1
|
Hojjati SH, Butler TA, de Leon M, Gupta A, Nayak S, Luchsinger JA, Razlighi QR, Chiang GC. Inter-network functional connectivity increases by beta-amyloid and may facilitate the early stage of tau accumulation. Neurobiol Aging 2025; 148:16-26. [PMID: 39879839 DOI: 10.1016/j.neurobiolaging.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is pathologically marked by tau tangles and beta-amyloid (Aβ) plaques. It has been hypothesized that Aβ facilitates spread of tau outside of the medial temporal lobe (MTL), but exact mechanism of this facilitation remains unclear. We aimed to test the hypothesis that abnormal Aβ induces an increase in inter-network functional connectivity, which in turn induces early-stage tau elevation in limbic network. Our study used 18F-Florbetaben Aβ positron emission tomography (PET), 18F-MK6240 tau-PET, and resting-state functional magnetic resonance imaging (rs-fMRI) from 489 healthy unimpaired older adults, including 46 with longitudinal data. We found significant correlations between tau in limbic network and Aβ in distinct functional networks. We then demonstrated that Aβ+ /Tau- participants exhibited elevated inter-network functional connectivity of the limbic network. Finally, our longitudinal results showed that annual increases in inter-network functional connectivity between limbic network and default mode and control networks were linked to annual tau elevation in limbic network, primarily modulated by Aβ+ individuals. Understanding this early brain alteration in response to pathologies could guide treatments early in disease course.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Mony de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Columbia University, New York, NY, United States
| | - Siddharth Nayak
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - José A Luchsinger
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States; Departments of Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
2
|
Martín‐Belmonte A, Aguado C, Alfaro‐Ruiz R, Kulik A, de la Ossa L, Moreno‐Martínez AE, Alberquilla S, García‐Carracedo L, Fernández M, Fajardo‐Serrano A, Aso E, Shigemoto R, Martín ED, Fukazawa Y, Ciruela F, Luján R. Nanoarchitecture of Ca V2.1 channels and GABA B receptors in the mouse hippocampus: Impact of APP/PS1 pathology. Brain Pathol 2025; 35:e13279. [PMID: 38887180 PMCID: PMC11835447 DOI: 10.1111/bpa.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels play a crucial role in regulating neurotransmitter release, thus contributing to synaptic plasticity and to processes such as learning and memory. Despite their recognized importance in neural function, there is limited information on their potential involvement in neurodegenerative conditions such as Alzheimer's disease (AD). Here, we aimed to explore the impact of AD pathology on the density and nanoscale compartmentalization of CaV2.1 channels in the hippocampus in association with GABAB receptors. Histoblotting experiments showed that the density of CaV2.1 channel was significantly reduced in the hippocampus of APP/PS1 mice in a laminar-dependent manner. CaV2.1 channel was enriched in the active zone of the axon terminals and was present at a very low density over the surface of dendritic tree of the CA1 pyramidal cells, as shown by quantitative SDS-digested freeze-fracture replica labelling (SDS-FRL). In APP/PS1 mice, the density of CaV2.1 channel in the active zone was significantly reduced in the strata radiatum and lacunosum-moleculare, while it remained unaltered in the stratum oriens. The decline in Cav2.1 channel density was found to be associated with a corresponding impairment in the GABAergic synaptic function, as evidenced by electrophysiological experiments carried out in the hippocampus of APP/PS1 mice. Remarkably, double SDS-FRL showed a co-clustering of CaV2.1 channel and GABAB1 receptor in nanodomains (~40-50 nm) in wild type mice, while in APP/PS1 mice this nanoarchitecture was absent. Together, these findings suggest that the AD pathology-induced reduction in CaV2.1 channel density and CaV2.1-GABAB1 de-clustering may play a role in the synaptic transmission alterations shown in the AD hippocampus. Therefore, uncovering these layer-dependent changes in P/Q calcium currents associated with AD pathology can benefit the development of future strategies for AD management.
Collapse
Affiliation(s)
- Alejandro Martín‐Belmonte
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Carolina Aguado
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Rocío Alfaro‐Ruiz
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Akos Kulik
- Institute for Physiology II, Medical FacultyUniversity of FreiburgFreiburgGermany
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería InformáticaUniversidad de Castilla‐La ManchaAlbaceteSpain
| | - Ana Esther Moreno‐Martínez
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Samuel Alberquilla
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Lucía García‐Carracedo
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Miriam Fernández
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Ana Fajardo‐Serrano
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan
- Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Rafael Luján
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| |
Collapse
|
3
|
Zhang X, Zhang Y, Zhang T, Wang J, Liu C, Shang Q, Wei X, Zhu H, Shen H, Sun B. HCN2 deficiency correlates with memory deficits and hyperexcitability of dCA1 pyramidal neurons in Alzheimer's disease. Alzheimers Res Ther 2025; 17:55. [PMID: 40016780 PMCID: PMC11866685 DOI: 10.1186/s13195-025-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Abnormal excitability of hippocampal neurons may lead to dysfunction of neural circuits and then causes cognitive impairments in Alzheimer's disease (AD). However, the underlying mechanisms remain to be fully elucidated. METHODS Electrophysiology was performed to examine the intrinsic excitability of CA1 neurons and the activity of the hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs) of CA1 neurons in wild type (WT) and hAPP-J20 mice. The activity of CA1 pyramidal neurons (PNs) was modulated with chemogenetics. The activity of HCNs was regulated with nonselective facilitator (cAMP) or inhibitor (ZD7288) of HCNs. Immunohistochemical staining or western blotting were performed to examine the expression of HCN1 and HCN2 in the hippocampus of WT and hAPP-J20 mice, or AD patients and non-AD controls. AAVs were injected to specifically modulate the expression of HCN2 in dorsal CA1 (dCA1) PNs. Cognitive performance of mice was assessed with behavioral tests. RESULTS dCA1 PNs were more excitable in hAPP-J20 mice, but the excitability of PNs in the ventral CA1 (vCA1) or PV neurons was comparable between WT and hAPP-J20 mice. The activity of the HCNs was reduced in dCA1 PNs of hAPP-J20 mice, and pharmacologically increasing the activity of HCNs attenuated the hyperexcitability of dCA1 PNs in hAPP-J20 mice, suggesting that the reduced activity of HCNs is associated with the hyperexcitability of dCA1 PNs in hAPP-J20 mice. The expression of HCN2 but not HCN1 was reduced in the hippocampus of hAPP-J20 mice, and the expression of HCN2 was also reduced in the hippocampus of AD patients, suggesting that dysregulation of HCN2 is associated with the reduced activity of HCNs in AD. Overexpressing HCN2 rescued the activity of HCNs, attenuated the hyperexcitability of dCA1 PNs and improved memory of hAPP-J20 mice, and knocking down HCN2 impaired the function of HCNs, increased the excitability of dCA1 PNs and led to memory deficits in WT mice. CONCLUSIONS Our data suggest that dysregulation of HCNs, particularly HCN2, contributes to the abnormal excitability of CA1 PNs in AD mice and probably in AD patients as well, and thus provide new insights into the mechanisms underlying the aberrant activity or excitability of hippocampal neurons in AD.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| | - Yiping Zhang
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jing Wang
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Chang Liu
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Qing Shang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang Province, 315211, China
| | - Xiaojie Wei
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Huaqiang Zhu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang Province, 315100, China
| | - Haowei Shen
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
4
|
Bi D, Bao H, Yang X, Wu Z, Yang X, Xu G, Liu X, Wan Z, Liu J, He J, Wen L, Jing Y, Zhu R, Long Z, Rong Y, Wang D, Wang X, Xiong W, Huang G, Gao F, Shen Y. BACE1-dependent cleavage of GABA A receptor contributes to neural hyperexcitability and disease progression in Alzheimer's disease. Neuron 2025:S0896-6273(25)00078-9. [PMID: 40015276 DOI: 10.1016/j.neuron.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Neural hyperexcitability has been clinically associated with amyloid-β (Aβ) pathology and cognitive impairment in Alzheimer's disease (AD). Here, we show that decreased GABAA receptor (GABAAR) currents are linked to hippocampal granule cell hyperexcitability in the AD mouse model APP23. Elevated levels of β-secretase (BACE1), the β-secretase responsible for generating Aβ peptides, lead to aberrant cleavage of GABAAR β1/2/3 subunits in the brains of APP23 mice and AD patients. Moreover, BACE1-dependent cleavage of the β subunits leads to a decrease in GABAAR-mediated inhibitory currents in BACE1 transgenic mice. Finally, we show that the neural hyperexcitability, Aβ load, and spatial memory deficit phenotypes of APP23 mice are significantly reduced upon the granule cell expression of a non-cleavable β3 subunit mutant. Collectively, our study establishes that BACE1-dependent cleavage of GABAAR β subunits promotes the pathological hyperexcitability known to drive neurodegeneration and cognitive impairment in the AD brain, suggesting that prevention of the cleavage could slow disease progression.
Collapse
Affiliation(s)
- Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| | - Hong Bao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoxu Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Guangwei Xu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoming Liu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zhikun Wan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Jiachen Liu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Junju He
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Yuying Jing
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Ruijie Zhu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zhenyu Long
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Yating Rong
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Dongxu Wang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoqun Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Guangming Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Ananth MR, Gardus JD, Huang C, Palekar N, Slifstein M, Zaborszky L, Parsey RV, Talmage DA, DeLorenzo C, Role LW. A central role for acetylcholine in entorhinal cortex function and dysfunction with age in humans and mice. Cell Rep 2025; 44:115249. [PMID: 39891909 DOI: 10.1016/j.celrep.2025.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025] Open
Abstract
Structural and functional changes in the entorhinal cortex (EC) are among the earliest signs of cognitive aging. Here, we ask whether a compromised cholinergic system influences early EC impairments and plays a primary role in EC cognition. We evaluated the relationship between loss of integrity of cholinergic inputs to the EC and cognitive deficits in otherwise healthy humans and mice. Using in vivo imaging (PET/MRI) in older humans and high-resolution imaging in wild-type mice and mice with genetic susceptibility to Alzheimer's disease pathology, we establish that loss of cholinergic input to the EC is, in fact, an early feature in cognitive aging. Through mechanistic studies in mice, we find a central role for EC-projecting cholinergic neurons in the expression of EC-related behaviors. Our data demonstrate that alterations to the cholinergic EC are an early, conserved feature of cognitive aging across species and may serve as an early predictor of cognitive status.
