years ago, people were living in Arctic Beringia, and during the Last Glacial Maximum (LGM; 28,000–18,000 y ago), they likely persisted in the Beringian refugium. Such high latitudes provide only very low levels of UV radiation, and can thereby lead to dangerously low levels of biosynthesized vitamin D. The physiological effects of vitamin D deficiency range from reduced dietary absorption of calcium to a compromised immune system and modified adipose tissue function. The ectodysplasin A receptor (EDAR) gene has a range of pleiotropic effects, including sweat gland density, incisor shoveling, and mammary gland ductal branching. The frequency of the human-specific EDAR V370A allele appears to be uniquely elevated in North and East Asian and New World populations due to a bout of positive selection likely to have occurred circa 20,000 y ago. The dental pleiotropic effects of this allele suggest an even higher occurrence among indigenous people in the Western Hemisphere before European colonization. We hypothesize that selection on EDAR V370A occurred in the Beringian refugium because it increases mammary ductal branching, and thereby may amplify the transfer of critical nutrients in vitamin D-deficient conditions to infants via mothers’ milk. This hypothesized selective context for EDAR V370A was likely intertwined with selection on the fatty acid desaturase (FADS) gene cluster because it is known to modulate lipid profiles transmitted to milk from a vitamin D-rich diet high in omega-3 fatty acids.
Collapse
|
28
|
Marciniak S, Perry GH. Harnessing ancient genomes to study the history of human adaptation. Nat Rev Genet 2017; 18:659-674. [PMID: 28890534 DOI: 10.1038/nrg.2017.65] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past several years have witnessed an explosion of successful ancient human genome-sequencing projects, with genomic-scale ancient DNA data sets now available for more than 1,100 ancient human and archaic hominin (for example, Neandertal) individuals. Recent 'evolution in action' analyses have started using these data sets to identify and track the spatiotemporal trajectories of genetic variants associated with human adaptations to novel and changing environments, agricultural lifestyles, and introduced or co-evolving pathogens. Together with evidence of adaptive introgression of genetic variants from archaic hominins to humans and emerging ancient genome data sets for domesticated animals and plants, these studies provide novel insights into human evolution and the evolutionary consequences of human behaviour that go well beyond those that can be obtained from modern genomic data or the fossil and archaeological records alone.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
29
|
Holick MF. Can you have your cake and eat it too? The sunlight D-lema. Br J Dermatol 2017; 175:1129-1131. [PMID: 27996132 DOI: 10.1111/bjd.15127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M F Holick
- Section of Endocrinology, Nutrition and Diabetes, Department of Medicine, Boston University Medical Center, Boston, MA, 02118, U.S.A
| |
Collapse
|
30
|
Dannemann M, Kelso J. The Contribution of Neanderthals to Phenotypic Variation in Modern Humans. Am J Hum Genet 2017; 101:578-589. [PMID: 28985494 PMCID: PMC5630192 DOI: 10.1016/j.ajhg.2017.09.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 11/03/2022] Open
Abstract
Assessing the genetic contribution of Neanderthals to non-disease phenotypes in modern humans has been difficult because of the absence of large cohorts for which common phenotype information is available. Using baseline phenotypes collected for 112,000 individuals by the UK Biobank, we can now elaborate on previous findings that identified associations between signatures of positive selection on Neanderthal DNA and various modern human traits but not any specific phenotypic consequences. Here, we show that Neanderthal DNA affects skin tone and hair color, height, sleeping patterns, mood, and smoking status in present-day Europeans. Interestingly, multiple Neanderthal alleles at different loci contribute to skin and hair color in present-day Europeans, and these Neanderthal alleles contribute to both lighter and darker skin tones and hair color, suggesting that Neanderthals themselves were most likely variable in these traits.
