1
|
Singh UA, Iyengar S. Delta opioid receptors affect acoustic features of song during vocal learning in zebra finches. BMC Neurosci 2025; 26:4. [PMID: 39844074 PMCID: PMC11755880 DOI: 10.1186/s12868-025-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Delta-opioid receptors (δ-ORs) are known to be involved in associative learning and modulating motivational states. We wanted to study if they were also involved in naturally-occurring reinforcement learning behaviors such as vocal learning, using the zebra finch model system. Zebra finches learn to vocalize early in development and song learning in males is affected by factors such as the social environment and internal reward, both of which are modulated by endogenous opioids. Pairs of juvenile male siblings (35-day-old) were systemically administered a δ-OR-selective antagonist naltrindole or vehicle (controls) for a period of 10 days. The acoustic structure of songs differed across treated and control groups at adulthood (120 days). Naltrindole-treated birds had a significantly lower pitch, mean frequency, and frequency modulation than controls, whereas there was no difference in the number of songs in naltrindole-treated and control siblings. Since the opioid and dopaminergic systems interact, we decided to study whether blocking δ-ORs during the sensitive period led to changes in dopaminoceptive neurons in Area X, a song control nucleus in the basal ganglia. Interestingly, compared with controls, naltrindole-treated birds had higher numbers of DARPP-32-positive medium spiny neurons and potentially excitatory synapses in Area X. We show that manipulating δ-OR signaling during the learning phase resulted in alterations in the acoustic features of song and had long term effects on dopaminergic targets within the basal ganglia in adulthood. Our results suggest that endogenous opioids regulate the development of cognitive processes and the underlying neural circuitry during the sensitive period for learning.
Collapse
Affiliation(s)
- Utkarsha A Singh
- National Brain Research Centre, Manesar, Gurugram, 122052, Haryana, India
| | - Soumya Iyengar
- National Brain Research Centre, Manesar, Gurugram, 122052, Haryana, India.
- National Brain Research Centre, NH-8, Nainwal Mode, Manesar, Gurugram, Haryana, 122052, India.
| |
Collapse
|
2
|
Bistere L, Wilczek S, Vallentin D. Variable and slow-paced neural dynamics in HVC underlie plastic song production in juvenile zebra finches. BMC Neurosci 2024; 25:76. [PMID: 39716055 DOI: 10.1186/s12868-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Zebra finches undergo a gradual refinement of their vocalizations, transitioning from variable juvenile songs to the stereotyped song of adulthood. To investigate the neural mechanisms underlying song crystallization-a critical phase in this developmental process-we performed intracellular recordings in HVC (a premotor nucleus essential for song learning and production) of juvenile birds. We then compared these recordings to previously published electrophysiological data from adult birds. We found that HVC projection neurons in juvenile zebra finches during the song crystallization phase exhibited more variable spiking patterns compared to the precise bursting observed in adult HVC projection neurons. Additionally, subthreshold membrane potential fluctuations in juvenile neurons exhibited longer durations and larger amplitude excitatory postsynaptic potentials. These distinct temporal dynamics in HVC during song crystallization likely play a crucial role in the fine-tuning processes that shape the precise timing and structure of the mature zebra finch song.
Collapse
Affiliation(s)
- Linda Bistere
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
- Graduate School for Systemic Neurosciences GSN-LMU, Munich, Germany
| | - Stefan Wilczek
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.
- Graduate School for Systemic Neurosciences GSN-LMU, Munich, Germany.
| |
Collapse
|
3
|
Alward BA, Balthazart J, Ball GF. Androgen signaling in LMAN regulates song stereotypy in male canaries. Horm Behav 2024; 165:105611. [PMID: 39089160 PMCID: PMC11402583 DOI: 10.1016/j.yhbeh.2024.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
During breeding when testosterone concentrations are high, male songbirds that are open-ended vocal learners like canaries (Serinus canaria) tend to produce a stable, stereotyped song that facilitates mate attraction or territory defense. Outside breeding contexts, song becomes more variable. The neuroendocrine mechanisms controlling this vocal variability across seasons are not entirely clear. We tested whether androgen signaling within the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a cortical-like brain region of the vocal control system known as a vocal variability generator, plays a role in seasonal vocal variability. We first characterized song in birds housed alone on a short day (SD) photoperiod, which simulates non-breeding conditions. Then, cannulae filled with the androgen receptor (AR) blocker flutamide or left empty as control were implanted bilaterally in LMAN. Birds were then transferred to long days (LD) to simulate the breeding season and song was analyzed again. Blocking AR in LMAN increased acoustic variability of song and the acoustic variability of syllables. However, blocking AR in LMAN did not impact the variability of syllable usage nor their sequencing in LD birds, song features that are controlled by androgen signaling in a somatosensory brain region of the vocal control system called HVC. These findings highlight the multifactorial, non-redundant actions of steroid hormones in controlling complex social behaviors such as birdsong. They also support the hypothesis that LMAN is a key brain area for the effects of testosterone on song plasticity both seasonally in adults and during the song crystallization process at sexual maturity.
Collapse
Affiliation(s)
- Beau A Alward
- Department of Psychology, T.I.M.E.S, University of Houston, Houston, TX 77204, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA; Department of Psychology, Neural and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | | | - Gregory F Ball
- Department of Psychology, Neural and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Heim F, Mendoza E, Koparkar A, Vallentin D. Disinhibition enables vocal repertoire expansion after a critical period. Nat Commun 2024; 15:7565. [PMID: 39217170 PMCID: PMC11365960 DOI: 10.1038/s41467-024-51818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of motor skill acquisition is age-dependent, making it increasingly challenging to learn complex manoeuvres later in life. Zebra finches, for instance, acquire a complex vocal motor programme during a developmental critical period after which the learned song is essentially impervious to modification. Although inhibitory interneurons are implicated in critical period closure, it is unclear whether manipulating them can reopen heightened motor plasticity windows. Using pharmacology and a cell-type specific optogenetic approach, we manipulated inhibitory neuron activity in a premotor area of adult zebra finches beyond their critical period. When exposed to auditory stimulation in the form of novel songs, manipulated birds added new vocal syllables to their stable song sequence. By lifting inhibition in a premotor area during sensory experience, we reintroduced vocal plasticity, promoting an expansion of the syllable repertoire without compromising pre-existing song production. Our findings provide insights into motor skill learning capacities, offer potential for motor recovery after injury, and suggest avenues for treating neurodevelopmental disorders involving inhibitory dysfunctions.
Collapse
Affiliation(s)
- Fabian Heim
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Ezequiel Mendoza
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Avani Koparkar
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Indian Institute of Science Education and Research (IISER), Pune, India
- Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Daniela Vallentin
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
5
|
Zai AT, Stepien AE, Giret N, Hahnloser RHR. Goal-directed vocal planning in a songbird. eLife 2024; 12:RP90445. [PMID: 38959057 PMCID: PMC11221833 DOI: 10.7554/elife.90445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Songbirds' vocal mastery is impressive, but to what extent is it a result of practice? Can they, based on experienced mismatch with a known target, plan the necessary changes to recover the target in a practice-free manner without intermittently singing? In adult zebra finches, we drive the pitch of a song syllable away from its stable (baseline) variant acquired from a tutor, then we withdraw reinforcement and subsequently deprive them of singing experience by muting or deafening. In this deprived state, birds do not recover their baseline song. However, they revert their songs toward the target by about 1 standard deviation of their recent practice, provided the sensory feedback during the latter signaled a pitch mismatch with the target. Thus, targeted vocal plasticity does not require immediate sensory experience, showing that zebra finches are capable of goal-directed vocal planning.
Collapse
Affiliation(s)
- Anja T Zai
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| | - Anna E Stepien
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS, Université Paris-SaclaySaclayFrance
| | - Richard HR Hahnloser
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
6
|
Leitão A, Gahr M. Babbling opens the sensory phase for imitative vocal learning. Proc Natl Acad Sci U S A 2024; 121:e2312323121. [PMID: 38621117 PMCID: PMC11067029 DOI: 10.1073/pnas.2312323121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/07/2024] [Indexed: 04/17/2024] Open
Abstract
Zebra finches, a species of songbirds, learn to sing by creating an auditory template through the memorization of model songs (sensory learning phase) and subsequently translating these perceptual memories into motor skills (sensorimotor learning phase). It has been traditionally believed that babbling in juvenile birds initiates the sensorimotor phase while the sensory phase of song learning precedes the onset of babbling. However, our findings challenge this notion by demonstrating that testosterone-induced premature babbling actually triggers the onset of the sensory learning phase instead. We reveal that juvenile birds must engage in babbling and self-listening to acquire the tutor song as the template. Notably, the sensory learning of the template in songbirds requires motor vocal activity, reflecting the observation that prelinguistic babbling in humans plays a crucial role in auditory learning for language acquisition.