Collapse
Affiliation(s)
- Mala R Ananth
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | - John D Gardus
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikhil Palekar
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, New Newark, NJ, USA
| | - Ramin V Parsey
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David A Talmage
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Lorna W Role
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Aran KR, Porel P, Hunjan G, Singh S, Gupta GD, Rohit. Postbiotics as a therapeutic tool in Alzheimer's disease: Insights into molecular pathways and neuroprotective effects. Ageing Res Rev 2025; 106:102685. [PMID: 39922231 DOI: 10.1016/j.arr.2025.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by oxidative stress, neuroinflammation, mitochondrial dysfunction, neurotransmitter imbalance, tau hyperphosphorylation, and amyloid beta (Aβ) accumulation in brain regions. The gut microbiota (GM) has a major impact on brain function due to its bidirectional interaction with the gut through the gut-brain axis. The gut dysbiosis has been associated with neurological disorders, emphasizing the importance of gut homeostasis in maintaining appropriate brain function. The changes in the composition of microbiomes influence neuroinflammation and Aβ accumulation by releasing pro-inflammatory cytokines, decreasing gut and blood-brain barrier (BBB) integrity, and microglial activation in the brain. Postbiotics, are bioactive compounds produced after fermentation, have been shown to provide several health benefits, particularly in terms of neuroinflammation and cognitive alterations associated with AD. Several research studies on animal models and human have successfully proven the effects of postbiotics on enhancing cognition and memory in experimental animals. This article explores the protective effects of postbiotics on cellular mechanisms responsible for AD pathogenesis and studies highlighting the influence of postbiotics as a total combination and specific compounds, including short-chain fatty acids (SCFAs). In addition, postbiotics act as a promising option for future research to deal with AD's progressive nature and improve an individual's life quality using microbiota modulation.
Collapse
Affiliation(s)
- Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India.
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Garry Hunjan
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Rohit
- Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
7
|
Sabec MH, Savage QR, Wood JL, Maskos U. Targeting high-affinity nicotinic receptors protects against the functional consequences of β-amyloid in mouse hippocampus. Mol Psychiatry 2025; 30:556-566. [PMID: 39164528 DOI: 10.1038/s41380-024-02666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024]
Abstract
The accumulation of β-amyloid oligomers is a hallmark of Alzheimer's disease, inducing neural and network dysfunction in the early stages of pathology. The hippocampus is affected early in the pathogenesis of AD, however the impact of soluble β-amyloid on the dentate gyrus (DG) subregion of the hippocampus and its interaction with nicotinic acetylcholine receptors (nAChRs) within this region are not known. Using a localized model of over-expression, we show that β-amyloid induces early-onset neuronal hyperactivity and hippocampal-dependent memory deficits in mice. Further, we find the DG region to be under potent and sub-type specific nicotinic control in both healthy and pathophysiological conditions, with targeted receptor inhibition leading to a mnemonic rescue against localized amyloidosis. We show that while neurogenesis and synaptic functions are not severely affected in our model, reducing β2-containing nAChR function is associated with the promotion of young adult-born neurons within the pathological network, suggesting a possible protective mechanism. Our data thus reveal the DG network level changes which occur in the early-stages of β-amyloid accumulation and highlight the downstream consequences of targeted nicotinic neuromodulation.
Collapse
Affiliation(s)
- Marie H Sabec
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015, Paris, France.
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Quentin R Savage
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - John L Wood
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015, Paris, France.
| |
Collapse
|
8
|
Roemer-Cassiano SN, Wagner F, Evangelista L, Rauchmann BS, Dehsarvi A, Steward A, Dewenter A, Biel D, Zhu Z, Pescoller J, Gross M, Perneczky R, Malpetti M, Ewers M, Schöll M, Dichgans M, Höglinger GU, Brendel M, Jäkel S, Franzmeier N. Amyloid-associated hyperconnectivity drives tau spread across connected brain regions in Alzheimer's disease. Sci Transl Med 2025; 17:eadp2564. [PMID: 39841807 DOI: 10.1126/scitranslmed.adp2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/08/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner. Here, we hypothesized that neuronal hyperactivity and hypersynchronicity, resulting in functional connectivity increases, constitute a crucial mechanism by which Aβ facilitates the spreading of tau pathology. By combining Aβ positron emission tomography (PET), resting-state functional magnetic resonance imaging, and longitudinal tau-PET in 69 cognitively normal amyloid-negative controls and 140 amyloid-positive patients covering the AD spectrum, we confirmed that Aβ induces hyperconnectivity of temporal lobe tau epicenters to posterior brain regions that are vulnerable to tau accumulation in AD. This was replicated in an independent sample of 55 controls and 345 individuals with preclinical AD and low cortical tau-PET uptake, suggesting that the emergence of Aβ-related hyperconnectivity precedes neocortical tau spreading . Last, using longitudinal tau-PET and mediation analysis, we confirmed that these Aβ-related connectivity increases in tau epicenters to typical tau-vulnerable brain regions in AD mediated the effect of Aβ on faster tau accumulation, unveiling increased connectivity as a potential causal link between the two AD hallmark pathologies. Together, these findings suggest that Aβ promotes tau spreading by eliciting neuronal hyperconnectivity and that targeting Aβ-related neuronal hyperconnectivity may attenuate tau spreading in AD.
Collapse
Affiliation(s)
- Sebastian N Roemer-Cassiano
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lisa Evangelista
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Zeyu Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julia Pescoller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mattes Gross
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Aging Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, W6 8RP London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, S10 2HQ Sheffield, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal and Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal and Gothenburg, Sweden
| |
Collapse
|
9
|
Scheijbeler EP, de Haan W, Coomans EM, den Braber A, Tomassen J, ten Kate M, Konijnenberg E, Collij LE, van de Giessen E, Barkhof F, Visser PJ, Stam CJ, Gouw AA. Amyloid-β deposition predicts oscillatory slowing of magnetoencephalography signals and a reduction of functional connectivity over time in cognitively unimpaired adults. Brain Commun 2025; 7:fcaf018. [PMID: 40008329 PMCID: PMC11851009 DOI: 10.1093/braincomms/fcaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
With the ongoing developments in the field of anti-amyloid therapy for Alzheimer's disease, it is crucial to better understand the longitudinal associations between amyloid-β deposition and altered network activity in the living human brain. We included 110 cognitively unimpaired individuals (67.9 ± 5.7 years), who underwent [18F]flutemetamol (amyloid-β)-PET imaging and resting-state magnetoencephalography (MEG) recording at baseline and 4-year follow-up. We tested associations between baseline amyloid-β deposition and MEG measures (oscillatory power and functional connectivity). Next, we examined the relationship between baseline amyloid-β deposition and longitudinal MEG measures, as well as between baseline MEG measures and longitudinal amyloid-β deposition. Finally, we assessed associations between longitudinal changes in both amyloid-β deposition and MEG measures. Analyses were performed using linear mixed models corrected for age, sex and family. At baseline, amyloid-β deposition in orbitofrontal-posterior cingulate regions (i.e. early Alzheimer's disease regions) was associated with higher theta (4-8 Hz) power (β = 0.17, P < 0.01) in- and lower functional connectivity [inverted Joint Permutation Entropy (JPEinv) theta, β = -0.24, P < 0.001] of these regions, lower whole-brain beta (13-30 Hz) power (β = -0.13, P < 0.05) and lower whole-brain functional connectivity (JPEinv theta, β = -0.18, P < 0.001). Whole-brain amyloid-β deposition was associated with higher whole-brain theta power (β = 0.17, P < 0.05), lower whole-brain beta power (β = -0.13, P < 0.05) and lower whole-brain functional connectivity (JPEinv theta, β = -0.21, P < 0.001). Baseline amyloid-β deposition in early Alzheimer's disease regions also predicted future oscillatory slowing, reflected by increased theta power over time in early Alzheimer's disease regions and across the whole brain (β = 0.11, β = 0.08, P < 0.001), as well as decreased whole-brain beta power over time (β = -0.04, P < 0.05). Baseline amyloid-β deposition in early Alzheimer's disease regions also predicted a reduction in functional connectivity between these regions and the rest of the brain over time (JPEinv theta, β = -0.07, P < 0.05). Baseline whole-brain amyloid-β deposition was associated with increased whole-brain theta power over time (β = 0.08, P < 0.01). Baseline MEG measures were not associated with longitudinal amyloid-β deposition. Longitudinal changes in amyloid-β deposition in early Alzheimer's disease regions were associated with longitudinal changes in functional connectivity of early Alzheimer's disease regions (JPEinv theta, β = -0.19, P < 0.05) and the whole brain [corrected amplitude envelope correlations alpha (8-13 Hz), β = -0.22, P < 0.05]. Finally, longitudinal changes in whole-brain amyloid-β deposition were associated with longitudinal changes in whole-brain relative theta power (β = 0.21, P < 0.05). Disruptions of oscillatory power and functional connectivity appear to represent early functional consequences of emerging amyloid-β deposition in cognitively unimpaired individuals. These findings suggest a role for neurophysiology in monitoring disease progression and potential treatment effects in pre-clinical Alzheimer's disease.
Collapse
Affiliation(s)
- Elliz P Scheijbeler
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Neurophysiology & MEG Center, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Emma M Coomans
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Mara ten Kate
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Elles Konijnenberg
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 202 13 Malmö, Sweden
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, WC1N 3BG London, UK
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology & MEG Center, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology & MEG Center, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Ao J, Picard C, Auld D, Zetterberg H, Brinkmalm A, Blennow K, Villeneuve S, Breitner JCS, Poirier J. Novel synaptic markers predict early tau pathology and cognitive deficit in an asymptomatic population at risk of Alzheimer's disease. Mol Psychiatry 2025:10.1038/s41380-024-02884-z. [PMID: 39827219 DOI: 10.1038/s41380-024-02884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Cognitive dysfunction in Alzheimer's disease (AD) correlates closely with pathology in the neuronal microtubule-associated protein tau. Tau pathology may spread via neural synapses. In a population of cognitively unimpaired elderly at elevated risk of AD, we investigated four cerebrospinal (CSF) markers of synaptic dysfunction and degeneration. Three of these (SYT1, SNAP25, and ADAM23) are derived from pre-synaptic structures, while ADAM22 reflects post-synaptic changes. All four markers correlated strongly with tau protein measures. In statistical models, SYT1 accounted for more than half the total variance in both total- and P(181)-tau levels. Observed correlations with CSF levels of Alzheimer amyloid-β (Aβ42) were somewhat weaker. In longitudinal data, baseline levels of ADAM22 and ADAM23 robustly predicted increase over time in both total- and P-tau. CSF SYT1 levels also correlated with PET image uptake of tau and (at a trend level) Aβ in areas of interest for early AD pathology. CSF SYT1 and SNAP25 levels correlated inversely with a global psychometric score and several of its domain subscales. In quantitative trait loci analyses, all four synaptic markers were associated with at least one AD genetic risk locus. Upon "staging" participants by their evidence of amyloid and tau pathology (A/T/N framework), the CSF synaptic markers were unexpectedly reduced in participants with CSF evidence of amyloid but not tau pathology. They were clearly elevated, however, in the CSF of persons with indications of both tau and amyloid pathology. These observations provide evidence for clear pre-synaptic degeneration in cognitively unimpaired persons with biomarker evidence of early AD pathology.
