1
|
Ashurbekova K, Alonso-Lerma B, Ashurbekova K, Muriqi A, Barandiaran L, Janković IŠ, Modin E, Santos JI, Perez-Jimenez R, Petravić M, Nolan M, Knez M. Growing Hybrid Cuticles: Metallochitins as an Emerging Family of Bioactive Mimics of Chitin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10118-10128. [PMID: 39885658 DOI: 10.1021/acsami.4c19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Inspired by the properties of natural chitin, the present work provides the first solid foundation for growing conformal ultrathin antibacterial films of organic chitin through a solvent-free molecular layer deposition (MLD) process. This work establishes the initial groundwork for growing biomimetic hybrid cuticles by combining sugar-type molecules with vapor-phase metal-organic precursors, which we term metallochitins or, more generally, metallosaccharides. The MLD process, featuring mild temperatures and solvent-free conditions, provides exceptional conformality and thickness precision, ensuring highly conformal coatings on diverse high aspect ratio substrates. In vitro testing confirmed that the MLD-grown metallochitins not only promote the growth of various cell lines but also prevent adhesion of both Gram-negative and Gram-positive bacteria. The choice of the metal in the hybrid enables selective antimicrobial activity against Gram-negative bacteria or comprehensive antibacterial effects, which can be controlled as desired.
Collapse
Affiliation(s)
| | | | | | - Arbresha Muriqi
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | | | - Iva Šarić Janković
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka 51000, Croatia
| | - Evgeny Modin
- CIC nanoGUNE, Donostia-San Sebastián 20018, Spain
| | - José I Santos
- NMR Facility, SGIker, University of the Basque Country (UPV/EHU), Avenida Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Raul Perez-Jimenez
- IKERBASQUE Basque Foundation for Science, Bilbao 48009, Spain
- CIC bioGUNE, Bizkaia Science and Technology Park, Derio 48160, Spain
| | - Mladen Petravić
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka 51000, Croatia
| | - Michael Nolan
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | - Mato Knez
- CIC nanoGUNE, Donostia-San Sebastián 20018, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
2
|
Abtahi S, Hendeniya N, Mahmud ST, Mogbojuri G, Iheme CL, Chang B. Metal-Coordinated Polymer-Inorganic Hybrids: Synthesis, Properties, and Application. Polymers (Basel) 2025; 17:136. [PMID: 39861209 PMCID: PMC11768156 DOI: 10.3390/polym17020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes. In contrast, heterogeneous methods are post-processing techniques that provide high area selectivity for inorganic precursors, allowing precise integration within polymer matrices. Finally, we highlight the role of hybrid linkers, namely metallosupramolecular polymers, in creating structural diversity. These can be organized into three main groups: metal-organic frameworks (MOFs), coordination polymers (CPs), and supramolecular coordination complexes (SCCs). Each of these groups introduces unique structural and functional properties that expand the potential applications of hybrid materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Boyce Chang
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Shang R, Deng Y, Bao W, Cai X, Cao L, Liu Y, Cong F, Zhang H, Wang X, Yan X, Xie J. Diffusion Behavior and Kinetics for the Vapor Phase Infiltration of Trimethylaluminum in Poly(ethylene oxide): An In Situ Quartz Crystal Microgravimetry Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64907-64915. [PMID: 39535500 DOI: 10.1021/acsami.4c16107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vapor phase infiltration (VPI) facilitates the incorporation of inorganic components into organic polymers, emerging as an effective technique for fabricating organic-inorganic hybrid materials. However, the complexity of diffusion behavior during the VPI process presents challenges in studying diffusion kinetics, particularly for highly reactive precursor-polymer systems such as trimethylaluminum (TMA) and poly(ethylene oxide) (PEO). In this study, we investigate the VPI process of TMA in PEO using in situ quartz crystal microgravimetry (QCM), which enables measurement of diffusion behavior and kinetics with high precision due to its high temporal resolution. Our results indicate that the VPI process consists of two main regions: a rapid diffusion process, corresponding to the initial penetration of the precursor into the film, followed by a slower relaxation process, attributed to the ongoing chemical reaction. The equivalent diffusion coefficient (De) was estimated to be on the order of 10-9 cm2/s and decreased with increasing aluminum content. Using energy application as a proof-of-concept, when optimized, VPI-modified PEO films were successfully utilized as solid polymer electrolytes (SPEs) for lithium metal batteries (LMBs), showcasing superior performance in mitigating lithium dendrite growth. This study offers valuable insights into the VPI process for PEO-TMA systems and provides guidance for optimizing VPI conditions to enhance the performance of advanced materials.
Collapse
Affiliation(s)
- Rongliang Shang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yingdong Deng
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Wenda Bao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xincan Cai
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Lei Cao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yixiao Liu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Fufei Cong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Haoye Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xingzhi Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao Yan
- Zhijiang College, Zhejiang University of Technology, Shaoxing, 312030, China
| | - Jin Xie
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
4
|
Yang T, Xue T, Mao J, Ekatan SR, Chen Y, Song Z, Cheng J, Lin Y. Synthesis and In Situ Thermal Induction of β-Sheet Nanocrystals in Spider Silk-Inspired Copolypeptides. J Am Chem Soc 2024; 146:31849-31859. [PMID: 39503397 DOI: 10.1021/jacs.4c10998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Spider silk, known for its exceptional tensile strength, extensibility, and toughness, continues to inspire advancements in polymer and materials science. Despite extensive research, synthesizing materials that encompass all these properties remains a significant challenge. This study addresses this challenge by developing high molecular-weight multiblock synthetic copolypeptides that mimic the hierarchical structure and mechanical properties of spider silk. Using autoaccelerated ring-opening polymerization of N-carboxyanhydrides, we synthesized copolypeptides featuring transformable β-sheet blocks. These blocks retain a helical structure during synthesis but transition into β-sheet nanocrystals in situ during solvent-free thermal mechanical processing. Compression molding was employed to induce hierarchical ordering within the copolypeptide films, resulting in a solid "liquid crystalline" structure that undergoes a temperature-induced α-to-β structural transformation. This transformation integrates β-sheet nanocrystals throughout the helical block matrix, significantly enhancing the material's mechanical performance. Our innovative synthesis and processing strategy, which involves alternating sequences of α-helical and β-sheet blocks with various β-sheet-forming NCAs, enables the customization of diverse mechanical characteristics. These advancements not only deepen our understanding of the fundamental design principles of spider silk but also pave the way for a new generation of high-performance, silk-inspired synthetic copolypeptides with broad application potential.
Collapse
Affiliation(s)
- Tianjian Yang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jianan Mao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Stephen R Ekatan
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ziyuan Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Jianjun Cheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yao Lin
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Tian R, Zhao Y, Fu Y, Yang S, Jiang L, Sui X. Sacrificial hydrogen bonds enhance the performance of covalently crosslinked composite films derived from soy protein isolate and dialdehyde starch. Food Chem 2024; 456:140055. [PMID: 38876072 DOI: 10.1016/j.foodchem.2024.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Soy protein films have the advantage of being eco-friendly and renewable, but their practical applications are hindered by the mechanical properties. The exceptional tensile strength and fracture toughness of natural silk stem from sacrificial hydrogen bonds it contains that effectively dissipates energy. In this study, we draw inspiration from silk's structural principles to create biodegradable films based on soy protein isolate (SPI). Notably, composite films containing sodium lignosulfonate (LS) demonstrate exceptional strain at break (up to 153%) due to the augmentation of reversible hydrogen bonding, contrasted to films with the addition of solely dialdehyde starch (DAS). The enhancement of tensile strength is realized through a combination of Schiff base cross-linking and sacrificial hydrogen bonding. Furthermore, the incorporation of LS markedly improves the films' ultraviolet (UV) blocking capabilities and hydrophobicity. This innovative design strategy holds great promise for advancing the production of eco-friendly SPI-based films that combine strength and toughness.
Collapse
Affiliation(s)
- Ran Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yidan Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuyuan Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
7
|
Brookstein O, Shimoni E, Eliaz D, Kaplan-Ashiri I, Carmel I, Shimanovich U. Metal ions guide the production of silkworm silk fibers. Nat Commun 2024; 15:6671. [PMID: 39107276 PMCID: PMC11303403 DOI: 10.1038/s41467-024-50879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Silk fibers' unique mechanical properties have made them desirable materials, yet their formation mechanism remains poorly understood. While ions are known to support silk fiber production, their exact role has thus far eluded discovery. Here, we use cryo-electron microscopy coupled with elemental analysis to elucidate the changes in the composition and spatial localization of metal ions during silk evolution inside the silk gland. During the initial protein secretion and storage stages, ions are homogeneously dispersed in the silk gland. Once the fibers are spun, the ions delocalize from the fibroin core to the sericin-coating layer, a process accompanied by protein chain alignment and increased feedstock viscosity. This change makes the protein more shear-sensitive and initiates the liquid-to-solid transition. Selective metal ion doping modifies silk fibers' mechanical performance. These findings enhance our understanding of the silk fiber formation mechanism, laying the foundations for developing new concepts in biomaterial design.
