1
|
Zhong S, Su L, Xu M, Loke D, Yu B, Zhang Y, Zhao R. Recent Advances in Artificial Sensory Neurons: Biological Fundamentals, Devices, Applications, and Challenges. NANO-MICRO LETTERS 2024; 17:61. [PMID: 39537845 PMCID: PMC11561216 DOI: 10.1007/s40820-024-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Spike-based neural networks, which use spikes or action potentials to represent information, have gained a lot of attention because of their high energy efficiency and low power consumption. To fully leverage its advantages, converting the external analog signals to spikes is an essential prerequisite. Conventional approaches including analog-to-digital converters or ring oscillators, and sensors suffer from high power and area costs. Recent efforts are devoted to constructing artificial sensory neurons based on emerging devices inspired by the biological sensory system. They can simultaneously perform sensing and spike conversion, overcoming the deficiencies of traditional sensory systems. This review summarizes and benchmarks the recent progress of artificial sensory neurons. It starts with the presentation of various mechanisms of biological signal transduction, followed by the systematic introduction of the emerging devices employed for artificial sensory neurons. Furthermore, the implementations with different perceptual capabilities are briefly outlined and the key metrics and potential applications are also provided. Finally, we highlight the challenges and perspectives for the future development of artificial sensory neurons.
Collapse
Affiliation(s)
- Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China.
| | - Lirou Su
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Desmond Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China.
| | - Rong Zhao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
2
|
Xie Z, Luo R, Ying T, Gao Y, Song B, Yu T, Chen X, Hao M, Chai C, Yan J, Huang Z, Chen Z, Du L, Zhu C, Guo J, Chen X. Dynamic-to-static switch of hydrogen bonds induces a metal-insulator transition in an organic-inorganic superlattice. Nat Chem 2024; 16:1803-1810. [PMID: 39143300 DOI: 10.1038/s41557-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 05/28/2024] [Indexed: 08/16/2024]
Abstract
Hydrogen bonds profoundly influence the fundamental chemical, physical and biological properties of molecules and materials. Owing to their relatively weaker interactions compared to other chemical bonds, hydrogen bonds alone are generally insufficient to induce substantial changes in electrical properties, thus imposing severe constraints on their applications in related devices. Here we report a metal-insulator transition controlled by hydrogen bonds for an organic-inorganic (1,3-diaminopropane)0.5SnSe2 superlattice that exhibits a colossal on-off ratio of 107 in electrical resistivity. The key to inducing the transition is a change in the amino group's hydrogen-bonding structure from dynamic to static. In the dynamic state, thermally activated free rotation continuously breaks and forms transient hydrogen bonds with adjacent Se anions. In the static state, the amino group forms three fixed-angle positions, each separated by 120°. Our findings contribute to the understanding of electrical phenomena in organic-inorganic hybrid materials and may be used for the design of future molecule-based electronic materials.
Collapse
Affiliation(s)
- Zhenkai Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Luo
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Tianping Ying
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Yurui Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Boqin Song
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | - Xu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Munan Hao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congcong Chai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiashu Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhiguo Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, China
| | - Jiangang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Xiaolong Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Petronijevic E, Larciprete MC, Centini M, Pronti L, Aglieri V, Razzari L, Toma A, Macaluso R, Voti RL, Sibilia C. Active infrared tuning of metal-insulator-metal resonances by VO 2 thin film. Sci Rep 2024; 14:25324. [PMID: 39455631 PMCID: PMC11512023 DOI: 10.1038/s41598-024-75430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
VO2 is a promising phase change material offering a large contrast of electric, thermal, and optical properties when transitioning from semiconductor to metallic phase. Here we show that a hybrid metamaterial obtained by proper combination of a VO2 layer and a nanodisk gold array provides a tunable plasmonic gap resonance in the infrared range. Specifically, we have designed and fabricated a metal-insulator-metal gap resonance by inserting sub-wavelength VO2 film between a flat gold layer and a gold nanodisk resonator array. The resonance of the hybrid metamaterial is centered in the useful 3-5 μm range when VO2 is in its semiconductor state. The experimental study highlights a monotonical spectral tuning of the resonance when increasing temperature up to 50 °C above the room temperature, providing a continuous resonance shift of almost 1 μm in the mid-infrared range. Wavelength range and intensity tunability can be further optimized by modifying the thicknesses of the layers and metamaterial parameters.
Collapse
Affiliation(s)
- Emilija Petronijevic
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| | | | - Marco Centini
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| | - Lucilla Pronti
- National Laboratories of Frascati - INFN, Via Enrico Fermi 54, 00044, Frascati, Rome, Italy
| | - Vincenzo Aglieri
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
- Clean Room Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Luca Razzari
- Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Andrea Toma
- Clean Room Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Roberto Macaluso
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Roberto Li Voti
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| | - Concita Sibilia
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| |
Collapse
|
4
|
Lin C, Li K, Li M, Dopphoopha B, Zheng J, Wang J, Du S, Li Y, Huang B. Pushing Radiative Cooling Technology to Real Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409738. [PMID: 39415410 DOI: 10.1002/adma.202409738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Indexed: 10/18/2024]
Abstract
Radiative cooling is achieved by controlling surface optical behavior toward solar and thermal radiation, offering promising solutions for mitigating global warming, promoting energy saving, and enhancing environmental protection. Despite significant efforts to develop optical surfaces in various forms, five primary challenges remain for practical applications: enhancing optical efficiency, maintaining appearance, managing overcooling, improving durability, and enabling scalable manufacturing. However, a comprehensive review bridging these gaps is currently lacking. This work begins by introducing the optical fundamentals of radiative cooling and its potential applications. It then explores the challenges and discusses advanced solutions through structural design, material selection, and fabrication processes. It aims to provide guidance for future research and industrial development of radiative cooling technology.
Collapse
Affiliation(s)
- Chongjia Lin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Keqiao Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Meng Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Benjamin Dopphoopha
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jiongzhi Zheng
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH, 03755, USA
| | - Jiazheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shanshan Du
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian, Shenzhen, 518000, China
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology, Guangzhou, 511400, China
| |
Collapse
|
5
|
Gu Y, Smith KA, Saha A, De C, Won CJ, Zhang Y, Lin LF, Cheong SW, Haule K, Ozerov M, Birol T, Homes C, Dagotto E, Musfeldt JL. Unconventional insulator-to-metal phase transition in Mn 3Si 2Te 6. Nat Commun 2024; 15:8104. [PMID: 39285185 PMCID: PMC11405877 DOI: 10.1038/s41467-024-52350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
The nodal-line semiconductor Mn3Si2Te6 is generating enormous excitment due to the recent discovery of a field-driven insulator-to-metal transition and associated colossal magnetoresistance as well as evidence for a new type of quantum state involving chiral orbital currents. Strikingly, these qualities persist even in the absence of traditional Jahn-Teller distortions and double-exchange mechanisms, raising questions about exactly how and why magnetoresistance occurs along with conjecture as to the likely signatures of loop currents. Here, we measured the infrared response of Mn3Si2Te6 across the magnetic ordering and field-induced insulator-to-metal transitions in order to explore colossal magnetoresistance in the absence of Jahn-Teller and double-exchange interactions. Rather than a traditional metal with screened phonons, the field-driven insulator-to-metal transition leads to a weakly metallic state with localized carriers. Our spectral data are fit by a percolation model, providing evidence for electronic inhomogeneity and phase separation. Modeling also reveals a frequency-dependent threshold field for carriers contributing to colossal magnetoresistance which we discuss in terms of polaron formation, chiral orbital currents, and short-range spin fluctuations. These findings enhance the understanding of insulator-to-metal transitions in new settings and open the door to the design of unconventional colossal magnetoresistant materials.
Collapse
Affiliation(s)
- Yanhong Gu
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kevin A Smith
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Amartyajyoti Saha
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chandan De
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
- Quantum Materials Science Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Choong-Jae Won
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ling-Fang Lin
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sang-Wook Cheong
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kristjan Haule
- Center for Materials Theory and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher Homes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Elbio Dagotto
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Janice L Musfeldt
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
6
|
Yang R, Li J, Cai Y, Blankenship BW, Wu J, Grigoropoulos CP. Near-Field Nanoimaging of Phases and Carrier Dynamics in Vanadium Dioxide Nanobeams. ACS PHOTONICS 2024; 11:3359-3364. [PMID: 39184182 PMCID: PMC11342413 DOI: 10.1021/acsphotonics.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024]
Abstract
The stable coexistence of insulating and metallic phases in strained vanadium dioxide (VO2) has garnered significant research interest due to the intriguing phase transition phenomena. However, the temporal behavior of charge carriers in different phases of VO2 remains elusive. Herein, we employ near-field optical nanoscopy to capture nanoscale alternating phase domains in bent VO2 nanobeams. By conducting transient measurements across the different phases, we observed a prolonged carrier recombination lifetime in the metallic phase of VO2, accompanied by an accelerated diffusion process. Our findings reveal nanoscale carrier dynamics in VO2 nanobeams, offering insights that can facilitate further investigations into phase-change materials and their potential applications in sensing and microelectromechanical devices.
Collapse
Affiliation(s)
- Rundi Yang
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Jingang Li
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Yuhang Cai
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Brian W. Blankenship
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Junqiao Wu
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Costas P. Grigoropoulos
- Laser
Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Prakash S, Pitchappa P, Agrawal P, Jani H, Zhao Y, Kumar A, Thong J, Linke J, Ariando A, Singh R, Venkatesan T. Electromechanically Reconfigurable Terahertz Stereo Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402069. [PMID: 38815130 DOI: 10.1002/adma.202402069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Dynamic terahertz devices are vital for the next generation of wireless communication, sensing, and non-destructive imaging technologies. Metasurfaces have emerged as a paradigm-shifting platform, offering varied functionalities, miniaturization, and simplified fabrication compared to their 3D counterparts. However, the presence of in-plane mirror symmetry and reduced degree of freedom impose fundamental limitations on achieving advanced chiral response, beamforming, and reconfiguration capabilities. In this work, a platform composed of electrically actuated resonators that can be colossally reconfigured between planar and 3D geometries is demonstrated. To illustrate the platform, metadevices with 3D Split Ring Resonators are fabricated, wherein two counteracting driving forces are combined: i) folding induced by stress mismatch, which enables non-volatile state design and ii) unfolding triggered by the strain associated with insulator-to-metal transition in VO2, which facilitates volatile structural reconfiguration. This large structural reconfiguration space allows for resonance mode switching, widely tunable magnetic and electric polarizabilities, and increased frequency agility. Moreover, the unique properties of VO2, such as the hysteretic nature of its phase transition is harnessed to demonstrate a multi-state memory. Therefore, these VO2 integrated metadevices are highly attractive for the realization of 6G communication devices such as reconfigurable intelligent surfaces, holographic beam formers, and spatial light modulators.