Collapse
Affiliation(s)
- Jiarui Ao
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada
| | - Daniel Auld
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ann Brinkmalm
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada
| | - John C S Breitner
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, QC, Canada.
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, QC, Canada.
| |
Collapse
|
11
|
Li G, Hsu LM, Wu Y, Bozoki AC, Shih YYI, Yap PT. Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI. COMMUNICATIONS MEDICINE 2025; 5:17. [PMID: 39814858 PMCID: PMC11735810 DOI: 10.1038/s43856-025-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disorder without a clear understanding of pathophysiology. Recent experimental data have suggested neuronal excitation-inhibition (E-I) imbalance as an essential element of AD pathology, but E-I imbalance has not been systematically mapped out for either local or large-scale neuronal circuits in AD, precluding precise targeting of E-I imbalance in AD treatment. METHOD In this work, we apply a Multiscale Neural Model Inversion (MNMI) framework to the resting-state functional MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to identify brain regions with disrupted E-I balance in a large network during AD progression. RESULTS We observe that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively normal individuals, to mild cognitive impairment (MCI) and to AD. Also, we find that local inhibitory connections are more significantly impaired than excitatory ones and the strengths of most connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we reveal a core AD network comprised mainly of limbic and cingulate regions. These brain regions exhibit consistent E-I alterations across MCI and AD, and thus may represent important AD biomarkers and therapeutic targets. Lastly, the E-I balance of multiple brain regions in the core AD network is found to be significantly correlated with the cognitive test score. CONCLUSIONS Our study constitutes an important attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate the development of new treatment paradigms to restore physiological E-I balance in AD.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Aleogho BM, Mohri M, Jang MS, Tsukada S, Al-Hebri Y, Matsuyama HJ, Tsukada Y, Mori I, Noma K. Aberrant neuronal hyperactivation causes an age-dependent behavioral decline in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2025; 122:e2412391122. [PMID: 39739791 PMCID: PMC11725918 DOI: 10.1073/pnas.2412391122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Age-dependent sensory impairment, memory loss, and cognitive decline are generally attributed to neuron loss, synaptic dysfunction, and decreased neuronal activities over time. Concurrently, increased neuronal activity is reported in humans and other organisms during aging. However, it is unclear whether neuronal hyperactivity is the cause of cognitive impairment or a compensatory mechanism of circuit dysfunction. The roundworm Caenorhabditis elegans exhibits age-dependent declines in an associative learning behavior called thermotaxis, in which its temperature preference on a thermal gradient is contingent on food availability during its cultivation. Cell ablation and calcium imaging demonstrate that the major thermosensory circuit consisting of AFD thermosensory neuron and AIY interneuron is relatively intact in aged animals. On the other hand, ablation of either AWC sensory neurons or AIA interneurons ameliorates the age-dependent thermotaxis decline. Both neurons showed spontaneous and stochastic hyperactivity in aged animals, enhanced by reciprocal communication between AWC and AIA via neurotransmitters and neuropeptides. Our findings suggest that AWC and AIA hyperactivity mediates thermotaxis decline in aged animals. Furthermore, dietary modulation could ameliorate age-dependent thermotaxis decline by suppressing neuronal hyperactivity. We propose that aberrantly enhanced, not diminished, neuronal activities can impair the behavior of aged animals.
Collapse
Affiliation(s)
- Binta Maria Aleogho
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Mizuho Mohri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Moon Sun Jang
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Sachio Tsukada
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Milk Science Research Institute, MEGMILK SNOW BRAND Co. Ltd, Saitama350-1165, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Yuki Tsukada
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Kentaro Noma
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| |
Collapse
|
13
|
Schneeweis A, Hillyer D, Lama T, Kim D, Palka C, Djemil S, Abdel-Ghani M, Mandella K, Zhu W, Alvarez N, Stefansson L, Yasuda R, Ma J, Pak DTS. Mass spectrometry identifies tau C-terminal phosphorylation cluster during neuronal hyperexcitation. J Neurochem 2025; 169:e16221. [PMID: 39308063 DOI: 10.1111/jnc.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 12/20/2024]
Abstract
Tau is a microtubule-associated protein implicated in Alzheimer's disease (AD) and other neurodegenerative disorders termed tauopathies. Pathological, aggregated forms of tau form neurofibrillary tangles (NFTs), impairing its ability to stabilize microtubules and promoting neurotoxicity. Indeed, NFTs correlate with neuronal loss and cognitive impairment. Hyperphosphorylation of tau is seen in all tauopathies and mirrors disease progression, suggesting an essential role in pathogenesis. However, hyperphosphorylation remains a generic and ill-defined term, obscuring the functional importance of specific sites in different physiological or pathological settings. Here, we focused on global mapping of tau phosphorylation specifically during conditions of neuronal hyperexcitation. Hyperexcitation is a property of AD and other tauopathies linked to human cognitive deficits and increased risk of developing seizures and epilepsy. Moreover, hyperexcitation promotes extracellular secretion and trans-synaptic propagation of tau. Using unbiased mass spectrometry, we identified a novel phosphorylation signature in the C-terminal domain of tau detectable only during neuronal hyperactivity in primary cultured rat hippocampal neurons. These sites influenced tau localization to dendrites as well as the size of excitatory postsynaptic sites. These results demonstrate novel physiological tau functions at synapses and the utility of comprehensive analysis of tau phosphorylation during specific signaling contexts.
Collapse
Affiliation(s)
- Amanda Schneeweis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Dawson Hillyer
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Tsering Lama
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Daeun Kim
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Charles Palka
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Sarra Djemil
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mai Abdel-Ghani
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Kelly Mandella
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - William Zhu
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Nicole Alvarez
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Lara Stefansson
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Robert Yasuda
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Junfeng Ma
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
14
|
Thompson JC, Levis Rabi M, Novoa M, Nash KR, Joly-Amado A. Evaluating the Efficacy of Levetiracetam on Non-Cognitive Symptoms and Pathology in a Tau Mouse Model. Biomedicines 2024; 12:2891. [PMID: 39767797 PMCID: PMC11727630 DOI: 10.3390/biomedicines12122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Alzheimer's disease (AD) is marked by amyloid-β plaques and hyperphosphorylated tau neurofibrillary tangles (NFTs), leading to cognitive decline and debilitating non-cognitive symptoms. This study aimed to evaluate compounds from four different classes in a short-term (7-day) study using transgenic tau mice to assess their ability to reduce non-cognitive symptoms. The best candidate was then evaluated for longer exposure to assess non-cognitive symptoms, cognition, and pathology. Methods: Tg4510 mice, expressing mutated human tau (P301L), were administered with levetiracetam, methylphenidate, diazepam, and quetiapine for 7 days at 6 months old, when pathology and cognitive deficits are established. Drugs were given in the diet, and non-cognitive symptoms were evaluated using metabolic cages. Levetiracetam was chosen for longer exposure (3 months) in 3-month-old Tg4510 mice and non-transgenic controls to assess behavior and pathology. Results: After 3 months of diet, levetiracetam mildly reduced tau pathology in the hippocampus but did not improve cognition in Tg4510 mice. Interestingly, it influenced appetite, body weight, anxiety-like behavior, and contextual fear memory in non-transgenic animals but not in Tg4510 mice. Conclusions: While levetiracetam has shown benefits in amyloid deposition models, it had limited effects on tau pathology and behavior in an animal model of tau deposition, which is crucial for AD context. The differential effects on non-transgenic versus Tg4510 mice warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (J.C.T.); (M.L.R.); (M.N.); (K.R.N.)
| |
Collapse
|
15
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Barbour AJ, Hoag K, Cornblath EJ, Chavez A, Lucas A, Li X, Zebrowitz S, Hassman C, Lee EB, Davis KA, Lee VM, Talos DM, Jensen FE. Hyperactive neuronal networks facilitate tau spread in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.625514. [PMID: 39677701 PMCID: PMC11642807 DOI: 10.1101/2024.12.01.625514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pathological tau spreads throughout the brain along neuronal connections in Alzheimer's disease (AD), but the mechanisms that underlie this process are poorly understood. Given the high incidence and deleterious consequences of epileptiform activity in AD, we hypothesized neuronal hyperactivity and seizures are key factors in tau spread. To examine these interactions, we created a novel mouse model involving the cross of targeted recombination in active populations (TRAP) mice and the 5 times familial AD (5XFAD; 5X-TRAP) model allowing for the permanent fluorescent labelling of neuronal activity. To establish a causal role of seizures in tau spread, we seeded mice with human AD brain-derived tau lysate and induced seizures with pentylenetetrazol (PTZ) kindling. Comprehensive brain mapping of tau pathology and neuronal activity revealed that basal hyperactivity in 5X-TRAP mice was associated with increased tau spread, which was exacerbated by seizure induction through activated networks and correlated with memory deficits. Computational modeling revealed that anterograde tau spread was elevated in 5X-TRAP mice and that regional neuronal activity was predictive of tau spread to that brain region. On a cellular level, we found that in both saline and PTZ-treated 5X-TRAP mice, hyperactive neurons disproportionately contributed to the spread of tau. Further, we found that Synaptogyrin-3, a synaptic vesicle protein that interacts with tau, was increased following PTZ kindling in 5X-TRAP mice, possibly indicative of a synaptic mechanism underlying seizure-exacerbated tau spread. Importantly, postmortem AD brain tissue from patients with a history of seizures showed increased tau pathology in patterns indicative of increased spread and increased Synaptogyrin-3 levels compared to those without seizures. Overall, our study identifies neuronal hyperactivity and seizures as key factors underlying the pathobiological and cognitive progression of AD. Therapies targeting these factors should be tested clinically to slow tau spread and AD progression.