Collapse
Affiliation(s)
- Ori Brookstein
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Itay Carmel
- Department of Chemical and Structural Biology, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
8
|
Weisbord I, Barzilay M, Cai R, Welter E, Kuzmin A, Anspoks A, Segal-Peretz T. The Development and Atomic Structure of Zinc Oxide Crystals Grown within Polymers from Vapor Phase Precursors. ACS NANO 2024; 18:18393-18404. [PMID: 38956949 PMCID: PMC11256898 DOI: 10.1021/acsnano.4c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Sequential infiltration synthesis (SIS), also known as vapor phase infiltration (VPI), is a quickly expanding technique that allows growth of inorganic materials within polymers from vapor phase precursors. With an increasing materials library, which encompasses numerous organometallic precursors and polymer chemistries, and an expanding application space, the importance of understanding the mechanisms that govern SIS growth is ever increasing. In this work, we studied the growth of polycrystalline ZnO clusters and particles in three representative polymers: poly(methyl methacrylate), SU-8, and polymethacrolein using vapor phase diethyl zinc and water. Utilizing two atomic resolution methods, high-resolution scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy, we probed the evolution of ZnO nanocrystals size and crystallinity level inside the polymers with advancing cycles─from early nucleation and growth after a single cycle, through the formation of nanometric particles within the films, and to the coalescence of the particles upon polymer removal and thermal treatment. Through in situ Fourier transform infrared spectroscopy and microgravimetry, we highlight the important role of water molecules throughout the process and the polymers' hygroscopic level that leads to the observed differences in growth patterns between the polymers, in terms of particle size, dispersity, and the evolution of crystalline order. These insights expand our understanding of crystalline materials growth within polymers and enable rational design of hybrid materials and polymer-templated inorganic nanostructures.
Collapse
Affiliation(s)
- Inbal Weisbord
- Department
of Chemical Engineering, Technion −
Israel Institute of Technology, 3200003 Haifa, Israel
| | - Maya Barzilay
- Department
of Chemical Engineering, Technion −
Israel Institute of Technology, 3200003 Haifa, Israel
| | - Ruoke Cai
- Department
of Chemical Engineering, Technion −
Israel Institute of Technology, 3200003 Haifa, Israel
| | - Edmund Welter
- Deutsches
Elektronen-Synchrotron − A Research Centre of the Helmholtz
Association, Notkestrasse
85, D-22607 Hamburg, Germany
| | - Alexei Kuzmin
- Institute
of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Andris Anspoks
- Institute
of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Tamar Segal-Peretz
- Department
of Chemical Engineering, Technion −
Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
9
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
10
|
Shi CY, Qin WY, Qu DH. Semi-crystalline polymers with supramolecular synergistic interactions: from mechanical toughening to dynamic smart materials. Chem Sci 2024; 15:8295-8310. [PMID: 38846397 PMCID: PMC11151828 DOI: 10.1039/d4sc02089h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Semi-crystalline polymers (SCPs) with anisotropic amorphous and crystalline domains as the basic skeleton are ubiquitous from natural products to synthetic polymers. The combination of chemically incompatible hard and soft phases contributes to unique thermal and mechanical properties. The further introduction of supramolecular interactions as noncovalently interacting crystal phases and soft dynamic crosslinking sites can synergize with covalent polymer chains, thereby enabling effective energy dissipation and dynamic rearrangement in hierarchical superstructures. Therefore, this review will focus on the design principles of SCPs by discussing supramolecular construction strategies and state-of-the-art functional applications from mechanical toughening to sophisticated functions such as dynamic adaptivity, shape memory, ion transport, etc. Current challenges and further opportunities are discussed to provide an overview of possible future directions and potential material applications.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wen-Yu Qin
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
11
|
Zhang Z, Zheng L, Huang W, Cheng Q. Improving strength and toughness of graphene film through metal ion bridging. Proc Natl Acad Sci U S A 2024; 121:e2322663121. [PMID: 38768354 PMCID: PMC11145219 DOI: 10.1073/pnas.2322663121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The fangs, jaws, and mandibles of marine invertebrates such as Chiton and Glycera show excellent mechanical properties, which are mostly contributed to the interactions between metal (Fe, Cu, Zn, etc.) and oxygen-containing functional groups in proteins. Inspired by these load-bearing skeletal biomaterials, we improved tensile strength and toughness of graphene films through bridging graphene oxide (GO) nanosheets by metal ions. By optimizing the metal coordination form and density of cross-linking network. We revealed the relationship between mechanical properties and the unique spatial geometry of the GO nanosheets bridged by different valence metal ions. The results demonstrated that the divalent metal ions form tetrahedral geometry with carboxylate groups on the edges of the GO nanosheets, and the bond energy is relatively low, which is helpful for improving the toughness of resultant graphene films. While the trivalent metal ions are easily to form octahedral geometry with the GO nanosheets with higher bond energy, which is better for enhancing the tensile strength of graphene films. After reduction, the reduced GO (rGO) film bridged by divalent metal ions shows 43% improvement in toughness, while the rGO film bridged by trivalent metal ions shows 64% improvement in tensile strength. Our work reveals the mechanism of metal coordination bond energy and spatial geometry to improve the mechanical properties of graphene films, which lays a theoretical foundation for improving the tensile strength and toughness of resultant graphene films, and provides an avenue for fabricating high-performance graphene films and other two-dimensional nanocomposites.
Collapse
Affiliation(s)
- Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Luping Zheng
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Weixin Huang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, People's Republic of China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, People's Republic of China
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
12
|
Shu F, Chen H, Zhang Z, Dun Z, Lv W, Sun W, Liu M. Shear Bond Strength to Enamel, Mechanical Properties and Cellular Studies of Fiber-Reinforced Composites Modified by Depositing SiO 2 Nanofilms on Quartz Fibers via Atomic Layer Deposition. Int J Nanomedicine 2024; 19:2113-2136. [PMID: 38476282 PMCID: PMC10929249 DOI: 10.2147/ijn.s446584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Poor interfacial bonding between the fibers and resin matrix in fiber-reinforced composites (FRCs) is a significant drawback of the composites. To enhance the mechanical properties of FRC, fibers were modified by depositing SiO2 nanofilms via the atomic layer deposition (ALD) technique. This study aims to evaluate the effect of ALD treatment of the fibers on the mechanical properties of the FRCs. Methods The quartz fibers were modified by depositing different cycles (50, 100, 200, and 400) of SiO2 nanofilms via the ALD technique and FRCs were proposed from the modified fibers. The morphologies, surface characterizations of nanofilms, mechanical properties, and cytocompatibility of FRCs were systematically investigated. Moreover, the shear bond strength (SBS) of FRCs to human enamel was also evaluated. Results The SEM and SE results showed that the ALD-deposited SiO2 nanofilms have good conformality and homogeneity. According to the results of FTIR and TGA, SiO2 nanofilms and quartz fiber surfaces had good chemical combinations. Three-point bending tests with FRCs showed that the deposited SiO2 nanofilms effectively improved FRCs' strength and Group D underwent 100 deposition cycles and had the highest flexural strength before and after aging. Furthermore, the strength of the FRCs demonstrated a crescendo-decrescendo tendency with SiO2 nanofilm thickness increasing. The SBS results also showed that Group D had outstanding performance. Moreover, the results of cytotoxicity experiments such as cck8, LDH and Elisa, etc., showed that the FRCs have good cytocompatibility. Conclusion Changing the number of ALD reaction cycles affects the mechanical properties of FRCs, which may be related to the stress relaxation and fracture between SiO2 nanofilm layers and the built-up internal stresses in the nanofilms. Eventually, the SiO2 nanofilms could enhance the FRCs' mechanical properties and performance to enamel by improving the interfacial bonding strength, and have good cytocompatibility.
Collapse
Affiliation(s)
- Fei Shu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Hong Chen
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Zhihao Zhang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Zhiyue Dun
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Weijin Lv
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Wangxinyue Sun
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Mei Liu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
13
|
Wu R, Lenz TM, Alfayez FAS, Zhao R, Rupper P, Perret E, Lehner S, Jovic M, Gaan S, Rieger B, Heuberger M. Ambient Catalytic Spinning of Polyethylene Nanofibers. Angew Chem Int Ed Engl 2024; 63:e202315326. [PMID: 38226704 DOI: 10.1002/anie.202315326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
A novel single-atom Ni(II) catalyst (Ni-OH) is covalently immobilized onto the nano-channels of mesoporous Santa Barbara Amorphous (SBA)-15 particles and isotropic Anodized Aluminum Oxide (AAO) membrane for confined-space ethylene extrusion polymerization. The presence of surface-tethered Ni complexes (Ni@SBA-15 and Ni@AAO) is confirmed by the inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray photoelectron spectroscopy (XPS). In the catalytic spinning process, the produced PE materials exhibit very homogeneous fibrous morphology at nanoscale (diameter: ~50 nm). The synthesized PE nanofibers extrude in a highly oriented manner from the nano-reactors at ambient temperature. Remarkably high Mw (1.62×106 g mol-1 ), melting point (124 °C), and crystallinity (41.8 %) are observed among PE samples thanks to the confined-space polymerization. The chain-walking behavior of surface tethered Ni catalysts is greatly limited by the confinement inside the nano-channels, leading to the formation of very low-branched PE materials (13.6/1000 C). Due to fixed supported catalytic topology and room temperature, the filaments are expected to be free of entanglement. This work signifies an important step towards the realization of a continuous mild catalytic-spinning (CATSPIN) process, where the polymer is directly synthesized into fiber shape at negligible chain branching and elegantly avoiding common limitations like thermal degradation or molecular entanglement.