Collapse
Affiliation(s)
- Saurav Prakash
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Prakash Pitchappa
- Institute of Microelectronics (IME), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Piyush Agrawal
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hariom Jani
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX13PU, UK
| | - Yunshan Zhao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Abhishek Kumar
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - John Thong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jian Linke
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Ariando Ariando
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Ranjan Singh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Thirumalai Venkatesan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Quantum Research and Technology (CQRT), Center of Optimal Materials for Emerging Technologies (COMET), University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
8
|
Xie Q, Zhang Y, Janzen E, Edgar JH, Xu XG. Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy. NATURE NANOTECHNOLOGY 2024; 19:1108-1115. [PMID: 38750165 DOI: 10.1038/s41565-024-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/02/2024] [Indexed: 05/23/2024]
Abstract
For decades, infrared (IR) spectroscopy has advanced on two distinct frontiers: enhancing spatial resolution and broadening spectroscopic information. Although atomic force microscopy (AFM)-based IR microscopy overcomes Abbe's diffraction limit and reaches sub-10 nm spatial resolutions, time-domain two-dimensional IR spectroscopy (2DIR) provides insights into molecular structures, mode coupling and energy transfers. Here we bridge the boundary between these two techniques and develop AFM-2DIR nanospectroscopy. Our method offers the spatial precision of AFM in combination with the rich spectroscopic information provided by 2DIR. This approach mechanically detects the sample's photothermal responses to a tip-enhanced femtosecond IR pulse sequence and extracts spatially resolved spectroscopic information via FFTs. In a proof-of-principle experiment, we elucidate the anharmonicity of a carbonyl vibrational mode. Further, leveraging the near-field photons' high momenta from the tip enhancement for phase matching, we photothermally probe hyperbolic phonon polaritons in isotope-enriched h10BN. Our measurements unveil an energy transfer between phonon polaritons and phonons, as well as among different polariton modes, possibly aided by scattering at interfaces. The AFM-2DIR nanospectroscopy enables the in situ investigations of vibrational anharmonicity, coupling and energy transfers in heterogeneous materials and nanostructures, especially suitable for unravelling the relaxation process in two-dimensional materials at IR frequencies.
Collapse
Affiliation(s)
- Qing Xie
- Department of Chemistry, Lehigh University, Bethlehem, PA, US
| | - Yu Zhang
- Ames National Laboratory, Iowa State University, Ames, IA, US
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, US
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, US
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA, US.
| |
Collapse
|
9
|
Li Y, Dang Y, Zhang S, Li X, Chen T, Choudhury PK, Jin Y, Xu J, Ben-Abdallah P, Ju BF, Ma Y. Observation of heat pumping effect by radiative shuttling. Nat Commun 2024; 15:5465. [PMID: 38937478 PMCID: PMC11211463 DOI: 10.1038/s41467-024-49802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Heat shuttling phenomenon is characterized by the presence of a non-zero heat flow between two bodies without net thermal bias on average. It was initially predicted in the context of nonlinear heat conduction within atomic lattices coupled to two time-oscillating thermostats. Recent theoretical works revealed an analog of this effect for heat exchanges mediated by thermal photons between two solids having a temperature dependent emissivity. In this paper, we present the experimental proof of this effect using systems made with composite materials based on phase change materials. By periodically modulating the temperature of one of two solids we report that the system akin to heat pumping with a controllable heat flow direction. Additionally, we demonstrate the effectiveness of a simultaneous modulation of two temperatures to control both the strength and direction of heat shuttling by exploiting the phase delay between these temperatures. These results show that this effect is promising for an active thermal management of solid-state technology, to cool down solids, to insulate them from their background or to amplify heat exchanges.
Collapse
Affiliation(s)
- Yuxuan Li
- The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yongdi Dang
- The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Sen Zhang
- The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Xinran Li
- The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Tianle Chen
- The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Pankaj K Choudhury
- The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yi Jin
- The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jianbin Xu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Philippe Ben-Abdallah
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Saclay, 2 Avenue Augustin Fresnel, 91127, Palaiseau, Cedex, France.
| | - Bing-Feng Ju
- The State Key Lab of Fluid Power Transmission and Control, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yungui Ma
- The National Key Laboratory of Extreme Optics Technology and Instruments, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering; International Research Center (Haining) for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Krpenský J, Horák M, Kabát J, Planer J, Kepič P, Křápek V, Konečná A. Analytical electron microscopy analysis of insulating and metallic phases in nanostructured vanadium dioxide. NANOSCALE ADVANCES 2024; 6:3338-3346. [PMID: 38933858 PMCID: PMC11197434 DOI: 10.1039/d4na00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
Vanadium dioxide (VO2) is a strongly correlated material that exhibits the insulator-to-metal transition (IMT) near room temperature, which makes it a promising candidate for applications in nanophotonics or optoelectronics. However, creating VO2 nanostructures with the desired functionality can be challenging due to microscopic inhomogeneities that can significantly impact the local optical and electronic properties. Thin lamellas, produced by focused ion beam milling from a homogeneous layer, provide a useful prototype for studying VO2 at the truly microscopic level using a scanning transmission electron microscope (STEM). High-resolution imaging is used to identify structural inhomogeneities while electron energy-loss spectroscopy (EELS) supported by statistical analysis helps to detect V x O y stoichiometries with a reduced oxidation number of vanadium at the areas of thickness below 70 nm. On the other hand, the thicker areas are dominated by vanadium dioxide, where the signatures of the IMT are detected in both core-loss and low-loss EELS experiments with in situ heating. The experimental results are interpreted with ab initio and semi-classical calculations. This work shows that structural inhomogeneities such as pores and cracks present no harm to the desired optical properties of VO2 samples.
Collapse
Affiliation(s)
- Jan Krpenský
- Institute of Physical Engineering, Brno University of Technology Technická 2896/2 616 69 Brno Czech Republic
| | - Michal Horák
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Jiří Kabát
- Institute of Physical Engineering, Brno University of Technology Technická 2896/2 616 69 Brno Czech Republic
| | - Jakub Planer
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Peter Kepič
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Vlastimil Křápek
- Institute of Physical Engineering, Brno University of Technology Technická 2896/2 616 69 Brno Czech Republic
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| | - Andrea Konečná
- Institute of Physical Engineering, Brno University of Technology Technická 2896/2 616 69 Brno Czech Republic
- Central European Institute of Technology, Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| |
Collapse
|
11
|
Luan Y, Yan S, Panda K, Majumder A, Guan J, Mittapally R, Meyhofer E, Reddy P. The Metal-Insulator Transition in Vanadium Oxide Nanofilms Enables Microkelvin-Resolution Thermometry. NANO LETTERS 2024; 24:7048-7054. [PMID: 38813994 DOI: 10.1021/acs.nanolett.4c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
High-resolution thermometry is critical for probing nanoscale energy transport. Here, we demonstrate how high-resolution thermometry can be accomplished using vanadium oxide (VOx), which features a sizable temperature-dependence of its resistance at room temperature and an even stronger dependence at its metal-insulator-transition (MIT) temperature. We microfabricate VOx nanofilm-based electrical resistance thermometers that undergo a metal-insulator-transition at ∼337 K and systematically quantify their temperature-dependent resistance, noise characteristics, and temperature resolution. We show that VOx sensors can achieve, in a bandwidth of ∼16 mHz, a temperature resolution of ∼5 μK at room temperature (∼300 K) and a temperature resolution of ∼1 μK at the MIT (∼337 K) when the amplitude of temperature perturbations is in the microkelvin range, which, in contrast to larger perturbations, is found to avoid hysteric resistance responses. These results demonstrate that VOx-based thermometers offer a ∼10-50-fold improvement in resolution over widely used Pt-based thermometers.
Collapse
Affiliation(s)
- Yuxuan Luan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shen Yan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kanishka Panda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayan Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jian Guan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohith Mittapally
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Edgar Meyhofer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pramod Reddy
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Feng T, Gong C, Liang S, Yi Z, Yi Y, Ma C. Design and performance analysis of a mid-infrared broadband thermally tunable metamaterial absorption device based on the phase-change effect. Dalton Trans 2024; 53:8033-8040. [PMID: 38651998 DOI: 10.1039/d4dt00657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We propose a structurally simple, innovative, and multifunctional mid-infrared broadband thermally tunable metamaterial absorption device. The absorption device consists of a three-layer structure, from bottom to top: Ti substrate, SiO2 dielectric layer, and patterned VO2 layer. Through temperature control, the average absorption intensity of the absorption device can vary between 0.08 and 0.94. The absorption device's absorption mechanism is rooted in the thermal phase-change characteristics exhibited by the topologically patterned VO2. When the temperature is below 340 K, VO2 is in a dielectric state, resulting in near-total reflection performance in the mid-infrared range. When the temperature is above 340 K, VO2 undergoes a dielectric-to-metal transition, enabling the absorption device to achieve an average absorption rate of 94.12% in the ultra-wideband range of 6.26 μm-20.96 μm in the mid-infrared. This absorption range completely covers the atmospheric window wavelengths of 8 μm-14 μm, demonstrating high practical value. We explain the working mechanism of the absorption device from the perspective of the electromagnetic field. Subsequently, we study the variations in the absorption curve of the absorption device at different temperatures of VO2 and use the changes in the electric field at the same wavelength under different temperatures to explain the variations in absorption. Compared to previous work, our structure has only three layers in a single unit, making it easy to process and produce. Additionally, the absorption device's operating bandwidth and average absorption rate in the mid-infrared range have been significantly improved. Furthermore, the absorption device exhibits substantial incident angle tolerance and polarization insensitivity. We believe that this design has broad application potential in future optothermal conversion, infrared stealth, and thermal radiation.
