1
|
Partap M, Deekshith HN, Gupta H, Birsanta G, Kapoor P, Soni V, Bhargava B. Morphological and biochemical analysis along with gene expression dynamics in Lilium 'Brunello' under supplemented effect of blue and red light treatment in pin tray soil-less cultivation system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 267:113168. [PMID: 40288201 DOI: 10.1016/j.jphotobiol.2025.113168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The present research corroborates the influence of supplementation effect of blue light (BL), red light (RL), and the combination of both BL + RL on the morphological traits, biochemical, and expression of key flowering genes assessment in lilium cultivated in bulb forcing soil-less pin trays within a climate-controlled autonomous greenhouse system. The findings revealed profound effect of BL + RL treatment on increased plant height (79.59 cm), stem diameter (10.05 mm), bud length (93.73 mm), and bud diameter (29.87 mm), compared to individual BL and RL treatments and the white light (WL) control. The BL + RL treatment also resulted in shortening the flowering timeline. Maximum flower diameter (18.65 cm) and chlorophyll content index (48.60) were recorded under BL + RL treatment. BL + RL extended post-harvest longevity to 13.2 days, followed by RL (11.6 days). Total chlorophyll content highest at the color bud stage under BL + RL (499.87 μg g-1), though RL treatment sustained the highest levels at the flower stage. Carotenoids content showed a contrasting trend, with RL promoting maximum accumulation during bud stages, while BL + RL enhanced carotenoid synthesis at the flower stage (166.88 μg g-1). Phenol and flavonoid content also reached maximum levels under BL + RL at the color bud stage and anthocyanin content was highest under BL + RL at the flower stage. Additionally, antioxidant activity was significantly higher (86.75 %) in flowers grown under BL + RL. Similarly, up-regulation of flowering genes FT and CO9, particularly observed under the BL + RL treatment at the initial bud and color bud stages, while flowering repressor FLC was down-regulated under all light treatments, facilitating earlier floral induction. The combined BL + RL treatment enhances Lilium cultivation profitability by improving growth, accelerating flowering, increasing flower quality and shelf life, and enabling faster production cycles in controlled Soil-less systems.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) - Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur 176061, HP, India
| | - H N Deekshith
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) - Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur 176061, HP, India
| | - Himanshi Gupta
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) - Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur 176061, HP, India
| | - Gulshan Birsanta
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) - Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur 176061, HP, India
| | - Payal Kapoor
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) - Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur 176061, HP, India
| | - Vikas Soni
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) - Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur 176061, HP, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) - Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Yao J, Zhao S, Nie Y, Wu Z, Zhang J, Zhang Z. FvbHLH78 interacts with FvCRY2 to promote flowering in woodland strawberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109856. [PMID: 40168862 DOI: 10.1016/j.plaphy.2025.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Flowering is a crucial agricultural trait of strawberries. While the bHLH family comprises numerous members in plants, its function in controlling strawberry flowering remains largely unexplored. In this study, FvbHLH78 was found to be highly expressed in the shoot apices and ripening fruits of woodland strawberry (Fragaria vesca). FvbHLH78 is localized to the nucleus and exhibits self-activating transcriptional properties. Overexpression of FvbHLH78 in woodland strawberry resulted in an early flowering phenotype compared to the control plants. This phenomenon was attributed to FvbHLH78 directly binding to the promoters of the genes associated with flowering, namely FvFT, FvSEP3, FvLFY, and FvAGL42. Moreover, FvbHLH78 interacted with a blue light receptor FvCRY2, which enhances FvbHLH78 promoter-binding affinity to FvFT, FvSEP3, FvLFY, and FvAGL42, thereby accelerating flowering. Collectively, these findings demonstrate that the FvbHLH78-FvCRY2 complex in strawberries acts as an enhancer of genes associated with flowering, thereby accelerating the flowering process. These data offer an understanding for enriching the roles of bHLH78 and accelerating flowering in strawberry.
Collapse
Affiliation(s)
- Jinxiang Yao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Shuo Zhao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yuxin Nie
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Zhengjia Wu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
3
|
Kong Y, Liu C, Li T, Fang J, Liu G. Identification and Expression Characteristics of the Cryptochrome Gene Family in Chimonobambusa sichuanensis. PLANTS (BASEL, SWITZERLAND) 2025; 14:1637. [PMID: 40508312 PMCID: PMC12157072 DOI: 10.3390/plants14111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/06/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025]
Abstract
Cryptochrome is an important class of blue-light receptors involved in various physiological activities such as photomorphogenesis and abiotic stress regulation in plants. In order to investigate the molecular mechanism of blue-light-induced color change in Chimonobambusa sichuanensis, we screened and cloned the gene encoding the blue-light receptor Cryptochrome. In order to investigate the molecular mechanism of blue-light-induced color change in Chimonobambusa sichuanensis, we screened and cloned the gene encoding the blue-light receptor Cryptochrome in Ch.sichuanensis, and analyzed the expression characteristics of the Cryptochrome gene in Ch.sichuanensis under different light intensities, light quality, and temperatures by qRT-PCR. Through homologous cloning, a total of four CsCRY genes were obtained in the Ch.sichuanensis genome, namely, CsCRY1a, CsCRY1b, CsCRY2, and CsCRY3. Structural domain analyses of the encoded proteins of the four genes revealed that all CsCRYs proteins had the typical photoreceptor structural domain, PRK (protein kinase C-related kinase). Phylogenetic tree analyses revealed that the four genes CsCRY1a, CsCRY1b, CsCRY2, and CsCRY3 could be categorized into three subfamilies, with CsCRY1a and CsCRY1b clustered in subfamily I, CsCRY2 classified in subfamily II, and CsCRY3 belonging to subfamily III. All CsCRYs proteins lacked signal peptides and the instability index was higher than 40, among which the isoelectric points of CsCRY1a, CsCRY1b, and CsCRY2 were around five. qRT-PCR analysis revealed that the expression of all four CsCRYs genes was up-regulated at 75 µmol·m-2·s-1 blue-light illumination for 4 h. In addition, under treatments of different light quality, the expression of CsCRY2 genes was significantly higher under blue light than under red light and a mixture of red light and blue light with a light intensity of 1:1; the expression of CsCRY1a and CsCSY1b was significantly higher in the mixed light of red and blue light than in the single light treatment, while under different temperature gradients, CsCRYs genes were highly expressed under low-temperature stress at -5 °C and 0 °C. This study provides a basis for further research on blue-light-induced color change in Ch.sichuanensis and expands the scope of Cryptochrome gene research.