Collapse
Affiliation(s)
- Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| |
Collapse
|
7
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Khanna AR, Muñoz W, Kim YJ, Kfir Y, Paulk AC, Jamali M, Cai J, Mustroph ML, Caprara I, Hardstone R, Mejdell M, Meszéna D, Zuckerman A, Schweitzer J, Cash S, Williams ZM. Single-neuronal elements of speech production in humans. Nature 2024; 626:603-610. [PMID: 38297120 PMCID: PMC10866697 DOI: 10.1038/s41586-023-06982-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/14/2023] [Indexed: 02/02/2024]
Abstract
Humans are capable of generating extraordinarily diverse articulatory movement combinations to produce meaningful speech. This ability to orchestrate specific phonetic sequences, and their syllabification and inflection over subsecond timescales allows us to produce thousands of word sounds and is a core component of language1,2. The fundamental cellular units and constructs by which we plan and produce words during speech, however, remain largely unknown. Here, using acute ultrahigh-density Neuropixels recordings capable of sampling across the cortical column in humans, we discover neurons in the language-dominant prefrontal cortex that encoded detailed information about the phonetic arrangement and composition of planned words during the production of natural speech. These neurons represented the specific order and structure of articulatory events before utterance and reflected the segmentation of phonetic sequences into distinct syllables. They also accurately predicted the phonetic, syllabic and morphological components of upcoming words and showed a temporally ordered dynamic. Collectively, we show how these mixtures of cells are broadly organized along the cortical column and how their activity patterns transition from articulation planning to production. We also demonstrate how these cells reliably track the detailed composition of consonant and vowel sounds during perception and how they distinguish processes specifically related to speaking from those related to listening. Together, these findings reveal a remarkably structured organization and encoding cascade of phonetic representations by prefrontal neurons in humans and demonstrate a cellular process that can support the production of speech.
Collapse
Affiliation(s)
- Arjun R Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William Muñoz
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Yoav Kfir
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mohsen Jamali
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Cai
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martina L Mustroph
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Irene Caprara
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Hardstone
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mackenna Mejdell
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Domokos Meszéna
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA.
- Harvard Medical School, Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|
9
|
Toji N, Sawai A, Wang H, Ji Y, Sugioka R, Go Y, Wada K. A predisposed motor bias shapes individuality in vocal learning. Proc Natl Acad Sci U S A 2024; 121:e2308837121. [PMID: 38198530 PMCID: PMC10801888 DOI: 10.1073/pnas.2308837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
The development of individuality during learned behavior is a common trait observed across animal species; however, the underlying biological mechanisms remain understood. Similar to human speech, songbirds develop individually unique songs with species-specific traits through vocal learning. In this study, we investigate the developmental and molecular mechanisms underlying individuality in vocal learning by utilizing F1 hybrid songbirds (Taeniopygia guttata cross with Taeniopygia bichenovii), taking an integrating approach combining experimentally controlled systematic song tutoring, unbiased discriminant analysis of song features, and single-cell transcriptomics. When tutoring with songs from both parental species, F1 hybrid individuals exhibit evident diversity in their acquired songs. Approximately 30% of F1 hybrids selectively learn either song of the two parental species, while others develop merged songs that combine traits from both species. Vocal acoustic biases during vocal babbling initially appear as individual differences in songs among F1 juveniles and are maintained through the sensitive period of song vocal learning. These vocal acoustic biases emerge independently of the initial auditory experience of hearing the biological father's and passive tutored songs. We identify individual differences in transcriptional signatures in a subset of cell types, including the glutamatergic neurons projecting from the cortical vocal output nucleus to the hypoglossal nuclei, which are associated with variations of vocal acoustic features. These findings suggest that a genetically predisposed vocal motor bias serves as the initial origin of individual variation in vocal learning, influencing learning constraints and preferences.
Collapse
Affiliation(s)
- Noriyuki Toji
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Sapporo060-0810, Japan
| | - Azusa Sawai
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Hongdi Wang
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Yu Ji
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Rintaro Sugioka
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki444-8585, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Kazuhiro Wada
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo060-8638, Japan
| |
Collapse
|
10
|
Zhao Z, Teoh HK, Carpenter J, Nemon F, Kardon B, Cohen I, Goldberg JH. Anterior forebrain pathway in parrots is necessary for producing learned vocalizations with individual signatures. Curr Biol 2023; 33:5415-5426.e4. [PMID: 38070505 PMCID: PMC10799565 DOI: 10.1016/j.cub.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Parrots have enormous vocal imitation capacities and produce individually unique vocal signatures. Like songbirds, parrots have a nucleated neural song system with distinct anterior (AFP) and posterior forebrain pathways (PFP). To test if song systems of parrots and songbirds, which diverged over 50 million years ago, have a similar functional organization, we first established a neuroscience-compatible call-and-response behavioral paradigm to elicit learned contact calls in budgerigars (Melopsittacus undulatus). Using variational autoencoder-based machine learning methods, we show that contact calls within affiliated groups converge but that individuals maintain unique acoustic features, or vocal signatures, even after call convergence. Next, we transiently inactivated the outputs of AFP to test if learned vocalizations can be produced by the PFP alone. As in songbirds, AFP inactivation had an immediate effect on vocalizations, consistent with a premotor role. But in contrast to songbirds, where the isolated PFP is sufficient to produce stereotyped and acoustically normal vocalizations, isolation of the budgerigar PFP caused a degradation of call acoustic structure, stereotypy, and individual uniqueness. Thus, the contribution of AFP and the capacity of isolated PFP to produce learned vocalizations have diverged substantially between songbirds and parrots, likely driven by their distinct behavioral ecology and neural connectivity.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Han Kheng Teoh
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Julie Carpenter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Frieda Nemon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Brian Kardon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Ramarao M, Jones C, Goldberg JH, Roeser A. Songbird mesostriatal dopamine pathways are spatially segregated before the onset of vocal learning. PLoS One 2023; 18:e0285652. [PMID: 37972016 PMCID: PMC10653429 DOI: 10.1371/journal.pone.0285652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
Diverse dopamine (DA) pathways send distinct reinforcement signals to different striatal regions. In adult songbirds, a DA pathway from the ventral tegmental area (VTA) to Area X, the striatal nucleus of the song system, carries singing-related performance error signals important for learning. Meanwhile, a parallel DA pathway to a medial striatal area (MST) arises from a distinct group of neighboring DA neurons that lack connectivity to song circuits and do not encode song error. To test if the structural and functional segregation of these two pathways depends on singing experience, we carried out anatomical studies early in development before the onset of song learning. We find that distinct VTA neurons project to either Area X or MST in juvenile birds before the onset of substantial vocal practice. Quantitative comparisons of early juveniles (30-35 days post hatch), late juveniles (60-65 dph), and adult (>90 dph) brains revealed an outsized expansion of Area X-projecting neurons relative to MST-projecting neurons in VTA over development. These results show that a mesostriatal DA system dedicated to social communication can exist and be spatially segregated before the onset of vocal practice and associated sensorimotor experience.
Collapse
Affiliation(s)
- Malavika Ramarao
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| | - Caleb Jones
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| | - Jesse H. Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| | - Andrea Roeser
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
12
|
Tian LY, Warren TL, Mehaffey WH, Brainard MS. Dynamic top-down biasing implements rapid adaptive changes to individual movements. eLife 2023; 12:e83223. [PMID: 37733005 PMCID: PMC10513479 DOI: 10.7554/elife.83223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.
Collapse
Affiliation(s)
- Lucas Y Tian
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Timothy L Warren
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - William H Mehaffey
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
13
|
Fujimoto H, Hasegawa T. Reversible inhibition of the basal ganglia prolongs repetitive vocalization but only weakly affects sequencing at branch points in songbirds. Cereb Cortex Commun 2023; 4:tgad016. [PMID: 37675437 PMCID: PMC10477706 DOI: 10.1093/texcom/tgad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Although vocal signals, including languages and songbird syllables, are composed of a finite number of acoustic elements, diverse vocal sequences are composed of a combination of these elements, which are linked together by syntactic rules. However, the neural basis of syntactic vocalization generation remains poorly understood. Here, we report that inhibition using tetrodotoxin (TTX) and manipulations of gamma-aminobutyric acid (GABA) receptors within the basal ganglia Area X or lateral magnocellular nucleus of the anterior neostriatum (LMAN) alter and prolong repetitive vocalization in Bengalese finches (Lonchura striata var. domestica). These results suggest that repetitive vocalizations are modulated by the basal ganglia and not solely by higher motor cortical neurons. These data highlight the importance of neural circuits, including the basal ganglia, in the production of stereotyped repetitive vocalizations and demonstrate that dynamic disturbances within the basal ganglia circuitry can differentially affect the repetitive temporal features of songs.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Taku Hasegawa
- Laboratory for Imagination and Executive functions, RIKEN Center for Brain Science, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Micou C, O'Leary T. Representational drift as a window into neural and behavioural plasticity. Curr Opin Neurobiol 2023; 81:102746. [PMID: 37392671 DOI: 10.1016/j.conb.2023.102746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Large-scale recordings of neural activity over days and weeks have revealed that neural representations of familiar tasks, precepts and actions continually evolve without obvious changes in behaviour. We hypothesise that this steady drift in neural activity and accompanying physiological changes is due in part to the continuous application of a learning rule at the cellular and population level. Explicit predictions of this drift can be found in neural network models that use iterative learning to optimise weights. Drift therefore provides a measurable signal that can reveal systems-level properties of biological plasticity mechanisms, such as their precision and effective learning rates.