Collapse
Affiliation(s)
- Tianquan Feng
- School of Medicine, Yangtze University, Jingzhou, Hubei 434023, P.R. China.
| | - Chenyu Gong
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Shiri Liang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei 434023, China
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Yuxuan Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Can Ma
- Department of Oncology, Sichuan Science City Hospital, Mianyang, Sichuan Province 621000, China.
| |
Collapse
|
13
|
Sternbach AJ, Slusar T, Ruta FL, Moore S, Chen X, Liu MK, Kim HT, Millis AJ, Averitt RD, Basov DN. Inhomogeneous Photosusceptibility of VO_{2} Films at the Nanoscale. PHYSICAL REVIEW LETTERS 2024; 132:186903. [PMID: 38759203 DOI: 10.1103/physrevlett.132.186903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Pump-probe nano-optical experiments were used to study the light-induced insulator to metal transition (IMT) in thin films of vanadium dioxide (VO_{2}), a prototypical correlated electron system. We show that inhomogeneous optical contrast is prompted by spatially uniform photoexcitation, indicating an inhomogeneous photosusceptibility of VO_{2}. We locally characterize temperature and time dependent variations of the photoexcitation threshold necessary to induce the IMT on picosecond timescales with hundred nanometer spatial resolution. We separately measure the critical temperature T_{L}, where the IMT onsets and the local transient electronic nano-optical contrast at the nanoscale. Our data reveal variations in the photosusceptibility of VO_{2} within nanoscopic regions characterized by the same critical temperature T_{L} where metallic domains can first nucleate.
Collapse
Affiliation(s)
- A J Sternbach
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - T Slusar
- Electronics and Telecommunications Research Institute, Daejeon, 34129 Republic of Korea
| | - F L Ruta
- Department of Physics, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - S Moore
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - X Chen
- Department of Physics, Columbia University, New York, New York 10027, USA
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, USA
| | - M K Liu
- Department of Physics, Stony Brook University, Stony Brook, New York 11790, USA
| | - H T Kim
- Electronics and Telecommunications Research Institute, Daejeon, 34129 Republic of Korea
| | - A J Millis
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - R D Averitt
- Department of Physics, University of California San Diego, San Diego, California 92093, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, USA
| |
Collapse
|
14
|
Yao J, Wang C, Zhang C, Ma S, Zhou L, Wang T, Wang Q, Xu H, Ding T. Optoelectronic tuning of plasmon resonances via optically modulated hot electrons. Natl Sci Rev 2024; 11:nwad280. [PMID: 38577663 PMCID: PMC10989291 DOI: 10.1093/nsr/nwad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/03/2023] [Accepted: 09/13/2023] [Indexed: 04/06/2024] Open
Abstract
Fast optical modulation of nanoplasmonics is fundamental for on-chip integration of all-optical devices. Although various strategies have been proposed for dynamic modulation of surface plasmons, critical issues of device compatibility and extremely low efficiency in the visible spectrum hamper the application of optoplasmonic nanochips. Here we establish an optoplasmonic system based on Au@Cu2-xS hybrid core-shell nanoparticles. The optical excitation of hot electrons and their charge transfer to the semiconductor coating (Cu2-xS) lead to lowered electron density of Au, which results in the red shift of the localized surface plasmon resonance. The hot electrons can also transport through the Cu2-xS layer to the metal substrate, which increases the conductance of the nanogap. As such, the coupled gap plasmon blue-shifts with a magnitude of up to ∼15 nm, depending on the excitation power and the thickness of the coatings, which agrees with numerical simulations. All of this optoelectronic tuning process is highly reversible, controllable and fast with a modulated laser beam, which is highly compatible and sufficiently useful for on-chip integration of nanophotonic devices.
Collapse
Affiliation(s)
- Jiacheng Yao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Cheng Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Song Ma
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Zhou
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ti Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ququan Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongxing Xu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Siday T, Hayes J, Schiegl F, Sandner F, Menden P, Bergbauer V, Zizlsperger M, Nerreter S, Lingl S, Repp J, Wilhelm J, Huber MA, Gerasimenko YA, Huber R. All-optical subcycle microscopy on atomic length scales. Nature 2024; 629:329-334. [PMID: 38720038 DOI: 10.1038/s41586-024-07355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
Bringing optical microscopy to the shortest possible length and time scales has been a long-sought goal, connecting nanoscopic elementary dynamics with the macroscopic functionalities of condensed matter. Super-resolution microscopy has circumvented the far-field diffraction limit by harnessing optical nonlinearities1. By exploiting linear interaction with tip-confined evanescent light fields2, near-field microscopy3,4 has reached even higher resolution, prompting a vibrant research field by exploring the nanocosm in motion5-19. Yet the finite radius of the nanometre-sized tip apex has prevented access to atomic resolution20. Here we leverage extreme atomic nonlinearities within tip-confined evanescent fields to push all-optical microscopy to picometric spatial and femtosecond temporal resolution. On these scales, we discover an unprecedented and efficient non-classical near-field response, in phase with the vector potential of light and strictly confined to atomic dimensions. This ultrafast signal is characterized by an optical phase delay of approximately π/2 and facilitates direct monitoring of tunnelling dynamics. We showcase the power of our optical concept by imaging nanometre-sized defects hidden to atomic force microscopy and by subcycle sampling of current transients on a semiconducting van der Waals material. Our results facilitate access to quantum light-matter interaction and electronic dynamics at ultimately short spatio-temporal scales in both conductive and insulating quantum materials.
Collapse
Affiliation(s)
- T Siday
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - J Hayes
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - F Schiegl
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - F Sandner
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - P Menden
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - V Bergbauer
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - M Zizlsperger
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - S Nerreter
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - S Lingl
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - J Repp
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| | - J Wilhelm
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany.
| | - M A Huber
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany.
| | - Y A Gerasimenko
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany.
| | - R Huber
- Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN), University of Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Guo X, Liu X, Zafar Z, Cheng G, Li Y, Nan H, Lin L, Zou J. Effects of oxygen vacancies and interfacial strain on the metal-insulator transition of VO 2 nanobeams. Phys Chem Chem Phys 2024; 26:10737-10745. [PMID: 38516809 DOI: 10.1039/d3cp06040c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The role of oxygen vacancies and interfacial strain on the metal-insulator transition (MIT) behavior of high-quality VO2 nanobeams (NBs) synthesized on SiO2/Si substrates employing V2O5 as a precursor has been investigated in this research. Selective oxygen vacancies have been generated by argon plasma irradiation. The MIT is progressively suppressed as the duration of plasma processing increases; in addition, the temperature of MIT (TMIT) drops by up to 95 K relative to the pristine VO2 NBs. Incorporating oxygen vacancies into VO2 may increase its electron concentration, which might shift the Fermi levels upward, strengthen the electronic orbital overlap of the V-V chains, and further stabilize the metallic phase at lower temperatures, based on first-principles calculations. Furthermore, in order to evaluate the influence of substrate-induced strain in our situation, the MIT in two distinct types of VO2 NB samples is examined without metal contacts by using the distinctive light scattering characteristics of the metal (M) and insulator (I) phases (i.e., M/I domains) by optical microscopy. It is found that the domain structures in the "clamped" NBs persisted up to ∼453 K, while the "released" NBs (transferred to a new substrate) did not exhibit any domain structures and turned into an entirely M phase with a dark contrast above ∼348 K. When combined with first-principles calculations, the electronic orbital occupancy in the rutile phase contributes to explaining the interfacial strain-induced modulation of MIT. The current findings shed light on how interfacial strain and oxygen vacancies impact MIT behavior. It also suggests several types of control strategies for MIT in VO2 NBs, which are essential for a broader spectrum of VO2 NB applications.
Collapse
Affiliation(s)
- Xitao Guo
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| | - Xin Liu
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| | - Zainab Zafar
- Experimental Physics Division, National Centre for Physics, Islamabad 44000, Pakistan
| | - Guiquan Cheng
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| | - Yunhai Li
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China.
| | - Lianghua Lin
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| | - Jijun Zou
- Jiangxi Engineering Province Engineering Research Center of New Energy Technology and Equipment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
17
|
Darwish M, Zhabura Y, Pohl L. Recent Advances of VO 2 in Sensors and Actuators. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:582. [PMID: 38607118 PMCID: PMC11154574 DOI: 10.3390/nano14070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Vanadium dioxide (VO2) stands out for its versatility in numerous applications, thanks to its unique reversible insulator-to-metal phase transition. This transition can be initiated by various stimuli, leading to significant alterations in the material's characteristics, including its resistivity and optical properties. As the interest in the material is growing year by year, the purpose of this review is to explore the trends and current state of progress on some of the applications proposed for VO2 in the field of sensors and actuators using literature review methods. Some key applications identified are resistive sensors such as strain, temperature, light, gas concentration, and thermal fluid flow sensors for microfluidics and mechanical microactuators. Several critical challenges have been recognized in the field, including the expanded investigation of VO2-based applications across multiple domains, exploring various methods to enhance device performance such as modifying the phase transition temperature, advancing the fabrication techniques for VO2 structures, and developing innovative modelling approaches. Current research in the field shows a variety of different sensors, actuators, and material combinations, leading to different sensor and actuator performance input ranges and output sensitivities.
Collapse
Affiliation(s)
- Mahmoud Darwish
- Department of Electron Devices, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Yana Zhabura
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland;
| | - László Pohl
- Department of Electron Devices, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| |
Collapse
|
18
|
Liu R, Wang S, Zhou Z, Zhang K, Wang G, Chen C, Long Y. Materials in Radiative Cooling Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401577. [PMID: 38497602 DOI: 10.1002/adma.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Radiative cooling (RC) is a carbon-neutral cooling technology that utilizes thermal radiation to dissipate heat from the Earth's surface to the cold outer space. Research in the field of RC has garnered increasing interest from both academia and industry due to its potential to drive sustainable economic and environmental benefits to human society by reducing energy consumption and greenhouse gas emissions from conventional cooling systems. Materials innovation is the key to fully exploit the potential of RC. This review aims to elucidate the materials development with a focus on the design strategy including their intrinsic properties, structural formations, and performance improvement. The main types of RC materials, i.e., static-homogeneous, static-composite, dynamic, and multifunctional materials, are systematically overviewed. Future trends, possible challenges, and potential solutions are presented with perspectives in the concluding part, aiming to provide a roadmap for the future development of advanced RC materials.