Collapse
Affiliation(s)
- Aaron J. Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Keegan Hoag
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Eli J. Cornblath
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Abigail Chavez
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alfredo Lucas
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sydney Zebrowitz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chloe Hassman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn A. Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Virginia M.Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Delia M. Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Frances E. Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
17
|
Rodriguez GA, Rothenberg EF, Shetler CO, Aoun A, Posani L, Vajram SV, Tedesco T, Fusi S, Hussaini SA. Impaired spatial coding and neuronal hyperactivity in the medial entorhinal cortex of aged App NL-G-F mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624990. [PMID: 39651258 PMCID: PMC11623597 DOI: 10.1101/2024.11.26.624990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The progressive accumulation of amyloid beta (Aβ) pathology in the brain has been associated with aberrant neuronal network activity and poor cognitive performance in preclinical mouse models of Alzheimer's disease (AD). Presently, our understanding of the mechanisms driving pathology-associated neuronal dysfunction and impaired information processing in the brain remains incomplete. Here, we assessed the impact of advanced Aβ pathology on spatial information processing in the medial entorhinal cortex (MEC) of 18-month App NL-G-F/NL- G-F knock-in (APP KI) mice as they explored contextually novel and familiar open field arenas in a two-day, four-session recording paradigm. We tracked single unit firing activity across all sessions and found that spatial information scores were decreased in MEC neurons from APP KI mice versus those in age-matched C57BL/6J controls. MEC single unit spatial representations were also impacted in APP KI mice. Border cell firing preferences were unstable across sessions and spatial periodicity in putative grid cells was disrupted. In contrast, MEC border cells and grid cells in Control mice were intact and stable across sessions. We then quantified the stability of MEC spatial maps across sessions by utilizing a metric based on the Earth Mover's Distance (EMD). We found evidence for increased instability in spatially-tuned APP KI MEC neurons versus Controls when mice were re-exposed to familiar environments and exposed to a novel environment. Additionally, spatial decoding analysis of MEC single units revealed deficits in position and speed coding in APP KI mice in all session comparisons. Finally, MEC single unit analysis revealed a mild hyperactive phenotype in APP KI mice that appeared to be driven by narrow-spiking units (putative interneurons). These findings tie Aβ-associated dysregulation in neuronal firing to disruptions in spatial information processing that may underlie certain cognitive deficits associated with AD.
Collapse
|
18
|
van Nifterick AM, de Haan W, Stam CJ, Hillebrand A, Scheltens P, van Kesteren RE, Gouw AA. Functional network disruption in cognitively unimpaired autosomal dominant Alzheimer's disease: a magnetoencephalography study. Brain Commun 2024; 6:fcae423. [PMID: 39713236 PMCID: PMC11660908 DOI: 10.1093/braincomms/fcae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Understanding the nature and onset of neurophysiological changes, and the selective vulnerability of central hub regions in the functional network, may aid in managing the growing impact of Alzheimer's disease on society. However, the precise neurophysiological alterations occurring in the pre-clinical stage of human Alzheimer's disease remain controversial. This study aims to provide increased insights on quantitative neurophysiological alterations during a true early stage of Alzheimer's disease. Using high spatial resolution source-reconstructed magnetoencephalography, we investigated regional and whole-brain neurophysiological changes in a unique cohort of 11 cognitively unimpaired individuals with pathogenic mutations in the presenilin-1 or amyloid precursor protein gene and a 1:3 matched control group (n = 33) with a median age of 49 years. We examined several quantitative magnetoencephalography measures that have been shown robust in detecting differences in sporadic Alzheimer's disease patients and are sensitive to excitation-inhibition imbalance. This includes spectral power and functional connectivity in different frequency bands. We also investigated hub vulnerability using the hub disruption index. To understand how magnetoencephalography measures change as the disease progresses through its pre-clinical stage, correlations between magnetoencephalography outcomes and various clinical variables like age were analysed. A comparison of spectral power between mutation carriers and controls revealed oscillatory slowing, characterized by widespread higher theta (4-8 Hz) power, a lower posterior peak frequency and lower occipital alpha 2 (10-13 Hz) power. Functional connectivity analyses presented a lower whole-brain (amplitude-based) functional connectivity in the alpha (8-13 Hz) and beta (13-30 Hz) bands, predominantly located in parieto-temporal hub regions. Furthermore, we found a significant hub disruption index for (phase-based) functional connectivity in the theta band, attributed to both higher functional connectivity in 'non-hub' regions alongside a hub disruption. Neurophysiological changes did not correlate with indicators of pre-clinical disease progression in mutation carriers after multiple comparisons correction. Our findings provide evidence that oscillatory slowing and functional connectivity differences occur before cognitive impairment in individuals with autosomal dominant mutations leading to early onset Alzheimer's disease. The nature and direction of these alterations are comparable to those observed in the clinical stages of Alzheimer's disease, suggest an early excitation-inhibition imbalance, and fit with the activity-dependent functional degeneration hypothesis. These insights may prove useful for early diagnosis and intervention in the future.
Collapse
Affiliation(s)
- Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Ye W, Tao Y, Wang W, Yu Y, Li X. Periodontitis associated with brain function impairment in middle-aged and elderly individuals with normal cognition. J Periodontol 2024. [PMID: 39565645 DOI: 10.1002/jper.24-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The present study aimed to investigate changes in intranetwork functional connectivity (FC) and internetwork FC in middle-aged and elderly individuals with normal cognition (NC) and varying degrees of periodontitis to determine the effects of periodontitis on brain function. METHODS Periodontal findings and resting-state functional magnetic resonance imaging data were acquired from 51 subjects with NC. Independent component analysis and correlation analysis were used for the statistical analysis of the data. RESULTS Differences in intranetwork FC were observed among groups in the anterior default-mode network (aDMN), dorsal attention network and dorsal sensorimotor network (dSMN). Compared with the nonperiodontitis (NP) group or the mild-periodontitis group, the analysis of internetwork FC showed increased FC between the auditory network and the ventral attention network (VAN), between the aDMN and the salience network (SN), and between the SN and the VAN and decreased FC between the posterior default-mode network and the right frontoparietal network in the moderate-to-severe periodontitis group. Additionally, internetwork FC between the dSMN and the VAN was also increased in the moderate-to-severe periodontitis group compared to the NP group. The altered intra- and internetwork FC were significantly correlated with the periodontal clinical index. CONCLUSION Our results confirmed that periodontitis was associated with both intra- and internetwork FC changes even in NC. The present study indicates that periodontitis might be a potential risk factor for brain damage and provides a theoretical clue and a new treatment target for the early prevention of Alzheimer disease. PLAIN LANGUAGE SUMMARY Recent research has proposed that periodontitis is a potential risk factor for Alzheimer disease (AD). However, the relationship between periodontitis and the brain function of middle-aged and elderly individuals with normal cognition (NC) remains unclear. Analyzing the effect of periodontitis on brain function in the NC stage can provide clues to AD development and help achieve early prevention of dementia. The present study aimed to investigate changes in brain functional connectivity (FC) in NC with different severity of periodontitis to determine the effects of periodontitis on brain function. Both changed intranetwork FC and internetwork FC were found in the moderate-to-severe periodontitis group, and periodontitis was associated with brain network function impairment in NC. The present study indicates that periodontitis might be a potential risk factor for brain damage even in NC stage, and provides a theoretical clue and a new treatment target for the early prevention of AD.
Collapse
Affiliation(s)
- Wei Ye
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufei Tao
- Department of Periodontics, Hefei Stomatological Clinic College, Anhui Medical University & Stomatological Hospital, Hefei, China
| | - Wenrui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
McGregor JN, Farris CA, Ensley S, Schneider A, Fosque LJ, Wang C, Tilden EI, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Failure in a population: Tauopathy disrupts homeostatic set-points in emergent dynamics despite stability in the constituent neurons. Neuron 2024; 112:3567-3584.e5. [PMID: 39241778 PMCID: PMC11560743 DOI: 10.1016/j.neuron.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Homeostatic regulation of neuronal activity is essential for robust computation; set-points, such as firing rate, are actively stabilized to compensate for perturbations. The disruption of brain function central to neurodegenerative disease likely arises from impairments of computationally essential set-points. Here, we systematically investigated the effects of tau-mediated neurodegeneration on all known set-points in neuronal activity. We continuously tracked hippocampal neuronal activity across the lifetime of a mouse model of tauopathy. We were unable to detect effects of disease in measures of single-neuron firing activity. By contrast, as tauopathy progressed, there was disruption of network-level neuronal activity, quantified by measuring neuronal pairwise interactions and criticality, a homeostatically controlled, ideal computational regime. Deviations in criticality correlated with symptoms, predicted underlying anatomical pathology, occurred in a sleep-wake-dependent manner, and could be used to reliably classify an animal's genotype. This work illustrates how neurodegeneration may disrupt the computational capacity of neurobiological systems.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Leandro J Fosque
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Elizabeth I Tilden
- Department of Neuroscience, Washington University in Saint Louis, St. Louis, MO, USA
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
21
|
Maiella M, Mencarelli L, Casula EP, Borghi I, Assogna M, di Lorenzo F, Bonnì S, Pezzopane V, Martorana A, Koch G. Breakdown of TMS evoked EEG signal propagation within the default mode network in Alzheimer's disease. Clin Neurophysiol 2024; 167:177-188. [PMID: 39332078 DOI: 10.1016/j.clinph.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The neural activity of the Default Mode Network (DMN) is disrupted in patients with In Alzheimer's disease (AD). OBJECTIVES We used a novel multimodal approach to track neural signal propagation within the DMN in AD patients. METHODS Twenty mild to moderate AD patients were recruited. We used transcranial magnetic stimulation (TMS) pulses to probe with a millisecond time resolution the propagation of evoked electroencephalography (EEG) signal following the neural activation of the Precuneus (PC), which is a key hub area of the DMN. Moreover, functional and structural magnetic resonance imaging (MRI) data were collected to reconstruct individual features of the DMN. RESULTS In AD patients a probe TMS pulse applied over the PC evokes an increased local activity unmasking underlying hyperexcitability. In contrast, the EEG evoked neural signal did not propagate efficiently within the DMN showing a remarkable breakdown of signal propagation. fMRI and structural tractography showed that impaired signal propagation was related to the same connectivity matrices derived from DMN BOLD signal and transferred by specific white matter bundles forming the cingulum. These features were not detectable stimulating other areas (left dorsolateral prefrontal cortex) or for different networks (fronto-parietal network). Finally, connectivity breakdown was associated with cognitive impairment, as measured with the Clinical Dementia Rating Scale sum of boxes (CDR-SB). CONCLUSIONS TMS-EEG in AD shows both local hyperexcitability and a lack of signal propagation within the DMN. These neurophysiological features also correlate with structural and cognitive attributes of the patients. SIGNIFICANCE Neuronavigated TMS-EEG may be used as a novel neurophysiological biomarker of DMN connectivity in AD patients.