Collapse
Affiliation(s)
- Yining Kong
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; (Y.K.); (C.L.); (T.L.)
| | - Changlai Liu
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; (Y.K.); (C.L.); (T.L.)
| | - Tianshuai Li
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; (Y.K.); (C.L.); (T.L.)
| | - Ji Fang
- Jiangsu Vocational College of Agriculture and Forestry, Nanjing 210037, China;
| | - Guohua Liu
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China; (Y.K.); (C.L.); (T.L.)
| |
Collapse
|
4
|
Taslimi A, Jeibmann A, Goett-Zink L, Kottke T, Tucker C. Constitutively active Arabidopsis cryptochrome 2 alleles identified using yeast selection and deep mutational scanning. J Biol Chem 2025:110265. [PMID: 40409553 DOI: 10.1016/j.jbc.2025.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
The Arabidopsis blue light photoreceptor cryptochrome 2 (CRY2) responds to blue light to initiate a variety of plant light-based behaviors and has been widely used for optogenetic engineering. Despite these important biological functions, the precise photoactivation mechanism of CRY2 remains incompletely understood. In light, CRY2 undergoes tetramerization and binds to partner proteins, including the transcription factor CIB1. Here we used yeast-two hybrid screening and deep mutational scanning to identify CRY2 amino acid changes that result in constitutive interaction with CIB1 in dark. The majority of CRY2 variants showing constitutive CIB1 interaction mapped to two regions, one near the FAD chromophore, and a second region located near the ATP binding site. Further testing of CRY2 variants from each region revealed three mapping near to the FAD binding pocket (D393S, D393A, and M378R) that also form constitutive CRY2-CRY2 homomers in dark, suggesting they adopt global conformational changes that mimic the photoactive state. Characterization of D393S in the homolog pCRY from Chlamydomonas reinhardtii using time-resolved UV-vis spectroscopy revealed that the FAD chromophore fails to form the neutral radical as signaling state upon illumination. Size exclusion chromatography of D393S shows the presence of homomers instead of a monomer in the dark, providing support for a hyperactive variant decoupled from the FAD. Our work provides new insight into photoactivation mechanisms of plant cryptochromes relevant for physiology and optogenetic application by revealing and localizing distinct activation pathways for light-driven CRY2-CIB1 and CRY2-CRY2 interactions.
Collapse
Affiliation(s)
- Amir Taslimi
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Axel Jeibmann
- Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Lukas Goett-Zink
- Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany.
| | - Chandra Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045.
| |
Collapse
|
5
|
Kong Y, Zheng Y. Complex Signaling Networks Underlying Blue-Light-Mediated Floral Transition in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1533. [PMID: 40431098 PMCID: PMC12115001 DOI: 10.3390/plants14101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Blue light (BL) is important in regulating floral transition. In a controlled environment production system, BL can be manipulated easily and precisely in aspects like peak wavelength, intensity, duration, and co-action with other wavelengths. However, the results of previous studies about BL-mediated floral transition are inconsistent, which implies that an in-depth critical examination of the relevant physiological mechanisms is necessary. This review consolidates the recent findings on the role of BL in mediating floral transition not only in model plants, such as Arabidopsis thaliana, but also in crops, especially horticultural crops. The photoreceptors, floral integrator proteins, signal pathways, and key network components involved in BL-mediated floral transition are critically reviewed. This review provides possible explanations for the contrasting results of previous studies on BL-mediated flowering; it provides valuable information to explain and develop BL manipulation strategies for mediating flowering, especially in horticultural plants. The review also identifies the knowledge gaps and outlines future directions for research in related fields.
Collapse
Affiliation(s)
| | - Youbin Zheng
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
6
|
Wang Q, Wu X, Ren M, Zhang F, Zhang Y, Wang Y, Li W, Xie Z, Qi K, Zhang S, Shiratake K, Niu Y, Tao S. Cryptochrome-mediated blue light regulates cell lignification via PbbHLH195 activation of the PbNSC in pear fruits. MOLECULAR HORTICULTURE 2025; 5:27. [PMID: 40329408 PMCID: PMC12057157 DOI: 10.1186/s43897-025-00149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/28/2025] [Indexed: 05/08/2025]
Abstract
The presence of stone cells in pear fruit, caused by lignified secondary cell walls (SCWs), leads to a grainy texture in the fruit flesh, thereby compromising its overall quality. Lignification is influenced by various environmental signals, including light, however the underlying mechanism are poorly understood. This study reveals that SCW thickening and lignin accumulation in stone cells were regulated by a blue light signal, mediated through the activation of PbNSC by PbbHLH195. The results revealed that the stone cell formation was prompted by supplementary with blue light, with lignin accumulation linked to the upregulation of the NAC STONE CELL PROMOTING FACTOR (PbNSC). PbbHLH195 was identified as a novel molecular hub connecting lignification to blue light signal through its physical interaction with PbCRY1a. The biochemical and functional analysis indicates that PbbHLH195 contributes to stone cell lignification by activating the promoter of PbNSC. Our findings offer novel insights into the mechanisms of lignin biosynthesis in response to blue light, identifying valuable genetic targets for enhancing the fruit quality of pear.
Collapse
Affiliation(s)
- Qi Wang
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyi Wu
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei Ren
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fanghang Zhang
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zhang
- College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yueyang Wang
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Li
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Katsuhiro Shiratake
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yingying Niu
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Shutian Tao
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Zhang M, Fang Y, Jiang F, Liao Y, Pan C, Li J, Wu J, Yang Q, Qin R, Bai S, Teng Y, Ni J. CRY1-GAIP1 complex mediates blue light to hinder the repression of PIF5 on AGL5 to promote carotenoid biosynthesis in mango fruit. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40263966 DOI: 10.1111/pbi.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Carotenoids are essential natural pigments that not only determine the commercial value of horticultural crops through colouration but also serve as vital antioxidants and provitamin A precursors in the human diet. Our previous research has demonstrated that blue light induces carotenoid biosynthesis in mango fruit. However, a critical knowledge gap remains regarding how blue light regulates carotenoid biosynthesis in fruit. In this study, blue light-induced MiAGL5 was identified to promote carotenoid biosynthesis by activating the promoters of MiBCH1 and MiZEP. Subsequently, MiPIF5, a phytochrome interacting factor, transcriptionally inhibited MiAGL5 expression. MiGAIP1, a DELLA protein, promoted carotenoid biosynthesis by interacting with MiPIF5 and preventing its repression of MiAGL5. Furthermore, blue light stabilized MiGAIP1 protein through MiCRY1-MiGAIP1 interaction and reduced MiGAIP1 degradation by decreasing GA content in mango fruit. Additionally, MiGAIP1 mediated the antagonistic effects between blue light and GA in regulating carotenoid biosynthesis. Collectively, these results demonstrate that blue light induces carotenoid biosynthesis through a mechanism involving MiCRY1-MiGAIP1 complex-mediated inhibition of MiPIF5 repression on MiAGL5. Our work provides solid evidence for CRY-DELLA-PIF-AGL cross-talk in plant metabolism and establishes a new paradigm for light-hormone antagonism in the regulation of specialized metabolites.