Collapse
Affiliation(s)
- Rong Liu
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Shancheng Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Zhengui Zhou
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Keyi Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Guanya Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Changyuan Chen
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| | - Yi Long
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
19
|
Wang D, Gao C, Wang Y, Chang X, Hu Y, Li J, Feng T, Dey JK, Roul B, Lu X, Du L, Zhai Z, Zhu H, Huang W, Das S, Su F, Zhu LG, Shi Q. VO 2 Films Decorated with an MXene Interface for Decreased-Power-Triggered Terahertz Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10886-10896. [PMID: 38377567 DOI: 10.1021/acsami.3c16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
VO2, which exhibits semiconductor-metal phase transition characteristics occurring on a picosecond time scale, holds great promise for ultrafast terahertz modulation in next-generation communication. However, as of now, there is no reported prototype for an ultrafast device. The temperature effect has been proposed as one of the major obstacles. Consequently, reducing the excitation threshold for the phase transition would be highly significant. The traditional strategy typically involves chemical doping, but this approach often leads to a decrease in phase transition amplitude and a slower transition speed. In this work, we proposed a design featuring a highly conductive MXene interfacial layer between the VO2 film and the substrate. We demonstrate a significant reduction in the phase transition threshold for both temperature and laser-induced phase transition by adjusting the conductivity of the MXene layers with varying thicknesses. Our observations show that the phase transition temperature can be decreased by 9 °C, while the pump fluence for laser excitation can be reduced by as high as 36%. The ultrafast phase transition process on a picosecond scale, as revealed by the optical-pump terahertz-probe method, suggests that the MXene layers have minimal impact on the phase transition speed. Moreover, the reduced phase transition threshold can remarkably alleviate the photothermal effect and inhibit temperature rise and diffusion in VO2 triggered by laser. This study offers a blueprint for designing VO2/MXene hybrid films with reduced phase transition thresholds. It holds significant potential for the development of low-power, intelligent optical and electrical devices including, but not limited to, terahertz modulators based on phase transition phenomena.
Collapse
Affiliation(s)
- Daoyuan Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chengzhe Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunfeng Wang
- Key Lab of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Xue Chang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Yiwen Hu
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiang Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Tangdong Feng
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jayjit Kumar Dey
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Basanta Roul
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Central Research Laboratory, Bharat Electronics Limited, Bangalore 560013, India
| | - Xueguang Lu
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lianghui Du
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Zhaohui Zhai
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Hongfu Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Wanxia Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Fuhai Su
- Key Lab of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Li-Guo Zhu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
20
|
Fu M, Xu S, Zhang S, Ruta FL, Pack J, Mayer RA, Chen X, Moore SL, Rizzo DJ, Jessen BS, Cothrine M, Mandrus DG, Watanabe K, Taniguchi T, Dean CR, Pasupathy AN, Bisogni V, Schuck PJ, Millis AJ, Liu M, Basov DN. Accelerated Nano-Optical Imaging through Sparse Sampling. NANO LETTERS 2024; 24:2149-2156. [PMID: 38329715 DOI: 10.1021/acs.nanolett.3c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.
Collapse
Affiliation(s)
- Matthew Fu
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Suheng Xu
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Shuai Zhang
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Francesco L Ruta
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Jordan Pack
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Rafael A Mayer
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Xinzhong Chen
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Samuel L Moore
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Daniel J Rizzo
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Bjarke S Jessen
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Matthew Cothrine
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - David G Mandrus
- Material Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Valentina Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
21
|
Gamage S, Manna S, Zajac M, Hancock S, Wang Q, Singh S, Ghafariasl M, Yao K, Tiwald TE, Park TJ, Landau DP, Wen H, Sankaranarayanan SKS, Darancet P, Ramanathan S, Abate Y. Infrared Nanoimaging of Hydrogenated Perovskite Nickelate Memristive Devices. ACS NANO 2024; 18:2105-2116. [PMID: 38198599 PMCID: PMC10811663 DOI: 10.1021/acsnano.3c09281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Solid-state devices made from correlated oxides, such as perovskite nickelates, are promising for neuromorphic computing by mimicking biological synaptic function. However, comprehending dopant action at the nanoscale poses a formidable challenge to understanding the elementary mechanisms involved. Here, we perform operando infrared nanoimaging of hydrogen-doped correlated perovskite, neodymium nickel oxide (H-NdNiO3, H-NNO), devices and reveal how an applied field perturbs dopant distribution at the nanoscale. This perturbation leads to stripe phases of varying conductivity perpendicular to the applied field, which define the macroscale electrical characteristics of the devices. Hyperspectral nano-FTIR imaging in conjunction with density functional theory calculations unveils a real-space map of multiple vibrational states of H-NNO associated with OH stretching modes and their dependence on the dopant concentration. Moreover, the localization of excess charges induces an out-of-plane lattice expansion in NNO which was confirmed by in situ X-ray diffraction and creates a strain that acts as a barrier against further diffusion. Our results and the techniques presented here hold great potential for the rapidly growing field of memristors and neuromorphic devices wherein nanoscale ion motion is fundamentally responsible for function.
Collapse
Affiliation(s)
- Sampath Gamage
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Sukriti Manna
- Center for
Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Marc Zajac
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Steven Hancock
- Center
for
Simulational Physics and Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Qi Wang
- School
of
Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sarabpreet Singh
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Mahdi Ghafariasl
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Kun Yao
- School
of
Electrical and Computer Engineering, University
of Georgia, Athens, Georgia 30602, United States
| | - Tom E. Tiwald
- J.A. Woollam
Co., Inc., Lincoln, Nebraska 68508, United States
| | - Tae Joon Park
- School
of
Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - David P. Landau
- Center
for
Simulational Physics and Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States
| | - Haidan Wen
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Materials
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Subramanian K.
R. S. Sankaranarayanan
- Center for
Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Pierre Darancet
- Center for
Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Northwestern
Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Shriram Ramanathan
- School
of
Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yohannes Abate
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Kim RHJ, Pathak AK, Park JM, Imran M, Haeuser SJ, Fei Z, Mudryk Y, Koschny T, Wang J. Nano-compositional imaging of the lanthanum silicide system at THz wavelengths. OPTICS EXPRESS 2024; 32:2356-2363. [PMID: 38297768 DOI: 10.1364/oe.507414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
Terahertz scattering-type scanning near-field optical microscopy (THz-sSNOM) provides a noninvasive way to probe the low frequency conductivity of materials and to characterize material compositions at the nanoscale. However, the potential capability of atomic compositional analysis with THz nanoscopy remains largely unexplored. Here, we perform THz near-field imaging and spectroscopy on a model rare-earth alloy of lanthanum silicide (La-Si) which is known to exhibit diverse compositional and structural phases. We identify subwavelength spatial variations in conductivity that is manifested as alloy microstructures down to much less than 1 μm in size and is remarkably distinct from the surface topography of the material. Signal contrasts from the near-field scattering responses enable mapping the local silicon/lanthanum content differences. These observations demonstrate that THz-sSNOM offers a new avenue to investigate the compositional heterogeneity of material phases and their related nanoscale electrical as well as optical properties.
Collapse
|
23
|
Nandi S, Cohen SZ, Singh D, Poplinger M, Nanikashvili P, Naveh D, Lewi T. Unveiling Local Optical Properties Using Nanoimaging Phase Mapping in High-Index Topological Insulator Bi 2Se 3 Resonant Nanostructures. NANO LETTERS 2023; 23:11501-11509. [PMID: 37890054 DOI: 10.1021/acs.nanolett.3c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Topological insulators are materials characterized by an insulating bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic properties have been extensively studied, their mid-infrared (MIR) properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy to study chemical vapor deposition-grown Bi2Se3 nanobeams (NBs). We extract the MIR optical constants of Bi2Se3, revealing refractive index values as high as n ∼ 6.4, and demonstrate that the NBs support Mie resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2π phase-shift across the resonance, in excellent agreement with finite-difference time-domain simulations. This work highlights the potential of Bi2Se3 for quantum circuitry, nonlinear generation, high-Q metaphotonics, and photodetection.
Collapse
Affiliation(s)
- Sukanta Nandi
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shany Z Cohen
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Danveer Singh
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Michal Poplinger
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Pilkhaz Nanikashvili
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Doron Naveh
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tomer Lewi
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
24
|
Dapolito M, Tsuneto M, Zheng W, Wehmeier L, Xu S, Chen X, Sun J, Du Z, Shao Y, Jing R, Zhang S, Bercher A, Dong Y, Halbertal D, Ravindran V, Zhou Z, Petrovic M, Gozar A, Carr GL, Li Q, Kuzmenko AB, Fogler MM, Basov DN, Du X, Liu M. Infrared nano-imaging of Dirac magnetoexcitons in graphene. NATURE NANOTECHNOLOGY 2023; 18:1409-1415. [PMID: 37605044 DOI: 10.1038/s41565-023-01488-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Magnetic fields can have profound effects on the motion of electrons in quantum materials. Two-dimensional electron systems subject to strong magnetic fields are expected to exhibit quantized Hall conductivity, chiral edge currents and distinctive collective modes referred to as magnetoplasmons and magnetoexcitons. Generating these propagating collective modes in charge-neutral samples and imaging them at their native nanometre length scales have thus far been experimentally elusive. Here we visualize propagating magnetoexciton polaritons at their native length scales and report their magnetic-field-tunable dispersion in near-charge-neutral graphene. Imaging these collective modes and their associated nano-electro-optical responses allows us to identify polariton-modulated optical and photo-thermal electric effects at the sample edges, which are the most pronounced near charge neutrality. Our work is enabled by innovations in cryogenic near-field optical microscopy techniques that allow for the nano-imaging of the near-field responses of two-dimensional materials under magnetic fields up to 7 T. This nano-magneto-optics approach allows us to explore and manipulate magnetopolaritons in specimens with low carrier doping via harnessing high magnetic fields.