Collapse
Affiliation(s)
- Charles Micou
- Department of Engineering, University of Cambridge, United Kingdom
| | - Timothy O'Leary
- Department of Engineering, University of Cambridge, United Kingdom; Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495, Japan.
| |
Collapse
|
15
|
Mackevicius EL, Gu S, Denisenko NI, Fee MS. Self-organization of songbird neural sequences during social isolation. eLife 2023; 12:e77262. [PMID: 37252761 PMCID: PMC10229124 DOI: 10.7554/elife.77262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Behaviors emerge via a combination of experience and innate predispositions. As the brain matures, it undergoes major changes in cellular, network, and functional properties that can be due to sensory experience as well as developmental processes. In normal birdsong learning, neural sequences emerge to control song syllables learned from a tutor. Here, we disambiguate the role of tutor experience and development in neural sequence formation by delaying exposure to a tutor. Using functional calcium imaging, we observe neural sequences in the absence of tutoring, demonstrating that tutor experience is not necessary for the formation of sequences. However, after exposure to a tutor, pre-existing sequences can become tightly associated with new song syllables. Since we delayed tutoring, only half our birds learned new syllables following tutor exposure. The birds that failed to learn were the birds in which pre-tutoring neural sequences were most 'crystallized,' that is, already tightly associated with their (untutored) song.
Collapse
Affiliation(s)
- Emily L Mackevicius
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MITCambridgeUnited States
| | - Shijie Gu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MITCambridgeUnited States
| | - Natalia I Denisenko
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MITCambridgeUnited States
| | - Michale S Fee
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MITCambridgeUnited States
| |
Collapse
|
16
|
Yeganegi H, Ondracek JM. Multi-channel recordings reveal age-related differences in the sleep of juvenile and adult zebra finches. Sci Rep 2023; 13:8607. [PMID: 37244927 DOI: 10.1038/s41598-023-35160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/13/2023] [Indexed: 05/29/2023] Open
Abstract
Despite their phylogenetic differences and distinct pallial structures, mammals and birds show similar electroencephalography (EEG) traces during sleep, consisting of distinct rapid eye movement (REM) sleep and slow wave sleep (SWS) stages. Studies in human and a limited number of other mammalian species show that this organization of sleep into interleaving stages undergoes radical changes during lifetime. Do these age-dependent variations in sleep patterns also occur in the avian brain? Does vocal learning have an effect on sleep patterns in birds? To answer these questions, we recorded multi-channel sleep EEG from juvenile and adult zebra finches for several nights. Whereas adults spent more time in SWS and REM sleep, juveniles spent more time in intermediate sleep (IS). The amount of IS was significantly larger in male juveniles engaged in vocal learning compared to female juveniles, which suggests that IS could be important for vocal learning. In addition, we observed that functional connectivity increased rapidly during maturation of young juveniles, and was stable or declined at older ages. Synchronous activity during sleep was larger for recording sites in the left hemisphere for both juveniles and adults, and generally intra-hemispheric synchrony was larger than inter-hemispheric synchrony during sleep. A graph theory analysis revealed that in adults, highly correlated EEG activity tended to be distributed across fewer networks that were spread across a wider area of the brain, whereas in juveniles, highly correlated EEG activity was distributed across more numerous, albeit smaller, networks in the brain. Overall, our results reveal that significant changes occur in the neural signatures of sleep during maturation in an avian brain.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
17
|
Ben-Tov M, Duarte F, Mooney R. A neural hub for holistic courtship displays. Curr Biol 2023; 33:1640-1653.e5. [PMID: 36944337 PMCID: PMC10249437 DOI: 10.1016/j.cub.2023.02.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Courtship displays often involve the concerted production of several distinct courtship behaviors. The neural circuits that enable the concerted production of the component behaviors of a courtship display are not well understood. Here, we identify a midbrain cell group (A11) that enables male zebra finches to produce their learned songs in concert with various other behaviors, including female-directed orientation, pursuit, and calling. Anatomical mapping reveals that A11 is at the center of a complex network including the song premotor nucleus HVC as well as brainstem regions crucial to calling and locomotion. Notably, lesioning A11 terminals in HVC blocked female-directed singing but did not interfere with female-directed calling, orientation, or pursuit. In contrast, lesioning A11 cell bodies strongly reduced and often abolished all female-directed courtship behaviors. However, males with either type of lesion still produced songs when in social isolation. Lastly, imaging calcium-related activity in A11 terminals in HVC showed that during courtship, A11 signals HVC about female-directed calls and during female-directed singing, about the transition from simpler introductory notes to the acoustically more complex syllables that depend intimately on HVC for their production. These results show how a brain region important to reproduction in both birds and mammals enables holistic courtship displays in male zebra finches, which include learning songs, calls, and other non-vocal behaviors.
Collapse
Affiliation(s)
- Mor Ben-Tov
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA.
| | - Fabiola Duarte
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, 311 Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Brudner S, Pearson J, Mooney R. Generative models of birdsong learning link circadian fluctuations in song variability to changes in performance. PLoS Comput Biol 2023; 19:e1011051. [PMID: 37126511 PMCID: PMC10150982 DOI: 10.1371/journal.pcbi.1011051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Learning skilled behaviors requires intensive practice over days, months, or years. Behavioral hallmarks of practice include exploratory variation and long-term improvements, both of which can be impacted by circadian processes. During weeks of vocal practice, the juvenile male zebra finch transforms highly variable and simple song into a stable and precise copy of an adult tutor's complex song. Song variability and performance in juvenile finches also exhibit circadian structure that could influence this long-term learning process. In fact, one influential study reported juvenile song regresses towards immature performance overnight, while another suggested a more complex pattern of overnight change. However, neither of these studies thoroughly examined how circadian patterns of variability may structure the production of more or less mature songs. Here we relate the circadian dynamics of song maturation to circadian patterns of song variation, leveraging a combination of data-driven approaches. In particular we analyze juvenile singing in learned feature space that supports both data-driven measures of song maturity and generative developmental models of song production. These models reveal that circadian fluctuations in variability lead to especially regressive morning variants even without overall overnight regression, and highlight the utility of data-driven generative models for untangling these contributions.
Collapse
Affiliation(s)
- Samuel Brudner
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John Pearson
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
19
|
Yu K, Wood WE, Johnston LG, Theunissen FE. Lesions to Caudomedial Nidopallium Impair Individual Vocal Recognition in the Zebra Finch. J Neurosci 2023; 43:2579-2596. [PMID: 36859308 PMCID: PMC10082456 DOI: 10.1523/jneurosci.0643-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Many social animals can recognize other individuals by their vocalizations. This requires a memory system capable of mapping incoming acoustic signals to one of many known individuals. Using the zebra finch, a social songbird that uses songs and distance calls to communicate individual identity (Elie and Theunissen, 2018), we tested the role of two cortical-like brain regions in a vocal recognition task. We found that the rostral region of the Cadomedial Nidopallium (NCM), a secondary auditory region of the avian pallium, was necessary for maintaining auditory memories for conspecific vocalizations in both male and female birds, whereas HVC (used as a proper name), a premotor areas that gates auditory input into the vocal motor and song learning pathways in male birds (Roberts and Mooney, 2013), was not. Both NCM and HVC have previously been implicated for processing the tutor song in the context of song learning (Sakata and Yazaki-Sugiyama, 2020). Our results suggest that NCM might not only store songs as templates for future vocal imitation but also songs and calls for perceptual discrimination of vocalizers in both male and female birds. NCM could therefore operate as a site for auditory memories for vocalizations used in various facets of communication. We also observed that new auditory memories could be acquired without intact HVC or NCM but that for these new memories NCM lesions caused deficits in either memory capacity or auditory discrimination. These results suggest that the high-capacity memory functions of the avian pallial auditory system depend on NCM.SIGNIFICANCE STATEMENT Many aspects of vocal communication require the formation of auditory memories. Voice recognition, for example, requires a memory for vocalizers to identify acoustical features. In both birds and primates, the locus and neural correlates of these high-level memories remain poorly described. Previous work suggests that this memory formation is mediated by high-level sensory areas, not traditional memory areas such as the hippocampus. Using lesion experiments, we show that one secondary auditory brain region in songbirds that had previously been implicated in storing song memories for vocal imitation is also implicated in storing vocal memories for individual recognition. The role of the neural circuits in this region in interpreting the meaning of communication calls should be investigated in the future.