Collapse
Affiliation(s)
- Manman Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Yongchen Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fan Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Yifei Liao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Chen Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiage Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiahao Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Rongling Qin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
8
|
Meyer K, Huang B, Weiner OD. Emerging roles of transcriptional condensates as temporal signal integrators. Nat Rev Genet 2025:10.1038/s41576-025-00837-y. [PMID: 40240649 DOI: 10.1038/s41576-025-00837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
Collapse
Affiliation(s)
- Kirstin Meyer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Wang Y, Li M, Liu W, Jiang L. Illuminating the future of food microbial control: From optical tools to Optogenetic tools. Food Chem 2025; 471:142474. [PMID: 39823899 DOI: 10.1016/j.foodchem.2024.142474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Light as an environmental signal can effectively regulate various biological processes in microbial systems. Optical and optogenetic tools are able to utilize light for precise control methods with minimal interference. Recently, research on these tools has extended to the field of microbiology. Distinguishing from existing reviews, this review narrows the scope of application into food sector, focusing on advances in optical and optogenetic tools for microbial control, including optical tools targeting pathogenic or probiotic bacteria for non-thermal sterilization, antimicrobial photodynamic therapy, or photobiomodulation, combined with nanomaterials as photosensors for food analysis. As well as using optogenetic tools for more convenient and precise control in food production processes, covering reversible induction, metabolic flux regulation, biofilm formation, and inhibition. These tools offer new solutions to goals that cannot be achieved by traditional methods, and they are still maturing to explore other uses in the food field.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mengyu Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. limengyu-@njtech.edu.cn
| | - Wei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
10
|
Huang H, Hu J. Applications of Liquid-Liquid Phase Separation in Biosensing. Chembiochem 2025; 26:e202500028. [PMID: 39920037 DOI: 10.1002/cbic.202500028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/09/2025]
Abstract
Phase separation, particularly liquid-liquid phase separation (LLPS), has emerged as a powerful tool in biological research, offering unique advantages for visualizing and analyzing biomolecular interactions. This review highlights recent advances in leveraging LLPS to develop experimental techniques for studying protein-protein interactions (PPIs), protein-RNA interactions, and enzyme activity. The integration of LLPS with advanced techniques has expanded its applications, offering new possibilities for unraveling the complexities of cellular function and disease mechanisms. Looking forward, the development of more versatile, sensitive, and targeted LLPS-based methods is poised to transform molecular biology, providing deeper insights into cellular dynamics and facilitating therapeutic advancements.
Collapse
Affiliation(s)
- Huizhen Huang
- Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Synthetic Biology Center, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
11
|
Nutricati E, Sabella E, Negro C, Min Allah S, Luvisi A, De Bellis L, Accogli RA. Anthocyanins and Anthocyanin Biosynthesis Gene Expression in Passiflora Flower Corona Filaments. PLANTS (BASEL, SWITZERLAND) 2025; 14:1050. [PMID: 40219118 PMCID: PMC11991006 DOI: 10.3390/plants14071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
The diversity in anthocyanin flower pigmentation is vital in the ornamental plant market. To understand the regulation of the corona filament pigmentation of the Passiflora flower, we investigated the anthocyanin profiles of five distinct species (P. violacea, P. caerulea, P. edulis, P. incarnata, and P. coccinea) using HPLC-MS. A total of 14 anthocyanins, differentially distributed in the analyzed species, were identified as responsible for the differences in corona color, which can be attributed to different ratios of pelargonidin, cyanidin, and delphinidin. Additionally, we evaluated the expression of some biosynthetic genes, including dehydroflavonol reductase (DFR), flavonoid 3'-hydroxylase (F3'H), and flavonoid 3',5'-hydroxylase (F3'5'H). F3'H seems to regulate the accumulation of cyanidins, F3'5'H determines blue pigmentation, and DFR enhances the biosynthesis of pelargonidins. Furthermore, three genes coding for key transcription factors, Myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WD repeat protein (WD40), were examined using qPCR. The results confirm that such genes regulate anthocyanin biosynthesis and provide insight into the molecular mechanisms that underlie pigment biosynthesis for application in biotechnologies.
Collapse
Affiliation(s)
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy; (E.N.); (C.N.); (S.M.A.); (A.L.); (R.A.A.)
| | | | | | | | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov. le Lecce-Monteroni, 73100 Lecce, Italy; (E.N.); (C.N.); (S.M.A.); (A.L.); (R.A.A.)
| | | |
Collapse
|
12
|
Suh K, Thornton RH, Nguyen L, Farahani PE, Cohen DJ, Toettcher JE. Large-scale control over collective cell migration using light-activated epidermal growth factor receptors. Cell Syst 2025; 16:101203. [PMID: 40037348 DOI: 10.1016/j.cels.2025.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Receptor tyrosine kinases (RTKs) play key roles in coordinating cell movement at both single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggests that these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled epidermal growth factor (EGF) receptor (OptoEGFR) can be deployed in epithelial cells for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by phosphoinositide 3-kinase (PI3K) signaling, rather than diffusible ligands, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications, including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Richard H Thornton
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Long Nguyen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Jared E Toettcher
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
13
|
Qu GP, Zhang Z, Lin C. The dark activity of Arabidopsis blue-light receptor CRY2. SCIENCE CHINA. LIFE SCIENCES 2025; 68:887-889. [PMID: 39625635 DOI: 10.1007/s11427-024-2788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 02/27/2025]
Affiliation(s)
- Gao-Ping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zeru Zhang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
Yang Y, Kong Q, Ma Z, Lim PK, Singh SK, Pattanaik S, Mutwil M, Miao Y, Yuan L, Ma W. Phase separation of MYB73 regulates seed oil biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2025; 197:kiae674. [PMID: 39704290 PMCID: PMC11803632 DOI: 10.1093/plphys/kiae674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
MYB family transcription factors (TFs) play crucial roles in plant development, metabolism, and responses to various stresses. However, whether MYB TFs are involved in regulating fatty acid biosynthesis in seeds remains largely elusive. Here, we demonstrated that transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing MYB73 exhibit altered FATTY ACID ELONGATION1 (FAE1) expression, seed oil content, and seed fatty acid composition. Electrophoretic mobility shift assays showed that FAE1 is a direct target of MYB73, and functional assays revealed that MYB73 represses FAE1 promoter activity. Transcriptomic analysis of the MYB73-overexpressing plants detected significant changes in the expression of genes involved in fatty acid biosynthesis and triacylglycerol assembly. Furthermore, MYB73 expression was responsive to abscisic acid (ABA), and ABA-responsive element binding factor 2 directly bound to the ABA-responsive element in the MYB73 promoter to activate its expression. Additionally, we determined that MYB73 exhibits the hallmarks of an intrinsically disordered protein and forms phase-separated condensates with liquid-like characteristics, which are important in regulating target gene expression. Together, our findings suggest that MYB73 condensate formation likely fine-tunes seed oil biosynthesis.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sanjay K Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
15
|
Zhou S, Liu B, Liu J, Yi B, Wang X. Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics. Semin Cell Dev Biol 2025; 166:36-51. [PMID: 39729778 DOI: 10.1016/j.semcdb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China; Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Bing Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
16
|
Zhang X, Tian X, Luo J, Wang X, He S, Sun G, Dong R, Dai P, Wang X, Pan Z, Chen B, Hu D, Wang L, Pang B, Xing A, Fu G, Wang B, Cui J, Ma L, Du X. Identification of UDP-glucosyltransferase involved in the biosynthesis of phloridzin in Gossypium hirsutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17248. [PMID: 39935137 DOI: 10.1111/tpj.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Phloridzin has various functions, including antioxidant properties and the treatment of diabetes, and has long been used in pharmaceutical and physiological research. The glycosylation of phloretin is a key step in the biosynthesis of phloridzin. In this study, a genome-wide association study (GWAS) based on phloridzin content was applied, and the key gene GhUGT88F3 for phloridzin-specific biosynthesis was identified in cotton. A single-base deletion in GhUGT88F3 in haplotype I caused a frameshift mutation, leading to premature translation termination and a significant reduction in phloridzin content. Molecular docking revealed important amino acid residues for GhUGT88F3's UDP-glucose transfer activity. Additionally, the transcription factor GhMYB330 was found to positively regulate GhUGT88F3 expression through population transcriptome analysis and LUC experiment. Moreover, phloridzin content was significantly elevated in both GhUGT88F3 and GhMYB330 overexpression transgenic plants. This study expands the diversity of UDP-glucosyltransferases in plants and offers a potential strategy for the sustainable production of bioactive compounds with therapeutic potential.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xinquan Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junyu Luo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ruidan Dong
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Panhong Dai
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Liru Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aishuang Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoyong Fu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Baoquan Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lei Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 572024, China
| |
Collapse
|
17
|
Wang X, Lin C. The two action mechanisms of plant cryptochromes. TRENDS IN PLANT SCIENCE 2025:S1360-1385(24)00337-6. [PMID: 39875298 DOI: 10.1016/j.tplants.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025]
Abstract
Plant cryptochromes (CRYs) are photolyase-like blue-light receptors that contain a flavin adenine dinucleotide (FAD) chromophore. In plants grown in darkness, CRYs are present as monomers. Photoexcited CRYs oligomerize to form homo-tetramers. CRYs physically interact with non-constitutive or constitutive CRY-interacting proteins to form the non-constitutive or constitutive CRY complexes, respectively. The non-constitutive CRY complexes exhibit a different affinity for CRYs in response to light, and act by a light-induced fit (lock-and-key) mechanism. The constitutive CRY complexes have a similar affinity for CRYs regardless of light, and act via a light-induced liquid-liquid phase separation (LLPS) mechanism. These CRY complexes mediate blue-light regulation of transcription, mRNA methylation, mRNA splicing, protein modification, and proteolysis to modulate plant growth and development.