Collapse
Affiliation(s)
- Ruikai Wu
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- Department of Materials, ETH, Zurich, 8092, Zurich, Switzerland
| | - Tim M Lenz
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Fayez Abdullah S Alfayez
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Ruohan Zhao
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Patrick Rupper
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Edith Perret
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Sandro Lehner
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Milijana Jovic
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Sabyasachi Gaan
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Manfred Heuberger
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- Department of Materials, ETH, Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
14
|
Balogun S, Yim SS, Yom T, Jean BC, Losego MD. Dealkylation of Poly(methyl methacrylate) by TiCl 4 Vapor Phase Infiltration (VPI) and the Resulting Chemical and Thermophysical Properties of the Hybrid Material. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:838-847. [PMID: 38282685 PMCID: PMC10809413 DOI: 10.1021/acs.chemmater.3c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
This study examines the chemical reaction pathways for vapor phase infiltration (VPI) of TiCl4 into poly(methyl methacrylate) (PMMA). VPI is a processing method that transforms organic polymers into organic-inorganic hybrid materials with new properties of interest for microelectronic patterning, technical textiles, and chemical separations. Understanding the fundamental chemical mechanisms of the VPI process is essential for establishing approaches to design the chemical structure and properties of these hybrid materials. While prior work has suggested that TiCl4 infiltration into PMMA does not disrupt the polymer's carbonyl bond, a clear reaction mechanism has yet to be proposed. Here, we present a detailed X-ray photoelectron spectroscopy study that presents evidence for a concerted reaction mechanism that involves TiCl4 coordinating with the PMMA's ester group to dealkylate the methyl side group, creating a chloromethane byproduct and primary chemical bonds between the organic and inorganic components of the hybrid material. Additional spectroscopy, quartz crystal microbalance gravimetry, and thermophysical and chemical property measurements of this material, including solubility studies and thermal expansion measurements, provide further evidence for this chemical reaction pathway and the subsequent creation of inorganic cross-links that network these TiOx-PMMA hybrid materials.
Collapse
Affiliation(s)
- Shuaib
A. Balogun
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332,United States
| | - Sierra S. Yim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332,United States
| | - Typher Yom
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332,United States
| | - Benjamin C. Jean
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332,United States
| | - Mark D. Losego
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332,United States
| |
Collapse
|
15
|
Li T, Li X, Yang J, Sun H, Sun J. Healable Ionic Conductors with Extremely Low-Hysteresis and High Mechanical Strength Enabled by Hydrophobic Domain-Locked Reversible Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307990. [PMID: 37820715 DOI: 10.1002/adma.202307990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Extremely low hysteresis, high mechanical strength, superior toughness, and excellent healability are essential for stretchable ionic conductors to enhance their reliability and meet for cutting-edge applications. However, the fabrication of stretchable ionic conductors with such mutually exclusive properties remains challenging. Herein, extremely low-hysteresis and healable ionic conductors with a tensile strength of ≈8.9 MPa and toughness of ≈23.2 MJ m-3 are fabricated through the complexation of 4-carboxybenzaldehyde (CBA) grafted poly(vinyl alcohol) (PVA) (denoted as PVA-CBA) and poly (allylamine hydrochloride) (PAH) followed by acidification and ion-loading steps. The acidification step generates the PVA-CBA/PAH ionic conductors with in situ formed dynamic hydrophobic domains that lock and stabilize noncovalent interactions. This significantly minimizes the energy dissipation of the ionic conductors during cyclic mechanical loading (≤200% strain), resulting in ionic conductors with extremely low hysteresis (≈5%). The fractured ionic conductors can be healed at 60 °C to restore their original properties. Because of the extremely low hysteresis, the PVA-CBA/PAH ionic conductors show a highly stable and reproducible electrical response over 5000 uninterrupted loading-unloading cycles at a strain of 200%. The ionic conductor based sensors exhibit a high sensitivity to a wide range of strains (1-500%).
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiaming Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haoxiang Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
16
|
Saha S, Costa RC, Silva MC, Fonseca-Santos JM, Chen L, Phakatkar AH, Bhatia H, Faverani LP, Barão VA, Shokuhfar T, Sukotjo C, Takoudis C. Collagen membrane functionalized with magnesium oxide via room-temperature atomic layer deposition promotes osteopromotive and antimicrobial properties. Bioact Mater 2023; 30:46-61. [PMID: 37521273 PMCID: PMC10382637 DOI: 10.1016/j.bioactmat.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Artificial bone grafting materials such as collagen are gaining interest due to the ease of production and implantation. However, collagen must be supplemented with additional coating materials for improved osteointegration. Here, we report room-temperature atomic layer deposition (ALD) of MgO, a novel method to coat collagen membranes with MgO. Characterization techniques such as X-ray photoelectron spectroscopy, Raman spectroscopy, and electron beam dispersion mapping confirm the chemical nature of the film. Scanning electron and atomic force microscopies show the surface topography and morphology of the collagen fibers were not altered during the ALD of MgO. Slow release of magnesium ions promotes bone growth, and we show the deposited MgO film leaches trace amounts of Mg when incubated in phosphate-buffered saline at 37 °C. The coated collagen membrane had a superhydrophilic surface immediately after the deposition of MgO. The film was not toxic to human cells and demonstrated antibacterial properties against bacterial biofilms. Furthermore, in vivo studies performed on calvaria rats showed MgO-coated membranes (200 and 500 ALD) elicit a higher inflammatory response, leading to an increase in angiogenesis and a greater bone formation, mainly for Col-MgO500, compared to uncoated collagen. Based on the characterization of the MgO film and in vitro and in vivo data, the MgO-coated collagen membranes are excellent candidates for guided bone regeneration.
Collapse
Affiliation(s)
- Soumya Saha
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Mirela Caroline Silva
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery and Implantology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - João Matheus Fonseca-Santos
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery and Implantology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Lin Chen
- Department of Periodontics, Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois Chicago, Chicago, USA
| | - Abhijit H. Phakatkar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
| | - Harshdeep Bhatia
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, USA
| | - Leonardo P. Faverani
- Department of Diagnosis and Surgery, Division of Oral and Maxillofacial Surgery and Implantology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois Chicago College of Dentistry, Chicago, USA
| | - Christos Takoudis
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, USA
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, USA
| |
Collapse
|
17
|
Keren S, Bukowski C, Barzilay M, Kim M, Stolov M, Crosby AJ, Cohen N, Segal-Peretz T. Mechanical Behavior of Hybrid Thin Films Fabricated by Sequential Infiltration Synthesis in Water-Rich Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47487-47496. [PMID: 37772864 DOI: 10.1021/acsami.3c09609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Sequential infiltration synthesis (SIS) is an emerging technique for fabricating hybrid organic-inorganic materials with nanoscale precision and controlled properties. Central to SIS implementation in applications such as membranes, sensors, and functional coatings is the mechanical properties of hybrid materials in water-rich environments. This work studies the nanocomposite morphology and its effect on the mechanical behavior of SIS-based hybrid thin films of AlOx-PMMA under aqueous environments. Water-supported tensile measurements reveal an unfamiliar behavior dependent on the AlOx content, where the modulus decreases after a single SIS cycle and increases with additional cycles. In contrast, the yield stress constantly decreases as the AlOx content increases. A comparison between water uptake measurements indicates that AlOx induces water uptake from the aqueous environment, implying a "nanoeffect" stemming from AlOx-water interactions. We discuss the two mechanisms that govern the modulus of the hybrid films: softening due to increased water absorption and stiffening as the AlOx volume fraction increases. The decrease in the yield stress with SIS cycles is associated with the limited mobility and extensibility of polymer chains caused by the growth of AlOx clusters. Our study highlights the significance of developing hybrid materials to withstand aqueous or humid conditions which are crucial to their performance and durability.
Collapse
Affiliation(s)
- Shachar Keren
- The Wolfson Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Cynthia Bukowski
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Maya Barzilay
- The Wolfson Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Myounguk Kim
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Mikhail Stolov
- The Wolfson Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Noy Cohen
- Department of Materials Science and Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Tamar Segal-Peretz
- The Wolfson Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
18
|
Greco G, Schmuck B, Jalali SK, Pugno NM, Rising A. Influence of experimental methods on the mechanical properties of silk fibers: A systematic literature review and future road map. BIOPHYSICS REVIEWS 2023; 4:031301. [PMID: 38510706 PMCID: PMC10903380 DOI: 10.1063/5.0155552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 03/22/2024]
Abstract
Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.