Collapse
Affiliation(s)
- Kevin Yu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley California 94720
| | - William E Wood
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley California 94720
| | - Leah G Johnston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley California 94720
| | - Frederic E Theunissen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley California 94720
- Departments of Psychology
- Integrative Biology, University of California, Berkeley, Berkeley California 94720
| |
Collapse
|
20
|
Scherrer JR, Lynch GF, Zhang JJ, Fee MS. An optical design enabling lightweight and large field-of-view head-mounted microscopes. Nat Methods 2023; 20:546-549. [PMID: 36928075 DOI: 10.1038/s41592-023-01806-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/30/2023] [Indexed: 03/18/2023]
Abstract
Here we present a fluorescence microscope light path that enables imaging, during free behavior, of thousands of neurons in mice and hundreds of neurons in juvenile songbirds. The light path eliminates traditional illumination optics, allowing for head-mounted microscopes that have both a lower weight and a larger field of view (FOV) than previously possible. Using this light path, we designed two microscopes: one optimized for FOV (~4 mm FOV; 1.4 g), and the other optimized for weight (1.0 mm FOV; 1.0 g).
Collapse
Affiliation(s)
- Joseph R Scherrer
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Galen F Lynch
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jie J Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michale S Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Komal N, Mansoor MA, Mazhar M, Sohail M, Malik Z, Anis-ur-Rehman M. Effect of (Sm, In) Doping on the Electrical and Thermal Properties of Sb 2Te 3 Microstructures. ACS OMEGA 2023; 8:9797-9806. [PMID: 36969434 PMCID: PMC10034840 DOI: 10.1021/acsomega.2c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Doped Sb2Te3 narrow-band-gap semiconductors have been attracting considerable attention for different electronic and thermoelectric applications. Trivalent samarium (Sm)- and indium (In)-doped Sb2Te3 microstructures have been synthesized by the economical solvothermal method. Powder X-ray diffraction (PXRD) was used to verify the synthesis of single-phase doped and undoped Sb2Te3 and doping of Sm and In within the crystal lattice of Sb2Te3. Further, the morphology, structure elucidation, and stability have been investigated systematically by scanning electron microscopy (SEM), Raman analysis, and thermogravimetric analysis (TGA). These analyses verified the successful synthesis of hexagonal undoped Sb2Te3 (AT) and (Sm, In)-doped Sb2Te3 (SAT, IAT) microstructures. Moreover, the comparison of dielectric parameters, including dielectric constant, dielectric loss, and tan loss of AT, SAT, and IAT, was done in detail. An increment in the electrical conductivities, both AC and DC, from 1.92 × 10-4 to 4.9 × 10-3 Ω-1 m-1 and a decrease in thermal conductivity (0.68-0.60 W m-1 K-1) were observed due to the doping by trivalent (Sm, In) dopants. According to our best knowledge, the synthesis and dielectric properties of (Sm, In)-doped and undoped Sb2Te3 in comparison with their electrical properties and thermal conductivity have not been reported earlier. This implies that appropriate doping with (Sm, In) in Sb2Te3 is promising to enhance the electronic and thermoelectric behavior.
Collapse
Affiliation(s)
- Nitasha Komal
- Department
of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad44000, Pakistan
| | - Muhammad Adil Mansoor
- Department
of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad44000, Pakistan
| | - Muhammad Mazhar
- Department
of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad44000, Pakistan
| | - Manzar Sohail
- Department
of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad44000, Pakistan
| | - Zahida Malik
- Department
of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad44000, Pakistan
| | - Muhammad Anis-ur-Rehman
- Applied
Thermal Physics Laboratory, Department of Physics, COMSATS University Islamabad, Islamabad44000, Pakistan
| |
Collapse
|
22
|
Miyagawa S, Arévalo A, Nóbrega VA. On the representation of hierarchical structure: Revisiting Darwin's musical protolanguage. Front Hum Neurosci 2022; 16:1018708. [PMID: 36438635 PMCID: PMC9692108 DOI: 10.3389/fnhum.2022.1018708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
In this article, we address the tenability of Darwin's musical protolanguage, arguing that a more compelling evolutionary scenario is one where a prosodic protolanguage is taken to be the preliminary step to represent the hierarchy involved in linguistic structures within a linear auditory signal. We hypothesize that the establishment of a prosodic protolanguage results from an enhancement of a rhythmic system that transformed linear signals into speech prosody, which in turn can mark syntactic hierarchical relations. To develop this claim, we explore the role of prosodic cues on the parsing of syntactic structures, as well as neuroscientific evidence connecting the evolutionary development of music and linguistic capacities. Finally, we entertain the assumption that the capacity to generate hierarchical structure might have developed as part of tool-making in human prehistory, and hence was established prior to the enhancement of a prosodic protolinguistic system.
Collapse
Affiliation(s)
- Shigeru Miyagawa
- Department of Linguistics and Philosophy, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Analía Arévalo
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vitor A. Nóbrega
- Institute of Romance Studies, University of Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Diez A, Wang S, Carfagnini N, MacDougall-Shackleton SA. Sex differences in myelination of the zebra finch vocal control system emerge relatively late in development. Dev Neurobiol 2022; 82:581-595. [PMID: 36207011 DOI: 10.1002/dneu.22900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 01/30/2023]
Abstract
The role of myelination in the development of motor control is widely known, but its role in the development of cognitive abilities is less understood. Here, we examined sex differences in the development of myelination of structures and tracts that support song learning and production in songbirds. We collected brains from 63 young male and female zebra finches (Taeniopygia guttata) over four stages of development that correspond to different stages of song learning. Using a myelination marker (myelin basic protein), we measured the development of myelination in three different nuclei of the vocal control system (HVC, RA, and lateral magnocellular nucleus of the anterior nidopallium [LMAN]) and two tracts (HVC-RA and lamina mesopallium ventralis [LMV]). We found that the myelination of the vocal control nuclei and tracts is sex related and male biased. In males, the patterns of myelination were age-dependent, asynchronous in rate and progression and associated with the development of song learning and production. In females, myelination of vocal control nuclei was low or absent and did not significantly change with age. Sex differences in myelination of the HVC-RA tract were large and emerged late in development well after sex differences in the size of vocal control brain regions are established. Myelination of this tract in males coincides with the age of song crystallization. Overall, the changes in myelination in the vocal control areas and tracts measured are region-, age-, and sex-specific and are consistent with sex differences in song development.
Collapse
Affiliation(s)
- Adriana Diez
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada.,Advanced Facility for Avian Research, University of Western Ontario, London, Canada
| | - Shenghan Wang
- Department of Psychology, University of Western Ontario, London, Canada
| | - Nicole Carfagnini
- Department of Biology, University of Western Ontario, London, Canada
| | - Scott A MacDougall-Shackleton
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada.,Advanced Facility for Avian Research, University of Western Ontario, London, Canada.,Department of Psychology, University of Western Ontario, London, Canada.,Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
24
|
Forebrain nuclei linked to woodpecker territorial drum displays mirror those that enable vocal learning in songbirds. PLoS Biol 2022; 20:e3001751. [PMID: 36125990 PMCID: PMC9488818 DOI: 10.1371/journal.pbio.3001751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
Vocal learning is thought to have evolved in 3 orders of birds (songbirds, parrots, and hummingbirds), with each showing similar brain regions that have comparable gene expression specializations relative to the surrounding forebrain motor circuitry. Here, we searched for signatures of these same gene expression specializations in previously uncharacterized brains of 7 assumed vocal non-learning bird lineages across the early branches of the avian family tree. Our findings using a conserved marker for the song system found little evidence of specializations in these taxa, except for woodpeckers. Instead, woodpeckers possessed forebrain regions that were anatomically similar to the pallial song nuclei of vocal learning birds. Field studies of free-living downy woodpeckers revealed that these brain nuclei showed increased expression of immediate early genes (IEGs) when males produce their iconic drum displays, the elaborate bill-hammering behavior that individuals use to compete for territories, much like birdsong. However, these specialized areas did not show increased IEG expression with vocalization or flight. We further confirmed that other woodpecker species contain these brain nuclei, suggesting that these brain regions are a common feature of the woodpecker brain. We therefore hypothesize that ancient forebrain nuclei for refined motor control may have given rise to not only the song control systems of vocal learning birds, but also the drumming system of woodpeckers. Vocal learning is thought to have evolved in three orders of birds (songbirds, parrots, and hummingbirds). This study shows that woodpeckers have evolved a set of brain nuclei to mediate their drum displays, and these regions closely mirror those that underlie song learning in songbirds.
Collapse
|
25
|
Ivlieva NY. The Role of the Basal Ganglia in the Development and Organization of Vocal Behavior in Songbirds. Russ J Dev Biol 2022. [DOI: 10.1134/s106236042204004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Bowles S, Hickman J, Peng X, Williamson WR, Huang R, Washington K, Donegan D, Welle CG. Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron 2022; 110:2867-2885.e7. [PMID: 35858623 DOI: 10.1016/j.neuron.2022.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/23/2022]
Abstract
Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry.