Collapse
Affiliation(s)
- Xu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261325, China
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Qu G, Lin C. Plant physiology: Rethinking CRY photoreceptors. Curr Biol 2025; 35:R65-R66. [PMID: 39837272 DOI: 10.1016/j.cub.2024.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The CRY2 photoreceptor is known to form homotetramers that bind to transcription regulators to affect gene expression in response to light. A new study provides evidence that the CRY2 monomer binds different transcription regulators to affect gene expression in darkness, suggesting that photoreceptors change activity in response to light.
Collapse
Affiliation(s)
- Gaoping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Zhu M, Du BY, Tan YQ, Yang Y, Zhang Y, Wang YF. CPK1 activates CNGCs through phosphorylation for Ca 2+ signaling to promote root hair growth in Arabidopsis. Nat Commun 2025; 16:676. [PMID: 39809784 PMCID: PMC11733299 DOI: 10.1038/s41467-025-56008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca2+ to establish and maintain a sharp cytosolic Ca2+ gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth. The loss-of-function mutants cpk1-1, cpk1-2, cngc5-1 cngc6-2 cngc9-1 (shrh1/short root hair 1), and cpk1 shrh1 show similar RH phenotypes, including shorter RHs, more RH branching, and dramatically attenuated cytosolic Ca2+ gradients at RH tips. The main CPK1-target sites are identified as Ser20, Ser27, and Ser26 for CNGC5/6/9, respectively, and the corresponding alanine substitution mutants fail to rescue RH growth in shrh1 and cpk1-1, while phospho-mimic versions restore the cytosolic Ca2+ gradient at RH apex and rescue the RH phenotypes in the same Arabidopsis mutants. Thus we discover the CPK1-CNGC modules essential for the Ca2+ signaling regulation and RH growth in Arabidopsis.
Collapse
Affiliation(s)
- Meijun Zhu
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo-Ya Du
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan-Qiu Tan
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Yang Yang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Zhang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong-Fei Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
20
|
Li S, Yang Y, Zhou Z, Zhou X, Lei D, He R, Zhang Y, Zhang J, Lin Y, Wang Y, Li M, He W, Chen Q, Luo Y, Wang X, Tang H, Zhang Y. PbMYB5 transcription factor plays a role in regulating anthocyanin biosynthesis in pear ( Pyrus bretschneideri Rehd) skin. FRONTIERS IN PLANT SCIENCE 2025; 15:1492384. [PMID: 39877736 PMCID: PMC11772430 DOI: 10.3389/fpls.2024.1492384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
The phenylacetone pathway, which encompasses flavonoids, lignin, and other compounds, is of paramount importance in determining the quality of pear fruit. Nevertheless, the precise regulatory functions of R2R3-MYB transcription factors in the metabolic pathways that regulate pear color changes remain unclear. In this study, we isolated an R2R3-PbMYB5(PbMYB5) transcription factor from 'Red Zaosu' pears and demonstrated that it influenced the expression of several genes, including PbCAD1, PbF5H, PbLAR, PbANR, and PbUFGT. The overexpression of PbMYB5 resulted in a notable elevation in anthocyanin concentration within the pear epidermis. Further research has shown that PbMYB5 is able to bind to PbANS and also has interactions with PbbHLH3 and PbbHLH33.We proposed that PbMYB5 forms a complex with PbbHLH3, PbbHLH33, and PbWD40 to activate PbANS and promote anthocyanin accumulation. This study offers new insights into the regulation of various metabolic pathways that impact fruit coloration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Zeng D, Lv J, Li X, Liu H. The Arabidopsis blue-light photoreceptor CRY2 is active in darkness to inhibit root growth. Cell 2025; 188:60-76.e20. [PMID: 39549699 DOI: 10.1016/j.cell.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Cryptochromes (CRYs) are blue-light receptors that regulate diverse aspects of plant growth. However, whether and how non-photoexcited CRYs function in darkness or non-blue-light conditions is unknown. Here, we show that CRY2 affects the Arabidopsis transcriptome even in darkness, revealing a non-canonical function. CRY2 suppresses cell division in the root apical meristem to downregulate root elongation in darkness. Blue-light oligomerizes CRY2 to de-repress root elongation. CRY2 physically interacts with FORKED-LIKE 1 (FL1) and FL3, and these interactions are inhibited by blue light, with only monomeric but not dimeric CRY2 able to interact. FL1 and FL3 associate with the chromatin of cell division genes to facilitate their transcription. This pro-growth activity is inhibited by CRY2's physical interaction with FLs in darkness. Plants have evolved to perceive both blue-light and dark cues to coordinate activation and repression of competing developmental processes in above- and below-ground organs through economical and dichotomous use of ancient light receptors.
