1
|
Kim M, Kim D, Mirjolet M, Shepelin NA, Lippert T, Choi H, Puigmartí-Luis J, Nelson BJ, Chen XZ, Pané S. Shape-Morphing in Oxide Ceramic Kirigami Nanomembranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404825. [PMID: 39385636 DOI: 10.1002/adma.202404825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Interfacial strain engineering in ferroic nanomembranes can broaden the scope of ferroic nanomembrane assembly as well as facilitate the engineering of multiferroic-based devices with enhanced functionalities. Geometrical engineering in these material systems enables the realization of 3-D architectures with unconventional physical properties. Here, 3-D multiferroic architectures are introduced by incorporating barium titanate (BaTiO3, BTO) and cobalt ferrite (CoFe2O4, CFO) bilayer nanomembranes. Using photolithography and substrate etching techniques, complex 3-D microarchitectures including helices, arcs, and kirigami-inspired frames are developed. These 3-D architectures exhibit remarkable mechanical deformation capabilities, which can be attributed to the superelastic behavior of the membranes and geometric configurations. It is also demonstrated that dynamic shape reconfiguration of these nanomembrane architectures under electron beam exposure showcases their potential as electrically actuated microgrippers and for other micromechanical applications. This research highlights the versatility and promise of multi-dimensional ferroic nanomembrane architectures in the fields of micro actuation, soft robotics, and adaptive structures, paving the way for incorporating these architectures into stimulus-responsive materials and devices.
Collapse
Affiliation(s)
- Minsoo Kim
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Donghoon Kim
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
- PSI Center for Neutron and Muon Sciences, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Mathieu Mirjolet
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Nick A Shepelin
- PSI Center for Neutron and Muon Sciences, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Thomas Lippert
- PSI Center for Neutron and Muon Sciences, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Hongsoo Choi
- Department of Robotics & Mechatronics Engineering, DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Josep Puigmartí-Luis
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, and International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
2
|
Wang J, Shou J, Liu D, Yao Y, Qian Q, Wang Z, Ren J, Zhang B, Chen H, Yu Y, He Z, Zhou N. 3D Printing of Metals with sub-10 µm Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406518. [PMID: 39183518 DOI: 10.1002/smll.202406518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 08/27/2024]
Abstract
The ability to manufacture 3D metallic architectures with microscale resolution is greatly pursued because of their diverse applications in microelectromechanical systems (MEMS) including microelectronics, mechanical metamaterials, and biomedical devices. However, the well-developed photolithography and emerging metal additive manufacturing technologies have limited abilities in manufacturing micro-scaled metallic structures with freeform 3D geometries. Here, for the first time, the high-fidelity fabrication of arbitrary metallic motifs with sub-10 µm resolution is achieved by employing an embedded-writing embedded-sintering (EWES) process. A paraffin wax-based supporting matrix with high thermal stability is developed, which permits the printed silver nanoparticle ink to be pre-sintered at 175 °C to form metallic green bodies. Via carefully regulating the matrix components, the printing resolution is tuned down to ≈7 µm. The green bodies are then embedded in a supporting salt bath and further sintered to realize freeform 3D silver motifs with great structure fidelity. 3D printing of various micro-scaled silver architectures is demonstrated such as micro-spring arrays, BCC lattices, horn antenna, and rotatable windmills. This method can be extended to the high-fidelity 3D printing of other metals and metal oxides which require high-temperature sintering, providing the pathways toward the design and fabrication of 3D MEMS with complex geometries and functions.
Collapse
Affiliation(s)
- Jizhe Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Jiajun Shou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Dongna Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Qilin Qian
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Zhenhua Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Jingbo Ren
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Boyu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hehao Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Yetian Yu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Ziyi He
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
| | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, P. R. China
- Enovate 3D (Hangzhou) Technology Development CO., LTD., 2-606, No. 6 Lianhui Street, Xixing Sub-district, Binjiang District, Hangzhou, Zhejiang, 310051, China
| |
Collapse
|
3
|
Kholuiskaya SN, Siracusa V, Mukhametova GM, Wasserman LA, Kovalenko VV, Iordanskii AL. An Approach to a Silver Conductive Ink for Inkjet Printer Technology. Polymers (Basel) 2024; 16:1731. [PMID: 38932081 PMCID: PMC11207476 DOI: 10.3390/polym16121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Silver-based metal-organic decomposition inks composed of silver salts, complexing agents and volatile solvents are now the subject of much research due to the simplicity and variability of their preparation, their high stability and their relatively low sintering temperature. The use of this type of ink in inkjet printing allows for improved cost-effective and environmentally friendly technology for the production of electrical devices, including flexible electronics. An approach to producing a silver salt-based reactive ink for jet printing has been developed. The test images were printed with an inkjet printer onto polyimide substrates, and two-stage thermal sintering was carried out at temperatures of 60 °C and 100-180 °C. The structure and electrical properties of the obtained conductive lines were investigated. As a result, under optimal conditions an electrically conductive film with low surface resistance of approximately 3 Ω/square can be formed.