Collapse
Affiliation(s)
- Spencer Bowles
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jordan Hickman
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Xiaoyu Peng
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - W Ryan Williamson
- IDEA Core, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rongchen Huang
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kayden Washington
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dane Donegan
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cristin G Welle
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Liu WC, Landstrom M, Cealie M, MacKillop I. A juvenile locomotor program promotes vocal learning in zebra finches. Commun Biol 2022; 5:573. [PMID: 35689094 PMCID: PMC9187677 DOI: 10.1038/s42003-022-03533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
The evolution and development of complex, learned motor skills are thought to be closely associated with other locomotor movement and cognitive functions. However, it remains largely unknown how different neuromuscular programs may interconnect during the protracted developmental process. Here we use a songbird to examine the behavioral and neural substrates between the development of locomotor movement and vocal-motor learning. Juvenile songbirds escalate their locomotor activity during the sensitive period for vocal learning, followed by a surge of vocal practice. Individual variability of locomotor production is positively correlated with precision of tutor imitation and duration of multi-syllable sequences. Manipulation of juvenile locomotion significantly impacts the precision of vocal imitation and neural plasticity. The locomotor program developed during the sensitive period of vocal learning may enrich the neural substrates that promote the subsequent development of vocal learning.
Collapse
Affiliation(s)
- Wan-Chun Liu
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| | - Michelle Landstrom
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - MaKenna Cealie
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Iona MacKillop
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| |
Collapse
|
28
|
Bottjer SW, Le Moing C, Li E, Yuan R. Responses to Song Playback Differ in Sleeping versus Anesthetized Songbirds. eNeuro 2022; 9:ENEURO.0015-22.2022. [PMID: 35545423 PMCID: PMC9131720 DOI: 10.1523/eneuro.0015-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Vocal learning in songbirds is mediated by a highly localized system of interconnected forebrain regions, including recurrent loops that traverse the cortex, basal ganglia, and thalamus. This brain-behavior system provides a powerful model for elucidating mechanisms of vocal learning, with implications for learning speech in human infants, as well as for advancing our understanding of skill learning in general. A long history of experiments in this area has tested neural responses to playback of different song stimuli in anesthetized birds at different stages of vocal development. These studies have demonstrated selectivity for different song types that provide neural signatures of learning. In contrast to the ease of obtaining responses to song playback in anesthetized birds, song-evoked responses in awake birds are greatly reduced or absent, indicating that behavioral state is an important determinant of neural responsivity. Song-evoked responses can be elicited during sleep as well as anesthesia, and the selectivity of responses to song playback in adult birds is highly similar between anesthetized and sleeping states, encouraging the idea that anesthesia and sleep are similar. In contrast to that idea, we report evidence that cortical responses to song playback in juvenile zebra finches (Taeniopygia guttata) differ greatly between sleep and urethane anesthesia. This finding indicates that behavioral states differ in sleep versus anesthesia and raises questions about relationships between developmental changes in sleep activity, selectivity for different song types, and the neural substrate for vocal learning.
Collapse
Affiliation(s)
- Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Chloé Le Moing
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Ellysia Li
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Rachel Yuan
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
29
|
Haynes EM, Ulland TK, Eliceiri KW. A Model of Discovery: The Role of Imaging Established and Emerging Non-mammalian Models in Neuroscience. Front Mol Neurosci 2022; 15:867010. [PMID: 35493325 PMCID: PMC9046975 DOI: 10.3389/fnmol.2022.867010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Rodents have been the dominant animal models in neurobiology and neurological disease research over the past 60 years. The prevalent use of rats and mice in neuroscience research has been driven by several key attributes including their organ physiology being more similar to humans, the availability of a broad variety of behavioral tests and genetic tools, and widely accessible reagents. However, despite the many advances in understanding neurobiology that have been achieved using rodent models, there remain key limitations in the questions that can be addressed in these and other mammalian models. In particular, in vivo imaging in mammals at the cell-resolution level remains technically difficult and demands large investments in time and cost. The simpler nervous systems of many non-mammalian models allow for precise mapping of circuits and even the whole brain with impressive subcellular resolution. The types of non-mammalian neuroscience models available spans vertebrates and non-vertebrates, so that an appropriate model for most cell biological questions in neurodegenerative disease likely exists. A push to diversify the models used in neuroscience research could help address current gaps in knowledge, complement existing rodent-based bodies of work, and bring new insight into our understanding of human disease. Moreover, there are inherent aspects of many non-mammalian models such as lifespan and tissue transparency that can make them specifically advantageous for neuroscience studies. Crispr/Cas9 gene editing and decreased cost of genome sequencing combined with advances in optical microscopy enhances the utility of new animal models to address specific questions. This review seeks to synthesize current knowledge of established and emerging non-mammalian model organisms with advances in cellular-resolution in vivo imaging techniques to suggest new approaches to understand neurodegeneration and neurobiological processes. We will summarize current tools and in vivo imaging approaches at the single cell scale that could help lead to increased consideration of non-mammalian models in neuroscience research.
Collapse
Affiliation(s)
- Elizabeth M. Haynes
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler K. Ulland
- Department of Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Taylor D, Clay Z, Dahl CD, Zuberbühler K, Davila-Ross M, Dezecache G. Vocal functional flexibility: what it is and why it matters. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Asogwa NC, Toji N, He Z, Shao C, Shibata Y, Tatsumoto S, Ishikawa H, Go Y, Wada K. Nicotinic acetylcholine receptors in a songbird brain. J Comp Neurol 2022; 530:1966-1991. [PMID: 35344610 DOI: 10.1002/cne.25314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission and cell signaling, which contribute to learning, memory, and the execution of motor skills. Birdsong is a complex learned motor skill in songbirds. Although the existence of 15 nAChR subunits has been predicted in the avian genome, their expression patterns and potential contributions to song learning and production have not been comprehensively investigated. Here, we cloned all the 15 nAChR subunits (ChrnA1-10, B2-4, D, and G) from the zebra finch brain and investigated the mRNA expression patterns in the neural pathways responsible for the learning and production of birdsong during a critical period of song learning. Although there were no detectable hybridization signals for ChrnA1, A6, A9, and A10, the other 11 nAChR subunits were uniquely expressed in one or more major subdivisions in the song nuclei of the songbird brain. Of these 11 subunits, ChrnA3-5, A7, and B2 were differentially regulated in the song nuclei compared with the surrounding anatomically related regions. ChrnA5 was upregulated during the critical period of song learning in the lateral magnocellular nucleus of the anterior nidopallium. Furthermore, single-cell RNA sequencing revealed ChrnA7 and B2 to be the major subunits expressed in neurons of the vocal motor nuclei HVC and robust nucleus of the arcopallium, indicating the potential existence of ChrnA7-homomeric and ChrnB2-heteromeric nAChRs in limited cell populations. These results suggest that relatively limited types of nAChR subunits provide functional contributions to song learning and production in songbirds.
Collapse
Affiliation(s)
| | - Noriyuki Toji
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Ziwei He
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Chengru Shao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroe Ishikawa
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- Department of Physiological Sciences, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Lukacova K, Hamaide J, Baciak L, Van der Linden A, Kubikova L. Striatal Injury Induces Overall Brain Alteration at the Pallial, Thalamic, and Cerebellar Levels. BIOLOGY 2022; 11:biology11030425. [PMID: 35336799 PMCID: PMC8945699 DOI: 10.3390/biology11030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Magnetic resonance imaging showed that striatal injury leads to structural changes within several brain areas. Here, we specify these changes via gene expression of synaptic plasticity markers, neuronal markers, assessing the number of newborn cells as well as cell densities. We found that the injury resulted in long-lasting modifications involving plasticity and neural protection mechanisms in areas directly as well as indirectly connected with the damaged striatum, including the cerebellum. Abstract The striatal region Area X plays an important role during song learning, sequencing, and variability in songbirds. A previous study revealed that neurotoxic damage within Area X results in micro and macrostructural changes across the entire brain, including the downstream dorsal thalamus and both the upstream pallial nucleus HVC (proper name) and the deep cerebellar nuclei (DCN). Here, we specify these changes on cellular and gene expression levels. We found decreased cell density in the thalamic and cerebellar areas and HVC, but it was not related to neuronal loss. On the contrary, perineuronal nets (PNNs) in HVC increased for up to 2 months post-lesion, suggesting their protecting role. The synaptic plasticity marker Forkhead box protein P2 (FoxP2) showed a bi-phasic increase at 8 days and 3 months post-lesion, indicating a massive synaptic rebuilding. The later increase in HVC was associated with the increased number of new neurons. These data suggest that the damage in the striatal vocal nucleus induces cellular and gene expression alterations in both the efferent and afferent destinations. These changes may be long-lasting and involve plasticity and neural protection mechanisms in the areas directly connected to the injury site and also to distant areas, such as the cerebellum.