Collapse
Affiliation(s)
- Desheng Zeng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Junqing Lv
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xu Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Hongtao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| |
Collapse
|
22
|
Zeng J, Huang X, Yang Y, Wang J, Shi Y, Li H, Hu N, Yu B, Mu J. Near-Infrared Optogenetic Nanosystem for Spatiotemporal Control of CRISPR-Cas9 Gene Editing and Synergistic Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:701-710. [PMID: 39680881 DOI: 10.1021/acsami.4c18656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Controlling CRISPR/Cas9 gene editing at the spatiotemporal resolution level, especially for in vivo applications, remains a great challenge. Here, we developed a near-infrared (NIR) light-activated nanophotonic system (UCPP) for controlled CRISPR-Cas9 gene editing and synergistic photodynamic therapy (PDT). Lanthanide-doped upconversion nanoparticles are not only employed as carriers for intracellular plasmid delivery but also serve as the nanotransducers to convert NIR light (980 nm) into visible light with emission at 460 and 650 nm, which could result in simultaneous activation of gene editing and PDT processes, respectively. Such unique design not only achieves light-controlled precise gene editing of hypoxia-inducible factor 1α with minimal off-target effect, which effectively ameliorates the hypoxic state at tumor sites, but also facilitates the deep-seated PDT process with synergistic antitumor effect. This optogenetically activatable CRISPR-Cas9 nanosystem holds great potential for spatially controlled in vivo gene editing and targeted cancer therapy.
Collapse
Affiliation(s)
- Junyi Zeng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xinbo Huang
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- DEYUE Skin Dermatology Clinic, Shenzhen 518036, China
| | - Yajie Yang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jieyi Wang
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Yuanchao Shi
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
23
|
Hao Y, Zeng Z, Yuan M, Li H, Guo S, Yang Y, Jiang S, Hawara E, Li J, Zhang P, Wang J, Xin X, Ma W, Liu H. The blue-light receptor CRY1 serves as a switch to balance photosynthesis and plant defense. Cell Host Microbe 2025; 33:137-150.e6. [PMID: 39731915 DOI: 10.1016/j.chom.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Plant stomata open in response to blue light, allowing gas exchange and water transpiration. However, open stomata are potential entry points for pathogens. Whether plants can sense pathogens and mount defense responses upon stomatal opening and how blue-light cues are integrated to balance growth-defense trade-offs are poorly characterized. We show that the Arabidopsis blue-light photoreceptor CRYPTOCHROME 1 (CRY1) mediates various aspects of immunity, including pathogen-triggered stomatal closure as well as activation of plant immunity through a typical light-responsive protein LATE UPREGULATED IN RESPONSE TO HYALOPERONOSPORA PARASITICA (LURP1). LURP1 undergoes N-terminal palmitoylation in the presence of bacterial flagellin, prompting a change in subcellular localization from the cytoplasm to plasma membrane, where it enhances the activity of the receptor FLAGELLIN SENSING 2 (FLS2) to mediate plant defense. Collectively, these findings reveal that blue light regulates stomatal defense and highlight the dual functions of CRY1 in photosynthesis and immunity.
Collapse
Affiliation(s)
- Yuhan Hao
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Zexian Zeng
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Minhang Yuan
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Hui Li
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Shisong Guo
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yu Yang
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Shushu Jiang
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Eva Hawara
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jianxu Li
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, CAS, Shanghai 201602, China
| | - Peng Zhang
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Jiawei Wang
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Xiufang Xin
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| | - Hongtao Liu
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China.
| |
Collapse
|
24
|
Liu Y, Ye R, Gao X, Lin R, Li Y. Intermittent Supplementation with Far-Red Light Accelerates Leaf and Bud Development and Increases Yield in Lettuce. PLANTS (BASEL, SWITZERLAND) 2025; 14:139. [PMID: 39795398 PMCID: PMC11723179 DOI: 10.3390/plants14010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Supplementation with far-red light in controlled environment agriculture production can enhance yield by triggering the shade avoidance syndrome. However, the effectiveness of this yield enhancement can be further improved through intermittent far-red light supplementation. In this study, the effects are explored of varying far-red light photon intensities and intermittent exposure durations-specifically at 5, 15, 30, and 45 min intervals-on the growth and development of lettuce (Lactuca sativa) in plant factories, while maintaining a constant red light photon flux and daily light integral. The results showed that compared to constant far-red light, 30 min intermittent far-red light increased yield by 11.7% and the number of leaves and buds by 2.66. Furthermore, the various metrics demonstrated that intermittent far-red light supplementation enhanced the overall effectiveness of the far-red light treatment. This was validated by analyzing phytohormone content and the expression of genes related to hormone metabolism and transport at the tip of the lettuce stems. Transcriptome analysis revealed that the differences in gene expression between treatments were primarily concentrated in genes related to signaling, hormone metabolism, and transport. Weighted Gene Co-expression Network Analysis identified the co-expression modules associated with yield and quality. Additionally, dynamic expression analysis showed genes involved to far-red photoreception, response, and hormone metabolism and transport exhibited optimal rhythmic responses only under 30 min intermittent far-red light supplementation. This suggests that intermittent far-red light irradiation at 30 min intervals is the most effective for activating far-red light signaling influencing hormone metabolism and transport, thereby accelerating the growth of lettuce leaves and buds and ultimately increasing yield.
Collapse
Affiliation(s)
- Yanke Liu
- Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (R.Y.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ye
- Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (R.Y.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Gao
- Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (R.Y.); (X.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yang Li
- Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.L.); (R.Y.); (X.G.)
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
25
|
McQuillen R, Perez AJ, Yang X, Bohrer CH, Smith EL, Chareyre S, Tsui HCT, Bruce KE, Hla YM, McCausland JW, Winkler ME, Goley ED, Ramamurthi KS, Xiao J. Light-dependent modulation of protein localization and function in living bacteria cells. Nat Commun 2024; 15:10746. [PMID: 39737933 PMCID: PMC11685620 DOI: 10.1038/s41467-024-54974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. We further show that CRY2-CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system. Finally, we test this optogenetic system in three additional bacterial species, Bacillus subtilis, Caulobacter crescentus, and Streptococcus pneumoniae, providing important considerations for this system's applicability in bacterial cell biology.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amilcar J Perez
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher H Bohrer
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erika L Smith
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Yin Mon Hla
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Joshua W McCausland
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, USA
| | - Erin D Goley