Collapse
|
31
|
Gyrfalcons Falco rusticolus adjust CTNS expression to food abundance: a possible contribution to cysteine homeostasis. Oecologia 2017; 184:779-785. [DOI: 10.1007/s00442-017-3920-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
|
32
|
Jablonski NG, Chaplin G. The colours of humanity: the evolution of pigmentation in the human lineage. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160349. [PMID: 28533464 PMCID: PMC5444068 DOI: 10.1098/rstb.2016.0349] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
Humans are a colourful species of primate, with human skin, hair and eye coloration having been influenced by a great variety of evolutionary forces throughout prehistory. Functionally naked skin has been the physical interface between the physical environment and the human body for most of the history of the genus Homo, and hence skin coloration has been under intense natural selection. From an original condition of protective, dark, eumelanin-enriched coloration in early tropical-dwelling Homo and Homo sapiens, loss of melanin pigmentation occurred under natural selection as Homo sapiens dispersed into non-tropical latitudes of Africa and Eurasia. Genes responsible for skin, hair and eye coloration appear to have been affected significantly by population bottlenecks in the course of Homo sapiens dispersals. Because specific skin colour phenotypes can be created by different combinations of skin colour-associated genetic markers, loss of genetic variability due to genetic drift appears to have had negligible effects on the highly redundant genetic 'palette' for the skin colour. This does not appear to have been the case for hair and eye coloration, however, and these traits appear to have been more strongly influenced by genetic drift and, possibly, sexual selection.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA
| | - George Chaplin
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA
| |
Collapse
|
33
|
Deng L, Xu S. Adaptation of human skin color in various populations. Hereditas 2017; 155:1. [PMID: 28701907 PMCID: PMC5502412 DOI: 10.1186/s41065-017-0036-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Skin color is a well-recognized adaptive trait and has been studied extensively in humans. Understanding the genetic basis of adaptation of skin color in various populations has many implications in human evolution and medicine. DISCUSSION Impressive progress has been made recently to identify genes associated with skin color variation in a wide range of geographical and temporal populations. In this review, we discuss what is currently known about the genetics of skin color variation. We enumerated several cases of skin color adaptation in global modern humans and archaic hominins, and illustrated why, when, and how skin color adaptation occurred in different populations. Finally, we provided a summary of the candidate loci associated with pigmentation, which could be a valuable reference for further evolutionary and medical studies. CONCLUSION Previous studies generally indicated a complex genetic mechanism underlying the skin color variation, expanding our understanding of the role of population demographic history and natural selection in shaping genetic and phenotypic diversity in humans. Future work is needed to dissect the genetic architecture of skin color adaptation in numerous ethnic minority groups around the world, which remains relatively obscure compared with that of major continental groups, and to unravel the exact genetic basis of skin color adaptation.
Collapse
Affiliation(s)
- Lian Deng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China.,Collaborative Innovation Center of Genetics and Development, Shanghai, 200438 China
| |
Collapse
|
34
|
Brickley MB, D’Ortenzio L, Kahlon B, Schattmann A, Ribot I, Raguin E, Bertrand B. Ancient Vitamin D Deficiency: Long-Term Trends. CURRENT ANTHROPOLOGY 2017. [DOI: 10.1086/691683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Grealy A, Phillips M, Miller G, Gilbert MTP, Rouillard JM, Lambert D, Bunce M, Haile J. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol Phylogenet Evol 2017; 109:151-163. [DOI: 10.1016/j.ympev.2017.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/20/2016] [Accepted: 01/07/2017] [Indexed: 01/12/2023]
|
36
|
Özdemir BC, Dotto GP. Racial Differences in Cancer Susceptibility and Survival: More Than the Color of the Skin? Trends Cancer 2017; 3:181-197. [PMID: 28718431 DOI: 10.1016/j.trecan.2017.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Epidemiological studies point to race as a determining factor in cancer susceptibility. In US registries recording cancer incidence and survival by race (distinguishing 'black versus white'), individuals of African ancestry have a globally increased risk of malignancies compared with Caucasians and Asian Americans. Differences in socioeconomic status and health-care access play a key role. However, the lesser disease susceptibility of Hispanic populations with comparable lifestyles and socioeconomic status as African Americans (Hispanic paradox) points to the concomitant importance of genetic determinants. Here, we overview the molecular basis of racial disparity in cancer susceptibility ranging from genetic polymorphisms and cancer-driver gene mutations to obesity, chronic inflammation, and immune responses. We discuss implications for race-adapted cancer screening programs and clinical trials to reduce disparities in cancer burden.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Gian-Paolo Dotto
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Épalinges, Switzerland; Harvard Dermatology Department and Cutaneous Biology Research Center, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02129, USA.