Collapse
Affiliation(s)
| | | | - S. K. Jalali
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| | | | - Anna Rising
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
19
|
Balogun SA, Ren Y, Lively RP, Losego MD. Interpreting inorganic compositional depth profiles to understand the rate-limiting step in vapor phase infiltration processes. Phys Chem Chem Phys 2023; 25:14064-14073. [PMID: 37161670 DOI: 10.1039/d3cp01517c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Vapor phase infiltration (VPI) is a post-polymerization modification technique that infuses inorganics into polymers to create organic-inorganic hybrid materials with new properties. Much is yet to be understood about the chemical kinetics underlying the VPI process. The aim of this study is to create a greater understanding of the process kinetics that govern the infiltration of trimethyl aluminum (TMA) and TiCl4 into PMMA to form inorganic-PMMA hybrid materials. To gain insight, this paper initially examines the predicted results for the spatiotemporal concentrations of inorganics computed from a recently posited reaction-diffusion model for VPI. This model provides insight on how the Damköhler number (reaction versus diffusion rates) and non-Fickian diffusional processes (hindering) that result from the material transforming from a polymer to a hybrid can affect the evolution of inorganic concentration depth profiles with time. Subsequently, experimental XPS depth profiles are collected for TMA and TiCl4 infiltrated PMMA films at 90 °C and 135 °C. The functional behavior of these depth profiles at varying infiltration times are qualitatively compared to various computed predictions and conclusions are drawn about the mechanisms of each of these processes. TMA infiltration into PMMA appears to transition from a diffusion-limited process at low temperatures (90 °C) to a reaction-limited process at high temperatures (135 °C) for the film thicknesses investigated here (200 nm). While TMA appears to fully infiltrate these 200 nm PMMA films within a few hours, TiCl4 infiltration into PMMA is considerably slower, with full saturation not occurring even after 2 days of precursor exposure. Infiltration at 90 °C is so slow that no clear conclusions about mechanism can be drawn; however, at 135 °C, the TiCl4 infiltration into PMMA is clearly a reaction-limited process, with TiCl4 permeating the entire thickness (at low concentrations) within only a few minutes, but inorganic loading continuously increasing in a uniform manner over a course of 2 days. Near-surface deviations from the uniform-loading expected for a reaction-limited process also suggest that diffusional hindering is high for TiCl4 infiltration into PMMA. These results demonstrate a new, ex situ analysis approach for investigating the rate-limiting process mechanisms for vapor phase infiltration.
Collapse
Affiliation(s)
- Shuaib A Balogun
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Yi Ren
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ryan P Lively
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark D Losego
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
20
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
21
|
Lv B, Peng Y, Peng YD, Wang Z, Song QS. Integrated transcriptome and proteome unveiled distinct toxicological effects of long-term cadmium pollution on the silk glands of Pardosa pseudoannulata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158841. [PMID: 36116647 DOI: 10.1016/j.scitotenv.2022.158841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) induces severe soil pollution worldwide and exerts adverse effects on paddy field arthropods. Spiders grant a novel perspective to assess the Cd-induced toxicity, yet the impacts of long-term Cd stress on spider silk glands and its underlying mechanism remain elusive. The study showed that Cd stress enervated the antioxidant system in the spider Pardosa pseudoannulata, manifested as the decreases of glutathione peroxidase and peroxidase, and the increase of malonaldehyde (p < 0.05). In addition, a total of 1459 differentially expressed genes (DEGs) and 404 differentially expressed proteins (DEPs) were obtained from the silk glands' transcriptome and proteome. DEGs and DEPs encoding spidroin (e.g., tubuliform spidroin and ampullate spidroin) and amino acids metabolism (e.g., alanine, proline, and glycine) were distinctively down-regulated. Further enrichment analysis verified that Cd stress could inhibit amino acid metabolism via the down-regulation of several key enzymes, including glutathione synthase, methylthioadenosine phosphorylase, S-adenosylmethionine synthetase, etc. In addition, the hedgehog signaling pathway regulating cellular growth and development was down-regulated under Cd stress. A protein-protein interaction network showed that long-term Cd stress could inhibit some key biological processes in the silk glands, including peptide biosynthetic process and cytoskeleton part. Collectively, this comprehensive study established an effective animal detection model for evaluating Cd-induced toxicity, presented key biomarkers for further validation, and provided novel insights to investigate the molecular mechanisms of spiders to Cd pollution.
Collapse
Affiliation(s)
- Bo Lv
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China; Division of Plant Science and Technology, University of Missouri, 65211 Columbia, USA
| | - Yong Peng
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Yuan-de Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, 65211 Columbia, USA.
| |
Collapse
|
22
|
Choi W, Jun T, Lee M, Park K, Choi M, Jung S, Cha JK, Kwon JS, Jin Y, Lee S, Ryu DY, Hong J. Regulation of the Inevitable Water-Responsivity of Silk Fibroin Biopolymer by Polar Amino Acid Activation. ACS NANO 2022; 16:17274-17288. [PMID: 36129365 DOI: 10.1021/acsnano.2c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In nature, water is vital for maintaining homeostasis. Particularly, organisms (e.g., plant leaf, bird feather) exploit water fluidics for motions. Hydration-adaptive crystallization is the representative water-responsive actuation of biopolymers. This crystallization has inspired the development of intelligent human-robot interfaces. At the same time, it hinders the consistent adhesion of tissue adhesive. As hydration-adaptive crystallization is inevitable, the on-demand control of crystallization is desirable in the innovative biopolymeric biomedical systems. To this end, this study developed an amino acid-based technology to artificially up- or down-regulate the inevitable crystallization of silk fibroin. A case II diffusion model was constructed, and it revealed that the activity of polar amino acid is related to crystallization kinetics. Furthermore, the water dynamics study suggested that active amino acid stabilizes crystallization-triggering water molecules. As a proof-of-concept, we verified that a 30% increase in the activity of serine resulted in a 50% decrease in the crystallization rate. Furthermore, the active amino acid-based suppression of hydration-adaptive crystallization enabled the silk fibroin to keep its robust adhesion (approximately 160 kJ m-3) by reducing the water-induced loss of adhesive force. The proposed silk fibroin was demonstrated as a stable tissue adhesive applied on ex vivo porcine mandible tissue. This amino acid-based regulation of hydration-adaptive crystallization will pioneer next-generation biopolymer-based healthcare.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taesuk Jun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Milae Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Youngho Jin
- Agency for Defense Development, Chem-Bio Technology Center, Yuseong-Gu, Daejeon, 34186, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
23
|
Mu X, Wang W, Sun C, Zhao D, Ma C, Zhu J, Knez M. Greatly increased electrical conductivity of PBTTT-C14 thin film via controllable single precursor vapor phase infiltration. NANOTECHNOLOGY 2022; 34:015709. [PMID: 36191569 DOI: 10.1088/1361-6528/ac96fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Doping is an important strategy for effectively regulating the charge carrier concentration of semiconducting materials. In this study, the electronic properties of organic-inorganic hybrid semiconducting polymers, synthesized viain situcontrolled vapor phase infiltration (VPI) of poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) with the metal precursors molybdenum pentachloride (MoCl5) and titanium tetrachloride (TiCl4), were altered and characterized. The conductivities of the infiltration-doped PBTTT-C14 thin films were enhanced by up to 9 and 4 orders of magnitude, respectively. The significantly improved electrical properties may result from interactions between metal atoms in the metal precursors and sulfur of the thiophene rings, thus forming new chemical bonds. Importantly, VPI doping has little influence on the structure of the PBTTT-C14 thin films. Even if various dopant molecules infiltrate the polymer matrix, the interlayer spacing of the films will inevitably expand, but it has negligible effects on the overall morphology and structure of the film. Also, Lewis acid-doped PBTTT-C14 thin films exhibited excellent environmental stability. Therefore, the VPI-based doping process has great potential for use in processing high-quality conductive polymer films.
Collapse
Affiliation(s)
- Xueyang Mu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Material, Shaanxi University of Science & Technology Xi'an, Shaanxi 710021, People's Republic of China
| | - Weike Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Material, Shaanxi University of Science & Technology Xi'an, Shaanxi 710021, People's Republic of China
| | - Chongcai Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Material, Shaanxi University of Science & Technology Xi'an, Shaanxi 710021, People's Republic of China
| | - Dan Zhao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Material, Shaanxi University of Science & Technology Xi'an, Shaanxi 710021, People's Republic of China
| | - Chuang Ma
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Material, Shaanxi University of Science & Technology Xi'an, Shaanxi 710021, People's Republic of China
| | - Jiankang Zhu
- Guangzhou Special Pressure Equipment Inspection and Research Institute, National Graphene Product Quality Supervision and Inspection Center, Guangzhou, Guangdong 510700, People's Republic of China
| | - Mato Knez
- CIC nanoGUNE, Tolosa Hiribidea, 76, Donostia-San Sebastián, E-20018, Spain
| |
Collapse
|
24
|
Karegar M, Khodaei MM. Fe
3
O
4
‐PTh‐SO
3
H: A Retrievable Solid‐acid Nanocatalyst for the Green Synthesis of Imidazole and Tetrazole Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202201138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mohsen Karegar
- Department of Organic Chemistry Razi University, Kermanshah Iran
| | - Mohammad Mehdi Khodaei
- Department of Organic Chemistry Razi University, Kermanshah Iran
- Nanoscience & Nanotechnology Research Center (NNRC) Razi University Kermanshah 67149-67346 Iran
| |
Collapse
|
25
|
Santoso A, Damen A, van Ommen JR, van Steijn V. Atmospheric pressure atomic layer deposition to increase organic solvent resistance of PDMS. Chem Commun (Camb) 2022; 58:10805-10808. [PMID: 36073302 PMCID: PMC9514010 DOI: 10.1039/d2cc02402k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
We explore three variants of atomic layer deposition (ALD) to deposit titanium oxide on the soft polymer polydimethylsiloxane (PDMS). We show that the organic solvent resistance of PDMS is increased by two orders of magnitude compared to uncoated PDMS for ALD performed at atmospheric pressure, which results in a unique surface-subsurface coating of PDMS.