Collapse
Affiliation(s)
- Michele Maiella
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Mencarelli
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elias P Casula
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Borghi
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Martina Assogna
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco di Lorenzo
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sonia Bonnì
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Valentina Pezzopane
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | | | - Giacomo Koch
- Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy.
| |
Collapse
|
22
|
O'Connell A, Quinlan L, Kwakowsky A. β-amyloid's neurotoxic mechanisms as defined by in vitro microelectrode arrays: a review. Pharmacol Res 2024; 209:107436. [PMID: 39369863 DOI: 10.1016/j.phrs.2024.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease is characterized by the aggregation of β-amyloid, a pathological feature believed to drive the neuronal loss and cognitive decline commonly seen in the disease. Given the growing prevalence of this progressive neurodegenerative disease, understanding the exact mechanisms underlying this process has become a top priority. Microelectrode arrays are commonly used for chronic, non-invasive recording of both spontaneous and evoked neuronal activity from diverse in vitro disease models and to evaluate therapeutic or toxic compounds. To date, microelectrode arrays have been used to investigate β-amyloids' toxic effects, β-amyloids role in specific pathological features and to assess pharmacological approaches to treat Alzheimer's disease. The versatility of microelectrode arrays means these studies use a variety of methods and investigate different disease models and brain regions. This review provides an overview of these studies, highlighting their disparities and presenting the status of the current literature. Despite methodological differences, the current literature indicates that β-amyloid has an inhibitory effect on synaptic plasticity and induces network connectivity disruptions. β-amyloid's effect on spontaneous neuronal activity appears more complex. Overall, the literature corroborates the theory that β-amyloid induces neurotoxicity, having a progressive deleterious effect on neuronal signaling and plasticity. These studies also confirm that microelectrode arrays are valuable tools for investigating β-amyloid pathology from a functional perspective, helping to bridge the gap between cellular and network pathology and disease symptoms. The use of microelectrode arrays provides a functional insight into Alzheimer's disease pathology which will aid in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Aoife O'Connell
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland
| | - Leo Quinlan
- Physiology, School of Medicine, Regenerative Medicine Institute, University of Galway, Ireland
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland.
| |
Collapse
|
23
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
24
|
Ji C, Yang X, Eleish M, Jiang Y, Tetlow AM, Song SC, Martín-Ávila A, Wu Q, Zhou Y, Gan W, Lin Y, Sigurdsson EM. Neuronal hypofunction and network dysfunction in a mouse model at an early stage of tauopathy. Alzheimers Dement 2024; 20:7954-7970. [PMID: 39368113 PMCID: PMC11567809 DOI: 10.1002/alz.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION It is unclear how early neuronal deficits occur in tauopathies, if these are associated with changes in neuronal network activity, and if they can be alleviated with therapies. METHODS To address this, we performed in vivo two-photon Ca2+ imaging in tauopathy mice at 6 versus 12 months, compared to controls, and treated the younger animals with a tau antibody. RESULTS Neuronal function was impaired at 6 months but did not deteriorate further at 12 months, presumably because cortical tau burden was comparable at these ages. At 6 months, neurons were mostly hypoactive, with enhanced neuronal synchrony, and had dysregulated responses to stimulus. Ex vivo, electrophysiology revealed altered synaptic transmission and enhanced excitability of motor cortical neurons, which likely explains the altered network activity. Acute tau antibody treatment reduced pathological tau and gliosis and partially restored neuronal function. DISCUSSION Tauopathies are associated with early neuronal deficits that can be attenuated with tau antibody therapy. HIGHLIGHTS Neuronal hypofunction in awake and behaving mice in early stages of tauopathy. Altered network activity disrupted local circuitry engagement in tauopathy mice. Enhanced neuronal excitability and altered synaptic transmission in tauopathy mice. Tau antibody acutely reduced soluble phospho-tau and improved neuronal function.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Xiaofeng Yang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Mohamed Eleish
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Soomin C Song
- Department of Pathology, New York University Grossman School of Medicine, New York, USA
- IonLab, New York University Grossman School of Medicine, New York, USA
| | - Alejandro Martín-Ávila
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Qian Wu
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Yanmei Zhou
- Skirball Institute, New York University Grossman School of Medicine, New York, USA
| | - Wenbiao Gan
- Skirball Institute, New York University Grossman School of Medicine, New York, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
25
|
Salas IH, Paumier A, Tao T, Derevyanko A, Switzler C, Burgado J, Movsesian M, Metanat S, Dawoodtabar T, Asbell Q, Fassihi A, Allen NJ. Astrocyte transcriptomic analysis identifies glypican 5 downregulation as a contributor to synaptic dysfunction in Alzheimer's disease models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621182. [PMID: 39554197 PMCID: PMC11565880 DOI: 10.1101/2024.10.30.621182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Synaptic dysfunction is an early feature in Alzheimer's disease (AD) and correlates with cognitive decline. Astrocytes are essential regulators of synapses, impacting synapse formation, maturation, elimination and function. To understand if synapse-supportive functions of astrocytes are altered in AD, we used astrocyte BacTRAP mice to generate a comprehensive dataset of hippocampal astrocyte transcriptional alterations in two mouse models of Alzheimer's pathology (APPswe/PS1dE9 and Tau P301S), characterizing sex and age-dependent changes. We found that astrocytes from both models downregulate genes important for synapse regulation and function such as the synapse-maturation factor Glypican 5. This transcriptional signature is shared with human post-mortem AD patients. Manipulating a key component of this signature by in vivo overexpression of Glypican 5 in astrocytes is sufficient to prevent early synaptic dysfunction and improve spatial learning in APPswe/PS1dE9 mice. These findings open new avenues to target astrocytic factors to mitigate AD synaptic dysfunction.
Collapse
|
26
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
27
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
28
|
Jin J, Fu C, Xia J, Luo H, Wang X, Chen S, Mao H, Yuan K, Lu L, Xiong W, Zou G. Cannabidiol ameliorates cognitive decline in 5×FAD mouse model of Alzheimer's disease through potentiating the function of extrasynaptic glycine receptors. Mol Psychiatry 2024:10.1038/s41380-024-02789-x. [PMID: 39396064 DOI: 10.1038/s41380-024-02789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Emerging evidence supports the therapeutic potential of cannabinoids in Alzheimer's disease (AD), but the underlying mechanism upon how cannabinoids impact brain cognition and AD pathology remains unclear. Here we show that chronic cannabidiol (CBD) administration significantly mitigates cognitive deficiency and hippocampal β-amyloid (Aβ) pathology in 5×FAD mouse model of AD. CBD achieves its curative effect mainly through potentiating the function of inhibitory extrasynaptic glycine receptor (GlyR) in hippocampal dentate gyrus (DG). Based on the in vitro and in vivo electrophysiological recording and calcium imaging, CBD mediated anti-AD effects via GlyR are mainly accomplished by decreasing neuronal hyperactivity of granule cells in the DG of AD mice. Furthermore, the AAV-mediated ablation of DG GlyRα1, or the GlyRα1S296A mutation that exclusively disrupts CBD binding, significantly intercepts the anti-AD effect of CBD. These findings suggest a GlyR dependent mechanism underlying the therapeutic potential of CBD in the treatment of AD.
Collapse
Grants
- 32225020, 91849206, 91942315, 92049304, 32121002, 81901157, 82241032 National Natural Science Foundation of China (National Science Foundation of China)
- 32225020, 91849206, 91942315, 92049304, 32121002 National Natural Science Foundation of China (National Science Foundation of China)
Collapse
Affiliation(s)
- Jin Jin
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chonglei Fu
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China
| | - Jing Xia
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Heyi Luo
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xianglian Wang
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Si Chen
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Huanhuan Mao
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, 100191, Beijing, China
| | - Lin Lu
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, 100191, Beijing, China.
| | - Wei Xiong
- Department of neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| | - Guichang Zou
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China.
| |
Collapse
|
29
|
Nakagawa T, Xie JL, Savadkohighodjanaki M, Zhang YJ, Jun H, Cao K, Ichii A, Lee JY, Soma S, Medhat YK, Saido TC, Igarashi KM. Early disruption of entorhinal dopamine in a knock-in model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617678. [PMID: 39416095 PMCID: PMC11482956 DOI: 10.1101/2024.10.10.617678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The entorhinal cortex (EC) is a critical brain area for memory formation, while also the region exhibiting the earliest histological and functional alterations in Alzheimer's disease (AD). The EC thus has been long hypothesized as one of the originating brain areas of AD pathophysiology, although circuit mechanisms causing its selective vulnerability remain poorly understood. We found that dopamine neurons projecting their axons to the lateral EC (LEC), critical for memory formation in healthy brains, become dysfunctional and cause memory impairments in early AD brains. In amyloid precursor protein knock-in mice with associative memory impairment, LEC dopamine activity and associative memory encoding of LEC layer 2/3 neurons were disrupted in parallel from the early pathological stage. Optogenetic reactivation of LEC dopamine fibers, as well as L- DOPA treatment, rescued associative learning behavior. These results suggest that dysfunction of LEC-projecting dopamine neurons underlies memory impairment in AD from early stages, pointing to a need for clinical investigation of LEC dopamine in AD patients.
Collapse
|
30
|
Tao R, Yue C, Guo Z, Guo W, Yao Y, Yang X, Shao Z, Gao C, Ding J, Shen L, Chen S, Jing N. Subtype-specific neurons from patient iPSCs display distinct neuropathological features of Alzheimer's disease. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:21. [PMID: 39388038 PMCID: PMC11467140 DOI: 10.1186/s13619-024-00204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by massive neuronal loss in the brain. Both cortical glutamatergic neurons and basal forebrain cholinergic neurons (BFCNs) in the AD brain are selectively vulnerable. The degeneration and dysfunction of these two subtypes of neurons are closely associated with the cognitive decline of AD patients. The determination of cellular and molecular mechanisms involved in AD pathogenesis, especially in the early stage, will largely facilitate the understanding of this disease and the development of proper intervention strategies. However, due to the inaccessibility of living neurons in the brains of patients, it remains unclear how cortical glutamatergic neurons and BFCNs respond to pathological stress in the early stage of AD. In this study, we established in vitro differentiation systems that can efficiently differentiate patient-derived iPSCs into BFCNs. We found that AD-BFCNs secreted less Aβ peptide than cortical glutamatergic neurons did, even though the Aβ42/Aβ40 ratio was comparable to that of cortical glutamatergic neurons. To further mimic the neurotoxic niche in AD brain, we treated iPSC-derived neurons with Aβ42 oligomer (AβO). BFCNs are less sensitive to AβO induced tau phosphorylation and expression than cortical glutamatergic neurons. However, AβO could trigger apoptosis in both AD-cortical glutamatergic neurons and AD-BFCNs. In addition, AD iPSC-derived BFCNs and cortical glutamatergic neurons exhibited distinct electrophysiological firing patterns and elicited different responses to AβO treatment. These observations revealed that subtype-specific neurons display distinct neuropathological changes during the progression of AD, which might help to understand AD pathogenesis at the cellular level.