| |
Collapse
|
37
|
Ultraviolet B Radiation: The Vitamin D Connection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 996:137-154. [DOI: 10.1007/978-3-319-56017-5_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
MacHugh DE, Larson G, Orlando L. Taming the Past: Ancient DNA and the Study of Animal Domestication. Annu Rev Anim Biosci 2016; 5:329-351. [PMID: 27813680 DOI: 10.1146/annurev-animal-022516-022747] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the last decade, ancient DNA research has been revolutionized by the availability of increasingly powerful DNA sequencing and ancillary genomics technologies, giving rise to the new field of paleogenomics. In this review, we show how our understanding of the genetic basis of animal domestication and the origins and dispersal of livestock and companion animals during the Upper Paleolithic and Neolithic periods is being rapidly transformed through new scientific knowledge generated with paleogenomic methods. These techniques have been particularly informative in revealing high-resolution patterns of artificial and natural selection and evidence for significant admixture between early domestic animal populations and their wild congeners.
Collapse
Affiliation(s)
- David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland; .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Greger Larson
- Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford OX1 3QY, United Kingdom;
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; .,Université de Toulouse, University Paul Sabatier, Laboratoire AMIS, CNRS UMR 5288, 31000 Toulouse, France
| |
Collapse
|
39
|
Calafell F, Anglada R, Bonet N, González-Ruiz M, Prats-Muñoz G, Rasal R, Lalueza-Fox C, Bertranpetit J, Malgosa A, Casals F. An assessment of a massively parallel sequencing approach for the identification of individuals from mass graves of the Spanish Civil War (1936-1939). Electrophoresis 2016; 37:2841-2847. [DOI: 10.1002/elps.201600180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Francesc Calafell
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; 08003 Barcelona Catalonia Spain
| | - Roger Anglada
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Catalonia Spain
| | - Núria Bonet
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Catalonia Spain
| | - Mercedes González-Ruiz
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia; Universitat Autònoma de Barcelona, 08193 Bellaterra; Barcelona Catalonia Spain
| | - Gemma Prats-Muñoz
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia; Universitat Autònoma de Barcelona, 08193 Bellaterra; Barcelona Catalonia Spain
| | - Raquel Rasal
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Catalonia Spain
| | - Carles Lalueza-Fox
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; 08003 Barcelona Catalonia Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; 08003 Barcelona Catalonia Spain
| | - Assumpció Malgosa
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia; Universitat Autònoma de Barcelona, 08193 Bellaterra; Barcelona Catalonia Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Catalonia Spain
| |
Collapse
|
40
|
Vai S, Lari M, Caramelli D. DNA Sequencing in Cultural Heritage. Top Curr Chem (Cham) 2016; 374:8. [PMID: 27572991 DOI: 10.1007/s41061-015-0009-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/31/2015] [Indexed: 12/17/2022]
Abstract
During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies.