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Wang J, Li Y, Hu Y, Zhu S. Jasmonate induces translation of the Arabidopsis transfer RNA-binding protein YUELAO1, which activates MYC2 in jasmonate signaling. THE PLANT CELL 2024; 37:koae294. [PMID: 39489485 DOI: 10.1093/plcell/koae294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Jasmonate is ubiquitous in the plant kingdom and regulates multiple physiological processes. Although jasmonate signaling has been thoroughly investigated in Arabidopsis thaliana, most studies have focused on the transcriptional mechanisms underlying various jasmonate responses. It remains unclear whether (and how) translation-related pathways help improve transcription efficiency to modulate jasmonate signaling, which may enable plants to respond to stressful conditions effectively. Here, we demonstrate that jasmonate induces translation of the transfer RNA (tRNA)-binding protein YUELAO 1 (YL1) via a specific region in its 3' untranslated region (3' UTR). YL1 and its homolog YL2 redundantly stimulate jasmonate responses such as anthocyanin accumulation and root growth inhibition, with the YL1 3' UTR being critical for YL1-promoted jasmonate responses. Once translated, YL1 acts as an activator of the MYC2 transcription factor through direct interaction, and disrupting YL1 3' UTR impairs the YL1-mediated transcriptional activation of MYC2. YL1 enhances jasmonate responses mainly in a MYC2-dependent manner. Together, these findings reveal a translational mechanism involved in jasmonate signaling and advance our understanding of the transcriptional regulation of jasmonate signaling. The YL1 3' UTR acts as a crucial signal transducer that integrates translational and transcriptional regulation, allowing plants to respond to jasmonate in a timely fashion.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yanru Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| |
Collapse
|
27
|
Li Y, Zhu S. Polar localization and local translation of RHO-RELATED PROTEIN FROM PLANTS2 mRNAs promote root hair growth in Arabidopsis. THE PLANT CELL 2024; 37:koae333. [PMID: 39692591 DOI: 10.1093/plcell/koae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
Root hairs are tip-growing cells that anchor plants in the soil and are critical for water uptake, nutrient acquisition, and plant-environment interactions. While the molecular mechanisms that maintain the polar growth of root hairs through the asymmetric distribution of proteins, such as RHO-RELATED PROTEIN FROM PLANTS 2 (ROP2), have been described, it is unclear whether and how the transcripts encoding these tip-localized proteins are polarly localized and locally translated. Here, we demonstrated that ROP2 mRNA exhibits polar localization in Arabidopsis (Arabidopsis thaliana) root hairs. We showed that region VI (250-350 bp downstream of the stop codon) of the ROP2 3' untranslated region (UTR) is necessary for proper mRNA localization. Moreover, region VI-mediated ROP2 mRNA polar localization was required for local translation of ROP2 transcripts, contributing to the proper subcellular localization of ROP2. Region III (100-200 bp downstream of the stop codon) influenced the local translation of ROP2 mRNA. Phenotypic investigations demonstrated that both regions III and VI of the ROP2 3' UTR play crucial roles in modulating root hair growth. These findings help explain the local protein biosynthesis of ROP2, advancing our understanding of the regulatory mechanism and genetic basis of mRNA localization and local translation in plants.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| |
Collapse
|
28
|
Song G, Montes C, Olatunji D, Malik S, Ji C, Clark NM, Pu Y, Kelley DR, Walley JW. Quantitative proteomics reveals extensive lysine ubiquitination and transcription factor stability states in Arabidopsis. THE PLANT CELL 2024; 37:koae310. [PMID: 39570863 DOI: 10.1093/plcell/koae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024]
Abstract
Protein activity, abundance, and stability can be regulated by post-translational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function; yet, we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich ubiquitinated peptides coupled with isobaric labeling to enable quantification of up to 18-multiplexed samples. This approach identified 17,940 ubiquitinated lysine sites arising from 6,453 proteins from Arabidopsis (Arabidopsis thaliana) primary roots, seedlings, and rosette leaves. Gene ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and metabolism. We determined ubiquitinated lysine residues that directly regulate the stability of three transcription factors, CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 (CIB1), CIB1 LIKE PROTEIN 2 (CIL2), and SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) using in vivo degradation assays. Furthermore, codon mutation of CIB1 to create a K166R conversion to prevent ubiquitination, via CRISPR/Cas9-derived adenosine base editing, led to an early flowering phenotype and increased expression of FLOWERING LOCUS T (FT). These comprehensive site-level ubiquitinome profiles provide a wealth of data for future functional studies related to modulation of biological processes mediated by this post-translational modification in plants.
Collapse
Affiliation(s)
- Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Damilola Olatunji
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Shikha Malik
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Chonghui Ji
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Natalie M Clark
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Yunting Pu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
29
|
Zhou Z, Wang YQ, Zheng XN, Zhang XH, Ji LY, Han JY, Zuo ZC, Mo WL, Zhang L. Optimizing ABA-based chemically induced proximity for enhanced intracellular transcriptional activation and modification response to ABA. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2650-2663. [PMID: 39172347 DOI: 10.1007/s11427-024-2707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Abscisic acid (ABA)-based chemically induced proximity (CIP) is primarily mediated by the interaction of the ABA receptor pyrabactin resistance 1-like 1 (PYL1) and the 2C-type protein phosphatase ABI1, which confers ABA-induced proximity to their fusion proteins, and offers precise temporal control of a wide array of biological processes. However, broad application of ABA-based CIP has been limited by ABA response intensity. In this study, we demonstrated that ABA-induced interaction between another ABA receptor pyrabactin resistance 1 (PYR1) and ABI1 exhibited higher ABA response intensity than that between PYL1 and ABI1 in HEK293T cells. We engineered PYR1-ABI1 and PYL1-ABI1 into ABA-induced transcriptional activation tools in mammalian cells by integration with CRISPR/dCas9 and found that the tool based on PYR1-ABI1 demonstrated better ABA response intensity than that based on PYL1-ABI1 for both exogenous and endogenous genes in mammalian cells. We further achieved ABA-induced RNA m6A modification installation and erasure by combining ABA-induced PYR1-ABI1 interaction with CRISPR/dCas13, successfully inhibiting tumor cell proliferation. We subsequently improved the interaction of PYR1-ABI1 through phage-assisted continuous evolution (PACE), successfully generating a PYR1 mutant (PYR1m) whose interaction with ABI1 exhibited a higher ABA response intensity than that of the wild-type. In addition, we tested the transcriptional activation tool based on PYRm-ABI1 and found that it also showed a higher ABA response intensity than that of the wild type. These results demonstrate that we have developed a novel ABA-based CIP and further improved upon it using PACE, providing a new approach for the modification of other CIP systems.
Collapse
Affiliation(s)
- Zeng Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue-Qi Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xu-Nan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiao-Hong Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu-Yao Ji
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun-You Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ze-Cheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Wei-Liang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
30
|
Jiang B. Light-induced cryptochrome 2 liquid-liquid phase separation and mRNA methylation. THE NEW PHYTOLOGIST 2024; 244:2163-2169. [PMID: 39434460 DOI: 10.1111/nph.20201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Light is essential not only for photosynthesis but also for the regulation of various physiological and developmental processes in plants. While the mechanisms by which light regulates transcription and protein stability are well established, the effects of light on RNA methylation and their subsequent impact on plant growth and development are less understood. Upon exposure to blue light, the photoreceptor cryptochromes form nuclear speckles or nuclear bodies, termed CRY photobodies. The CRY2 photobodies undergo light-induced homo-oligomerization and liquid-liquid phase separation (LLPS), which are crucial for their physiological activity. Recent studies have proposed that blue light-induced CRY2 LLPS increases the local concentration or directly enhances the biochemical activities of RNA N6-methyladenosine (m6A) methyltransferases, thus, to regulate circadian clock and maintain Chl homeostasis through processes of RNA decay or translation. This review aimed to elucidate the functions of CRY2 and LLPS in RNA methylation, focusing on the light-controlled reversible phase transitions regulon and the outstanding questions that remain in RNA methylation.