Collapse
Affiliation(s)
- Svetlana N. Kholuiskaya
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Gulnaz M. Mukhametova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Luybov A. Wasserman
- Emanuel Institute of Biochemical Physics, RAS, 4 Kosygina St., 119334 Moscow, Russia;
| | - Vladislav V. Kovalenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| |
Collapse
|
4
|
Ragisha CM, Habeeb NM, Grace VL, Varanakkottu SN. Moving Meniscus-Assisted Template-Free Optothermofluidic Nanoparticle Patterning and Its Application in Optothermoconvective Particle Trapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12276-12287. [PMID: 38828930 DOI: 10.1021/acs.langmuir.4c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Moving meniscus-assisted vertical lifting is a commonly employed particle assembly technique to realize large-area particle patterning for the easy fabrication of colloidal photonic crystals and sensors. Though great success has been achieved for large-area patterning, inscribing desired patterns over the target substrate with precise control over the morphology remains a challenge. The target substrates need to be functionalized (physically or chemically) to realize desired patterns, which increases the complexity and limits their applicability to specific particle-liquid combinations. We demonstrate a new approach for the precise patterning of gold nanoparticles (Au NPs, diameter ∼60 nm) over solid substrates by the synergy of light-induced Marangoni flow and vertical lifting process (moving meniscus), without the requirement of photomasks or templates. The core idea relies on the particle accumulation due to light-induced Marangoni flow near the liquid meniscus in contact with a solid surface (due to plasmonic absorption of the particles) and the controlled lifting of the substrate. We present both the simulation and experimental results of the developed patterning technique. Various patterns such as continuous lines, intermittent lines with varying lengths, patterns with continuously varying widths, cross patterns, etc. are successfully inscribed. Dynamic control over the three-dimensional morphology of the deposited patterns is achieved by varying the lifting velocity, laser irradiation time, and lifting direction during the inscription process. Finally, we show the applicability of the developed plasmonically active surface for the large-area parallel manipulation of nonabsorbing microparticles based on optothermoconvective flow. The major advantage of the developed method compared to the existing light-controlled patterning techniques is its ability to inscribe patterns over large distances (up to several centimeters). We expect that the results presented in this paper will benefit different applications requiring precise particle patterning, such as optical elements, sensors, plasmonic substrates, microfluidic master templates, and electronic circuits.
Collapse
Affiliation(s)
- Chetteente Meethal Ragisha
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Nihal Muhammed Habeeb
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Vijayan Lija Grace
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Subramanyan Namboodiri Varanakkottu
- Optofluidics and Interface Science Laboratory, Department of Physics, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
5
|
Aïssa B, Ali A. Piezo inkjet formation of Ag nanoparticles from microdots arrays for surface plasmonic resonance. Sci Rep 2024; 14:4806. [PMID: 38413692 PMCID: PMC10899252 DOI: 10.1038/s41598-024-55188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
The study aims to explore a novel approach for fabricating plasmonic nanostructures to enhance the optical properties and performance of various optoelectronic devices. The research begins by employing a piezo-inkjet printing technique to deposit drops containing Ag nanoparticles (NPs) onto a glass substrate at a predefined equidistance, with the goal of obtaining arrays of Ag microdots (Ag-µdots) on the glass substrate. This process is followed by a thermal annealing treatment. The printing parameters are first optimized to achieve uniform deposition of different sizes of Ag-µdots arrays by controlling the number of Ag ink drops. Subsequently, the printed arrays undergo thermal annealing at various temperatures in air for 60 min, enabling precise and uniform control over nanoparticle formation. The printed Ag nanoparticles are characterized using field emission scanning electron microscopy and atomic force microscopy to analyze their morphological features, ensuring their suitability for plasmonic applications. UV-Vis spectrophotometry is employed to investigate the enhanced surface-plasmonic-resonance properties of the printed AgNPs. Measurements confirm that the equidistant arrays of AgNPs obtained from annealing Ag microdots exhibit enhanced light-matter interaction, leading to a surface plasmon resonance response dependent on the Ag NPs' specific surface area. These enhanced surface plasmonic resonances open avenues for developing cutting-edge optoelectronic devices that leverage the benefits of plasmonic nanostructures, thereby enabling new opportunities for future technological developments across various fields.
Collapse
Affiliation(s)
- Brahim Aïssa
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| | - Adnan Ali
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Korea
| |
Collapse
|
6
|
den Hoed FM, Carlotti M, Palagi S, Raffa P, Mattoli V. Evolution of the Microrobots: Stimuli-Responsive Materials and Additive Manufacturing Technologies Turn Small Structures into Microscale Robots. MICROMACHINES 2024; 15:275. [PMID: 38399003 PMCID: PMC10893381 DOI: 10.3390/mi15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The development of functional microsystems and microrobots that have characterized the last decade is the result of a synergistic and effective interaction between the progress of fabrication techniques and the increased availability of smart and responsive materials to be employed in the latter. Functional structures on the microscale have been relevant for a vast plethora of technologies that find application in different sectors including automotive, sensing devices, and consumer electronics, but are now also entering medical clinics. Working on or inside the human body requires increasing complexity and functionality on an ever-smaller scale, which is becoming possible as a result of emerging technology and smart materials over the past decades. In recent years, additive manufacturing has risen to the forefront of this evolution as the most prominent method to fabricate complex 3D structures. In this review, we discuss the rapid 3D manufacturing techniques that have emerged and how they have enabled a great leap in microrobotic applications. The arrival of smart materials with inherent functionalities has propelled microrobots to great complexity and complex applications. We focus on which materials are important for actuation and what the possibilities are for supplying the required energy. Furthermore, we provide an updated view of a new generation of microrobots in terms of both materials and fabrication technology. While two-photon lithography may be the state-of-the-art technology at the moment, in terms of resolution and design freedom, new methods such as two-step are on the horizon. In the more distant future, innovations like molecular motors could make microscale robots redundant and bring about nanofabrication.
Collapse
Affiliation(s)
- Frank Marco den Hoed
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Marco Carlotti
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Palagi
- BioRobotics Institute, Sant’Anna School of Advanced Studies, P.zza Martiri della Libertà 33, 56127 Pisa, Italy;
| | - Patrizio Raffa
- Smart and Sustainable Polymeric Products, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Virgilio Mattoli
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Via R. Piaggio 34, 56025 Pontedera, Italy;
| |
Collapse
|
7
|
Sakorikar T, Mihaliak N, Krisnadi F, Ma J, Kim TI, Kong M, Awartani O, Dickey MD. A Guide to Printed Stretchable Conductors. Chem Rev 2024; 124:860-888. [PMID: 38291556 DOI: 10.1021/acs.chemrev.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Printing of stretchable conductors enables the fabrication and rapid prototyping of stretchable electronic devices. For such applications, there are often specific process and material requirements such as print resolution, maximum strain, and electrical/ionic conductivity. This review highlights common printing methods and compatible inks that produce stretchable conductors. The review compares the capabilities, benefits, and limitations of each approach to help guide the selection of a suitable process and ink for an intended application. We also discuss methods to design and fabricate ink composites with the desired material properties (e.g., electrical conductance, viscosity, printability). This guide should help inform ongoing and future efforts to create soft, stretchable electronic devices for wearables, soft robots, e-skins, and sensors.