Collapse
Affiliation(s)
- Michael Dapolito
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, Columbia University, New York, NY, USA
| | - Makoto Tsuneto
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Wenjun Zheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Lukas Wehmeier
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Suheng Xu
- Department of Physics, Columbia University, New York, NY, USA
| | - Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, Columbia University, New York, NY, USA
| | - Jiacheng Sun
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Zengyi Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Yinming Shao
- Department of Physics, Columbia University, New York, NY, USA
| | - Ran Jing
- Department of Physics, Columbia University, New York, NY, USA
| | - Shuai Zhang
- Department of Physics, Columbia University, New York, NY, USA
| | - Adrien Bercher
- Département de Physique de la Matière Quantique, Université de Genève, Genève 4, Switzerland
| | - Yinan Dong
- Department of Physics, Columbia University, New York, NY, USA
| | - Dorri Halbertal
- Department of Physics, Columbia University, New York, NY, USA
| | - Vibhu Ravindran
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Zijian Zhou
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Mila Petrovic
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Adrian Gozar
- Department of Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - G L Carr
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Qiang Li
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Alexey B Kuzmenko
- Département de Physique de la Matière Quantique, Université de Genève, Genève 4, Switzerland
| | - Michael M Fogler
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA.
| | - Xu Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
25
|
Wildman EJ, Lawrence GB, Walsh A, Morita K, Simpson S, Ritter C, Stenning GBG, Arevalo-Lopez AM, Mclaughlin AC. Observation of an exotic insulator to insulator transition upon electron doping the Mott insulator CeMnAsO. Nat Commun 2023; 14:7037. [PMID: 37923745 PMCID: PMC10624918 DOI: 10.1038/s41467-023-42858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
A promising route to discover exotic electronic states in correlated electron systems is to vary the hole or electron doping away from a Mott insulating state. Important examples include quantum criticality and high-temperature superconductivity in cuprates. Here, we report the surprising discovery of a quantum insulating state upon electron doping the Mott insulator CeMnAsO, which emerges below a distinct critical transition temperature, TII. The insulator-insulator transition is accompanied by a significant reduction in electron mobility as well as a colossal Seebeck effect and slow dynamics due to decoupling of the electrons from the lattice phonons. The origin of the transition is tentatively interpreted in terms of many-body localization, which has not been observed previously in a solid-state material.
Collapse
Affiliation(s)
- E J Wildman
- The Chemistry Department, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK
| | - G B Lawrence
- The Chemistry Department, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK
| | - A Walsh
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - K Morita
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - S Simpson
- The Chemistry Department, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK
| | - C Ritter
- Institut Laue Langevin, 71 Avenue des Martyrs, BP 156, F-38042, Grenoble, Cedex 9, France
| | - G B G Stenning
- ISIS Experimental Operations Division, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - A M Arevalo-Lopez
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - A C Mclaughlin
- The Chemistry Department, University of Aberdeen, Meston Walk, Aberdeen, AB24 3UE, UK.
| |
Collapse
|
26
|
Li Z, Zhang Z, Zhou X. Chemical Modulation of Metal-Insulator Transition toward Multifunctional Applications in Vanadium Dioxide Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305234. [PMID: 37394705 DOI: 10.1002/smll.202305234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The metal-insulator transition (MIT) of vanadium dioxide (VO2 ) has been of great interest in materials science for both fundamental understanding of strongly correlated physics and a wide range of applications in optics, thermotics, spintronics, and electronics. Due to the merits of chemical interaction with accessibility, versatility, and tunability, chemical modification provides a new perspective to regulate the MIT of VO2 , endowing VO2 with exciting properties and improved functionalities. In the past few years, plenty of efforts have been devoted to exploring innovative chemical approaches for the synthesis and MIT modulation of VO2 nanostructures, greatly contributing to the understanding of electronic correlations and development of MIT-driven functionalities. Here, this comprehensive review summarizes the recent achievements in chemical synthesis of VO2 and its MIT modulation involving hydrogen incorporation, composition engineering, surface modification, and electrochemical gating. The newly appearing phenomena, mechanism of electronic correlation, and structural instability are discussed. Furthermore, progresses related to MIT-driven applications are presented, such as the smart window, optoelectronic detector, thermal microactuator, thermal radiation coating, spintronic device, memristive, and neuromorphic device. Finally, the challenges and prospects in future research of chemical modulation and functional applications of VO2 MIT are also provided.
Collapse
Affiliation(s)
- Zejun Li
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 211189, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Zhi Zhang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 211189, China
| | - Xiaoli Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
27
|
Feng C, Li BW, Dong Y, Chen XD, Zheng Y, Wang ZH, Lin HB, Jiang W, Zhang SC, Zou CW, Guo GC, Sun FW. Quantum imaging of the reconfigurable VO 2 synaptic electronics for neuromorphic computing. SCIENCE ADVANCES 2023; 9:eadg9376. [PMID: 37792938 PMCID: PMC10550222 DOI: 10.1126/sciadv.adg9376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/31/2023] [Indexed: 10/06/2023]
Abstract
Neuromorphic computing has shown remarkable capabilities in silicon-based artificial intelligence, which can be optimized by using Mott materials for functional synaptic connections. However, the research efforts focus on two-terminal artificial synapses and envisioned the networks controlled by silicon-based circuits, which is difficult to develop and integrate. Here, we propose a dynamic network with laser-controlled conducting filaments based on electric field-induced local insulator-metal transition of vanadium dioxide. Quantum sensing is used to realize conductivity-sensitive imaging of conducting filament. We find that the location of filament formation is manipulated by focused laser, which is applicable to simulate the dynamical synaptic connections between the neurons. The ability to process signals with both long-term and short-term potentiation is further demonstrated with ~60 times on/off ratio while switching the pathways. This study opens the door to the development of dynamic network structures depending on easily controlled conduction pathways, mimicking the biological nervous systems.
Collapse
Affiliation(s)
- Ce Feng
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Bo-Wen Li
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Yang Dong
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Dong Chen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yu Zheng
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ze-Hao Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Bin Lin
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wang Jiang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Shao-Chun Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chong-Wen Zou
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Fang-Wen Sun
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
28
|
Zhao Y, Li G, Yao Y, Chen J, Xue M, Bao L, Jin K, Ge C, Chen J. Tunable heterostructural prism for planar polaritonic switch. Sci Bull (Beijing) 2023; 68:1757-1763. [PMID: 37507260 DOI: 10.1016/j.scib.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The study of phonon polaritons in van der Waals materials at the nanoscale has gained significant attention in recent years due to its potential applications in nanophotonics. The unique properties of these materials, such as their ability to support sub-diffraction imaging, sensing, and hyperlenses, have made them a promising avenue for the development of new techniques in the field. Despite these advancements, there still exists a challenge in achieving dynamically reversible manipulation of phonon polaritons in these materials due to their insulating properties. In this study, we present experimental results on the reversible manipulation of anisotropic phonon polaritons in α-MoO3 on top of a VO2 film, a phase-change material known for its dramatic changes in dielectric properties between its insulating and metallic states. Our findings demonstrate that the engineered VO2 film enables a switch in the propagation of polaritons in the mid-infrared region by modifying the dielectric properties of the film through temperature changes. Our results represent a promising approach to effectively control the flow of light energy at the nanoscale and offer the potential for the design and fabrication of integrated, flat sub-diffraction polaritonic devices. This study adds to the growing body of work in the field of nanophotonics and highlights the importance of considering phase-change materials for the development of new techniques in this field.
Collapse
Affiliation(s)
- Yongqian Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyu Yao
- Department of Physics, National University of Singapore, Singapore 117550, Singapore
| | - Jiancui Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfei Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Bao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan 523808, China.
| |
Collapse
|
29
|
Zhou X, Li H, Shang Y, Meng F, Li Z, Meng K, Wu Y, Xu X, Jiang Y, Chen N, Chen J. Manipulating the metal-to-insulator transitions of VO 2 by combining compositing and doping strategies. Phys Chem Chem Phys 2023; 25:21908-21915. [PMID: 37581209 DOI: 10.1039/d3cp02224b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Vanadium dioxide (VO2) exhibits the most abrupt metal-to-insulator transition (MIT) property near room temperature among the representative 3d-orbital correlated oxides, and its structural variation during the MIT usually results in poor mechanical properties as bulk pellets. Moreover, compositing with highly resistive oxides has been reported to improve the mechanical strength of bulk VO2 since the generation and propagation of microcracks is suppressed upon thermocycling across the MIT; further, their respective impacts on electrical transportation are yet unclear. Herein, we demonstrate the role of these highly resistive oxide composites (e.g., HfO2, CoO and Al2O3) in reducing charge leakage along the microcracks within the insulating phase of VO2, leading to more abrupt MIT properties from the perspective of electrical transportation. This enables the possibility of simultaneously regulating the critical temperature and abrupt MIT transition, as well as the mechanical properties of the VO2 bulk pellets via compositing with oxides with different melting points using spark plasma-assisted reactive sintering (SPARS).
Collapse
Affiliation(s)
- Xuanchi Zhou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Haifan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yanlong Shang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Fanqi Meng
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Kangkang Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yong Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xiaoguang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yong Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Nuofu Chen
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China.
| | - Jikun Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
30
|
Van Benschoten W, Petras HR, Shepherd JJ. Electronic Free Energy Surface of the Nitrogen Dimer Using First-Principles Finite Temperature Electronic Structure Methods. J Phys Chem A 2023; 127:6842-6856. [PMID: 37535315 PMCID: PMC10440793 DOI: 10.1021/acs.jpca.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
We use full configuration interaction and density matrix quantum Monte Carlo methods to calculate the electronic free energy surface of the nitrogen dimer within the free-energy Born-Oppenheimer approximation. As the temperature is raised from T = 0, we find a temperature regime in which the internal energy causes bond strengthening. At these temperatures, adding in the entropy contributions is required to cause the bond to gradually weaken with increasing temperature. We predict a thermally driven dissociation for the nitrogen dimer between 22,000 to 63,200 K depending on symmetries and basis set. Inclusion of more spatial and spin symmetries reduces the temperature required. The origin of these observations is explored using the structure of the density matrix at various temperatures and bond lengths.