Collapse
Affiliation(s)
- Bochen Jiang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Sycamore Research Institute of Life Sciences, Shanghai, 201203, China
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
31
|
Lee SJ, Kim Y, Kang K, Yoon H, Kang J, Cho SH, Paek NC. Rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE interacts with OsCRY2 and promotes flowering by upregulating Early heading date 1. PLANT, CELL & ENVIRONMENT 2024; 47:4498-4515. [PMID: 39012205 DOI: 10.1111/pce.15046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Flowering time is a crucial adaptive response to seasonal variation in plants and is regulated by environmental cues such as photoperiod and temperature. In this study, we demonstrated the regulatory function of rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE (OsCIBL1) in flowering time. Overexpression of OsCIB1L promoted flowering, whereas the oscib1l knockout mutation did not alter flowering time independent of photoperiodic conditions. Cryptochromes (CRYs) are blue light photoreceptors that enable plants to sense photoperiodic changes. OsCIBL1 interacted with OsCRY2, a member of the rice CRY family (OsCRY1a, OsCRY1b, and OsCRY2), and bound to the Early heading date 1 (Ehd1) promoter, activating the rice-specific Ehd1-Heading date 3a/RICE FLOWERING LOCUS T 1 pathway for flowering induction. Dual-luciferase reporter assays showed that the OsCIBL1-OsCRY2 complex required blue light to induce Ehd1 transcription. Natural alleles resulting from nonsynonymous single nucleotide polymorphisms in OsCIB1L and OsCRY2 may contribute to the adaptive expansion of rice cultivation areas. These results expand our understanding of the molecular mechanisms controlling rice flowering and highlight the importance of blue light-responsive genes in the geographic distribution of rice.
Collapse
Affiliation(s)
- Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yunjeong Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Hyeryung Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinku Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Huang ZD, Bugaj LJ. Optogenetic Control of Condensates: Principles and Applications. J Mol Biol 2024; 436:168835. [PMID: 39454749 DOI: 10.1016/j.jmb.2024.168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
Collapse
Affiliation(s)
- Zikang Dennis Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Yang S, Jin S, Zhang M, Chen Y, Guo Y, Hu Y, Wolynes PG, Xiao H. Real-Time Visualization of Protein Microenvironment Changes with High Spatial Resolution in Live Cells via Site-Specific Incorporation of Rotor-Based Fluorescent Noncanonical Amino Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619218. [PMID: 39484402 PMCID: PMC11526926 DOI: 10.1101/2024.10.19.619218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Traditional methods, such as the use of fluorescent protein fusions and environment-sensitive fluorophores, have limitations when studying protein microenvironment changes at the finest spatial resolution. These techniques often rely on bulky proteins or tags restricted to the N- or C-terminus, which can disrupt the natural behavior of the target protein and dramatically limit the ability of their method to investigate noninvasively microenvironment effects. To overcome these challenges, we have developed an innovative strategy to visualize microenvironment changes of protein substructures in real-time by genetically incorporating environment-sensitive noncanonical amino acids (ncAAs) containing rotor-based fluorophores (RBFs) at specific positions within a protein of interest. Through computational redesign of aminoacyl-tRNA synthetase, we successfully incorporated these rotor-based ncAAs into various proteins in mammalian cells. By site-specifically placing these ncAAs in distinct regions of proteins, we detected microenvironmental changes of several different protein domains during events such as aggregation, clustering, aggregation disassembly, and cluster dissociation.
Collapse
|
34
|
Zeng MY, Zhu PK, Tang Y, Lin YH, He TY, Rong JD, Zheng YS, Chen LY. Genome-Wide Identification and Role of the bHLH Gene Family in Dendrocalamus latiflorus Flowering Regulation. Int J Mol Sci 2024; 25:10837. [PMID: 39409164 PMCID: PMC11477406 DOI: 10.3390/ijms251910837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The basic helix-loop-helix (bHLH) gene family is a crucial regulator in plants, orchestrating various developmental processes, particularly flower formation, and mediating responses to hormonal signals. The molecular mechanism of bamboo flowering regulation remains unresolved, limiting bamboo breeding efforts. In this study, we identified 309 bHLH genes and divided them into 23 subfamilies. Structural analysis revealed that proteins in specific DlbHLH subfamilies are highly conserved. Collinearity analysis indicates that the amplification of the DlbHLH gene family primarily occurs through segmental duplications. The structural diversity of these duplicated genes may account for their functional variability. Many DlbHLHs are expressed during flower development, indicating the bHLH gene's significant role in this process. In the promoter region of DlbHLHs, different homeopathic elements involved in light response and hormone response co-exist, indicating that DlbHLHs are related to the regulation of the flower development of D. latiflorus.
Collapse
Affiliation(s)
- Mei-Yin Zeng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng-Kai Zhu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Han Lin
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tian-You He
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Dong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Shan Zheng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling-Yan Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
35
|
Chen J, Zhong Y, Zou P, Ni J, Liu Y, Dai S, Zhou R. Identification of Genomic Regions Associated with Differences in Flowering Time and Inflorescence Architecture between Melastoma candidum and M. normale. Int J Mol Sci 2024; 25:10250. [PMID: 39408579 PMCID: PMC11477356 DOI: 10.3390/ijms251910250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Understanding the genetic basis of species differences in flowering time and inflorescence architecture can shed light on speciation and molecular breeding. Melastoma shows rapid speciation, with about 100 species formed in the past few million years, and, meanwhile, possesses high ornamental values. Two largely sympatric and closely related species of this genus, M. candidum and M. normale, differ markedly in flowering time and flower number per inflorescence. Here, we constructed an F2 population between M. candidum and M. normale, and used extreme bulks for flowering time and flower number per inflorescence in this population to identify genomic regions underlying the two traits. We found high differentiation on nearly the whole chromosome 7 plus a few regions on other chromosomes between the two extreme bulks for flowering time. Large chromosomal inversions on chromosome 7 between the two species, which contain flowering-related genes, can explain recombinational suppression on the chromosome. We identified 1872 genes with one or more highly differentiated SNPs between the two bulks for flowering time, including CSTF77, FY, SPA3, CDF3, AGL8, AGL15, FHY1, COL9, CIB1, FKF1 and FAR1, known to be related to flowering. We also identified 680 genes with one or more highly differentiated SNPs between the two bulks for flower number per inflorescence, including PNF, FIL and LAS, knows to play important roles in inflorescence development. These large inversions on chromosome 7 prevent us from narrowing down the genomic region(s) associated with flowering time differences between the two species. Flower number per inflorescence in Melastoma appears to be controlled by multiple genes, without any gene of major effect. Our study indicates that large chromosomal inversions can hamper the identification of the genetic basis of important traits, and the inflorescence architecture of Melastoma species may have a complex genetic basis.
Collapse
Affiliation(s)
- Jingfang Chen
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| | - Yan Zhong
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peishan Zou
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Jianzhong Ni
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Ying Liu
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Seping Dai
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Renchao Zhou
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| |
Collapse
|
36
|
Chen L, Liu M, Li Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Arabidopsis cryptochromes interact with SOG1 to promote the repair of DNA double-strand breaks. Biochem Biophys Res Commun 2024; 724:150233. [PMID: 38865814 DOI: 10.1016/j.bbrc.2024.150233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
37
|
Chen L, Cao X, Li Y, Liu M, Liu Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Photoexcited Cryptochrome 1 Interacts With SPCHLESS to Regulate Stomatal Development in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253954 DOI: 10.1111/pce.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Stomata are epidermal openings that facilitate plant-atmosphere gas and water exchange during photosynthesis, respiration and water evaporation. SPEECHLESS (SPCH) is a master basic helix-loop-helix (bHLH) transcription factor that determines the initiation of stomatal development. It is known that blue light promotes stomatal development through the blue light photoreceptor cryptochromes (CRYs, CRY1 and CRY2). Whether CRYs regulate stomatal development through directly modulating SPCH is unknown. Here, we demonstrate by biochemical studies that CRY1 physically interacts with SPCH in a blue light-dependent manner. Genetic studies show that SPCH acts downstream of CRY1 to promote stomatal development in blue light. Furthermore, we show that CRY1 enhances the DNA-binding activity of SPCH and promotes the expression of its target genes in blue light. These results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH, which is likely mediated by blue light-induced CRY1-SPCH interaction. The precise regulation of SPCH DNA-binding activity by CRY1 may allow plants to optimize stomatal density and pattern according to ambient light conditions.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
38
|
Song P, Yang Z, Wang H, Wan F, Kang D, Zheng W, Gong Z, Li J. Regulation of cryptochrome-mediated blue light signaling by the ABI4-PIF4 module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185941 DOI: 10.1111/jipb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4-PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.