Collapse
Affiliation(s)
- Tushar Sakorikar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikolas Mihaliak
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tae-Il Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, South Korea
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Omar Awartani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
8
|
Huo S, Sheng L, Su B, Xue W, Wang L, Xu H, He X. 3D Printing Manufacturing of Lithium Batteries: Prospects and Challenges toward Practical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310396. [PMID: 37991107 DOI: 10.1002/adma.202310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Indexed: 11/23/2023]
Abstract
The manufacturing and assembly of components within cells have a direct impact on the sample performance. Conventional processes restrict the shapes, dimensions, and structures of the commercially available batteries. 3D printing, a novel manufacturing process for precision and practicality, is expected to revolutionize the lithium battery industry owing to its advantages of customization, mechanization, and intelligence. This technique can be used to effectively construct intricate 3D structures that enhance the designability, integrity, and electrochemical performance of both liquid- and solid-state lithium batteries. In this study, an overview of the development of 3D printing technologies is provided and their suitability for comparison with conventional printing processes is assessed. Various 3D printing technologies applicable to lithium-ion batteries have been systematically introduced, especially more practical composite printing technologies. The practicality, limitations, and optimization of 3D printing are discussed dialectically for various battery modules, including electrodes, electrolytes, and functional architectures. In addition, all-printed batteries are emphatically introduced. Finally, the prospects and challenges of 3D printing in the battery industry are evaluated.
Collapse
Affiliation(s)
- Sida Huo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Li Sheng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Ben Su
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wendong Xue
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Li X, Chen L, Yu G, Song L, Weng D, Ma Y, Wang J. Rapid Fabrication of High-Resolution Flexible Electronics via Nanoparticle Self-Assembly and Transfer Printing. NANO LETTERS 2024; 24:1332-1340. [PMID: 38232321 DOI: 10.1021/acs.nanolett.3c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Printed electronic technology serves as a key component in flexible electronics and wearable devices, yet achieving compatibility with both high resolution and high efficiency remains a significant challenge. Here, we propose a rapid fabrication method of high-resolution nanoparticle microelectronics via self-assembly and transfer printing. The tension gradient-electrostatic attraction composite-induced nanoparticle self-assembly strategy is constructed, which can significantly enhance the self-assembly efficiency, stability, and coverage by leveraging the meniscus Marangoni effect and the electric double-layer effect. The close-packed nanoparticle self-assembly layer can be rapidly formed on microstructure surfaces over a large area. Inspired by ink printing, a transfer printing strategy is further proposed to transform the self-assembly layer into conformal micropatterns. Large-area, high-resolution (2 μm), and ultrathin (1 μm) nanoparticle microelectronics can be stably fabricated, yielding a significant improvement over fluid printing methods. The unique deformability, recoverability, and scalability of nanoparticle microelectronics are revealed, providing promising opportunities for various academic and real applications.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Guoxu Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lele Song
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ding Weng
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Ma
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jiadao Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
10
|
Song M, Kim Y, Baek DS, Kim HY, Gu DH, Li H, Cunning BV, Yang SE, Heo SH, Lee S, Kim M, Lim JS, Jeong HY, Yoo JW, Joo SH, Ruoff RS, Kim JY, Son JS. 3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals. Nat Commun 2023; 14:8460. [PMID: 38123571 PMCID: PMC10733400 DOI: 10.1038/s41467-023-44145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Three-dimensional (3D) microprinting is considered a next-generation manufacturing process for the production of microscale components; however, the narrow range of suitable materials, which include mainly polymers, is a critical issue that limits the application of this process to functional inorganic materials. Herein, we develop a generalised microscale 3D printing method for the production of purely inorganic nanocrystal-based porous materials. Our process is designed to solidify all-inorganic nanocrystals via immediate dispersibility control and surface linking-induced interconnection in the nonsolvent linker bath and thereby creates multibranched gel networks. The process works with various inorganic materials, including metals, semiconductors, magnets, oxides, and multi-materials, not requiring organic binders or stereolithographic equipment. Filaments with a diameter of sub-10 μm are printed into designed complex 3D microarchitectures, which exhibit full nanocrystal functionality and high specific surface areas as well as hierarchical porous structures. This approach provides the platform technology for designing functional inorganics-based porous materials.
Collapse
Affiliation(s)
- Minju Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoonkyum Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Du San Baek
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Da Hwi Gu
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haiyang Li
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea
| | - Benjamin V Cunning
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Seong Eun Yang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Hwae Heo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea
| | - Seunghyun Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minhyuk Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung-Woo Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rodney S Ruoff
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jin Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Jae Sung Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
11
|
Xing W, Wang J, Qian Q, Wang C, Guo H, Tan W, Wu J, Tang H, Qi H, Lin H. Omnidirectional Printing of PEDOT:PSS for High-Conductivity Spanning Structures. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38018535 DOI: 10.1021/acsami.3c14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), a prominent conducting polymer, holds significance in both industry and academia. However, prevailing fabrication techniques struggle to build spanning features of PEDOT:PSS with both high electrical conductivity and fine resolution due to layerwise assembly in the xy plane. Here, we report an "omnidirectional printing and secondary doping" strategy to construct spanning, filamentary and out-of-plane 3D PEDOT:PSS with high conductivity. The pristine PEDOT:PSS suspension is homogeneously concentrated to form a printable ink with high solids (∼15 wt %) consisting of entangled PEDOT:PSS nanofibrils. Such ink shows a high storage modulus G' (43531 Pa) and a high yield stress τy (4325 Pa), thereby enabling omnidirectional printing. Secondary doping with sulfuric acid or other polar solvents is used to induce a synergetic process of PSS loss, conformational change, phase separation, and crystallinity enhancement in the printed structures, resulting in a remarkable enhancement of conductivity in dehydrated (65,378 S/m) and swollen (7190 S/m) states. As a proof-of-concept, 2D grids with a feature size of 15 μm and 3D overhanging arches are fabricated for high-performance transparent glass heaters and 3D interconnection, respectively. This work promises great potential for the development of advanced flexible electronics, wearable devices, and bioelectronics.