Collapse
Affiliation(s)
| | - Hayley R. Petras
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
31
|
Chen X, Xu S, Shabani S, Zhao Y, Fu M, Millis AJ, Fogler MM, Pasupathy AN, Liu M, Basov DN. Machine Learning for Optical Scanning Probe Nanoscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2109171. [PMID: 36333118 DOI: 10.1002/adma.202109171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/09/2022] [Indexed: 06/16/2023]
Abstract
The ability to perform nanometer-scale optical imaging and spectroscopy is key to deciphering the low-energy effects in quantum materials, as well as vibrational fingerprints in planetary and extraterrestrial particles, catalytic substances, and aqueous biological samples. These tasks can be accomplished by the scattering-type scanning near-field optical microscopy (s-SNOM) technique that has recently spread to many research fields and enabled notable discoveries. Herein, it is shown that the s-SNOM, together with scanning probe research in general, can benefit in many ways from artificial-intelligence (AI) and machine-learning (ML) algorithms. Augmented with AI- and ML-enhanced data acquisition and analysis, scanning probe optical nanoscopy is poised to become more efficient, accurate, and intelligent.
Collapse
Affiliation(s)
- Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Suheng Xu
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Sara Shabani
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Yueqi Zhao
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093-0319, USA
| | - Matthew Fu
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Michael M Fogler
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093-0319, USA
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
32
|
Wang X, Liu Y, Jia Y, Su N, Wu Q. Ultra-Wideband and Narrowband Switchable, Bi-Functional Metamaterial Absorber Based on Vanadium Dioxide. MICROMACHINES 2023; 14:1381. [PMID: 37512692 PMCID: PMC10384486 DOI: 10.3390/mi14071381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
A switchable ultra-wideband THz absorber based on vanadium dioxide was proposed, which consists of a lowermost gold layer, a PMI dielectric layer, and an insulating and surface vanadium dioxide layer. Based on the phase transition properties of vanadium dioxide, switching performance between ultra-broadband and narrowband can achieve a near-perfect absorption. The constructed model was simulated and analyzed using finite element analysis. Simulations show that the absorption frequency of vanadium dioxide above 90% is between 3.8 THz and 15.6 THz when the vanadium dioxide is in the metallic state. The broadband absorber has an absorption bandwidth of 11.8 THz, is insensitive to TE and TM polarization, and has universal incidence angle insensitivity. When vanadium dioxide is in the insulating state, the narrowband absorber has a Q value as high as 1111 at a frequency of 13.89 THz when the absorption is more excellent than 99%. The absorber proposed in this paper has favorable symmetry properties, excellent TE and TM wave insensitivity, overall incidence angle stability, and the advantages of its small size, ultra-widebands and narrowbands, and elevated Q values. The designed absorber has promising applications in multifunctional devices, electromagnetic cloaking, and optoelectronic switches.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
- Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- School of Instrument and Intelligent Future Technology, North University of China, Taiyuan 030051, China
- Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
| | - Yanfei Liu
- Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- School of Instrument and Intelligent Future Technology, North University of China, Taiyuan 030051, China
- Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
| | - Yilin Jia
- Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- School of Instrument and Intelligent Future Technology, North University of China, Taiyuan 030051, China
- Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
| | - Ningning Su
- Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- School of Instrument and Intelligent Future Technology, North University of China, Taiyuan 030051, China
- Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
| | - Qiannan Wu
- Center for Microsystem Integration, North University of China, Taiyuan 030051, China
- School of Instrument and Intelligent Future Technology, North University of China, Taiyuan 030051, China
- Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
| |
Collapse
|
33
|
Lee SY, Seo HK, Jeong SY, Yang MK. Improved Electrical Characteristics of Field Effect Transistors with GeSeTe-Based Ovonic Threshold Switching Devices. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4315. [PMID: 37374499 DOI: 10.3390/ma16124315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Hyper-field effect transistors (hyper-FETs) are crucial in the development of low-power logic devices. With the increasing significance of power consumption and energy efficiency, conventional logic devices can no longer achieve the required performance and low-power operation. Next-generation logic devices are designed based on complementary metal-oxide-semiconductor circuits, and the subthreshold swing of existing metal-oxide semiconductor field effect transistors (MOSFETs) cannot be reduced below 60 mV/dec at room temperature owing to the thermionic carrier injection mechanism in the source region. Therefore, new devices must be developed to overcome these limitations. In this study, we present a novel threshold switch (TS) material, which can be applied to logic devices by employing ovonic threshold switch (OTS) materials, failure control of insulator-metal transition materials, and structural optimization. The proposed TS material is connected to a FET device to evaluate its performance. The results demonstrate that commercial transistors connected in series with GeSeTe-based OTS devices exhibit significantly lower subthreshold swing values, high on/off current ratios, and high durability of up to 108.
Collapse
Affiliation(s)
- Su Yeon Lee
- Artificial Intelligence Convergence Research Laboratory, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hyun Kyu Seo
- Artificial Intelligence Convergence Research Laboratory, Sahmyook University, Seoul 01795, Republic of Korea
| | - Se Yeon Jeong
- Artificial Intelligence Convergence Research Laboratory, Sahmyook University, Seoul 01795, Republic of Korea
| | - Min Kyu Yang
- Artificial Intelligence Convergence Research Laboratory, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
34
|
Lian Y, Li Y, Lou Y, Liu Z, Jiang C, Hu Z, Wang J. Adjustable Trifunctional Mid-Infrared Metamaterial Absorber Based on Phase Transition Material VO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1829. [PMID: 37368259 DOI: 10.3390/nano13121829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
In this paper, we demonstrate an adjustable trifunctional absorber that can achieve the conversion of broadband, narrowband and superimposed absorption based on the phase transition material vanadium dioxide (VO2) in the mid-infrared domain. The absorber can achieve the switching of multiple absorption modes by modulating the temperature to regulate the conductivity of VO2. When the VO2 film is adjusted to the metallic state, the absorber serves as a bidirectional perfect absorber with switching capability of wideband and narrowband absorption. The superposed absorptance can be generated while the VO2 layer is converted to the insulating state. Then, we introduced the impedance matching principle to explain the inner mechanism of the absorber. Our designed metamaterial system with a phase transition material is promising for sensing, radiation thermometer and switching devices.
Collapse
Affiliation(s)
- Yi Lian
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Yuke Li
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Yipan Lou
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Zexu Liu
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Chang Jiang
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Zhengda Hu
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Jicheng Wang
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| |
Collapse
|
35
|
Rana A, Yadav A, Gupta G, Rana A. Infrared sensitive mixed phase of V 7O 16 and V 2O 5 thin-films. RSC Adv 2023; 13:15334-15341. [PMID: 37223643 PMCID: PMC10201198 DOI: 10.1039/d3ra00752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023] Open
Abstract
We report an infrared (IR) sensitive mixed phase of V7O16 and V2O5 thin films, grown by cathodic vacuum arc-deposition on glass substrates at relatively low temperatures. We have found that the mixed phase of V7O16 and V2O5 can be stabilized by post-annealing of amorphous VxOy between 300-400 °C, which gets fully converted into V2O5 after annealing at higher temperatures ∼450 °C. The local conversion from VxOy to V2O5 has also been demonstrated by applying different laser powers in Raman spectroscopy measurements. The optical transmission of these films increases as the content of V2O5 increases but the electrical conductivity and the optical bandgap decrease. These results are explained by the role of defects (oxygen vacancies) through the photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. The IR sensitivity of the mixed phase is explained by the plasmonic absorption by the V7O16 degenerate semiconductor.
Collapse
Affiliation(s)
- Anchal Rana
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University Sidhrawali Gurugram-122413 Haryana India
| | - Aditya Yadav
- CSIR-National Physical Laboratory K. S. Krishnan Marg New Delhi 110012 India
| | - Govind Gupta
- CSIR-National Physical Laboratory K. S. Krishnan Marg New Delhi 110012 India
| | - Abhimanyu Rana
- Centre for Advanced Materials and Devices, School of Engineering and Technology, BML Munjal University Sidhrawali Gurugram-122413 Haryana India
| |
Collapse
|
36
|
Ouyang W, Shi B, Su T, Cheng X, Gao H, Jia F, Whangbo MH, Ren W. Magnetic transitions of hydrogenated H xCrO 2( x= 0-2) monolayer from a ferromagnetic half-metal to antiferromagnetic insulator. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305001. [PMID: 37054736 DOI: 10.1088/1361-648x/acccc6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) transition metal oxide monolayers are currently attracting great interest in materials research due to their versatility and tunable electronic and magnetic properties. In this study, we report the prediction of magnetic phase changes in HxCrO2(0 ⩽x⩽ 2) monolayer on the basis of first-principles calculations. As the H adsorption concentrationxincreases from 0 to 0.75, HxCrO2monolayer transforms from a ferromagnetic (FM) half-metal to a small-gap FM insulator. Whenx= 1.00 and 1.25, it behaves as a bipolar antiferromagnetic (AFM) insulator, and eventually becomes an AFM insulator asxincreases further up to 2.00. The results suggest that the magnetic properties of CrO2monolayer can be effectively controlled by hydrogenation, and that HxCrO2monolayers have the potential for realizing tunable 2D magnetic materials. Our results provide a comprehensive understanding of the hydrogenated 2D transition metal CrO2and provide a research method that can be used as a reference for the hydrogenation of other similar 2D materials.
Collapse
Affiliation(s)
- Wenbin Ouyang
- Physics Department, International Center for Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, People's Republic of China
| | - Bowen Shi
- Physics Department, International Center for Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, People's Republic of China
- Shanghai World Foreign Language Academy, 400 Baihua Street, Shanghai 200233, People's Republic of China
| | - Tianhao Su
- Physics Department, International Center for Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xuli Cheng
- Physics Department, International Center for Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, People's Republic of China
| | - Heng Gao
- Physics Department, International Center for Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, People's Republic of China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, People's Republic of China
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Fanhao Jia
- Physics Department, International Center for Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, People's Republic of China
| | - Myung-Hwan Whangbo
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States of America
| | - Wei Ren
- Physics Department, International Center for Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
37
|
Sayers CJ, Cerullo G, Zhang Y, Sanders CE, Chapman RT, Wyatt AS, Chatterjee G, Springate E, Wolverson D, Da Como E, Carpene E. Exploring the Charge Density Wave Phase of 1T-TaSe_{2}: Mott or Charge-Transfer Gap? PHYSICAL REVIEW LETTERS 2023; 130:156401. [PMID: 37115877 DOI: 10.1103/physrevlett.130.156401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
1T-TaSe_{2} is widely believed to host a Mott metal-insulator transition in the charge density wave (CDW) phase according to the spectroscopic observation of a band gap that extends across all momentum space. Previous investigations inferred that the occurrence of the Mott phase is limited to the surface only of bulk specimens, but recent analysis on thin samples revealed that the Mott-like behavior, observed in the monolayer, is rapidly suppressed with increasing thickness. Here, we report combined time- and angle-resolved photoemission spectroscopy and theoretical investigations of the electronic structure of 1T-TaSe_{2}. Our experimental results confirm the existence of a state above E_{F}, previously ascribed to the upper Hubbard band, and an overall band gap of ∼0.7 eV at Γ[over ¯]. However, supported by density functional theory calculations, we demonstrate that the origin of this state and the gap rests on band structure modifications induced by the CDW phase alone, without the need for Mott correlation effects.