Collapse
Affiliation(s)
- Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Correspondence: (K.L.); (L.K.)
| | - Julie Hamaide
- Bio-Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2610 Antwerp, Belgium; (J.H.); (A.V.d.L.)
| | - Ladislav Baciak
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia;
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2610 Antwerp, Belgium; (J.H.); (A.V.d.L.)
| | - Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Correspondence: (K.L.); (L.K.)
| |
Collapse
|
33
|
Das A, Goldberg JH. Songbird subthalamic neurons project to dopaminergic midbrain and exhibit singing-related activity. J Neurophysiol 2022; 127:373-383. [PMID: 34965747 PMCID: PMC8896995 DOI: 10.1152/jn.00254.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Skill learning requires motor output to be evaluated against internal performance benchmarks. In songbirds, ventral tegmental area (VTA) dopamine neurons (DA) signal performance errors important for learning, but it remains unclear which brain regions project to VTA and how these inputs may contribute to DA error signaling. Here, we find that the songbird subthalamic nucleus (STN) projects to VTA and that STN microstimulation can excite VTA neurons. We also discover that STN receives inputs from motor cortical, auditory cortical, and ventral pallidal brain regions previously implicated in song evaluation. In the first neural recordings from songbird STN, we discover that the activity of most STN neurons is associated with body movements and not singing, but a small fraction of neurons exhibits precise song timing and performance error signals. Our results place the STN in a pathway important for song learning, but not song production, and expand the territories of songbird brain potentially associated with song learning.NEW & NOTEWORTHY Songbird subthalamic (STN) neurons exhibit singing-related signals and are interconnected with the motor cortical nucleus, auditory pallium, ventral pallidum, and ventral tegmental area, areas important for song generation and learning.
Collapse
Affiliation(s)
- Anindita Das
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Jesse H. Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
34
|
Palma M, Khoshnevis M, Lion M, Zenga C, Kefs S, Fallegger F, Schiavone G, Flandin IG, Lacour S, Yvert B. Chronic recording of cortical activity underlying vocalization in awake minipigs. J Neurosci Methods 2022; 366:109427. [PMID: 34852254 DOI: 10.1016/j.jneumeth.2021.109427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Investigating brain dynamics underlying vocal production in animals is a powerful way to inform on the neural bases of human speech. In particular, brain networks underlying vocal production in non-human primates show striking similarities with the human speech production network. However, despite increasing findings also in birds and more recently in rodents, the extent to which the primate vocal cortical network model generalizes to other non-primate mammals remains unclear. Especially, no domestic species has yet been proposed to investigate vocal brain activity using electrophysiological approaches. NEW METHOD In the present study, we introduce a novel experimental paradigm to identify the cortical dynamics underlying vocal production in behaving minipigs. A key problem to chronically implant cortical probes in pigs is the presence and growth of frontal sinuses extending caudally to the parietal bone and preventing safe access to neural structures with conventional craniotomy in adult animals. RESULTS Here we first show that implantations of soft ECoG grids can be done safely using conventional craniotomy in minipigs younger than 5 months, a period when sinuses are not yet well developed. Using wireless recordings in behaving animals, we further show activation of the motor and premotor cortex around the onset of vocal production of grunts, the most common vocalization of pigs. CONCLUSION These results suggest that minipigs, which are very loquacious and social animals, can be a good experimental large animal model to study the cortical bases of vocal production.
Collapse
Affiliation(s)
- Marie Palma
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Mehrdad Khoshnevis
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marie Lion
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Cyril Zenga
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Samy Kefs
- CHU Grenoble Alpes, Clinique Universitaire de Cancérologie-Radiothérapie, 38000 Grenoble, France
| | - Florian Fallegger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Giuseppe Schiavone
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Isabelle Gabelle Flandin
- CHU Grenoble Alpes, Clinique Universitaire de Cancérologie-Radiothérapie, 38000 Grenoble, France
| | - Stéphanie Lacour
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Soft Bioelectronic Interfaces, Geneva, Switzerland
| | - Blaise Yvert
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
35
|
Chung JH, Bottjer SW. Developmentally regulated pathways for motor skill learning in songbirds. J Comp Neurol 2021; 530:1288-1301. [PMID: 34818442 DOI: 10.1002/cne.25276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/07/2022]
Abstract
Vocal learning in songbirds is mediated by cortico-basal ganglia circuits that govern diverse functions during different stages of development. We investigated developmental changes in axonal projections to and from motor cortical regions that underlie learned vocal behavior in juvenile zebra finches (Taeniopygia guttata). Neurons in LMAN-core project to RA, a motor cortical region that drives vocal output; these RA-projecting neurons send a transient collateral projection to AId, a region adjacent to RA, during early vocal development. Both RA and AId project to a region of dorsal thalamus (DLM), which forms a feedback pathway to cortico-basal ganglia circuitry. These projections provide pathways conveying efference copy and a means by which information about vocal motor output could be reintegrated into cortico-basal ganglia circuitry, potentially aiding in the refinement of juvenile vocalizations during learning. We used tract-tracing techniques to label the projections of LMAN-core to AId and of RA to DLM in juvenile songbirds. The volume and density of terminal label in the LMAN-core→AId projection declined substantially during early stages of sensorimotor learning. In contrast, the RA→DLM projection showed no developmental change. The retraction of LMAN-core→AId axon collaterals indicates a loss of efference copy to AId and suggests that projections that are present only during early stages of sensorimotor learning mediate unique, temporally restricted processes of goal-directed learning. Conversely, the persistence of the RA→DLM projection may serve to convey motor information forward to the thalamus to facilitate song production during both learning and maintenance of vocalizations.
Collapse
Affiliation(s)
- Jin Hyung Chung
- Section of Neurobiology, University of Southern California, Los Angeles, California, USA
| | - Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
36
|
Resurgent Na + currents promote ultrafast spiking in projection neurons that drive fine motor control. Nat Commun 2021; 12:6762. [PMID: 34799550 PMCID: PMC8604930 DOI: 10.1038/s41467-021-26521-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navβ3 to Navβ4. Dynamic clamping and dialysis of Navβ4's C-terminal peptide into juvenile RA neurons provide evidence that Navβ4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.
Collapse
|
37
|
Sankar R, Rougier NP, Leblois A. Computational benefits of structural plasticity, illustrated in songbirds. Neurosci Biobehav Rev 2021; 132:1183-1196. [PMID: 34801257 DOI: 10.1016/j.neubiorev.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
The plasticity of nervous systems allows animals to quickly adapt to a changing environment. In particular, the structural plasticity of brain networks is often critical to the development of the central nervous system and the acquisition of complex behaviors. As an example, structural plasticity is central to the development of song-related brain circuits and may be critical for song acquisition in juvenile songbirds. Here, we review current evidences for structural plasticity and their significance from a computational point of view. We start by reviewing evidence for structural plasticity across species and categorizing them along the spatial axes as well as the along the time course during development. We introduce the vocal learning circuitry in zebra finches, as a useful example of structural plasticity, and use this specific case to explore the possible contributions of structural plasticity to computational models. Finally, we discuss current modeling studies incorporating structural plasticity and unexplored questions which are raised by such models.
Collapse
Affiliation(s)
- Remya Sankar
- Inria Bordeaux Sud-Ouest, Talence, France; Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, France; LaBRI, Université de Bordeaux, INP, CNRS, UMR 5800, Talence, France
| | - Nicolas P Rougier
- Inria Bordeaux Sud-Ouest, Talence, France; Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, France; LaBRI, Université de Bordeaux, INP, CNRS, UMR 5800, Talence, France
| | - Arthur Leblois
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, France.
| |
Collapse
|
38
|
Hayase S, Shao C, Kobayashi M, Mori C, Liu WC, Wada K. Seasonal regulation of singing-driven gene expression associated with song plasticity in the canary, an open-ended vocal learner. Mol Brain 2021; 14:160. [PMID: 34715888 PMCID: PMC8556994 DOI: 10.1186/s13041-021-00869-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
Songbirds are one of the few animal taxa that possess vocal learning abilities. Different species of songbirds exhibit species-specific learning programs during song acquisition. Songbirds with open-ended vocal learning capacity, such as the canary, modify their songs during adulthood. Nevertheless, the neural molecular mechanisms underlying open-ended vocal learning are not fully understood. We investigated the singing-driven expression of neural activity-dependent genes (Arc, Egr1, c-fos, Nr4a1, Sik1, Dusp6, and Gadd45β) in the canary to examine a potential relationship between the gene expression level and the degree of seasonal vocal plasticity at different ages. The expression of these genes was differently regulated throughout the critical period of vocal learning in the zebra finch, a closed-ended song learner. In the canary, the neural activity-dependent genes were induced by singing in the song nuclei throughout the year. However, in the vocal motor nucleus, the robust nucleus of the arcopallium (RA), all genes were regulated with a higher induction rate by singing in the fall than in the spring. The singing-driven expression of these genes showed a similar induction rate in the fall between the first year juvenile and the second year adult canaries, suggesting a seasonal, not age-dependent, regulation of the neural activity-dependent genes. By measuring seasonal vocal plasticity and singing-driven gene expression, we found that in RA, the induction intensity of the neural activity-dependent genes was correlated with the state of vocal plasticity. These results demonstrate a correlation between vocal plasticity and the singing-driven expression of neural activity-dependent genes in RA through song development, regardless of whether a songbird species possesses an open- or closed-ended vocal learning capacity.