Collapse
Affiliation(s)
- Ran Tao
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangdong Province, 510005, China.
| | - Chunmei Yue
- Suzhou Yuanzhan Biotechs, Suzhou, 215000, China
| | - Zhijie Guo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenke Guo
- XellSmart Biomedical (Suzhou) Co., Ltd, Suzhou, 215000, China
| | - Yao Yao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, New Zealand Joint Laboratory On Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianfa Yang
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangdong Province, 510005, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Gao
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Jianqing Ding
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410028, China.
| | - Shengdi Chen
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 200031, China.
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangdong Province, 510005, China.
| |
Collapse
|
31
|
Maksour S, Finol-Urdaneta RK, Hulme AJ, Cabral-da-Silva MEC, Targa Dias Anastacio H, Balez R, Berg T, Turner C, Sanz Muñoz S, Engel M, Kalajdzic P, Lisowski L, Sidhu K, Sachdev PS, Dottori M, Ooi L. Alzheimer's disease induced neurons bearing PSEN1 mutations exhibit reduced excitability. Front Cell Neurosci 2024; 18:1406970. [PMID: 39444394 PMCID: PMC11497635 DOI: 10.3389/fncel.2024.1406970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition that affects memory and cognition, characterized by neuronal loss and currently lacking a cure. Mutations in PSEN1 (Presenilin 1) are among the most common causes of early-onset familial AD (fAD). While changes in neuronal excitability are believed to be early indicators of AD progression, the link between PSEN1 mutations and neuronal excitability remains to be fully elucidated. This study examined iPSC-derived neurons (iNs) from fAD patients with PSEN1 mutations S290C or A246E, alongside CRISPR-corrected isogenic cell lines, to investigate early changes in excitability. Electrophysiological profiling revealed reduced excitability in both PSEN1 mutant iNs compared to their isogenic controls. Neurons bearing S290C and A246E mutations exhibited divergent passive membrane properties compared to isogenic controls, suggesting distinct effects of PSEN1 mutations on neuronal excitability. Additionally, both PSEN1 backgrounds exhibited higher current density of voltage-gated potassium (Kv) channels relative to their isogenic iNs, while displaying comparable voltage-gated sodium (Nav) channel current density. This suggests that the Nav/Kv imbalance contributes to impaired neuronal firing in fAD iNs. Deciphering these early cellular and molecular changes in AD is crucial for understanding disease pathogenesis.
Collapse
Affiliation(s)
- Simon Maksour
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K. Finol-Urdaneta
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Amy J. Hulme
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | | | - Helena Targa Dias Anastacio
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rachelle Balez
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Tracey Berg
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Calista Turner
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Martin Engel
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Predrag Kalajdzic
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mirella Dottori
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
32
|
Raghuraman R, Aoun A, Herman M, Shetler CO, Nahmani E, Hussaini SA. Lateral Entorhinal Cortex Dysfunction in Alzheimer's Disease Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589589. [PMID: 38659892 PMCID: PMC11042344 DOI: 10.1101/2024.04.15.589589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In Alzheimer's disease (AD), the formation of amyloid beta and neurofibrillary tangles (NFTs) leads to neuronal loss in entorhinal cortex (EC), a crucial brain region involved in memory and navigation. These pathological changes are concurrent with the onset of memory-related issues in AD patients with symptoms of forgetfulness such as misplacing items, disorientation in familiar environments etc. The lateral EC (LEC) is associated with non-spatial memory processing including object recognition. Since in LEC, neurons fire in response to objects (object cells) and at locations previously occupied by objects (trace cells), pathology in this region could lead to dysfunction in object location coding. In this paper we show that a transgenic mouse model, EC-App/Tau, which expresses both APP and tau primarily in the EC region, have deficits in LEC-specific memory tasks. Using in vivo single-unit electrophysiology recordings we show that the LEC neurons are hyperactive with low information content and high sparsity compared to the controls indicating poor firing fidelity. We finally show that object cells and trace cells fire less precisely in the EC-App/Tau mice compared to controls indicating poor encoding of objects. Overall, we show that AD pathology causes erratic firing of LEC neurons and object coding defects leading to LEC-specific memory impairment.
Collapse
|
33
|
Lee R, Kim G, Kim S. Co-activation of selective nicotinic acetylcholine receptor subtypes is required to reverse hippocampal network dysfunction and prevent fear memory loss in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602576. [PMID: 39026693 PMCID: PMC11257460 DOI: 10.1101/2024.07.08.602576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no known cause and cure. Research suggests that a reduction of GABAergic inhibitory interneurons' activity in the hippocampus by beta-amyloid peptide (Aβ) is a crucial trigger for cognitive impairment in AD via hyperexcitability. Therefore, enhancing hippocampal inhibition is thought to be protective against AD. However, hippocampal inhibitory cells are highly diverse, and these distinct interneuron subtypes differentially regulate hippocampal inhibitory circuits and cognitive processes. Moreover, Aβ unlikely affects all subtypes of inhibitory interneurons in the hippocampus equally. Hence, identifying the affected interneuron subtypes in AD to enhance hippocampal inhibition optimally is conceptually and practically challenging. We have previously found that Aβ selectively binds to two of the three major hippocampal nicotinic acetylcholine receptor (nAChR) subtypes, α7- and α4β2-nAChRs, but not α3β4-nAChRs, and inhibits these two receptors in cultured hippocampal inhibitory interneurons to decrease their activity, leading to hyperexcitation and synaptic dysfunction in excitatory neurons. We have also revealed that co-activation of α7- and α4β2-nAChRs is required to reverse the Aβ-induced adverse effects in hippocampal excitatory neurons. Here, we discover that α7- and α4β2-nAChRs predominantly control the nicotinic cholinergic signaling and neuronal activity in hippocampal parvalbumin-positive (PV+) and somatostatin-positive (SST+) inhibitory interneurons, respectively. Furthermore, we reveal that co-activation of these receptors is necessary to reverse hippocampal network dysfunction and fear memory loss in the amyloid pathology model mice. We thus suggest that co-activation of PV+ and SST+ cells is a novel strategy to reverse hippocampal dysfunction and cognitive decline in AD.
Collapse
|
34
|
Saghafi S, Sanaei P. Dynamic entrainment: A deep learning and data-driven process approach for synchronization in the Hodgkin-Huxley model. CHAOS (WOODBURY, N.Y.) 2024; 34:103124. [PMID: 39470595 DOI: 10.1063/5.0219848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Resonance and synchronized rhythm are significant phenomena observed in dynamical systems in nature, particularly in biological contexts. These phenomena can either enhance or disrupt system functioning. Numerous examples illustrate the necessity for organs within the human body to maintain their rhythmic patterns for proper operation. For instance, in the brain, synchronized or desynchronized electrical activities can contribute to neurodegenerative conditions like Huntington's disease. In this paper, we utilize the well-established Hodgkin-Huxley (HH) model, which describes the propagation of action potentials in neurons through conductance-based mechanisms. Employing a "data-driven" approach alongside the outputs of the HH model, we introduce an innovative technique termed "dynamic entrainment." This technique leverages deep learning methodologies to dynamically sustain the system within its entrainment regime. Our findings show that the results of the dynamic entrainment technique match with the outputs of the mechanistic (HH) model.
Collapse
Affiliation(s)
- Soheil Saghafi
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark 07102, New Jersey, USA
| | - Pejman Sanaei
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
35
|
Jang J, Joo S, Yeom J, Jo Y, Zhang J, Hong S, Park CB. Lateral Piezoelectricity of Alzheimer's Aβ Aggregates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406678. [PMID: 39159132 PMCID: PMC11497015 DOI: 10.1002/advs.202406678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly aged over 65. The extracellular accumulation of beta-amyloid (Aβ) aggregates in the brain is considered as the major event worsening the AD symptoms, but its underlying reason has remained unclear. Here the piezoelectric characteristics of Aβ aggregates are revealed. The vector piezoresponse force microscopy (PFM) analysis results exhibit that Aβ fibrils have spiraling piezoelectric domains along the length and a lateral piezoelectric constant of 44.1 pC N-1. Also, the continuous sideband Kelvin probe force microscopy (KPFM) images display that the increment of charge-induced surface potential on a single Aβ fibril is allowed to reach above +1700 mV in response to applied forces. These findings shed light on the peculiar mechano-electrical surface properties of pathological Aβ fibrils that exceed those of normal body components.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
- Applied Science Research InstituteKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Soyun Joo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Jiwon Yeom
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Yonghan Jo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Jingshu Zhang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)335 Science RoadDaejeon34141Republic of Korea
| |
Collapse
|
36
|
Qian Z, Wang Z, Li B, Meng X, Kuang Z, Li Y, Yang Y, Ye K. Thy1-ApoE4/C/EBPβ double transgenic mice act as a sporadic model with Alzheimer's disease. Mol Psychiatry 2024; 29:3040-3055. [PMID: 38658772 PMCID: PMC11449781 DOI: 10.1038/s41380-024-02565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Early onset familial Alzheimer's disease (FAD) with APP, PS1/2 (presenilins) mutation accounts for only a small portion of AD cases, and most are late-onset sporadic. However, majority of AD mouse models are developed to mimic the genetic cause of human AD by overexpressing mutated forms of human APP, PS1/2, and/or Tau protein, though there is no Tau mutation in AD, and no single mouse model recapitulates all aspects of AD pathology. Here, we report Thy1-ApoE4/C/EBPβ double transgenic mouse model that demonstrates key AD pathologies in an age-dependent manner in absence of any human APP or PS1/2 mutation. Using the clinical diagnosis criteria, we show that this mouse model exhibits tempo-spatial features in AD patient brains, including progressive cognitive decline associated with brain atrophy, which is accompanied with extensive neuronal degeneration. Remarkably, the mice display gradual Aβ aggregation and neurofibrillary tangles formation in the brain validated by Aβ PET and Tau PET. Moreover, the mice reveal widespread neuroinflammation as shown in AD brains. Hence, Thy1-ApoE4/C/EBPβ mouse model acts as a sporadic AD mouse model, reconstituting the major AD pathologies.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - ZhiHao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong Province, 518055, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanjiao Li
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
37
|
Cortés Malagón EM, López Ornelas A, Olvera Gómez I, Bonilla Delgado J. The Kynurenine Pathway, Aryl Hydrocarbon Receptor, and Alzheimer's Disease. Brain Sci 2024; 14:950. [PMID: 39335444 PMCID: PMC11429728 DOI: 10.3390/brainsci14090950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, mainly affecting elderly individuals. AD is characterized by β-amyloid plaques, abnormal tau tangles, neuronal loss, and metabolic disruptions. Recent studies have revealed the involvement of the kynurenine (KP) pathway and the aryl hydrocarbon receptor (AhR) in AD development. The KP pathway metabolizes tryptophan to produce neuroactive substances like kynurenine, kynurenic acid, and quinolinic acid. In AD, high levels of kynurenine and the neurotoxic quinolinic acid are associated with increased neuroinflammation and excitotoxicity; conversely, reduced levels of kynurenic acid, which acts as a glutamate receptor antagonist, compromise neuroprotection. Research has indicated elevated KP metabolites and enzymes in the hippocampus of AD patients and other tissues such as blood, cerebrospinal fluid, and urine. However, the finding that KP metabolites are AD biomarkers in blood, cerebrospinal fluid, and urine has been controversial. This controversy, stemming from the lack of consideration of the specific stage of AD, details of the patient's treatment, cognitive deficits, and psychiatric comorbidities, underscores the need for more comprehensive research. AhR, a ligand-activated transcription factor, regulates immune response, oxidative stress, and xenobiotic metabolism. Various ligands, including tryptophan metabolites, can activate it. Some studies suggest that AhR activation contributes to AD, while others propose that it provides neuroprotection. This discrepancy may be explained by the specific ligands that activate AhR, highlighting the complex relationship between the KP pathway, AhR activation, and AD, where the same pathway can produce both neuroprotective and harmful effects.