Collapse
Affiliation(s)
- Albert Santoso
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Afke Damen
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - J Ruud van Ommen
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Volkert van Steijn
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
26
|
Lovikka VA, Airola K, McGuinness E, Zhang C, Vehkamäki M, Kemell M, Losego M, Ritala M, Leskelä M. Toposelective vapor deposition of hybrid and inorganic materials inside nanocavities by polymeric templating and vapor phase infiltration. NANOSCALE ADVANCES 2022; 4:4102-4113. [PMID: 36285221 PMCID: PMC9514560 DOI: 10.1039/d2na00291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Selective deposition of hybrid and inorganic materials inside nanostructures could enable major nanotechnological advances. However, inserting ready-made composites inside nanocavities may be difficult, and therefore, stepwise approaches are needed. In this paper, a poly(ethyl acrylate) template is grown selectively inside cavities via condensation-controlled toposelective vapor deposition, and the polymer is then hybridized by alumina, titania, or zinc oxide. The hybridization is carried out by infiltrating the polymer with a vapor-phase metalorganic precursor and water vapor either via a short-pulse (atomic layer deposition, ALD) or a long-pulse (vapor phase infiltration, VPI) sequence. When the polymer-MO x hybrid material is calcined at 450 °C in air, an inorganic phase is left as the residue. Various suspected confinement effects are discussed. The infiltration of inorganic materials is reduced in deeper layers of the cavity-grown polymer and is dependent on the cavity geometry. The structure of the inorganic deposition after calcination varies from scattered particles and their aggregates to cavity-capping films or cavity-filling low-density porous deposition, and the inorganic deposition is often anisotropically cracked. A large part of the infiltration is achieved already during the short-pulse experiments with a commercial ALD reactor. Furthermore, the infiltrated polymer is more resistant to dissolution in acetone whereas the inorganic component can still be heavily affected by phosphoric acid.
Collapse
Affiliation(s)
- Ville A Lovikka
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Konsta Airola
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Emily McGuinness
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Chao Zhang
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Marko Vehkamäki
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Mark Losego
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Markku Leskelä
- Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, P.O. Box 55 FI-00014 Helsinki Finland
| |
Collapse
|
27
|
Shi S, Zhi C, Zhang S, Yang J, Si Y, Jiang Y, Ming Y, Lau KT, Fei B, Hu J. Lotus Leaf-Inspired Breathable Membrane with Structured Microbeads and Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39610-39621. [PMID: 35980757 DOI: 10.1021/acsami.2c11251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrospinning is a feasible technology to fabricate nanomaterials. However, the preparation of nanomaterials with controllable structures of microbeads and fine nanofibers is still a challenge, which hinders widespread applications of electrospun products. Herein, inspired by the micro/nanostructures of lotus leaves, we constructed a structured electrospun membrane with excellent comprehensive properties. First, micro/nanostructures of membranes with adjustable microbeads and nanofibers were fabricated on a large scale and quantitatively analyzed based on the controlling preparation, and their performances were systematically evaluated. The deformation of diverse polymeric solution droplets in the electrospinning process under varying electric fields was then simulated by molecular dynamic simulation. Finally, novel fibrous membranes with structured sublayers and controllable morphologies were designed, prepared, and compared. The achieved structured membranes demonstrate a high water vapor transmission rate (WVTR) > 17.5 kg/(m2 day), a good air permeability (AP) > 5 mL/s, a high water contact angle (WCA) up to 151°, and a high hydrostatic pressure of 623 mbar. The disclosed science and technology in this article can provide a feasible method to not only adjust micro/nanostructure fibers but also to design secondary multilayer structures. This research is believed to assist in promoting the diversified development of advanced fibrous membranes and intelligent protection.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China
| | - Jieqiong Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China
| | - Yuanzhang Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yang Ming
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong S.A.R 999077, China
| | - Kin-Tak Lau
- School of Engineering. Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Bin Fei
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong S.A.R 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong S.A.R 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
28
|
Ham J, Ko M, Choi B, Kim HU, Jeon N. Understanding Physicochemical Mechanisms of Sequential Infiltration Synthesis toward Rational Process Design for Uniform Incorporation of Metal Oxides. SENSORS (BASEL, SWITZERLAND) 2022; 22:6132. [PMID: 36015891 PMCID: PMC9416371 DOI: 10.3390/s22166132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Sequential infiltration synthesis (SIS) is a novel technique for fabricating organic-inorganic hybrid materials and porous inorganic materials by leveraging the diffusion of gas-phase precursors into a polymer matrix and chemical reactions between the precursors to synthesize inorganic materials therein. This study aims to obtain a fundamental understanding of the physicochemical mechanisms behind SIS, from which the SIS processing conditions are rationally designed to obtain precise control over the distribution of metal oxides. Herein, in situ FTIR spectroscopy was correlated with various ex situ characterization techniques to study a model system involving the growth of aluminum oxides in poly(methyl methacrylate) using trimethyl aluminum (TMA) and water as the metal precursor and co-reactant, respectively. We identified the prominent chemical states of the sorbed TMA precursors: (1) freely diffusing precursors, (2) weakly bound precursors, and (3) precursors strongly bonded to pre-existing oxide clusters and studied how their relative contributions to oxide formation vary in relation to the changes in the rate-limiting step under different growth conditions. Finally, we demonstrate that uniform incorporation of metal oxide is realized by a rational design of processing conditions, by which the major chemical species contributing to oxide formation is modulated.
Collapse
Affiliation(s)
- Jiwoong Ham
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Minkyung Ko
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Boyun Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Hyeong-U Kim
- Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 34103, Korea
| | - Nari Jeon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
29
|
Seguini G, Motta A, Bigatti M, Caligiore FE, Rademaker G, Gharbi A, Tiron R, Tallarida G, Perego M, Cianci E. Al 2O 3 Dot and Antidot Array Synthesis in Hexagonally Packed Poly(styrene- block-methyl methacrylate) Nanometer-Thick Films for Nanostructure Fabrication. ACS APPLIED NANO MATERIALS 2022; 5:9818-9828. [PMID: 35937588 PMCID: PMC9344376 DOI: 10.1021/acsanm.2c02013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanostructured organic templates originating from self-assembled block copolymers (BCPs) can be converted into inorganic nanostructures by sequential infiltration synthesis (SIS). This capability is particularly relevant within the framework of advanced lithographic applications because of the exploitation of the BCP-based nanostructures as hard masks. In this work, Al2O3 dot and antidot arrays were synthesized by sequential infiltration of trimethylaluminum and water precursors into perpendicularly oriented cylinder-forming poly(styrene-block-methyl methacrylate) (PS-b-PMMA) BCP thin films. The mechanism governing the effective incorporation of Al2O3 into the PMMA component of the BCP thin films was investigated evaluating the evolution of the lateral and vertical dimensions of Al2O3 dot and antidot arrays as a function of the SIS cycle number. The not-reactive PS component and the PS/PMMA interface in self-assembled PS-b-PMMA thin films result in additional paths for diffusion and supplementary surfaces for sorption of precursor molecules, respectively. Thus, the mass uptake of Al2O3 into the PMMA block of self-assembled PS-b-PMMA thin films is higher than that in pure PMMA thin films.
Collapse
Affiliation(s)
- Gabriele Seguini
- IMM-CNR,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Alessia Motta
- IMM-CNR,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Marco Bigatti
- IMM-CNR,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | | | | | - Ahmed Gharbi
- Univ.
Grenoble Alpes, CEA, Leti, Grenoble F-38000, France
| | - Raluca Tiron
- Univ.
Grenoble Alpes, CEA, Leti, Grenoble F-38000, France
| | - Graziella Tallarida
- IMM-CNR,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Michele Perego
- IMM-CNR,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| | - Elena Cianci
- IMM-CNR,
Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy
| |
Collapse
|
30
|
Romero M, Mombrú D, Pignanelli F, Faccio R, Mombrú AW. Hybrid Organic-Inorganic Materials and Interfaces With Mixed Ionic-Electronic Transport Properties: Advances in Experimental and Theoretical Approaches. Front Chem 2022; 10:892013. [PMID: 35494643 PMCID: PMC9039017 DOI: 10.3389/fchem.2022.892013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
The main goal of this mini-review is to provide an updated state-of-the-art of the hybrid organic-inorganic materials focusing mainly on interface phenomena involving ionic and electronic transport properties. First, we review the most relevant preparation techniques and the structural features of hybrid organic-inorganic materials prepared by solution-phase reaction of inorganic/organic precursor into organic/inorganic hosts and vapor-phase infiltration of the inorganic precursor into organic hosts and molecular layer deposition of organic precursor onto the inorganic surface. Particular emphasis is given to the advances in joint experimental and theoretical studies discussing diverse types of computational simulations for hybrid-organic materials and interfaces. We make a specific revision on the separately ionic, and electronic transport properties of these hybrid organic-inorganic materials focusing mostly on interface phenomena. Finally, we deepen into mixed ionic-electronic transport properties and provide our concluding remarks and give some perspectives about this growing field of research.