Collapse
Affiliation(s)
- Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chengru Shao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiko Kobayashi
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chihiro Mori
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo, Japan
| | - Wan-Chun Liu
- Department of Psychology, Colgate University, Hamilton, NY, USA
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan. .,Department of Biological Sciences, Hokkaido University, Sapporo, Hokkaido, Japan. .,Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
39
|
A hierarchical processing unit for multi-component behavior in the avian brain. iScience 2021; 24:103195. [PMID: 34703993 PMCID: PMC8524150 DOI: 10.1016/j.isci.2021.103195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Multi-component behavior is a form of goal-directed behavior that depends on the ability to execute various responses in a precise temporal order. Even though this function is vital for any species, little is known about how non-mammalian species accomplish such behavior and what the underlying neural mechanisms are. We show that humans and a non-mammalian species (pigeons) perform equally well in multi-component behavior and provide a validated experimental approach useful for cross-species comparisons. Applying molecular imaging methods, we identified brain regions most important for the examined behavioral dynamics in pigeons. Especially activity in the nidopallium intermedium medialis pars laterale (NIML) was specific to multi-component behavior since only activity in NIML was predictive for behavioral efficiency. The data suggest that NIML is important for hierarchical processing during goal-directed behavior and shares functional characteristics with the human inferior frontal gyrus in multi-component behavior. Pigeons and humans perform equally well in the STOP-CHANGE paradigm We identified relevant brain regions for the examined behavioral dynamics in pigeons ZENK expression in NIML was predictive for behavioral efficiency This study provides a validated experimental approach for cross-species comparisons
Collapse
|
40
|
Liu WC, Landstrom M, Schutt G, Inserra M, Fernandez F. A memory-driven auditory program ensures selective and precise vocal imitation in zebra finches. Commun Biol 2021; 4:1065. [PMID: 34518637 PMCID: PMC8437935 DOI: 10.1038/s42003-021-02601-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
In the vocal learning model, the juvenile first memorizes a model sound, and the imprinted memory gradually converts into vocal-motor output during the sensorimotor integration. However, early acquired memory may not precisely represent the fine structures of a model sound. How do juveniles ensure precise model imitation? Here we show that juvenile songbirds develop an auditory learning program by actively and attentively engaging with tutor’s singing during the sensorimotor phase. The listening/approaching behavior requires previously acquired model memory and the individual variability of approaching behavior correlates with the precision of tutor song imitation. Moreover, it is modulated by dopamine and associated with forebrain regions for sensory processing. Overall, precise vocal learning may involve two steps of auditory processing: a passive imprinting of model memory occurs during the early sensory period; the previously acquired memory then guides an active and selective engagement of the re-exposed model to fine tune model imitation. Wan-Chun Liu et al. demonstrate that the sensory phase of vocal learning in zebra finches is split across two stages: (1) passive listening and formation of a memory, and (2) active listening and behavioral engagement of juveniles with adult tutors. Furthermore, they show that approach behavior is correlated with song imitation quality, and immediate early gene expression in the caudal medial nidopallium linked to auditory behavior.
Collapse
Affiliation(s)
- Wan-Chun Liu
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| | - Michelle Landstrom
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Gillian Schutt
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Mia Inserra
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Francesca Fernandez
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| |
Collapse
|
41
|
Dhawale AK, Wolff SBE, Ko R, Ölveczky BP. The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci 2021; 24:1256-1269. [PMID: 34267392 PMCID: PMC11152194 DOI: 10.1038/s41593-021-00889-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
The basal ganglia are known to influence action selection and modulation of movement vigor, but whether and how they contribute to specifying the kinematics of learned motor skills is not understood. Here, we probe this question by recording and manipulating basal ganglia activity in rats trained to generate complex task-specific movement patterns with rich kinematic structure. We find that the sensorimotor arm of the basal ganglia circuit is crucial for generating the detailed movement patterns underlying the acquired motor skills. Furthermore, the neural representations in the striatum, and the control function they subserve, do not depend on inputs from the motor cortex. Taken together, these results extend our understanding of the basal ganglia by showing that they can specify and control the fine-grained details of learned motor skills through their interactions with lower-level motor circuits.
Collapse
Affiliation(s)
- Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Steffen B E Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond Ko
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
42
|
Parishar P, Sehgal N, Iyengar S. The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata). PLoS One 2021; 16:e0256599. [PMID: 34464410 PMCID: PMC8407588 DOI: 10.1371/journal.pone.0256599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is evolutionarily conserved across reptiles, birds and mammals and is known to modulate varied brain functions such as learning, memory, cognition and reward. To date, most of the behavioral and anatomical studies in songbirds have mainly focused on μ-opioid receptors (ORs). Expression patterns of δ-ORs in zebra finches, a well-studied species of songbird have not yet been reported, possibly due to the high sequence similarity amongst different opioid receptors. In the present study, a specific riboprobe against the δ-OR mRNA was used to perform fluorescence in situ hybridization (FISH) on sections from the male zebra finch brain. We found that δ-OR mRNA was expressed in different parts of the pallium, basal ganglia, cerebellum and the hippocampus. Amongst the song control and auditory nuclei, HVC (abbreviation used as a formal name) and NIf (nucleus interfacialis nidopallii) strongly express δ-OR mRNA and stand out from the surrounding nidopallium. Whereas the expression of δ-OR mRNA is moderate in LMAN (lateral magnocellular nucleus of the anterior nidopallium), it is low in the MSt (medial striatum), Area X, DLM (dorsolateral nucleus of the medial thalamus), RA (robust nucleus of the arcopallium) of the song control circuit and Field L, Ov (nucleus ovoidalis) and MLd (nucleus mesencephalicus lateralis, pars dorsalis) of the auditory pathway. Our results suggest that δ-ORs may be involved in modulating singing, song learning as well as spatial learning in zebra finches.
Collapse
Affiliation(s)
- Pooja Parishar
- National Brain Research Centre, Gurugram, Haryana, India
| | - Neha Sehgal
- National Brain Research Centre, Gurugram, Haryana, India
| | - Soumya Iyengar
- National Brain Research Centre, Gurugram, Haryana, India
| |
Collapse
|
43
|
Chopoorian A, Pichkar Y, Creanza N. The Role of the Learner in the Cultural Evolution of Vocalizations. Front Psychol 2021; 12:667455. [PMID: 34484031 PMCID: PMC8415155 DOI: 10.3389/fpsyg.2021.667455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
As a uniquely human behavior, language is crucial to our understanding of ourselves and of the world around us. Despite centuries of research into how languages have historically developed and how people learn them, fully understanding the origin and evolution of language remains an ongoing challenge. In parallel, researchers have studied the divergence of birdsong in vocal-learning songbirds to uncover broader patterns of cultural evolution. One approach to studying cultural change over time, adapted from biology, focuses on the transmission of socially learned traits, including language, in a population. By studying how learning and the distribution of cultural traits interact at the population level, we can better understand the processes that underlie cultural evolution. Here, we take a two-fold approach to understanding the cultural evolution of vocalizations, with a focus on the role of the learner in cultural transmission. First, we explore previous research on the evolution of social learning, focusing on recent progress regarding the origin and ongoing cultural evolution of both language and birdsong. We then use a spatially explicit population model to investigate the coevolution of culture and learning preferences, with the assumption that selection acts directly on cultural phenotypes and indirectly on learning preferences. Our results suggest that the spatial distribution of learned behaviors can cause unexpected evolutionary patterns of learning. We find that, intuitively, selection for rare cultural phenotypes can indirectly favor a novelty-biased learning strategy. In contrast, selection for common cultural phenotypes leads to cultural homogeneity; we find that there is no selective pressure on learning strategy without cultural variation. Thus, counterintuitively, selection for common cultural traits does not consistently favor conformity bias, and novelty bias can stably persist in this cultural context. We propose that the evolutionary dynamics of learning preferences and cultural biases can depend on the existing variation of learned behaviors, and that this interaction could be important to understanding the origin and evolution of cultural systems such as language and birdsong. Selection acting on learned behaviors may indirectly impose counterintuitive selective pressures on learning strategies, and understanding the cultural landscape is crucial to understanding how patterns of learning might change over time.
Collapse
Affiliation(s)
| | | | - Nicole Creanza
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
44
|
Hauber ME, Louder MI, Griffith SC. Neurogenomic insights into the behavioral and vocal development of the zebra finch. eLife 2021; 10:61849. [PMID: 34106827 PMCID: PMC8238503 DOI: 10.7554/elife.61849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The zebra finch (Taeniopygia guttata) is a socially monogamous and colonial opportunistic breeder with pronounced sexual differences in singing and plumage coloration. Its natural history has led to it becoming a model species for research into sex differences in vocal communication, as well as behavioral, neural and genomic studies of imitative auditory learning. As scientists tap into the genetic and behavioral diversity of both wild and captive lineages, the zebra finch will continue to inform research into culture, learning, and social bonding, as well as adaptability to a changing climate.