Collapse
Affiliation(s)
- Enoc Mariano Cortés Malagón
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| | - Adolfo López Ornelas
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Genetics Laboratory, Hospital Nacional Homeopático, Mexico City 06800, Mexico
| | - Irlanda Olvera Gómez
- Research Division, Hospital Juárez de México, Mexico City 07760, Mexico; (E.M.C.M.); (A.L.O.); (I.O.G.)
- Facultad Ciencias de la Salud, Universidad Anáhuac Norte, Estado de México 52786, Mexico
| | - José Bonilla Delgado
- Research Unit, Hospital Regional de Alta Especialidad de Ixtapaluca, IMSS-BINESTAR, Ixtapaluca 56530, Mexico
| |
Collapse
|
38
|
Michaud F, Francavilla R, Topolnik D, Iloun P, Tamboli S, Calon F, Topolnik L. Altered firing output of VIP interneurons and early dysfunctions in CA1 hippocampal circuits in the 3xTg mouse model of Alzheimer's disease. eLife 2024; 13:RP95412. [PMID: 39264364 PMCID: PMC11392531 DOI: 10.7554/elife.95412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Alzheimer's disease (AD) leads to progressive memory decline, and alterations in hippocampal function are among the earliest pathological features observed in human and animal studies. GABAergic interneurons (INs) within the hippocampus coordinate network activity, among which type 3 interneuron-specific (I-S3) cells expressing vasoactive intestinal polypeptide and calretinin play a crucial role. These cells provide primarily disinhibition to principal excitatory cells (PCs) in the hippocampal CA1 region, regulating incoming inputs and memory formation. However, it remains unclear whether AD pathology induces changes in the activity of I-S3 cells, impacting the hippocampal network motifs. Here, using young adult 3xTg-AD mice, we found that while the density and morphology of I-S3 cells remain unaffected, there were significant changes in their firing output. Specifically, I-S3 cells displayed elongated action potentials and decreased firing rates, which was associated with a reduced inhibition of CA1 INs and their higher recruitment during spatial decision-making and object exploration tasks. Furthermore, the activation of CA1 PCs was also impacted, signifying early disruptions in CA1 network functionality. These findings suggest that altered firing patterns of I-S3 cells might initiate early-stage dysfunction in hippocampal CA1 circuits, potentially influencing the progression of AD pathology.
Collapse
Affiliation(s)
- Felix Michaud
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Dimitry Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Parisa Iloun
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Suhel Tamboli
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| | - Frederic Calon
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada
- Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, Canada
| |
Collapse
|
39
|
Lykhmus O, Tzeng WY, Koval L, Uspenska K, Zirdum E, Kalashnyk O, Garaschuk O, Skok M. Impairment of brain function in a mouse model of Alzheimer's disease during the pre-depositing phase: The role of α7 nicotinic acetylcholine receptors. Biomed Pharmacother 2024; 178:117255. [PMID: 39116785 DOI: 10.1016/j.biopha.2024.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent incurable neurodegenerative disorder accompanied by neuroinflammation, amyloid accumulation, and memory impairment. It begins decades before the first clinical symptoms appear, and identifying early biomarkers is key for developing disease-modifying therapies. We show now in a mouse model of AD that before any amyloid deposition the brains of 1.5-month-old mice contain increased levels of pro-inflammatory cytokines IL-1β and IL-6, decreased levels of nicotinic acetylcholine receptors (nAChRs) in the brain and brain mitochondria and increased amounts of α7 nAChR-bound Aβ1-42, along with impaired episodic memory and increased risk of apoptosis. Both acute (1-week-long) and chronic (4-month-long) treatments with α7-selective agonist PNU282987, starting at 1.5 months of age, were well tolerated. The acute treatment did not affect the levels of soluble Aβ1-42 but consistently upregulated the α7 nAChR expression, decreased the level of α7-Aβ1-42 complexes, and improved episodic memory of 1.5-month-old mice. The chronic treatment, covering the disease development phase, strongly upregulated the expression of all abundant brain nAChRs, reduced both free and α7-coupled Aβ1-42 within the brain, had anti-inflammatory and antiapoptotic effects, and potently upregulated cognition, thus identifying α7 nAChRs as both early biomarker and potent therapeutic target for fighting this devastating disease.
Collapse
Affiliation(s)
- Olena Lykhmus
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | - Wen-Yu Tzeng
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | | | - Elizabeta Zirdum
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany.
| | - Maryna Skok
- Palladin Institute of Biochemistry NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
40
|
Zhang Z, Luo X, Jiang L, Wu H, Tan Z. How do HCN channels play a part in Alzheimer's and Parkinson's disease? Ageing Res Rev 2024; 100:102436. [PMID: 39047878 DOI: 10.1016/j.arr.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Neurodegenerative diseases like Alzheimer's and Parkinson's disease (AD and PD) are well-known, yet their underlying causes remain unclear. Recent studies have suggested that disruption of ion channels contribute to their pathogenesis. Among these channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, encoded by HCN1-4 genes, are of particular interest due to their role in generating hyperpolarization-activated current (Ih), which is crucial in various neural activities impacting memory and motor functions. A growing body of evidence underscores the pivotal role of HCN in Aβ generation, glial cell function, and ischemia-induced dementia; while HCN is expressed in various regions of the basal ganglia, modulating their functions and influencing motor disorders in PD; neuroinflammation triggered by microglial activation represents a shared pathological mechanism in both AD and PD, in which HCN also plays a significant part. This review delves into the neuronal functions governed by HCN, its roles in the aforementioned pathogenesis, its expression patterns in AD and PD, and discusses potential therapeutic drugs targeting HCN for the treatment of these diseases, aiming to offer a novel perspective and inspire future research endeavors.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Xin Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang 421001, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Huilan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China.
| |
Collapse
|
41
|
Zou J, McNair E, DeCastro S, Lyons SP, Mordant A, Herring LE, Vetreno RP, Coleman LG. Microglia either promote or restrain TRAIL-mediated excitotoxicity caused by Aβ 1-42 oligomers. J Neuroinflammation 2024; 21:215. [PMID: 39218898 PMCID: PMC11367981 DOI: 10.1186/s12974-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) features progressive neurodegeneration and microglial activation that results in dementia and cognitive decline. The release of soluble amyloid (Aβ) oligomers into the extracellular space is an early feature of AD pathology. This can promote excitotoxicity and microglial activation. Microglia can adopt several activation states with various functional outcomes. Protective microglial activation states have been identified in response to Aβ plaque pathology in vivo. However, the role of microglia and immune mediators in neurotoxicity induced by soluble Aβ oligomers is unclear. Further, there remains a need to identify druggable molecular targets that promote protective microglial states to slow or prevent the progression of AD. METHODS Hippocampal entorhinal brain slice culture (HEBSC) was employed to study mechanisms of Aβ1-42 oligomer-induced neurotoxicity as well as the role of microglia. The roles of glutamate hyperexcitation and immune signaling in Aβ-induced neurotoxicity were assessed using MK801 and neutralizing antibodies to the TNF-related apoptosis-inducing ligand (TRAIL) respectively. Microglial activation state was manipulated using Gi-hM4di designer receptor exclusively activated by designer drugs (DREADDs), microglial depletion with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX3397, and microglial repopulation (PLX3397 withdrawal). Proteomic changes were assessed by LC-MS/MS in microglia isolated from control, repopulated, or Aβ-treated HEBSCs. RESULTS Neurotoxicity induced by soluble Aβ1-42 oligomers involves glutamatergic hyperexcitation caused by the proinflammatory mediator and death receptor ligand TRAIL. Microglia were found to have the ability to both promote and restrain Aβ-induced toxicity. Induction of microglial Gi-signaling with hM4di to prevent pro-inflammatory activation blunted Aβ neurotoxicity, while microglial depletion with CSF1R antagonism worsened neurotoxicity caused by Aβ as well as TRAIL. HEBSCs with repopulated microglia, however, showed a near complete resistance to Aβ-induced neurotoxicity. Comparison of microglial proteomes revealed that repopulated microglia have a baseline anti-inflammatory and trophic phenotype with a predicted pathway activation that is nearly opposite that of Aβ-exposed microglia. mTORC2 and IRF7 were identified as potential targets for intervention. CONCLUSION Microglia are key mediators of both protection and neurodegeneration in response to Aβ. Polarizing microglia toward a protective state could be used as a preventative strategy against Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Elizabeth McNair
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sagan DeCastro
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Scott P Lyons
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Angie Mordant
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Laura E Herring
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
42
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
43
|
Walker CK, Liu E, Greathouse KM, Adamson AB, Wilson JP, Poovey EH, Curtis KA, Muhammad HM, Weber AJ, Bennett DA, Seyfried NT, Gaiteri C, Herskowitz JH. Dendritic spine head diameter predicts episodic memory performance in older adults. SCIENCE ADVANCES 2024; 10:eadn5181. [PMID: 39110801 PMCID: PMC11305389 DOI: 10.1126/sciadv.adn5181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Episodic memory in older adults is varied and perceived to rely on numbers of synapses or dendritic spines. We analyzed 2157 neurons among 128 older individuals from the Religious Orders Study and Rush Memory and Aging Project. Analysis of 55,521 individual dendritic spines by least absolute shrinkage and selection operator regression and nested model cross-validation revealed that the dendritic spine head diameter in the temporal cortex, but not the premotor cortex, improved the prediction of episodic memory performance in models containing β amyloid plaque scores, neurofibrillary tangle pathology, and sex. These findings support the emerging hypothesis that, in the temporal cortex, synapse strength is more critical than quantity for memory in old age.