Collapse
Affiliation(s)
- Wang Xing
- Advanced Materials Additive Manufacturing Innovation Research Center, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
- Department of Mechanical Engineering, College of Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
| | - Jizhe Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, P. R. China
| | - Qilin Qian
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, P. R. China
| | - Chong Wang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China
| | - Huijun Guo
- Advanced Materials Additive Manufacturing Innovation Research Center, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
- Department of Mechanical Engineering, College of Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
| | - Wei Tan
- Advanced Materials Additive Manufacturing Innovation Research Center, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
- Department of Mechanical Engineering, College of Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
| | - Jinrong Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Huiping Tang
- Advanced Materials Additive Manufacturing Innovation Research Center, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
- Department of Mechanical Engineering, College of Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
| | - Huan Qi
- Advanced Materials Additive Manufacturing Innovation Research Center, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
- Department of Mechanical Engineering, College of Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
| | - He Lin
- Advanced Materials Additive Manufacturing Innovation Research Center, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
- Department of Mechanical Engineering, College of Engineering, Hangzhou City University, Hangzhou, Zhejiang 310015, P. R. China
| |
Collapse
|
12
|
Xu X, Xue P, Gao M, Li Y, Xu Z, Wei Y, Zhang Z, Liu Y, Wang L, Liu H, Cheng B. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: Techniques, applications, and perspectives. Adv Colloid Interface Sci 2023; 321:102987. [PMID: 37852138 DOI: 10.1016/j.cis.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/26/2023] [Indexed: 10/20/2023]
Abstract
The rapid progress in flexible electronic devices has necessitated continual research into nanomaterials, structural design, and fabrication processes. One-dimensional nanowires, characterized by their distinct structures and exceptional properties, are considered essential components for various flexible electronic devices. Considerable attention has been directed toward the assembly of nanowires, which presents significant advantages. Printing and coating techniques can be used to assemble nanowires in a relatively simple, efficient, and cost-competitive manner and exhibit potential for scale-up production in the foreseeable future. This review aims to provide an overview of nanowire assembly using printing and coating techniques, such as bar coating, spray coating, dip coating, blade coating, 3D printing, and so forth. The application of assembled nanowires in flexible electronic devices is subsequently discussed. Finally, further discussion is presented on the potential and challenges of flexible electronic devices based on assembled nanowires via printing and coating.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Pan Xue
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yibin Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zijun Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yu Wei
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhengjian Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
13
|
Brun E, Cottinet PJ, Pelletier A, Ducharne B. Printed Eddy Current Testing Sensors: Toward Structural Health Monitoring Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:8345. [PMID: 37837175 PMCID: PMC10575164 DOI: 10.3390/s23198345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Reliable measurements in structural health monitoring mean for the instrumentation to be set in perfect reproducible conditions. The solution described in this study consists of printing the sensors directly on the parts to be controlled. This method solves the reproducibility issue, limits human error, and can be used in confined or hazardous environments. This work was limited to eddy current testing, but the settings and conclusions are transposable to any non-destructive testing methods (ultrasounds, etc.). The first salve of tests was run to establish the best dielectric and conductive ink combination. The Dupont ink combination gave the best performances. Then, the dispenser- and the screen-printing methods were carried out to print flat spiral coils on flexible substrates. The resulting sensors were compared to flex-printed circuit boards (PCB-flex) using copper for the electrical circuit. The conductive ink methods were revealed to be just as efficient. The last stage of this work consisted of printing sensors on solid parts. For this, 20-turn spiral coils were printed on 3 mm thick stainless-steel plates. The permanent sensors showed good sensibility in the same range as the portative ones, demonstrating the method's feasibility.
Collapse
Affiliation(s)
- Eliott Brun
- LGEF, INSA-Lyon, EA682, University Lyon, 69621 Villeurbanne, France; (E.B.); (P.-J.C.)
| | - Pierre-Jean Cottinet
- LGEF, INSA-Lyon, EA682, University Lyon, 69621 Villeurbanne, France; (E.B.); (P.-J.C.)
| | | | - Benjamin Ducharne
- ELyTMaX UMI 3757, CNRS, Univ. Lyon, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
14
|
Li F, Liu SF, Liu W, Hou ZW, Jiang J, Fu Z, Wang S, Si Y, Lu S, Zhou H, Liu D, Tian X, Qiu H, Yang Y, Li Z, Li X, Lin L, Sun HB, Zhang H, Li J. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals. Science 2023; 381:1468-1474. [PMID: 37769102 DOI: 10.1126/science.adg6681] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.
Collapse
Affiliation(s)
- Fu Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shao-Feng Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Zheng-Wei Hou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jiaxi Jiang
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhong Fu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yilong Si
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hongwei Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yuchen Yang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Zhengcao Li
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Liu B, Liu S, Devaraj V, Yin Y, Zhang Y, Ai J, Han Y, Feng J. Metal 3D nanoprinting with coupled fields. Nat Commun 2023; 14:4920. [PMID: 37582962 PMCID: PMC10427678 DOI: 10.1038/s41467-023-40577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Metallized arrays of three-dimensional (3D) nanoarchitectures offer new and exciting prospects in nanophotonics and nanoelectronics. Engineering these repeating nanoarchitectures, which have dimensions smaller than the wavelength of the light source, enables in-depth investigation of unprecedented light-matter interactions. Conventional metal nanomanufacturing relies largely on lithographic methods that are limited regarding the choice of materials and machine write time and are restricted to flat patterns and rigid structures. Herein, we present a 3D nanoprinter devised to fabricate flexible arrays of 3D metallic nanoarchitectures over areas up to 4 × 4 mm2 within 20 min. By suitably adjusting the electric and flow fields, metal lines as narrow as 14 nm were printed. We also demonstrate the key ability to print a wide variety of materials ranging from single metals, alloys to multimaterials. In addition, the optical properties of the as-printed 3D nanoarchitectures can be tailored by varying the material, geometry, feature size, and periodic arrangement. The custom-designed and custom-built 3D nanoprinter not only combines metal 3D printing with nanoscale precision but also decouples the materials from the printing process, thereby yielding opportunities to advance future nanophotonics and semiconductor devices.