Collapse
Affiliation(s)
- Stefania Vai
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy.
| | - Martina Lari
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
| |
Collapse
|
41
|
Abstract
The Neanderthals' northern distribution, hunting techniques, and orbit breadths suggest that they were more active in dim light than modern humans. We surveyed visual opsin genes from four Neanderthals and two other archaic hominids to see if they provided additional support for this hypothesis. This analysis was motivated by the observation that alleles responsible for anomalous trichromacy in humans are more common in northern latitudes, by data suggesting that these variants might enhance vision in mesopic conditions, and by the observation that dim light active species often have fewer opsin genes than diurnal relatives. We also looked for evidence of convergent amino acid substitutions in Neanderthal opsins and orthologs from crepuscular or nocturnal species. The Altai Neanderthal, the Denisovan, and the Ust'-Ishim early modern human had opsin genes that encoded proteins identical to orthologs in the human reference genome. Opsins from the Vindija Cave Neanderthals (three females) had many nonsynonymous substitutions, including several predicted to influence colour vision (e.g., stop codons). However, the functional implications of these observations were difficult to assess, given that "control" loci, where no substitutions were expected, differed from humans to the same extent. This left unresolved the test for colour vision deficiencies in Vindija Cave Neanderthals.
Collapse
Affiliation(s)
- John S Taylor
- Department of Biology, University of Victoria, Station CSC, P.O. Box 3020, Victoria, BC V8W 3N5, Canada.,Department of Biology, University of Victoria, Station CSC, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
| | - Thomas E Reimchen
- Department of Biology, University of Victoria, Station CSC, P.O. Box 3020, Victoria, BC V8W 3N5, Canada.,Department of Biology, University of Victoria, Station CSC, P.O. Box 3020, Victoria, BC V8W 3N5, Canada
| |
Collapse
|
42
|
Morozova I, Flegontov P, Mikheyev AS, Bruskin S, Asgharian H, Ponomarenko P, Klyuchnikov V, ArunKumar G, Prokhortchouk E, Gankin Y, Rogaev E, Nikolsky Y, Baranova A, Elhaik E, Tatarinova TV. Toward high-resolution population genomics using archaeological samples. DNA Res 2016; 23:295-310. [PMID: 27436340 PMCID: PMC4991838 DOI: 10.1093/dnares/dsw029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.
Collapse
Affiliation(s)
- Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Hosseinali Asgharian
- Department of Computational and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Petr Ponomarenko
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | | | | | - Egor Prokhortchouk
- Research Center of Biotechnology RAS, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Russia
| | | | - Evgeny Rogaev
- Vavilov Institute of General Genetics RAS, Moscow, Russia University of Massachusetts Medical School, Worcester, MA, USA
| | - Yuri Nikolsky
- Vavilov Institute of General Genetics RAS, Moscow, Russia F1 Genomics, San Diego, CA, USA School of Systems Biology, George Mason University, VA, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, VA, USA Research Centre for Medical Genetics, Moscow, Russia Atlas Biomed Group, Moscow, Russia
| | - Eran Elhaik
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Tatiana V Tatarinova
- Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Direct radiocarbon dating and genetic analyses on the purported Neanderthal mandible from the Monti Lessini (Italy). Sci Rep 2016; 6:29144. [PMID: 27389305 PMCID: PMC4937366 DOI: 10.1038/srep29144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 11/08/2022] Open
Abstract
Anatomically modern humans replaced Neanderthals in Europe around 40,000 years ago. The demise of the Neanderthals and the nature of the possible relationship with anatomically modern humans has captured our imagination and stimulated research for more than a century now. Recent chronological studies suggest a possible overlap between Neanderthals and anatomically modern humans of more than 5,000 years. Analyses of ancient genome sequences from both groups have shown that they interbred multiple times, including in Europe. A potential place of interbreeding is the notable Palaeolithic site of Riparo Mezzena in Northern Italy. In order to improve our understanding of prehistoric occupation at Mezzena, we analysed the human mandible and several cranial fragments from the site using radiocarbon dating, ancient DNA, ZooMS and isotope analyses. We also performed a more detailed investigation of the lithic assemblage of layer I. Surprisingly we found that the Riparo Mezzena mandible is not from a Neanderthal but belonged to an anatomically modern human. Furthermore, we found no evidence for the presence of Neanderthal remains among 11 of the 13 cranial and post-cranial fragments re-investigated in this study.