Collapse
Affiliation(s)
- Pengyu Song
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zidan Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644000, China
| | - Huaichang Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Wan
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhizhong Gong
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
39
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
40
|
Chen L, Ruan J, Li Y, Liu M, Liu Y, Guan Y, Mao Z, Wang W, Yang HQ, Guo T. ADA2b acts to positively regulate blue light-mediated photomorphogenesis in Arabidopsis. Biochem Biophys Res Commun 2024; 717:150050. [PMID: 38718571 DOI: 10.1016/j.bbrc.2024.150050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
41
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-on protein switches for controlling actin binding in cells. Nat Commun 2024; 15:5840. [PMID: 38992021 PMCID: PMC11239668 DOI: 10.1038/s41467-024-49934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
42
|
Zhang C, Tang H, Li T, Wu H, Gu Y, Zhang J, Zhang Z, Zhao L, Li Y, Gu L, Zhang H. Integrating Physiological Features and Proteomic Analyses Provides New Insights in Blue/Red Light-Treated Moso Bamboo ( Phyllostachys edulis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12859-12870. [PMID: 38780458 DOI: 10.1021/acs.jafc.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Bamboo is one of the most important nontimber forestry products in the world. Light is not only the most critical source of energy for plant photosynthesis but also involved in regulating the biological processes of plants. However, there are few reports on how blue/red light affects Moso bamboo. This study investigated the growth status and physiological responses of Moso bamboo (Phyllostachys edulis) to blue/red light treatments. The growth status of the bamboo plants was evaluated, revealing that both blue- and red-light treatments promoted plant height and overall growth. Gas exchange parameters, chlorophyll fluorescence, and enzyme activity were measured to assess the photosystem response of Moso bamboo to light treatments. Additionally, the blue light treatment led to a higher chlorophyll content and enzyme activities compared to the red light treatment. A tandem mass tag quantitative proteomics approach identified significant changes in protein abundance under different light conditions with specific response proteins associated with distinct pathways, such as photosynthesis and starch metabolism. Overall, this study provides valuable insights into the physiological and proteomic responses of Moso bamboo to blue/red light treatments, highlighting their potential impact on growth and development.
Collapse
Affiliation(s)
- Chuanyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haohao Tang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tuhe Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongwei Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Gu
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Zhang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangzhen Zhao
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxing Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
43
|
Qiu T, Kong Y, Wei G, Sun K, Wang R, Wang Y, Chen Y, Wang W, Zhang Y, Jiang C, Yang P, Xie T, Chen X. CCDC6-RET fusion protein regulates Ras/MAPK signaling through the fusion- GRB2-SHC1 signal niche. Proc Natl Acad Sci U S A 2024; 121:e2322359121. [PMID: 38805286 PMCID: PMC11161787 DOI: 10.1073/pnas.2322359121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Rearranged during transfection (RET) rearrangement oncoprotein-mediated Ras/MAPK signaling cascade is constitutively activated in cancers. Here, we demonstrate a unique signal niche. The niche is a ternary complex based on the chimeric RET liquid-liquid phase separation. The complex comprises the rearranged kinase (RET fusion); the adaptor (GRB2), and the effector (SHC1). Together, they orchestrate the Ras/MAPK signal cascade, which is dependent on tyrosine kinase. CCDC6-RET fusion undergoes LLPS requiring its kinase domain and its fusion partner. The CCDC6-RET fusion LLPS promotes the autophosphorylation of RET fusion, with enhanced kinase activity, which is necessary for the formation of the signaling niche. Within the signal niche, the interactions among the constituent components are reinforced, and the signal transduction efficiency is amplified. The specific RET fusion-related signal niche elucidates the mechanism of the constitutive activation of the Ras/MAPK signaling pathway. Beyond just focusing on RET fusion itself, exploration of the ternary complex potentially unveils a promising avenue for devising therapeutic strategies aimed at treating RET fusion-driven diseases.
Collapse
Affiliation(s)
- Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yang Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yiji Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yun Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| |
Collapse
|
44
|
Song Y, Zhao Z, Xu L, Huang P, Gao J, Li J, Wang X, Zhou Y, Wang J, Zhao W, Wang L, Zheng C, Gao B, Jiang L, Liu K, Guo Y, Yao X, Duan L. Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum. Dev Cell 2024; 59:1396-1409.e5. [PMID: 38569547 DOI: 10.1016/j.devcel.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Linyu Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jingxuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Xuejie Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Jinhui Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR 999077, China
| | - Bo Gao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yusong Guo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China.
| |
Collapse
|
45
|
Chen X, Fan Y, Guo Y, Li S, Zhang B, Li H, Liu LJ. Blue light photoreceptor cryptochrome 1 promotes wood formation and anthocyanin biosynthesis in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:2044-2057. [PMID: 38392920 DOI: 10.1111/pce.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.
Collapse
Affiliation(s)
- Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Yiting Fan
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyi Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Bo Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Hao Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
46
|
Qu GP, Jiang B, Lin C. The dual-action mechanism of Arabidopsis cryptochromes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:883-896. [PMID: 37902426 DOI: 10.1111/jipb.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the "Lock-and-Key" and the "Liquid-Liquid Phase Separation (LLPS)" mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.
Collapse
Affiliation(s)
- Gao-Ping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
47
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
48
|
Huq E, Lin C, Quail PH. Light signaling in plants-a selective history. PLANT PHYSIOLOGY 2024; 195:213-231. [PMID: 38431282 PMCID: PMC11060691 DOI: 10.1093/plphys/kiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.
Collapse
Affiliation(s)
- Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
49
|
Brown CN, Bayer KU. Studying CaMKII: Tools and standards. Cell Rep 2024; 43:113982. [PMID: 38517893 PMCID: PMC11088445 DOI: 10.1016/j.celrep.2024.113982] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a ubiquitous mediator of cellular Ca2+ signals with both enzymatic and structural functions. Here, we briefly introduce the complex regulation of CaMKII and then provide a comprehensive overview of the expanding toolbox to study CaMKII. Beyond a variety of distinct mutants, these tools now include optical methods for measurement and manipulation, with the latter including light-induced inhibition, stimulation, and sequestration. Perhaps most importantly, there are now three mechanistically distinct classes of specific CaMKII inhibitors, and their combined use enables the interrogation of CaMKII functions in a manner that is powerful and sophisticated yet also accessible. This review aims to provide guidelines for the interpretation of the results obtained with these tools, with careful consideration of their direct and indirect effects.
Collapse
Affiliation(s)
- Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karl Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|