Collapse
Affiliation(s)
- Bingyan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shirong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yuxiang Yin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yueqi Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingui Ai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yaochen Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jicheng Feng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
16
|
Menétrey M, van Nisselroy C, Xu M, Hengsteler J, Spolenak R, Zambelli T. Microstructure-driven electrical conductivity optimization in additively manufactured microscale copper interconnects. RSC Adv 2023; 13:13575-13585. [PMID: 37152573 PMCID: PMC10155493 DOI: 10.1039/d3ra00611e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
As the microelectronics field pushes to increase device density through downscaling component dimensions, various novel micro- and nano-scale additive manufacturing technologies have emerged to expand the small scale design space. These techniques offer unprecedented freedom in designing 3D circuitry but have not yet delivered device-grade materials. To highlight the complex role of processing on the quality and microstructure of AM metals, we report the electrical properties of micrometer-scale copper interconnects fabricated by Fluid Force Microscopy (FluidFM) and Electrohydrodynamic-Redox Printing (EHD-RP). Using a thin film-based 4-terminal testing chip developed for the scope of this study, the electrical resistance of as-printed metals is directly related to print strategies and the specific morphological and microstructural features. Notably, the chip requires direct synthesis of conductive structures on an insulating substrate, which is shown for the first time in the case of FluidFM. Finally, we demonstrate the unique ability of EHD-RP to tune the materials resistivity by one order of magnitude solely through printing voltage. Through its novel electrical characterization approach, this study offers unique insight into the electrical properties of micro- and submicrometer-sized copper interconnects and steps towards a deeper understanding of micro AM metal properties for advanced electronics applications.
Collapse
Affiliation(s)
- Maxence Menétrey
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Cathelijn van Nisselroy
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zürich Gloriastrasse 35 8092 Zürich Switzerland
| | - Mengjia Xu
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zürich Gloriastrasse 35 8092 Zürich Switzerland
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zürich Gloriastrasse 35 8092 Zürich Switzerland
| | - Ralph Spolenak
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zürich Gloriastrasse 35 8092 Zürich Switzerland
| |
Collapse
|
17
|
Yu K, He T. Silver-Nanowire-Based Elastic Conductors: Preparation Processes and Substrate Adhesion. Polymers (Basel) 2023; 15:polym15061545. [PMID: 36987325 PMCID: PMC10058989 DOI: 10.3390/polym15061545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The production of flexible electronic systems includes stretchable electrical interconnections and flexible electronic components, promoting the research and development of flexible conductors and stretchable conductive materials with large bending deformation or torsion resistance. Silver nanowires have the advantages of high conductivity, good transparency and flexibility in the development of flexible electronic products. In order to further prepare system-level flexible systems (such as autonomous full-software robots, etc.), it is necessary to focus on the conductivity of the system's composite conductor and the robustness of the system at the physical level. In terms of conductor preparation processes and substrate adhesion strategies, the more commonly used solutions are selected. Four kinds of elastic preparation processes (pretensioned/geometrically topological matrix, conductive fiber, aerogel composite, mixed percolation dopant) and five kinds of processes (coating, embedding, changing surface energy, chemical bond and force, adjusting tension and diffusion) to enhance the adhesion of composite conductors using silver nanowires as current-carrying channel substrates were reviewed. It is recommended to use the preparation process of mixed percolation doping and the adhesion mode of embedding/chemical bonding under non-special conditions. Developments in 3D printing and soft robots are also discussed.
Collapse
Affiliation(s)
- Kai Yu
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Tian He
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
18
|
Meng L, Wang W, Xu B, Qin J, Zhang K, Liu H. Solution-Processed Flexible Transparent Electrodes for Printable Electronics. ACS NANO 2023; 17:4180-4192. [PMID: 36826227 DOI: 10.1021/acsnano.2c10999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible transparent electrodes (FTEs) have been widely witnessed in various printable electronic devices, especially those involving light. So far, solution processes have demonstrated increasing advantages in preparing FTEs not only in their mild operation conditions and high-throughput but also in the diversity in micropatterning conductive nanomaterials into networks. For the FTEs, both high transparency and high conductivity are desirable, which therefore create requirements for the conductive network by considering the trade-off relationship between the coverage and the micropatterns of the network. In addition, the conductive networks also affect the flexibility of FTEs due to the deformation during bending/stretching. Consequently, solution processes capable of micropatterning conductive nanomaterials including nanoparticles, nanowires/polymers, and graphene/MXene play a crucial role in determining the performance of FTEs. Here, we reviewed recent research progress on solution-processed FTEs, including the solution processes, the solution-processable conductive nanomaterials and the substrates for making FTEs, and applications of FTEs in flexible electronics. Finally, we proposed several perspective outlooks of the FTEs, which aim at not only the enhanced performance but also the performances in extreme conditions and in integration. We believe that the review would offer inspiration for developing functional FTEs.