Collapse
|
44
|
Archaeogenetics in evolutionary medicine. J Mol Med (Berl) 2016; 94:971-7. [PMID: 27289479 DOI: 10.1007/s00109-016-1438-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/22/2016] [Accepted: 06/03/2016] [Indexed: 12/24/2022]
Abstract
Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.
Collapse
|
45
|
Schiffman JD, Breen M. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0231. [PMID: 26056372 DOI: 10.1098/rstb.2014.0231] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over 1.66 million humans (approx. 500/100,000 population rate) and over 4.2 million dogs (approx. 5300/100,000 population rate) are diagnosed with cancer annually in the USA. The interdisciplinary field of comparative oncology offers a unique and strong opportunity to learn more about universal cancer risk and development through epidemiology, genetic and genomic investigations. Working across species, researchers from human and veterinary medicine can combine scientific findings to understand more quickly the origins of cancer and translate these findings to novel therapies to benefit both human and animals. This review begins with the genetic origins of canines and their advantage in cancer research. We next focus on recent findings in comparative oncology related to inherited, or genetic, risk for tumour development. We then detail the somatic, or genomic, changes within tumours and the similarities between species. The shared cancers between humans and dogs that we discuss include sarcoma (osteosarcoma, soft tissue sarcoma, histiocytic sarcoma, hemangiosarcoma), haematological malignancies (lymphoma, leukaemia), bladder cancer, intracranial neoplasms (meningioma, glioma) and melanoma. Tumour risk in other animal species is also briefly discussed. As the field of genomics advances, we predict that comparative oncology will continue to benefit both humans and the animals that live among us.
Collapse
Affiliation(s)
- Joshua D Schiffman
- Department of Pediatrics and Oncological Sciences, Primary Children's Hospital, Intermountain Healthcare, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, Center for Comparative Medicine and Translational Research, Center for Human Health and the Environment, Cancer Genetics, UNC Lineberger Comprehensive Cancer Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
46
|
de Freitas GB, Gonçalves RA, Gralle M. Functional test of PCDHB11, the most human-specific neuronal surface protein. BMC Evol Biol 2016; 16:75. [PMID: 27068704 PMCID: PMC4828864 DOI: 10.1186/s12862-016-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/06/2016] [Indexed: 12/04/2022] Open
Abstract
Background Brain-expressed proteins that have undergone functional change during human evolution may contribute to human cognitive capacities, and may also leave us vulnerable to specifically human diseases, such as schizophrenia, autism or Alzheimer’s disease. In order to search systematically for those proteins that have changed the most during human evolution and that might contribute to brain function and pathology, all proteins with orthologs in chimpanzee, orangutan and rhesus macaque and annotated as being expressed on the surface of cells in the human central nervous system were ordered by the number of human-specific amino acid differences that are fixed in modern populations. Results PCDHB11, a beta-protocadherin homologous to murine cell adhesion proteins, stood out with 12 substitutions and maintained its lead after normalizing for protein size and applying weights for amino acid exchange probabilities. Human PCDHB11 was found to cause homophilic cell adhesion, but at lower levels than shown for other clustered protocadherins. Homophilic adhesion caused by a PCDHB11 with reversion of human-specific changes was as low as for modern human PCDHB11; while neither human nor reverted PCDHB11 adhered to controls, they did adhere to each other. A loss of function in PCDHB11 is unlikely because intra-human variability did not increase relative to the other human beta-protocadherins. Conclusions The brain-expressed protein with the highest number of human-specific substitutions is PCDHB11. In spite of its fast evolution and low intra-human variability, cell-based tests on the only proposed function for PCDHB11 did not indicate a functional change.