Collapse
Affiliation(s)
- Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, United States
| | - Matthew Im Louder
- International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Biology, Texas A&M University, College Station, United States
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
45
|
Wood AN. New roles for dopamine in motor skill acquisition: lessons from primates, rodents, and songbirds. J Neurophysiol 2021; 125:2361-2374. [PMID: 33978497 DOI: 10.1152/jn.00648.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor learning is a core aspect of human life and appears to be ubiquitous throughout the animal kingdom. Dopamine, a neuromodulator with a multifaceted role in synaptic plasticity, may be a key signaling molecule for motor skill learning. Though typically studied in the context of reward-based associative learning, dopamine appears to be necessary for some types of motor learning. Mesencephalic dopamine structures are highly conserved among vertebrates, as are some of their primary targets within the basal ganglia, a subcortical circuit important for motor learning and motor control. With a focus on the benefits of cross-species comparisons, this review examines how "model-free" and "model-based" computational frameworks for understanding dopamine's role in associative learning may be applied to motor learning. The hypotheses that dopamine could drive motor learning either by functioning as a reward prediction error, through passive facilitating of normal basal ganglia activity, or through other mechanisms are examined in light of new studies using humans, rodents, and songbirds. Additionally, new paradigms that could enhance our understanding of dopamine's role in motor learning by bridging the gap between the theoretical literature on motor learning in humans and other species are discussed.
Collapse
Affiliation(s)
- A N Wood
- Department of Biology and Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| |
Collapse
|
46
|
Champoux KL, Miller KE, Perkel DJ. Differential development of myelin in zebra finch song nuclei. J Comp Neurol 2021; 529:1255-1265. [PMID: 32857415 DOI: 10.1002/cne.25019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/30/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022]
Abstract
Songbirds learn vocalizations by hearing and practicing songs. As song develops, the tempo becomes faster and more precise. In the songbird brain, discrete nuclei form interconnected myelinated circuits that control song acquisition and production. The myelin sheath increases the speed of action potential propagation by insulating the axons of neurons and by reducing membrane capacitance. As the brain develops, myelin increases in density, but the time course of myelin development across discrete song nuclei has not been systematically studied in a quantitative fashion. We tested the hypothesis that myelination develops differentially across time and song nuclei. We examined myelin development in the brains of the zebra finch (Taeniopygia guttata) from chick at posthatch day (d) 8 to adult (up to 147 d) in five major song nuclei: HVC (proper name), robust nucleus of the arcopallium (RA), Area X, lateral magnocellular nucleus of the anterior nidopallium, and medial portion of the dorsolateral thalamic nucleus (DLM). All of these nuclei showed an increase in the density of myelination during development but at different rates and to different final degrees. Exponential curve fits revealed that DLM showed earlier myelination than other nuclei, and HVC showed the slowest myelination of song nuclei. Together, these data show differential maturation of myelination in different portions of the song system. Such differential maturation would be well placed to play a role in regulating the development of learned song.
Collapse
Affiliation(s)
- Katharine L Champoux
- Department of Biology and Otolaryngology, University of Washington, Seattle, Washington, USA.,Department of Undergraduate Neurobiology Program, University of Washington, Seattle, Washington, USA
| | - Kimberly E Miller
- Department of Biology and Otolaryngology, University of Washington, Seattle, Washington, USA
| | - David J Perkel
- Department of Biology and Otolaryngology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Song learning and plasticity in songbirds. Curr Opin Neurobiol 2021; 67:228-239. [PMID: 33667874 DOI: 10.1016/j.conb.2021.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/20/2022]
Abstract
Birdsong provides a fascinating system to study both behavioral and neural plasticity. Oscine songbirds learn to sing, exhibiting behavioral plasticity both during and after the song-learning process. As a bird learns, its song progresses from a plastic and highly variable vocalization into a more stereotyped, crystallized song. However, even after crystallization, song plasticity can occur: some species' songs become more stereotyped over time, whereas other species can incorporate new song elements. Alongside the changes in song, songbirds' brains are also plastic. Both song and neural connections change with the seasons in many species, and new neurons can be added to the song system throughout life. In this review, we highlight important research on behavioral and neural plasticity at multiple timescales, from song development in juveniles to lifelong modifications of learned song.
Collapse
|
48
|
Shi Z, Zhang Z, Schaffer L, Huang Z, Fu L, Head S, Gaasterland T, Wang X, Li X. Dynamic transcriptome landscape in the song nucleus HVC between juvenile and adult zebra finches. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10035. [PMID: 36618441 PMCID: PMC9744550 DOI: 10.1002/ggn2.10035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023]
Abstract
Male juvenile zebra finches learn to sing by imitating songs of adult males early in life. The development of the song control circuit and song learning and maturation are highly intertwined processes, involving gene expression, neurogenesis, circuit formation, synaptic modification, and sensory-motor learning. To better understand the genetic and genomic mechanisms underlying these events, we used RNA-Seq to examine genome-wide transcriptomes in the song control nucleus HVC of male juvenile (45 d) and adult (100 d) zebra finches. We report that gene groups related to axon guidance, RNA processing, lipid metabolism, and mitochondrial functions show enriched expression in juvenile HVC compared to the rest of the brain. As juveniles mature into adulthood, massive gene expression changes occur. Expression of genes related to amino acid metabolism, cell cycle, and mitochondrial function is reduced, accompanied by increased and enriched expression of genes with synaptic functions, including genes related to G-protein signaling, neurotransmitter receptors, transport of small molecules, and potassium channels. Unexpectedly, a group of genes with immune system functions is also developmentally regulated, suggesting potential roles in the development and functions of HVC. These data will serve as a rich resource for investigations into the development and function of a neural circuit that controls vocal behavior.
Collapse
Affiliation(s)
- Zhimin Shi
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| | - Zeyu Zhang
- Key Laboratory of Genetic Network BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Zhi Huang
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| | - Lijuan Fu
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
- Present address:
California Medical Innovations InstituteSan DiegoCaliforniaUSA
| | - Steven Head
- Scripps Research InstituteLa JollaCaliforniaUSA
| | - Terry Gaasterland
- Scripps Research InstituteLa JollaCaliforniaUSA
- University of California at San DiegoLa JollaCaliforniaUSA
| | - Xiu‐Jie Wang
- Key Laboratory of Genetic Network BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - XiaoChing Li
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
49
|
Garcia-Oscos F, Koch TMI, Pancholi H, Trusel M, Daliparthi V, Co M, Park SE, Ayhan F, Alam DH, Holdway JE, Konopka G, Roberts TF. Autism-linked gene FoxP1 selectively regulates the cultural transmission of learned vocalizations. SCIENCE ADVANCES 2021; 7:eabd2827. [PMID: 33536209 PMCID: PMC7857683 DOI: 10.1126/sciadv.abd2827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/17/2020] [Indexed: 05/08/2023]
Abstract
Autism spectrum disorders (ASDs) are characterized by impaired learning of social skills and language. Memories of how parents and other social models behave are used to guide behavioral learning. How ASD-linked genes affect the intertwined aspects of observational learning and behavioral imitation is not known. Here, we examine how disrupted expression of the ASD gene FOXP1, which causes severe impairments in speech and language learning, affects the cultural transmission of birdsong between adult and juvenile zebra finches. FoxP1 is widely expressed in striatal-projecting forebrain mirror neurons. Knockdown of FoxP1 in this circuit prevents juvenile birds from forming memories of an adult song model but does not interrupt learning how to vocally imitate a previously memorized song. This selective learning deficit is associated with potent disruptions to experience-dependent structural and synaptic plasticity in mirror neurons. Thus, FoxP1 regulates the ability to form memories essential to the cultural transmission of behavior.
Collapse
Affiliation(s)
- F Garcia-Oscos
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - T M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - H Pancholi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Trusel
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - V Daliparthi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Co
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - S E Park
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - F Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - D H Alam
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - J E Holdway
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - G Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - T F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Kersten Y, Friedrich-Müller B, Nieder A. A histological study of the song system of the carrion crow (Corvus corone). J Comp Neurol 2021; 529:2576-2595. [PMID: 33474740 DOI: 10.1002/cne.25112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
The song system of songbirds (oscines) is one of the best studied neuroethological model systems. So far, it has been treated as a relatively constrained sensorimotor system. Songbirds such as crows, however, are also known for their capability to cognitively control their audio-vocal system. Yet, the neuroanatomy of the corvid song system has never been explored systematically. We aim to close this scientific gap by presenting a stereotactic investigation of the extended song system of the carrion crow (Corvus corone), an oscine songbird of the corvid family that has become an interesting model system for cognitive neuroscience. In order to identify and delineate the song nuclei, the ascending auditory nuclei, and the descending vocal-motor nuclei, four stains were applied. In addition to the classical Nissl-, myelin-, and a combination of Nissl-and-myelin staining, staining for tyrosine hydroxylase was used to reveal the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the song system. We show that the crow brain contains the important song-related nuclei, including auditory input and motor output structures, and map them throughout the brain. Fiber-stained sections reveal putative connection patterns between the crow's song nuclei comparable to other songbirds.
Collapse
Affiliation(s)
- Ylva Kersten
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|