Collapse
Affiliation(s)
- Lili Meng
- Ji Hua Laboratory, Foshan 528000, Guangdong, P.R. China
- Research Institute for Frontier Science, Beihang University, Beijing 100191, P.R. China
| | - Wei Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Bojie Xu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Ji Qin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Kejie Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Huan Liu
- Ji Hua Laboratory, Foshan 528000, Guangdong, P.R. China
- Research Institute for Frontier Science, Beihang University, Beijing 100191, P.R. China
| |
Collapse
|
19
|
Jodeiri K, Foerster A, Trindade GF, Im J, Carballares D, Fernández-Lafuente R, Pita M, De Lacey AL, Parmenter CD, Tuck C. Additively Manufactured 3D Micro-bioelectrodes for Enhanced Bioelectrocatalytic Operation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:14914-14924. [PMID: 36897174 PMCID: PMC10037242 DOI: 10.1021/acsami.2c20262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The drive toward miniaturization of enzyme-based bioelectronics established a need for three-dimensional (3D) microstructured electrodes, which are difficult to implement using conventional manufacturing processes. Additive manufacturing coupled with electroless metal plating enables the production of 3D conductive microarchitectures with high surface area for potential applications in such devices. However, interfacial delamination between the metal layer and the polymer structure is a major reliability concern, which leads to device performance degradation and eventually device failure. This work demonstrates a method to produce a highly conductive and robust metal layer on a 3D printed polymer microstructure with strong adhesion by introducing an interfacial adhesion layer. Prior to 3D printing, multifunctional acrylate monomers with alkoxysilane (-Si-(OCH3)3) were synthesized via the thiol-Michael addition reaction between pentaerythritol tetraacrylate (PETA) and 3-mercaptopropyltrimethoxysilane (MPTMS) with a 1:1 stoichiometric ratio. Alkoxysilane functionality remains intact during photopolymerization in a projection micro-stereolithography (PμSLA) system and is utilized for the sol-gel reaction with MPTMS during postfunctionalization of the 3D printed microstructure to build an interfacial adhesion layer. This leads to the implementation of abundant thiol functional groups on the surface of the 3D printed microstructure, which can act as a strong binding site for gold during electroless plating to improve interfacial adhesion. The 3D conductive microelectrode prepared by this technique exhibited excellent conductivity of 2.2 × 107 S/m (53% of bulk gold) with strong adhesion between a gold layer and a polymer structure even after harsh sonication and an adhesion tape test. As a proof-of-concept, we examined the 3D gold diamond lattice microelectrode modified with glucose oxidase as a bioanode for a single enzymatic biofuel cell. The lattice-structured enzymatic electrode with high catalytic surface area was able to generate a current density of 2.5 μA/cm2 at 0.35 V, which is an about 10 times increase in current output compared to a cube-shaped microelectrode.
Collapse
Affiliation(s)
- Keyvan Jodeiri
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Aleksandra Foerster
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Gustavo F. Trindade
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Jisun Im
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Diego Carballares
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain
| | - Roberto Fernández-Lafuente
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain
- Center
of Excellence in Bionanoscience Research, Member of the External Scientific
Advisory Board, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Marcos Pita
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain
| | - Antonio L. De Lacey
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain
| | - Christopher D Parmenter
- Nanoscale
and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Christopher Tuck
- Centre
for Additive Manufacturing, Faculty of Engineering, University of
Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
20
|
Jiang B, Jiao H, Guo X, Chen G, Guo J, Wu W, Jin Y, Cao G, Liang Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206055. [PMID: 36658694 PMCID: PMC10037990 DOI: 10.1002/advs.202206055] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The utilization of lignin, the most abundant aromatic biomass component, is at the forefront of sustainable engineering, energy, and environment research, where its abundance and low-cost features enable widespread application. Constructing lignin into material parts with controlled and desired macro- and microstructures and properties via additive manufacturing has been recognized as a promising technology and paves the way to the practical application of lignin. Considering the rapid development and significant progress recently achieved in this field, a comprehensive and critical review and outlook on three-dimensional (3D) printing of lignin is highly desirable. This article fulfils this demand with an overview on the structure of lignin and presents the state-of-the-art of 3D printing of pristine lignin and lignin-based composites, and highlights the key challenges. It is attempted to deliver better fundamental understanding of the impacts of morphology, microstructure, physical, chemical, and biological modifications, and composition/hybrids on the rheological behavior of lignin/polymer blends, as well as, on the mechanical, physical, and chemical performance of the 3D printed lignin-based materials. The main points toward future developments involve hybrid manufacturing, in situ polymerization, and surface tension or energy driven molecular segregation are also elaborated and discussed to promote the high-value utilization of lignin.
Collapse
Affiliation(s)
- Bo Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Huan Jiao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Xinyu Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Jiaqi Guo
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Wenjuan Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Yongcan Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjing210037China
| | - Guozhong Cao
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195‐2120USA
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
21
|
Trahan J, Profili J, Robert-Bigras G, Mitronika M, Richard-Plouet M, Stafford L. Optical response of plasmonic silver nanoparticles after treatment by a warm microwave plasma jet. NANOTECHNOLOGY 2023; 34:195701. [PMID: 36724504 DOI: 10.1088/1361-6528/acb7f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
This work investigates the effect of plasma treatment on the morphology and composition of 15 × 15 mm2silver nanoparticle (70-80 nm) thin films. The silver nanoparticles are deposited onto thermal silica (SiO2/Si) substrates by spin-coating, then they are treated by an open-to-air microwave argon plasma jet characterized by a neutral gas temperature of 2200 ± 200 K. Scanning electron microscopy analysis reveals that the number of isolated nanoparticles in the film sample decreases after exposure to multiple jet passes, and that polygonal structures with sharp corners and edges are produced. Similar structures with much rounder edges are obtained after conventional thermal annealing at temperatures up to 1300 K. Based on localized surface plasmon resonance analysis in the range of 350-800 nm, the main extinction band of silver nanoparticles experiences a redshift after treatment with the plasma jet or with thermal annealing. Moreover, both treatments induce surface oxidation of the nanoparticles, as evidenced by x-ray photoelectron spectroscopy. However, only the plasma-exposed samples exhibit a significant rise in the surface-enhanced Raman scattering (SERS) signal of oxidized silver at 960 cm-1. 29×29μm2mappings of hyperspectral Raman IMAging (RIMA) and multivariate curve resolution analysis by log-likelihood maximization demonstrate that the SERS signal is controlled by large-scale micrometer domains that exhibit sharp corners and edges.