Collapse
Affiliation(s)
- Guilherme Braga de Freitas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaella Araújo Gonçalves
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have a long evolutionary history dating back to very basal unicellular eukaryotes. Almost every vertebrate is equipped with a set of different aGPCRs. Genomic sequence data of several hundred extinct and extant species allows for reconstruction of aGPCR phylogeny in vertebrates and non-vertebrates in general but also provides a detailed view into the recent evolutionary history of human aGPCRs. Mining these sequence sources with bioinformatic tools can unveil many facets of formerly unappreciated aGPCR functions. In this review, we extracted such information from the literature and open public sources and provide insights into the history of aGPCR in humans. This includes comprehensive analyses of signatures of selection, variability of human aGPCR genes, and quantitative traits at human aGPCR loci. As indicated by a large number of genome-wide genotype-phenotype association studies, variations in aGPCR contribute to specific human phenotypes. Our survey demonstrates that aGPCRs are significantly involved in adaptation processes, phenotype variations, and diseases in humans.
Collapse
Affiliation(s)
- Peter Kovacs
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, Medical Faculty, University of Leipzig, Liebigstr. 21, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| |
Collapse
|
48
|
Elucidating the evolution of hominid dentition in the age of phenomics, modularity, and quantitative genetics. Ann Anat 2016; 203:3-11. [DOI: 10.1016/j.aanat.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022]
|
49
|
Rifkin RF, Dayet L, Queffelec A, Summers B, Lategan M, d’Errico F. Evaluating the Photoprotective Effects of Ochre on Human Skin by In Vivo SPF Assessment: Implications for Human Evolution, Adaptation and Dispersal. PLoS One 2015; 10:e0136090. [PMID: 26353012 PMCID: PMC4564224 DOI: 10.1371/journal.pone.0136090] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022] Open
Abstract
Archaeological indicators of cognitively modern behaviour become increasingly prevalent during the African Middle Stone Age (MSA). Although the exploitation of ochre is viewed as a key feature of the emergence of modern human behaviour, the uses to which ochre and ochre-based mixtures were put remain ambiguous. Here we present the results of an experimental study exploring the efficacy of ochre as a topical photoprotective compound. This is achieved through the in vivo calculation of the sun protection factor (SPF) values of ochre samples obtained from Ovahimba women (Kunene Region, Northern Namibia) and the Palaeozoic Bokkeveld Group deposits of the Cape Supergroup (Western Cape Province, South Africa). We employ visible spectroscopy, energy-dispersive X-ray fluorescence (ED-XRF), X-ray diffraction (XRD) and granulometric analyses to characterise ochre samples. The capacity of ochre to inhibit the susceptibility of humans to the harmful effects of exposure to ultraviolet radiation (UVR) is confirmed and the mechanisms implicated in the efficacy of ochre as a sunscreen identified. It is posited that the habitual application of ochre may have represented a crucial innovation for MSA humans by limiting the adverse effects of ultraviolet exposure. This may have facilitated the colonisation of geographic regions largely unfavourable to the constitutive skin colour of newly arriving populations.
Collapse
Affiliation(s)
- Riaan F. Rifkin
- Institute for Archaeology, History, Culture and Religion, University of Bergen, Bergen, Norway
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Laure Dayet
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche, University of Bordeaux, Pessac, France
| | - Alain Queffelec
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche, University of Bordeaux, Pessac, France
| | - Beverley Summers
- Photobiology Laboratory, Department of Pharmacy, University of Limpopo, Medunsa, South Africa
| | - Marlize Lategan
- Photobiology Laboratory, Department of Pharmacy, University of Limpopo, Medunsa, South Africa
| | - Francesco d’Errico
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche, University of Bordeaux, Pessac, France
| |
Collapse
|
50
|
Campbell K, Hofreiter M. Resurrecting phenotypes from ancient DNA sequences: promises and perspectives. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller’s sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these “living” processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology.
Collapse
Affiliation(s)
- K.L. Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - M. Hofreiter
- Faculty of Mathematics and Life Sciences, Institute of Biochemistry and Biology, Unit of General Zoology–Evolutionary Adaptive Genomics, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|