Collapse
Affiliation(s)
- C J Sayers
- Dipartimento di Fisica, Politecnico di Milano, Milan 20133, Italy
| | - G Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Milan 20133, Italy
| | - Y Zhang
- STFC Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - C E Sanders
- STFC Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - R T Chapman
- STFC Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - A S Wyatt
- STFC Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - G Chatterjee
- STFC Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - E Springate
- STFC Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - D Wolverson
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - E Da Como
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - E Carpene
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
38
|
Hong WK, Jang HS, Yoon J, Choi WJ. Modulation of Switching Characteristics in a Single VO 2 Nanobeam with Interfacial Strain via the Interconnection of Multiple Nanoscale Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11296-11303. [PMID: 36787543 DOI: 10.1021/acsami.2c21367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate the modulation of electrical switching properties through the interconnection of multiple nanoscale channels (∼600 nm) in a single VO2 nanobeam with a coexisting metal-insulator (M-I) domain configuration during phase transition. The Raman scattering characteristics of the synthesized VO2 nanobeams provide evidence that substrate-induced interfacial strain can be inhomogeneously distributed along the length of the nanobeam. Interestingly, the nanoscale VO2 devices with the same channel length and width exhibit distinct differences in hysteric current-voltage characteristics, which are explained by theoretical calculations of resistance change combined with Joule heating simulations of the nanoscale VO2 channels. The observed results can be attributed to the difference in the spatial distribution and fraction ratios of M-I domains due to interfacial strain in the nanoscale VO2 channels during the metal-insulator transition process. Moreover, we demonstrate the electrically activated resistive switching characteristics based on the hysteresis behaviors of the interconnected nanoscale channels, implying the possibility of manipulating multiple resistive states. Our results may offer insights into the nanoscale engineering of correlated phases in VO2 as the key materials of neuromorphic computing for which nonlinear conductance is essential.
Collapse
Affiliation(s)
- Woong-Ki Hong
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Hun Soo Jang
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jongwon Yoon
- Department of Energy & Electronic Materials, Surface & Nano Materials Division, Korea Institute of Materials Science, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Woo Jin Choi
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
39
|
Kim YJ, Nho HW, Ji S, Lee H, Ko H, Weissenrieder J, Kwon OH. Femtosecond-resolved imaging of a single-particle phase transition in energy-filtered ultrafast electron microscopy. SCIENCE ADVANCES 2023; 9:eadd5375. [PMID: 36706188 PMCID: PMC9882981 DOI: 10.1126/sciadv.add5375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Using an energy filter in transmission electron microscopy has enabled elemental mapping at the atomic scale and improved the precision of structural determination by gating inelastic and elastic imaging electrons, respectively. Here, we use an energy filter in ultrafast electron microscopy to enhance the temporal resolution toward the domain of atomic motion. Visualizing transient structures with femtosecond temporal precision was achieved by selecting imaging electrons in a narrow energy distribution from dense chirped photoelectron packets with broad longitudinal momentum distributions and thus typically exhibiting picosecond durations. In this study, the heterogeneous ultrafast phase transitions of vanadium dioxide (VO2) nanoparticles, a representative strongly correlated system, were filmed and attributed to the emergence of a transient, low-symmetry metallic phase caused by different local strains. Our approach enables electron microscopy to access the time scale of elementary nuclear motion to visualize the onset of the structural dynamics of matter at the nanoscale.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Shaozheng Ji
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Hyejin Lee
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jonas Weissenrieder
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
40
|
Coughlin AL, Pan Z, Hong J, Zhang T, Zhan X, Wu W, Xie D, Tong T, Ruch T, Heremans JJ, Bao J, Fertig HA, Wang J, Kim J, Zhu H, Li D, Zhang S. Enhanced Electron Correlation and Significantly Suppressed Thermal Conductivity in Dirac Nodal-Line Metal Nanowires by Chemical Doping. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204424. [PMID: 36437041 PMCID: PMC9839858 DOI: 10.1002/advs.202204424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Enhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2 ), via doping with 3d transition metal vanadium is demonstrated. Single-crystalline vanadium-doped IrO2 nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further evidenced by transport studies where the electrical resistivity is greatly increased and follows an unusual T $\sqrt T $ dependence on the temperature (T). The lattice thermal conductivity is suppressed by an order of magnitude via doping even at room temperature where phonon-impurity scattering becomes less important. Density functional theory calculations suggest that the remarkable reduction of thermal conductivity arises from the complex phonon dispersion and reduced energy gap between phonon branches, which greatly enhances phase space for phonon-phonon Umklapp scattering. This work demonstrates a unique system combining 3d and 5d transition metals in isostructural materials to enrich the system with various types of interactions.
Collapse
Affiliation(s)
| | - Zhiliang Pan
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Jeonghoon Hong
- Department of PhysicsIncheon National UniversityIncheon22012Korea
| | - Tongxie Zhang
- Department of PhysicsIndiana UniversityBloomingtonIN47405USA
| | - Xun Zhan
- Electron Microscopy CenterIndiana UniversityBloomingtonIN47405USA
| | - Wenqian Wu
- Department of Mechanical and Materials EngineeringUniversity of NebraskaLincolnNE68588USA
| | - Dongyue Xie
- Department of Mechanical and Materials EngineeringUniversity of NebraskaLincolnNE68588USA
- Center for Integrated Nanotechnologies, MPA DivisionLos Alamos National LaboratoryLos Alamos87545United States
| | - Tian Tong
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH)University of HoustonHoustonTX77204USA
| | - Thomas Ruch
- Department of PhysicsIndiana UniversityBloomingtonIN47405USA
| | | | - Jiming Bao
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH)University of HoustonHoustonTX77204USA
| | | | - Jian Wang
- Department of Mechanical and Materials EngineeringUniversity of NebraskaLincolnNE68588USA
| | - Jeongwoo Kim
- Department of PhysicsIncheon National UniversityIncheon22012Korea
| | - Hanyu Zhu
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77005USA
| | - Deyu Li
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Shixiong Zhang
- Department of PhysicsIndiana UniversityBloomingtonIN47405USA
| |
Collapse
|
41
|
Miao JY, Wang WX, Jiang ZY, Zhang XD, Zheng JM, Du A. A theoretical study on pseudo Mott phase transition of vanadium dioxide. Phys Chem Chem Phys 2023; 25:759-767. [DOI: 10.1039/d2cp04763b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Peierls geometrical distortion rather than Mott electronic correlation always plays a decisive role in the thermally induced phase transition in which the presence of Coulomb repulsion between electrons does not have an effect.
Collapse
Affiliation(s)
- Jin-Yi Miao
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, 710069, Xi'an, China
| | - Wen-Xuan Wang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, 710069, Xi'an, China
| | - Zhen-Yi Jiang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, 710069, Xi'an, China
| | - Xiao-Dong Zhang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, 710069, Xi'an, China
| | - Ji-Ming Zheng
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, 710069, Xi'an, China
| | - Aijun Du
- Centre for Materials Science, School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| |
Collapse
|
42
|
Wang Z, Ji X, Dong N, Chen C, Yan Z, Cao X, Wang J. Femtosecond laser-induced phase transition in VO 2 films. OPTICS EXPRESS 2022; 30:47421-47429. [PMID: 36558670 DOI: 10.1364/oe.477910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
VO2 is a very promising material due to its semiconductor-metal phase transition, however, the research on fs laser-induced phase transition is still very controversial, which greatly limits its development in ultrafast optics. In this work, the fs laser-induced changes in the optical properties of VO2 films were studied with a variable-temperature Z-scan. At room temperature, VO2 consistently maintained nonlinear absorption properties at laser repetition frequencies below 10 kHz while laser-induced phase transition properties appeared at higher repetition frequencies. It was found by temperature variation experiments at 100 kHz that the modulation depth of the laser-induced VO2 phase transition was consistent with that of the ambient temperature-induced phase transition, which was increased linearly with thickness, further confirming that the phase transition was caused by the accumulation of thermal effects of a high-repetition-frequency laser. The phase transition process is reversible and causes substantial changes in optical properties of the film, which holds significant promise for all-optical switches and related applications.