Collapse
Affiliation(s)
- Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | | | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alvaro W. Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y Sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Choi W, Heo D, Kim T, Jung S, Choi M, Heo J, Kwon J, Kim B, Lee W, Koh W, Cho JH, Lee S, Hong J. Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105420. [PMID: 35001517 PMCID: PMC8922117 DOI: 10.1002/advs.202105420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m-3 ) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m-3 ) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Deokjae Heo
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jae‐Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR ProjectYonsei University College of DentistrySeoul03722Republic of Korea
| | - Byeong‐Su Kim
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Wonhwa Lee
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Won‐Gun Koh
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangmin Lee
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
32
|
Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider Silk-Inspired Artificial Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103965. [PMID: 34927397 PMCID: PMC8844500 DOI: 10.1002/advs.202103965] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Collapse
Affiliation(s)
- Jiatian Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Sitong Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Jiayi Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Baigang An
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Xiang Zhou
- Department of ScienceChina Pharmaceutical UniversityNanjing211198China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
33
|
Mai L, Maniar D, Zysk F, Schöbel J, Kühne TD, Loos K, Devi A. Influence of different ester side groups in polymers on the vapor phase infiltration with trimethyl aluminum. Dalton Trans 2022; 51:1384-1394. [PMID: 34989363 DOI: 10.1039/d1dt03753f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vapor phase infiltration (VPI) process of trimethyl aluminum (TMA) into poly(4-acetoxystyrene) (POAcSt), poly(nonyl methacrylate) (PNMA) and poly(tert-butyl methacrylate) (PtBMA) is reported. Depth-profiling X-ray photoelectron spectroscopy (XPS) measurements are used for the first time for VPI based hybrid materials to determine the aluminum content over the polymer film thickness. An understanding of the reaction mechanism on the interaction of TMA infiltrating into the different polymers was obtained through infrared (IR) spectroscopy supported by density functional theory (DFT) studies. It is shown that the loading with aluminum is highly dependent on the respective ester side group of the used polymer, which is observed to be the reactive site for TMA during the infiltration. IR spectroscopy hints that the infiltration is incomplete for POAcSt and PNMA, as indicated by the characteristic vibration bands of the aluminum coordination to the carbonyl groups within the polymers. In this context, two different reaction pathways are discussed. One deals with the formation of an acetal, the other is characterized by the release of a leaving group. Both were found to be in direct concurrence dependent on the polymer side group as revealed by DFT calculations of the IR spectra, as well as the reaction energies of two possible reaction paths. From this study, one can infer that the degree of infiltration in a VPI process strongly depends on the polymer side groups, which facilitates the choice of the polymer for targeted applications.
Collapse
Affiliation(s)
- Lukas Mai
- Inorganic Materials Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Frederik Zysk
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Judith Schöbel
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Anjana Devi
- Inorganic Materials Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| |
Collapse
|
34
|
Xu J, Wang X, Ruan H, Zhang X, Zhang Y, Yang Z, Wang Q, Wang T. Recent Advances in High-strength and High-toughness Polyurethanes Based on Supramolecular Interactions. Polym Chem 2022. [DOI: 10.1039/d2py00269h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments in supramolecular chemistry have generated increasing interest in supramolecular polymers and opened a window for the exploitation of various supramolecular polymeric materials and their multifunctional composites. High-performance polyurethanes,...
Collapse
|
35
|
Subramanian A, Tiwale N, Lee WI, Nam CY. Templating Functional Materials Using Self-Assembled Block Copolymer Thin-Film for Nanodevices. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.766690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nanomorphologies and nanoarchitectures that can be synthesized using block copolymer (BCP) thin-film self-assembly have inspired a variety of new applications, which offer various advantages, such as, small device footprint, low operational power and enhanced device performance. Imperative for these applications, however, is the ability to transform these small polymeric patterns into useful inorganic structures. BCP-templated inorganic nanostructures have shown the potential for use as active materials in various electronic device applications, including, field-effect transistors, photodetectors, gas sensors and many more. This article reviews various strategies that have been implemented in the past decade to fabricate devices at nanoscale using block copolymer thin films.
Collapse
|
36
|
Li Y, Wen D, Zhang Y, Lin Y, Cao K, Yang F, Chen R. Highly-stable PEN as a gas-barrier substrate for flexible displays via atomic layer infiltration. Dalton Trans 2021; 50:16166-16175. [PMID: 34709261 DOI: 10.1039/d1dt02764f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer substrates with superior barrier properties are of great importance for the development of highly-stable flexible displays. The atomic layer infiltration (ALI) method has been utilized to integrate nanoscale inorganic materials in the subsurface of commercial PEN substrates, and the in-suit quartz crystal microbalance (QCM) is employed to study the growth behaviour as the process parameters vary, in which the nucleation and infiltration stages have been demonstrated. The O2 plasma pre-treatment prior to Al2O3 infiltration was used to determine its effect on the water vapor transmission rate (WVTR), and significantly improved barrier properties were observed compared to those of the ones without the O2 plasma pre-treatment via the electrical Ca tests, which was attributed to the surface clean and improved film adhesion. The lowest WVTR value measured was 1.28 × 10-5 g m-2 day-1 for the O2 plasma pre-treated PEN substrate coated with 100 ALI cycles, which improved 3-4 orders of magnitude compared to that of the pristine ones. Besides, the infiltrated PEN substrate with O2 plasma pre-treatment exhibited good mechanical stability, with only a slight increase of the WVTR value which was observed after the bending fatigue test with a radius of 5 mm. Furthermore, when applied to the encapsulation of organic light-emitting diodes (OLEDs), the normalized luminance remained above 94% after storage for 800 hours.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China.
| | - Di Wen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China.
| | - Yinghao Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China.
| | - Yuan Lin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China.
| | - Kun Cao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China.
| | - Fan Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China.
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China.
| |
Collapse
|
37
|
Nguyen VP, Kim D, Lee SM. Tuning the Thermal Conductivity of the Amorphous PAA Polymer via Vapor-Phase Infiltration. ACS OMEGA 2021; 6:29054-29059. [PMID: 34746594 PMCID: PMC8567350 DOI: 10.1021/acsomega.1c04233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The thermal properties of the polymer, together with mechanical stability, have been one of the key engineering factors to be considered for various applications. Here, we engineered the thermal conductivity of the amorphous poly(acrylic acid) (PAA) polymer by vapor-phase infiltration (VPI), which has usually occurred during the atomic layer deposition process. We observed that the VPI causes metal infiltration (e.g., Al and Zn) into the amorphous PAA polymer, which noticeably increases the thermal conductivity of the PAA polymer. From spectroscopy analysis and density functional theory simulations, we found that the carboxyl groups (-COOH) in PAA are notably modified and the bonding states of carbon and oxygen are significantly altered by the infiltrated metal. The newly formed Al-mediated bonds likely provide continuous phonon propagation pathways, thereby enhancing the thermal conductance. We believe that VPI could be a simple and useful way to engineer the thermal properties of various polymeric materials.
Collapse
Affiliation(s)
- Viet Phuong Nguyen
- Department
of Nanomechanics, Korea Institute of Machinery
and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
- Nano
Mechatronics, Korea University of Science
and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Duckjong Kim
- Department
of Mechanical Engineering, Gyeongsang National
University, 171 Jang-dong, Yousung-gu, Jinju 52828, South Korea
| | - Seung-Mo Lee
- Department
of Nanomechanics, Korea Institute of Machinery
and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
- Nano
Mechatronics, Korea University of Science
and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|
38
|
Qiu M, Du W, Luo X, Zhu S, Luo Y, Zhao J. Vapor-Phase Molecular Doping in Covalent Organosiloxane Network Thin Films Via a Lewis Acid-Base Interaction for Enhanced Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 14:22719-22727. [PMID: 34652900 DOI: 10.1021/acsami.1c13257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Incorporating inorganic components in organosiloxane polymer thin films for enhanced mechanical properties could enable better durability and longevity of functional coatings for a multitude of applications. However, molecularly dispersing the inorganic dopants while preserving the cyclosiloxane rings represents a challenge for cross-linked organosiloxane networks. Here, we report a molecular doping strategy using vapor-phase infiltration. On the basis of the proper Lewis acid-base interaction between diethyl zinc (DEZ) and cyclotrisiloxane rings, we achieved a complete infiltration of the organometallic precursors and well-distributed Zn-OH terminal groups formed in the initiated chemical vapor deposited poly(1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane) (PV3D3) films. X-ray photoelectron spectroscopy and nanoscale infrared spectroscopy together with density functional theory simulation reveal that the formation of a Lewis acid-base adduct rather than a ring-opening process is possibly involved in anchoring DEZ in the cross-linked network of PV3D3. Because of the incorporation of Zn-OH components, the organic-inorganic hybrid films obtained via our vapor-phase molecular doping exhibit a 10.2% larger elastic modulus and 67.0% higher hardness than the pristine PV3D3. Unveiling the reaction mechanisms between organometallic precursors and cross-linked organic networks provides new insights for expanding the vapor-phase processing strategies for engineering hybrid materials at the nanoscale.