Collapse
Affiliation(s)
- J Trahan
- Département de Physique, Université de Montréal, 1375 ave Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - J Profili
- Département de Physique, Université de Montréal, 1375 ave Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - G Robert-Bigras
- Département de Physique, Université de Montréal, 1375 ave Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - M Mitronika
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - M Richard-Plouet
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - L Stafford
- Département de Physique, Université de Montréal, 1375 ave Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| |
Collapse
|
22
|
Kong X, Li H, Wang J, Wang Y, Zhang L, Gong M, Lin X, Wang D. Direct Writing of Silver Nanowire Patterns with Line Width down to 50 μm and Ultrahigh Conductivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9906-9915. [PMID: 36762969 DOI: 10.1021/acsami.2c22885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct writing of one-dimensional nanomaterials with large aspect ratios into customized, highly conductive, and high-resolution patterns is a challenging task. In this work, thin silver nanowires (AgNWs) with a length-to-diameter ratio of 730 are employed as a representative example to demonstrate a potent direct ink writing (DIW) strategy, in which aqueous inks using a natural polymer, sodium alginate, as the thickening agent can be easily patterned with arbitrary geometries and controllable structural features on a variety of planar substrates. With the aid of a quick spray-and-dry postprinting treatment at room temperature, the electrical conductivity and substrate adhesion of the written AgNWs-patterns improve simultaneously. This simple, environment benign, and low-temperature DIW strategy is effective for depositing AgNWs into patterns that are high-resolution (with line width down to 50 μm), highly conductive (up to 1.26 × 105 S/cm), and mechanically robust and have a large alignment order of NWs, regardless of the substrate's hardness, smoothness, and hydrophilicity. Soft electroadhesion grippers utilizing as-manufactured interdigitated AgNWs-electrodes exhibit an increased shear adhesion force of up to 15.5 kPa at a driving voltage of 3 kV, indicating the strategy is very promising for the decentralized and customized manufacturing of soft electrodes for future soft electronics and robotics.
Collapse
Affiliation(s)
- Xiangyi Kong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hejian Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianping Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yangyang Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongrui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Dadhich P, Kumar P, Roy A, Bitar KN. Advances in 3D Printing Technology for Tissue Engineering. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
24
|
High-resolution 3D printing for healthcare. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
25
|
Ivanišević I, Kovačić M, Zubak M, Ressler A, Krivačić S, Katančić Z, Gudan Pavlović I, Kassal P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234252. [PMID: 36500875 PMCID: PMC9739383 DOI: 10.3390/nano12234252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/14/2023]
Abstract
The large-scale manufacturing of flexible electronics is nowadays based on inkjet printing technology using specially formulated conductive inks, but achieving adequate wetting of different surfaces remains a challenge. In this work, the development of a silver nanoparticle-based functional ink for printing on flexible paper and plastic substrates is demonstrated. Amphiphilic silver nanoparticles with narrow particle size distribution and good dispersibility were prepared via a two-step wet chemical synthesis procedure. First, silver nanoparticles capped with poly(acrylic acid) were prepared, followed by an amidation reaction with 3-morpholynopropylamine (MPA) to increase their lipophilicity. Density functional theory (DFT) calculations were performed to study the interactions between the particles and the dispersion medium in detail. The amphiphilic nanoparticles were dispersed in solvents of different polarity and their physicochemical and rheological properties were determined. A stable ink containing 10 wt% amphiphilic silver nanoparticles was formulated and inkjet-printed on different surfaces, followed by intense pulsed light (IPL) sintering. Low sheet resistances of 3.85 Ω sq-1, 0.57 Ω sq-1 and 19.7 Ω sq-1 were obtained for the paper, coated poly(ethylene terephthalate) (PET) and uncoated polyimide (PI) flexible substrates, respectively. Application of the nanoparticle ink for printed electronics was demonstrated via a simple flexible LED circuit.
Collapse
Affiliation(s)
- Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, P.O. Box 589, 33014 Tampere, Finland
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Iva Gudan Pavlović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
26
|
Polylactide/Carbon Black Segregated Composites for 3D Printing of Conductive Products. Polymers (Basel) 2022; 14:polym14194022. [PMID: 36235970 PMCID: PMC9573264 DOI: 10.3390/polym14194022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
One of the most important directions in the development of additive manufacturing or three-dimensional (3D) printing technologies is the creation of functional materials, which allow not only prototyping but also the manufacturing of products with functional properties. In this paper, poly-lactide acid (PLA) /carbon black (CB) composites with segregated (ordered) structure have been created. Computer simulation based on the Mamunya geometrical model showed that the CB content within φ = 2.5–5 vol.% in the polylactide matrix leads to the formation of a continuous electrically conductive phase with an increase of electrical conductivity σdc above the percolation threshold. The simulation results were experimentally confirmed by optical microscopy and studies of the electrical conductivity of the composites. It was found that increasing CB content from φ = 1 vol.% to φ = 7 vol.% in the composites causes insignificant (due to the segregated structure) phase changes in the polylactide matrix and improves the thermal properties of composites. Electrically conductive filaments for Fused Deposition 3D Printing (FDM) were developed from PLA/CB composites and then 3D printed. A correlation between the electrical conductivity σdc and the CB content φ for base composites, filaments produced from them, and final 3D samples, has been found. Conductivity varies within σdc = 3.1·10−11 − 10·10−3 S/cm for the filaments and σdc = 3.6·10−11 − 8.1·10−4 S/cm for the final 3D-products.
Collapse
|
27
|
Wang C, Chen X, Wang L, Makihata M, Liu HC, Zhou T, Zhao X. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 2022; 377:517-523. [PMID: 35901155 DOI: 10.1126/science.abo2542] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Continuous imaging of internal organs over days could provide crucial information about health and diseases and enable insights into developmental biology. We report a bioadhesive ultrasound (BAUS) device that consists of a thin and rigid ultrasound probe robustly adhered to the skin via a couplant made of a soft, tough, antidehydrating, and bioadhesive hydrogel-elastomer hybrid. The BAUS device provides 48 hours of continuous imaging of diverse internal organs, including blood vessels, muscle, heart, gastrointestinal tract, diaphragm, and lung. The BAUS device could enable diagnostic and monitoring tools for various diseases.