Collapse
|
43
|
Wu J, Yan X, Lei X, He L, Guo W, Yan S, Kuang X, Yin C. Ferromagnetic and antiferromagnetic orders in low dimensional PbBiFe1-xMxO4 (M = Mn and Co) solid solutions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Mjejri I, Duttine M, Buffière S, Labrugère-Sarroste C, Rougier A. From the Irreversible Transformation of VO 2 to V 2O 5 Electrochromic Films. Inorg Chem 2022; 61:18496-18503. [DOI: 10.1021/acs.inorgchem.2c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Issam Mjejri
- Université de Bordeaux, CNRS, Bx INP, ICMCB, UMR 5026, F-33600Pessac, France
| | - Mathieu Duttine
- Université de Bordeaux, CNRS, Bx INP, ICMCB, UMR 5026, F-33600Pessac, France
| | - Sonia Buffière
- Université de Bordeaux, CNRS, Bx INP, ICMCB, UMR 5026, F-33600Pessac, France
| | | | - Aline Rougier
- Université de Bordeaux, CNRS, Bx INP, ICMCB, UMR 5026, F-33600Pessac, France
| |
Collapse
|
45
|
Wilson CE, Gibson AE, Cuillier PM, Li CH, Crosby PHN, Trigg EB, Najmr S, Murray CB, Jinschek JR, Doan-Nguyen V. Local structure elucidation of tungsten-substituted vanadium dioxide (V[Formula: see text]W[Formula: see text]O[Formula: see text]). Sci Rep 2022; 12:14767. [PMID: 36042264 PMCID: PMC9428210 DOI: 10.1038/s41598-022-18575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Initially, vanadium dioxide seems to be an ideal first-order phase transition case study due to its deceptively simple structure and composition, but upon closer inspection there are nuances to the driving mechanism of the metal-insulator transition (MIT) that are still unexplained. In this study, a local structure analysis across a bulk powder tungsten-substitution series is utilized to tease out the nuances of this first-order phase transition. A comparison of the average structure to the local structure using synchrotron x-ray diffraction and total scattering pair-distribution function methods, respectively, is discussed as well as comparison to bright field transmission electron microscopy imaging through a similar temperature-series as the local structure characterization. Extended x-ray absorption fine structure fitting of thin film data across the substitution-series is also presented and compared to bulk. Machine learning technique, non-negative matrix factorization, is applied to analyze the total scattering data. The bulk MIT is probed through magnetic susceptibility as well as differential scanning calorimetry. The findings indicate the local transition temperature ([Formula: see text]) is less than the average [Formula: see text] supporting the Peierls-Mott MIT mechanism, and demonstrate that in bulk powder and thin-films, increasing tungsten-substitution instigates local V-oxidation through the phase pathway VO[Formula: see text] V[Formula: see text]O[Formula: see text] V[Formula: see text]O[Formula: see text].
Collapse
Affiliation(s)
- Catrina E. Wilson
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Amanda E. Gibson
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Paul M. Cuillier
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Cheng-Han Li
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Patrice H. N. Crosby
- Chemistry, Ohio State University, Columbus, OH 43212 USA
- Present Address: Human Centered Design, Cornell University, Ithaca, NY 14853 USA
| | - Edward B. Trigg
- Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 USA
- Present Address: Battelle Memorial Institute, Columbus, OH 43201 USA
| | - Stan Najmr
- Chemistry, University of Pennsylvania, Philadelphia, PA 19143 USA
| | - Christopher B. Murray
- Present Address: Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19143 USA
| | - Joerg R. Jinschek
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
- Present Address: DTU Nanolab, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Vicky Doan-Nguyen
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| |
Collapse
|
46
|
Mohebbi E, Pavoni E, Mencarelli D, Stipa P, Pierantoni L, Laudadio E. Insights into first-principles characterization of the monoclinic VO 2(B) polymorph via DFT + U calculation: electronic, magnetic and optical properties. NANOSCALE ADVANCES 2022; 4:3634-3646. [PMID: 36134342 PMCID: PMC9400504 DOI: 10.1039/d2na00247g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/22/2022] [Indexed: 05/14/2023]
Abstract
We have studied the structural, electronic, magnetic, and optical properties of the VO2(B) polymorph using first-principles calculations based on density functional theory (DFT). This polymorph was found to display four optimized structures namely VO2(B)PP, VO2(B)LP, VO2(B)PPD, and VO2(B)LPD using the generalized gradient approximation (GGA) PBE exchange-correlation functional by including/excluding van der Waals interaction. Our derivation provides a theoretical justification for adding an on-site Coulomb U value in the conventional DFT calculations to allow a direct comparison of the two methods. We predicted a zero bandgap of the VO2(B) structure based on GGA/PBE. However, by GGA/PBE + U, we found accurate bandgap values of 0.76, 0.66, and 0.70 eV for VO2(B)PP, VO2(B)LP, and VO2(B)PPD, respectively. The results obtained from DFT + U were accompanied by a structural transition from the metallic to semiconductor property. Here, we verified the non-magnetic characteristic of the monoclinic VO2(B) phase with some available experimental and theoretical data. However, the debate on the magnetic property of this polymorph remains unresolved. Imaginary and real parts of the dielectric function, as computed with the GGA/PBE functional and the GGA/PBE + U functional, were also reported. The first absorption peaks of all considered geometries in the imaginary part of the dielectric constants indicated that the VO2(B) structure could perfectly absorb infrared light. The computed static dielectric constants with positive values, as derived from the optical properties, confirmed the conductivity of this material. Among the four proposed geometries of VO2(B) in this study, the outcomes obtained by VO2(B)PPD reveal good results owing to the excellent consistency of its bandgap, magnetic and optical properties with other experimental and theoretical observations. The theoretical framework in our study will provide useful insight for future practical applications of the VO2(B) polymorph in electronics and optoelectronics.
Collapse
Affiliation(s)
- Elaheh Mohebbi
- Department of Materials, Environmental Sciences and Urban Planning, Marche Polytechnic University 60131 Ancona Italy
| | - Eleonora Pavoni
- Department of Materials, Environmental Sciences and Urban Planning, Marche Polytechnic University 60131 Ancona Italy
| | - Davide Mencarelli
- Information Engineering Department, Marche Polytechnic University 60131 Ancona Italy
| | - Pierluigi Stipa
- Department of Materials, Environmental Sciences and Urban Planning, Marche Polytechnic University 60131 Ancona Italy
| | - Luca Pierantoni
- Information Engineering Department, Marche Polytechnic University 60131 Ancona Italy
| | - Emiliano Laudadio
- Department of Materials, Environmental Sciences and Urban Planning, Marche Polytechnic University 60131 Ancona Italy
| |
Collapse
|
47
|
Bahrami M, Vasilopoulos P. RPA Plasmons in Graphene Nanoribbons: Influence of a VO 2 Substrate. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2861. [PMID: 36014730 PMCID: PMC9412389 DOI: 10.3390/nano12162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
We study the effect of the phase-change material VO2 on plasmons in metallic arm-chair graphene nanoribbons (AGNRs) within the random-phase approximation (RPA) for intra- and inter-band transitions. We assess the influence of temperature as a knob for the transition from the insulating to the metallic phase of VO2 on localized and propagating plasmon modes. We show that AGNRs support localized and propagating plasmon modes and contrast them in the presence and absence of VO2 for intra-band (SB) transitions while neglecting the influence of a substrate-induced band gap. The presence of this gap results in propagating plasmon modes in two-band (TB) transitions. In addition, there is a critical band gap below and above which propagating modes have a linear negative or positive velocity. Increasing the band gap shifts the propagating and localized modes to higher frequencies. In addition, we show how the normalized Fermi velocity increases plasmon modes frequency.
Collapse
Affiliation(s)
- Mousa Bahrami
- Bita Quantum AI Inc., 2021 Av. Atwater, Montréal, QC H3H 2P2, Canada
| | - Panagiotis Vasilopoulos
- Department of Physics, Concordia University, 7141 Sherbrooke Ouest, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
48
|
Zhan Q, Pang H, Liao J, Luo W, Wang G, Ren X, Wang J, Duan Z, Huang Z, Ding L. Design of compact dual-mode photoelectric modulator with high process tolerance based on vanadium dioxide. APPLIED OPTICS 2022; 61:6761-6769. [PMID: 36255755 DOI: 10.1364/ao.466054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Opto-electro modulators with nanometer-scale footprint are indispensable in integrated photonic electronic circuits. Due to weak light-matter interactions and limits of micro-nano fabrication technology, it is challenging to shrink a modulator to subwavelength size. In recent years, hybrid modulators based on surface plasmons have been proposed to solve this problem. Although the introduced high lossy surface plasmons provide large modulation depth, the polarization selectivity limits its application. Toward this end, in this paper, we present a design of an ultra-compact vanadium oxide (VO2)-based plasmonic waveguide modulator for both transverse electric (TE) and transverse magnetic (TM) modes. The device consists of two silicon tapers and a silicon waveguide embedded with a VO2 wedge. When electrical signals put on the device change the phase of VO2 from a metal to an insulator, the output optical signals along the waveguide are significantly modulated. For a 1.5 µm length modulator operating at 1.55 µm wavelength, the extinction ratio is 11.62 dB for the TE mode and 8.86 dB for the TM mode, while the insertion loss is 4.31 dB for the TE mode and 4.12 dB for the TM mode. Furthermore, the proposed design has excellent tolerance for fabrication process error, which greatly increases the yield rate of products and indicates a promotable application prospect.
Collapse
|
49
|
Embedded metallic nanoparticles facilitate metastability of switchable metallic domains in Mott threshold switches. Nat Commun 2022; 13:4609. [PMID: 35948541 PMCID: PMC9365788 DOI: 10.1038/s41467-022-32081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Mott threshold switching, which is observed in quantum materials featuring an electrically fired insulator-to-metal transition, calls for delicate control of the percolative dynamics of electrically switchable domains on a nanoscale. Here, we demonstrate that embedded metallic nanoparticles (NP) dramatically promote metastability of switchable metallic domains in single-crystal-like VO2 Mott switches. Using a model system of Pt-NP-VO2 single-crystal-like films, interestingly, the embedded Pt NPs provide 33.3 times longer ‘memory’ of previous threshold metallic conduction by serving as pre-formed ‘stepping-stones’ in the switchable VO2 matrix by consecutive electical pulse measurement; persistent memory of previous firing during the application of sub-threshold pulses was achieved on a six orders of magnitude longer timescale than the single-pulse recovery time of the insulating resistance in Pt-NP-VO2 Mott switches. This discovery offers a fundamental strategy to exploit the geometric evolution of switchable domains in electrically fired transition and potential applications for non-Boolean computing using quantum materials. Control of percolative dynamics of metal and insulator domains during electrically triggered insulator-metal transition underlies applications in energy-efficient switches. Jo et al. show that embedded metallic nanoparticles enhance the metastability and memory effects of metallic domains in VO2 switches.
Collapse
|
50
|
Zheng C, Simpson RE, Tang K, Ke Y, Nemati A, Zhang Q, Hu G, Lee C, Teng J, Yang JKW, Wu J, Qiu CW. Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chem Rev 2022; 122:15450-15500. [PMID: 35894820 DOI: 10.1021/acs.chemrev.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.
Collapse
Affiliation(s)
- Chunqi Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.,NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Robert E Simpson
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
| | - Kechao Tang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yujie Ke
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
| | - Arash Nemati
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, and Lawrence Berkeley National Laboratory, California 94720, United States
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|