Collapse
Affiliation(s)
- Courtney K. Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Evan Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kelsey M. Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashley B. Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Julia P. Wilson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily H. Poovey
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kendall A. Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hamad M. Muhammad
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Audrey J. Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher Gaiteri
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeremy H. Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
44
|
Zott B, Nästle L, Grienberger C, Unger F, Knauer MM, Wolf C, Keskin-Dargin A, Feuerbach A, Busche MA, Skerra A, Konnerth A. β-amyloid monomer scavenging by an anticalin protein prevents neuronal hyperactivity in mouse models of Alzheimer's Disease. Nat Commun 2024; 15:5819. [PMID: 38987287 PMCID: PMC11237084 DOI: 10.1038/s41467-024-50153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Hyperactivity mediated by synaptotoxic β-amyloid (Aβ) oligomers is one of the earliest forms of neuronal dysfunction in Alzheimer's disease. In the search for a preventive treatment strategy, we tested the effect of scavenging Aβ peptides before Aβ plaque formation. Using in vivo two-photon calcium imaging and SF-iGluSnFR-based glutamate imaging in hippocampal slices, we demonstrate that an Aβ binding anticalin protein (Aβ-anticalin) can suppress early neuronal hyperactivity and synaptic glutamate accumulation in the APP23xPS45 mouse model of β-amyloidosis. Our results suggest that the sole targeting of Aβ monomers is sufficient for the hyperactivity-suppressing effect of the Aβ-anticalin at early disease stages. Biochemical and neurophysiological analyses indicate that the Aβ-anticalin-dependent depletion of naturally secreted Aβ monomers interrupts their aggregation to neurotoxic oligomers and, thereby, reverses early neuronal and synaptic dysfunctions. Thus, our results suggest that Aβ monomer scavenging plays a key role in the repair of neuronal function at early stages of AD.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study, Garching, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Lea Nästle
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany
| | - Christine Grienberger
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Biology and Volen National Center of Complex Systems, Brandeis University, Waltham, MA, USA
| | - Felix Unger
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study, Garching, Germany
| | - Manuel M Knauer
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Christian Wolf
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany
| | | | - Anna Feuerbach
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany
| | - Marc Aurel Busche
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Arne Skerra
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
45
|
Ng B, Vowles J, Bertherat F, Abey A, Kilfeather P, Beccano-Kelly D, Stefana MI, O'Brien DP, Bengoa-Vergniory N, Carling PJ, Todd JA, Caffrey TM, Connor-Robson N, Cowley SA, Wade-Martins R. Tau depletion in human neurons mitigates Aβ-driven toxicity. Mol Psychiatry 2024; 29:2009-2020. [PMID: 38361127 PMCID: PMC11408257 DOI: 10.1038/s41380-024-02463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-β (Aβ) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aβ-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aβ were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aβ-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aβ-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.
Collapse
Affiliation(s)
- Bryan Ng
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jane Vowles
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| | - Féodora Bertherat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ajantha Abey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter Kilfeather
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Dayne Beccano-Kelly
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centres for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, OX3 7FZ, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Tara M Caffrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK.
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
46
|
Rajani RM, Ellingford R, Hellmuth M, Harris SS, Taso OS, Graykowski D, Lam FKW, Arber C, Fertan E, Danial JSH, Swire M, Lloyd M, Giovannucci TA, Bourdenx M, Klenerman D, Vassar R, Wray S, Sala Frigerio C, Busche MA. Selective suppression of oligodendrocyte-derived amyloid beta rescues neuronal dysfunction in Alzheimer's disease. PLoS Biol 2024; 22:e3002727. [PMID: 39042667 PMCID: PMC11265669 DOI: 10.1371/journal.pbio.3002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Reduction of amyloid beta (Aβ) has been shown to be effective in treating Alzheimer's disease (AD), but the underlying assumption that neurons are the main source of pathogenic Aβ is untested. Here, we challenge this prevailing belief by demonstrating that oligodendrocytes are an important source of Aβ in the human brain and play a key role in promoting abnormal neuronal hyperactivity in an AD knock-in mouse model. We show that selectively suppressing oligodendrocyte Aβ production improves AD brain pathology and restores neuronal function in the mouse model in vivo. Our findings suggest that targeting oligodendrocyte Aβ production could be a promising therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Rikesh M. Rajani
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Robert Ellingford
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Mariam Hellmuth
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Samuel S. Harris
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Orjona S. Taso
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - David Graykowski
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Francesca Kar Wey Lam
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Charles Arber
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
| | - John S. H. Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
- School of Physics and Astronomy, University of St Andrews, St. Andrews, United Kingdom
| | - Matthew Swire
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Marcus Lloyd
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Tatiana A. Giovannucci
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Mathieu Bourdenx
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Selina Wray
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Carlo Sala Frigerio
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Marc Aurel Busche
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| |
Collapse
|
47
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
48
|
Cortese GP, Bartosch AMW, Xiao H, Gribkova Y, Lam TG, Argyrousi EK, Sivakumar S, Cardona C, Teich AF. ZCCHC17 knockdown phenocopies Alzheimer's disease-related loss of synaptic proteins and hyperexcitability. J Neuropathol Exp Neurol 2024; 83:626-635. [PMID: 38630575 PMCID: PMC11187431 DOI: 10.1093/jnen/nlae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
ZCCHC17 is a master regulator of synaptic gene expression and has recently been shown to play a role in splicing of neuronal mRNA. We previously showed that ZCCHC17 protein declines in Alzheimer's disease (AD) brain tissue before there is significant gliosis and neuronal loss, that ZCCHC17 loss partially replicates observed splicing abnormalities in AD brain tissue, and that maintenance of ZCCHC17 levels is predicted to support cognitive resilience in AD. Here, we assessed the functional consequences of reduced ZCCHC17 expression in primary cortical neuronal cultures using siRNA knockdown. Consistent with its previously identified role in synaptic gene expression, loss of ZCCHC17 led to loss of synaptic protein expression. Patch recording of neurons shows that ZCCHC17 loss significantly disrupted the excitation/inhibition balance of neurotransmission, and favored excitatory-dominant synaptic activity as measured by an increase in spontaneous excitatory post synaptic currents and action potential firing rate, and a decrease in spontaneous inhibitory post synaptic currents. These findings are consistent with the hyperexcitable phenotype seen in AD animal models and in patients. We are the first to assess the functional consequences of ZCCHC17 knockdown in neurons and conclude that ZCCHC17 loss partially phenocopies AD-related loss of synaptic proteins and hyperexcitability.
Collapse
Affiliation(s)
- Giuseppe P Cortese
- College of Arts, Sciences, and Education, Program in Biology, Montana State University Northern, Havre, Montana, USA
| | - Anne Marie W Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Yelizaveta Gribkova
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Tiffany G Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Elentina K Argyrousi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Christopher Cardona
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
49
|
Nabizadeh F. Disruption in functional networks mediated tau spreading in Alzheimer's disease. Brain Commun 2024; 6:fcae198. [PMID: 38978728 PMCID: PMC11227975 DOI: 10.1093/braincomms/fcae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease may be conceptualized as a 'disconnection syndrome', characterized by the breakdown of neural connectivity within the brain as a result of amyloid-beta plaques, tau neurofibrillary tangles and other factors leading to progressive degeneration and shrinkage of neurons, along with synaptic dysfunction. It has been suggested that misfolded tau proteins spread through functional connections (known as 'prion-like' properties of tau). However, the local effect of tau spreading on the synaptic function and communication between regions is not well understood. I aimed to investigate how the spreading of tau aggregates through connections can locally influence functional connectivity. In total, the imaging data of 211 participants including 117 amyloid-beta-negative non-demented and 94 amyloid-beta-positive non-demented participants were recruited from the Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional MRI connectomes were used to model tau spreading through functional connections, and functional MRI of the included participants was used to determine the effect of tau spreading on functional connectivity. I found that lower functional connectivity to tau epicentres is associated with tau spreading through functional connections in both amyloid-beta-negative and amyloid-beta-positive participants. Also, amyloid-beta-PET in tau epicentres mediated the association of tau spreading and functional connectivity to epicentres suggesting a partial mediating effect of amyloid-beta deposition in tau epicentres on the local effect of tau spreading on functional connectivity. My findings provide strong support for the notion that tau spreading through connection is locally associated with disrupted functional connectivity between tau epicentre and non-epicentre regions independent of amyloid-beta pathology. Also, I defined several groups based on the relationship between tau spreading and functional disconnection, which provides quantitative assessment to investigate susceptibility or resilience to functional disconnection related to tau spreading. I showed that amyloid-beta, other copathologies and the apolipoprotein E epsilon 4 allele can be a leading factor towards vulnerability to tau relative functional disconnection.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran 441265421414, Iran
| |
Collapse
|
50
|
Sindi G, Ismael S, Uddin R, Slepchenko KG, Colvin RA, Lee D. Endogenous tau released from human ReNCell VM cultures by neuronal activity is phosphorylated at multiple sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597022. [PMID: 38854111 PMCID: PMC11160771 DOI: 10.1101/2024.06.02.597022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100μM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3β, demonstrating that GSK3β-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.
Collapse
Affiliation(s)
| | - Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reaz Uddin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Kira G. Slepchenko
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Robert A. Colvin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|