Collapse
Affiliation(s)
- Mingjun Qiu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Du
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Siyuan Zhu
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Petit RR, Li J, Van de Voorde B, Van Vlierberghe S, Smet PF, Detavernier C. Atomic Layer Deposition on Polymer Thin Films: On the Role of Precursor Infiltration and Reactivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46151-46163. [PMID: 34519479 DOI: 10.1021/acsami.1c12933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Inorganic barriers grown by atomic layer deposition (ALD) can overcome the stability issues originating from the permeation of foreign species (water and oxygen) into polymer thin films. Alternatively, infiltration of ALD species into the bulk of the polymer can be used to modify its characteristic properties. In this study, the feasibility of growing an inorganic barrier with ALD on polystyrene, poly(methyl methacrylate), and poly(ethylene terephthalate glycol) thin films is evaluated. The nucleation and growth of the ALD layer, including the infiltration into the polymer thin film, are monitored in situ using spectroscopic ellipsometry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy for Al2O3-ALD with trimethylaluminum as the Al precursor and H2O as the reactant. The results show that the deposition temperature and the presence and location of functional groups in the polymer chain exert the strongest influence on the infiltration behavior and as such allow us to manipulate (i.e. to prevent or expedite) the infiltration into the polymer thin film.
Collapse
Affiliation(s)
- Robin R Petit
- Department of Solid State Sciences, LumiLab, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
- SIM vzw, Technologiepark 48, 9052 Zwijnaarde, Belgium
| | - Jin Li
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
| | - Babs Van de Voorde
- Department of Organic and Macromolecular Chemistry, PBM, CMaC, Ghent University, Krijgslaan 281 S4-Bis, 9000 Gent, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, PBM, CMaC, Ghent University, Krijgslaan 281 S4-Bis, 9000 Gent, Belgium
| | - Philippe F Smet
- Department of Solid State Sciences, LumiLab, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium
| |
Collapse
|
40
|
Guo S, Chen J, Zhang Y, Liu J. Graphene-Based Films: Fabrication, Interfacial Modification, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2539. [PMID: 34684980 PMCID: PMC8540312 DOI: 10.3390/nano11102539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/01/2022]
Abstract
Graphene-based film attracts tremendous interest in many potential applications due to its excellent thermal, electrical, and mechanical properties. This review focused on a critical analysis of fabrication, processing methodology, the interfacial modification approach, and the applications of this novel and new class material. Strong attention was paid to the preparation strategy and interfacial modification approach to improve its mechanical and thermal properties. The overview also discussed the challenges and opportunities regarding its industrial production and the current status of the commercialization. This review showed that blade coating technology is an effective method for industrial mass-produced graphene film with controllable thickness. The synergistic effect of different interface interactions can effectively improve the mechanical properties of graphene-based film. At present, the application of graphene-based film on mobile phones has become an interesting example of the use of graphene. Looking for more application cases is of great significance for the development of graphene-based technology.
Collapse
Affiliation(s)
- Sihua Guo
- SMIT Center, School of Mechatronics Engineering and Automation, Shanghai University, 20 Chengzhong Rd., Shanghai 201800, China; (S.G.); (Y.Z.)
| | - Jin Chen
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, SE-41296 Gothenburg, Sweden;
- SHT Smart High-Tech AB, Kemivägen 6, SE-41258 Gothenburg, Sweden
| | - Yong Zhang
- SMIT Center, School of Mechatronics Engineering and Automation, Shanghai University, 20 Chengzhong Rd., Shanghai 201800, China; (S.G.); (Y.Z.)
| | - Johan Liu
- SMIT Center, School of Mechatronics Engineering and Automation, Shanghai University, 20 Chengzhong Rd., Shanghai 201800, China; (S.G.); (Y.Z.)
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, SE-41296 Gothenburg, Sweden;
| |
Collapse
|
41
|
Chen X, Wu L, Yang H, Qin Y, Ma X, Li N. Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuling Chen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials Hubei University of Science and Technology Xianning 437100 China
| | - Lei Wu
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
| | - Huimin Yang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
| | - Yong Qin
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Nanwen Li
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China
| |
Collapse
|
42
|
Chen X, Wu L, Yang H, Qin Y, Ma X, Li N. Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition. Angew Chem Int Ed Engl 2021; 60:17875-17880. [PMID: 33547845 DOI: 10.1002/anie.202016901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/01/2021] [Indexed: 11/09/2022]
Abstract
Tailoring the microporosity of intrinsically microporous polymers at the atomic level is one of the biggest challenges in achieving high-performance polymeric gas separation membranes. In this study, for the first time, the Al2 O3 atomic layer deposition (ALD) technique was used to modify the microporosity of a typical polymer of intrinsic microporosity (PIM-1) at the atomic level. PIM-1 with six ALD cycles (PIM-1-Al2 O3 -6) exhibited simultaneous high thermal, mechanical, pure- and mixed-gas separation, and anti-aging properties. The O2 /N2 , H2 /N2 , and H2 /CH4 separation performances were adequate above the latest trade-off lines. PIM-1-Al2 O3 -6 showed CO2 and O2 permeabilities of 624 and 188 Barrer, combined with CO2 /CH4 and O2 /N2 selectivities of 56.2 and 8.8, respectively. This significantly enhanced performance was attributed to the strong size sieving effect induced by the Al2 O3 deposition.
Collapse
Affiliation(s)
- Xiuling Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, 437100, China
| | - Lei Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Huimin Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| |
Collapse
|
43
|
Synthesis of Fe3O4-PVP nanocomposite functionalized with sulfonic group as an effective catalyst for one-pot synthesis of xanthene derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04542-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Choy S, Bui HT, Van Lam D, Lee SM, Kim W, Hwang DS. Photocatalytic exoskeleton: Chitin nanofiber for retrievable and sustainable TiO 2 carriers for the decomposition of various pollutants. Carbohydr Polym 2021; 271:118413. [PMID: 34364555 DOI: 10.1016/j.carbpol.2021.118413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Loading a photocatalytic TiO2 to organic carriers has been desired for volumetric TiO2 incorporation, facile retrieval, and sustainable utilization. Traditionally, suspended TiO2 nanoparticles or its thin film on two-dimensional substrate are popularly fabricated for pollutants decomposition without carriers; due to poor thermomechanical properties of the organic carriers. Herein, a combination of the chitin nanofiber carrier and atomic layer deposition proves relevance for formation of anatase TiO2 thin layer so that photocatalytic decomposition in three-dimensional surface. Moreover, chitin nanofiber is capable of holding the TiO2 nanoparticles for multiple cycles of photocatalysis. Those types of TiO2 show characteristic degradation performance for gaseous (acetaldehyde) and aqueous pollutants (4-chlorophenol and rhodamine B). After catalytic reaction, chitin/TiO2 is retrievable owing to carrier's robustness even in water without TiO2 aggregation and loss. This work suggests that chitin-based photocatalyst is applicable to numerous pollutants through chitin's relatively high chemical resistance and stably wedged TiO2 during photocatalytic reaction.
Collapse
Affiliation(s)
- Seunghwan Choy
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Hoang Tran Bui
- Department of Chemical and Biological Engineering College of Engineering, Sookmyung Women's University, Seoul, Republic of Korea
| | - Do Van Lam
- Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea; Nano Mechatronics, Korea University of Science and Technology (UST), 217 Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seung-Mo Lee
- Department of Nanomechanics, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea; Nano Mechatronics, Korea University of Science and Technology (UST), 217 Gajeongbuk-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Wooyul Kim
- Department of Chemical and Biological Engineering College of Engineering, Sookmyung Women's University, Seoul, Republic of Korea.
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon 21983, Republic of Korea.
| |
Collapse
|
45
|
Li Z, Zhu YL, Niu W, Yang X, Jiang Z, Lu ZY, Liu X, Sun J. Healable and Recyclable Elastomers with Record-High Mechanical Robustness, Unprecedented Crack Tolerance, and Superhigh Elastic Restorability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101498. [PMID: 34062022 DOI: 10.1002/adma.202101498] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Spider silk is one of the most robust natural materials, which has extremely high strength in combination with great toughness and good elasticity. Inspired by spider silk but beyond it, a healable and recyclable supramolecular elastomer, possessing superhigh true stress at break (1.21 GPa) and ultrahigh toughness (390.2 MJ m-3 ), which are, respectively, comparable to and ≈2.4 times higher than those of typical spider silk, is developed. The elastomer has the highest tensile strength (ultimate engineering stress, 75.6 MPa) ever recorded for polymeric elastomers, rendering it the strongest and toughest healable elastomer thus far. The hyper-robust elastomer exhibits superb crack tolerance with unprecedentedly high fracture energy (215.2 kJ m-2 ) that even exceeds that of metals and alloys, and superhigh elastic restorability allowing dimensional recovery from elongation over 12 times. These extraordinary mechanical performances mainly originate from the meticulously engineered hydrogen-bonding segments, consisting of multiple acylsemicarbazide and urethane moieties linked with flexible alicyclic hexatomic spacers. Such hydrogen-bonding segments, incorporated between extensible polymer chains, aggregate to form geometrically confined hydrogen-bond arrays resembling those in spider silk. The hydrogen-bond arrays act as firm but reversible crosslinks and sacrificial bonds for enormous energy dissipation, conferring exceptional mechanical robustness, healability, and recyclability on the elastomer.
Collapse
Affiliation(s)
- Zequan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiyong Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin university, Changchun, 130023, China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
46
|
Chen F, Zhai L, Yang H, Zhao S, Wang Z, Gao C, Zhou J, Liu X, Yu Z, Qin Y, Xu W. Unparalleled Armour for Aramid Fiber with Excellent UV Resistance in Extreme Environment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004171. [PMID: 34194929 PMCID: PMC8224419 DOI: 10.1002/advs.202004171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Indexed: 05/14/2023]
Abstract
Aramid fibers are widely used in many cutting-edge fields, including space, aviation, military, and electronics. However, their poor UV resistance and surface inertness seriously hinder their utilization, especially in harsh environments. Here, a dual-layer ultrathin Al2O3-TiO2 coating with a thickness of 70-180 nm is fabricated on aramid fibers by a modified atomic layer deposition (ALD) method. The tenacity of ALD-coated aramid fibers decreases only by ≈0.85% after exposure to intense UV light (4260 W m-2) under high temperature (>200 ℃) for 90 min, which equals to continuous exposure to sunlight for about 17 500 days. The as-prepared aramid fibers also show excellent laundering durability, thermal and chemical stabilities. This work presents a green and damage-free approach to achieve the highly anti-UV aramid fibers without sacrificing their outstanding performance, which is expected to guide material design for future innovations in functional fibers and devices.
Collapse
Affiliation(s)
- Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering and Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesQingdao UniversityQingdao266071P. R. China
| | - Lisha Zhai
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Huiyu Yang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Shichao Zhao
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of ScienceTaiyuan030001P. R. China
| | - Zonglei Wang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Chong Gao
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Jingyi Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Xin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Zhenwei Yu
- Beijing Advanced Innovation Center for Biomedical Engineering and Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Yong Qin
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of ScienceTaiyuan030001P. R. China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| |
Collapse
|
47
|
Löfstrand A, Jafari Jam R, Mothander K, Nylander T, Mumtaz M, Vorobiev A, Chen WC, Borsali R, Maximov I. Poly(styrene)- block-Maltoheptaose Films for Sub-10 nm Pattern Transfer: Implications for Transistor Fabrication. ACS APPLIED NANO MATERIALS 2021; 4:5141-5151. [PMID: 34308267 PMCID: PMC8290925 DOI: 10.1021/acsanm.1c00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/29/2021] [Indexed: 05/07/2023]
Abstract
Sequential infiltration synthesis (SIS) into poly(styrene)-block-maltoheptaose (PS-b-MH) block copolymer using vapors of trimethyl aluminum and water was used to prepare nanostructured surface layers. Prior to the infiltration, the PS-b-MH had been self-assembled into 12 nm pattern periodicity. Scanning electron microscopy indicated that horizontal alumina-like cylinders of 4.9 nm diameter were formed after eight infiltration cycles, while vertical cylinders were 1.3 nm larger. Using homopolymer hydroxyl-terminated poly(styrene) (PS-OH) and MH films, specular neutron reflectometry revealed a preferential reaction of precursors in the MH compared to PS-OH. The infiltration depth into the maltoheptaose homopolymer film was found to be 2.0 nm after the first couple of cycles. It reached 2.5 nm after eight infiltration cycles, and the alumina incorporation within this infiltrated layer corresponded to 23 vol % Al2O3. The alumina-like material, resulting from PS-b-MH infiltration, was used as an etch mask to transfer the sub-10 nm pattern into the underlying silicon substrate, to an aspect ratio of approximately 2:1. These results demonstrate the potential of exploiting SIS into carbohydrate-based polymers for nanofabrication and high pattern density applications, such as transistor devices.
Collapse
Affiliation(s)
- Anette Löfstrand
- NanoLund
and Solid State Physics, Lund University, SE-221 00 Lund, Sweden
| | - Reza Jafari Jam
- NanoLund
and Solid State Physics, Lund University, SE-221 00 Lund, Sweden
| | - Karolina Mothander
- NanoLund
and Physical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- NanoLund
and Physical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | - Alexei Vorobiev
- Division
for Materials Physics, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Wen-Chang Chen
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Ivan Maximov
- NanoLund
and Solid State Physics, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
48
|
Tu Z, Liu W, Wang J, Qiu X, Huang J, Li J, Lou H. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process. Nat Commun 2021; 12:2916. [PMID: 34006839 PMCID: PMC8131361 DOI: 10.1038/s41467-021-23204-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Artificial muscle materials promise incredible applications in actuators, robotics and medical apparatus, yet the ability to mimic the full characteristics of skeletal muscles into synthetic materials remains a huge challenge. Herein, inspired by the dynamic sacrificial bonds in biomaterials and the self-strengthening of skeletal muscles by physical exercise, high performance artificial muscle material is prepared by rearrangement of sacrificial coordination bonds in the polyolefin elastomer via a repetitive mechanical training process. Biomass lignin is incorporated as a green reinforcer for the construction of interfacial coordination bonds. The prepared artificial muscle material exhibits high actuation strain (>40%), high actuation stress (1.5 MPa) which can lift more than 10,000 times its own weight with 30% strain, characteristics of excellent self-strengthening by mechanical training, strain-adaptive stiffening, and heat/electric programmable actuation performance. In this work, we show a facile strategy for the fabrication of intelligent materials using easily available raw materials.
Collapse
Affiliation(s)
- Zhikai Tu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, P. R. China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, P. R. China.
| | - Jin Wang
- The National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China.
| | - Jinhao Huang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, P. R. China
| | - Jinxing Li
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, P. R. China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|
49
|
La Zara D, Sun F, Zhang F, Franek F, Balogh Sivars K, Horndahl J, Bates S, Brännström M, Ewing P, Quayle MJ, Petersson G, Folestad S, van Ommen JR. Controlled Pulmonary Delivery of Carrier-Free Budesonide Dry Powder by Atomic Layer Deposition. ACS NANO 2021; 15:6684-6698. [PMID: 33769805 PMCID: PMC8155342 DOI: 10.1021/acsnano.0c10040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Ideal controlled pulmonary drug delivery systems provide sustained release by retarding lung clearance mechanisms and efficient lung deposition to maintain therapeutic concentrations over prolonged time. Here, we use atomic layer deposition (ALD) to simultaneously tailor the release and aerosolization properties of inhaled drug particles without the need for lactose carrier. In particular, we deposit uniform nanoscale oxide ceramic films, such as Al2O3, TiO2, and SiO2, on micronized budesonide particles, a common active pharmaceutical ingredient for the treatment of respiratory diseases. In vitro dissolution and ex vivo isolated perfused rat lung tests demonstrate dramatically slowed release with increasing nanofilm thickness, regardless of the nature of the material. Ex situ transmission electron microscopy at various stages during dissolution unravels mostly intact nanofilms, suggesting that the release mechanism mainly involves the transport of dissolution media through the ALD films. Furthermore, in vitro aerosolization testing by fast screening impactor shows a ∼2-fold increase in fine particle fraction (FPF) for each ALD-coated budesonide formulation after 10 ALD process cycles, also applying very low patient inspiratory pressures. The higher FPFs after the ALD process are attributed to the reduction in the interparticle force arising from the ceramic surfaces, as evidenced by atomic force microscopy measurements. Finally, cell viability, cytokine release, and tissue morphology analyses verify a safe and efficacious use of ALD-coated budesonide particles at the cellular level. Therefore, surface nanoengineering by ALD is highly promising in providing the next generation of inhaled formulations with tailored characteristics of drug release and lung deposition, thereby enhancing controlled pulmonary delivery opportunities.
Collapse
Affiliation(s)
- Damiano La Zara
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Feilong Sun
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Fuweng Zhang
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Frans Franek
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- Clinical
Testing and Precision Medicine, Global Procurement, Operations, AstraZeneca, Gothenburg, Sweden
| | - Jenny Horndahl
- Bioscience
COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephanie Bates
- Functional
and Mechanistic Safety, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge U.K.
| | - Marie Brännström
- Drug
Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Pär Ewing
- Drug
Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Michael J. Quayle
- New Modalities
and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Gunilla Petersson
- Innovation
Strategy and External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Staffan Folestad
- Innovation
Strategy and External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - J. Ruud van Ommen
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| |
Collapse
|
50
|
Recent Advances in Sequential Infiltration Synthesis (SIS) of Block Copolymers (BCPs). NANOMATERIALS 2021; 11:nano11040994. [PMID: 33924480 PMCID: PMC8069880 DOI: 10.3390/nano11040994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022]
Abstract
In the continuous downscaling of device features, the microelectronics industry is facing the intrinsic limits of conventional lithographic techniques. The development of new synthetic approaches for large-scale nanopatterned materials with enhanced performances is therefore required in the pursuit of the fabrication of next-generation devices. Self-assembled materials as block copolymers (BCPs) provide great control on the definition of nanopatterns, promising to be ideal candidates as templates for the selective incorporation of a variety of inorganic materials when combined with sequential infiltration synthesis (SIS). In this review, we report the latest advances in nanostructured inorganic materials synthesized by infiltration of self-assembled BCPs. We report a comprehensive description of the chemical and physical characterization techniques used for in situ studies of the process mechanism and ex situ measurements of the resulting properties of infiltrated polymers. Finally, emerging optical and electrical properties of such materials are discussed.
Collapse
|