Collapse
Affiliation(s)
- Chonghe Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liu Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tao Zhou
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Paek SW, Balasubramanian S, Stupples D. Composites Additive Manufacturing for Space Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4709. [PMID: 35806833 PMCID: PMC9267820 DOI: 10.3390/ma15134709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
The assembly of 3D printed composites has a wide range of applications for ground preparation of space systems, in-orbit manufacturing, or even in-situ resource utilisation on planetary surfaces. The recent developments in composites additive manufacturing (AM) technologies include indoor experimentation on the International Space Station, and technological demonstrations will follow using satellite platforms on the Low Earth Orbits (LEOs) in the next few years. This review paper surveys AM technologies for varied off-Earth purposes where components or tools made of composite materials become necessary: mechanical, electrical, electrochemical and medical applications. Recommendations are also made on how to utilize AM technologies developed for ground applications, both commercial-off-the-shelf (COTS) and laboratory-based, to reduce development costs and promote sustainability.
Collapse
Affiliation(s)
- Sung Wook Paek
- School of Science & Technology, City University London, Northampton Square, London EC1V 0HB, UK;
| | | | - David Stupples
- School of Science & Technology, City University London, Northampton Square, London EC1V 0HB, UK;
| |
Collapse
|
29
|
Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108855. [PMID: 35246886 DOI: 10.1002/adma.202108855] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.
Collapse
Affiliation(s)
- M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Alianna Maguire
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Neethu T Pottackal
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | | | - Maruf Md Ikram
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
30
|
Kumar V, Kumar P, Deka R, Abbas Z, Mobin SM. Recent Development of Morphology-Controlled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. CHEM REC 2022; 22:e202200067. [PMID: 35686889 DOI: 10.1002/tcr.202200067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Being cognizant of modern electronic devices, the scientists are continuing to investigate renewable green-energy resources for a decade. Amid different energy harvesting systems, the triboelectric nanogenerators (TENGs) have been found to be the most promising mechanical harvesting technology and have drawn attention to generate electrical energy. Thanks to its instant output power, choice to opt for wide-ranging materials, low maintenance cost, easy fabrication process and environmentally friendly nature. Due to numerous working modes of TENGs, it is dedicated to desired application at ambient conditions. In this review, an advance correlation of TENGs have been explained based on the variety of nanostructures, including 0D, 1D, 2D, 3D, metal organic frameworks (MOFs), coordination polymers (CPs), covalent organic frameworks (COFs), and perovskite materials. Moreover, an overview of previous and current perspectives of various nanomaterials, synthesis, fabrication and their applications in potential fields have been discussed in detail.
Collapse
Affiliation(s)
- Viresh Kumar
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Rakesh Deka
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Zahir Abbas
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.,Department of Bioscience and Bio-Medical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.,Center for Electric Vehicle and Intelligent Transport Systems, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
31
|
High-resolution deposition of conductive and insulating materials at micrometer scale on complex substrates. Sci Rep 2022; 12:9327. [PMID: 35665755 PMCID: PMC9167286 DOI: 10.1038/s41598-022-13352-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Additive manufacturing transforms the landscape of modern microelectronics. Recent years have witnessed significant progress in the fabrication of 2D planar structures and free-standing 3D architectures. In this work, we present a much-needed intermediary approach: we introduce the Ultra-Precise Deposition (UPD) technology, a versatile platform for material deposition at micrometer scale on complex substrates. The versality of this approach is related to three aspects: material to be deposited (conductive or insulating), shape of the printed structures (lines, dots, arbitrary shapes), as well as type and shape of the substrate (rigid, flexible, hydrophilic, hydrophobic, substrates with pre-existing features). The process is based on the direct, maskless deposition of high-viscosity materials using narrow printing nozzles with the internal diameter in the range from 0.5 to 10 µm. For conductive structures we developed highly concentrated non-Newtonian pastes based on silver, copper, or gold nanoparticles. In this case, the feature size of the printed structures is in the range from 1 to 10 µm and their electrical conductivity is up to 40% of the bulk value, which is the record conductivity for metallic structures printed with spatial resolution below 10 µm. This result is the effect of the synergy between the printing process itself, formulation of the paste, and the proper sintering of the printed structures. We demonstrate a pathway to print such fine structures on complex substrates. We argue that this versatile and stable process paves the way for a widespread use of additive manufacturing for microfabrication.
Collapse
|
32
|
Methods of Chemical Synthesis in the Synthesis of Nanomaterial and Nanoparticles by the Chemical Deposition Method: A Review. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00996-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Rogkas N, Vakouftsis C, Spitas V, Lagaros ND, Georgantzinos SK. Design Aspects of Additive Manufacturing at Microscale: A Review. MICROMACHINES 2022; 13:mi13050775. [PMID: 35630242 PMCID: PMC9147298 DOI: 10.3390/mi13050775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) technology has been researched and developed for almost three decades. Microscale AM is one of the fastest-growing fields of research within the AM area. Considerable progress has been made in the development and commercialization of new and innovative microscale AM processes, as well as several practical applications in a variety of fields. However, there are still significant challenges that exist in terms of design, available materials, processes, and the ability to fabricate true three-dimensional structures and systems at a microscale. For instance, microscale AM fabrication technologies are associated with certain limitations and constraints due to the scale aspect, which may require the establishment and use of specialized design methodologies in order to overcome them. The aim of this paper is to review the main processes, materials, and applications of the current microscale AM technology, to present future research needs for this technology, and to discuss the need for the introduction of a design methodology. Thus, one of the primary concerns of the current paper is to present the design aspects describing the comparative advantages and AM limitations at the microscale, as well as the selection of processes and materials.
Collapse
Affiliation(s)
- Nikolaos Rogkas
- Laboratory of Machine Design, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zografou, Greece; (N.R.); (C.V.); (V.S.)
| | - Christos Vakouftsis
- Laboratory of Machine Design, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zografou, Greece; (N.R.); (C.V.); (V.S.)
| | - Vasilios Spitas
- Laboratory of Machine Design, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zografou, Greece; (N.R.); (C.V.); (V.S.)
| | - Nikos D. Lagaros
- Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zographou, Greece;
| | - Stelios K. Georgantzinos
- Laboratory for Advanced Materials, Structures and Digitalization, Department of Aerospace Science and Technology, National and Kapodistrian University of Athens, Evripus Campus, 34400 Psachna, Greece
- Correspondence:
| |
Collapse
|
34
|
Zhang Q, Bei HP, Zhao M, Dong Z, Zhao X. Shedding light on 3D printing: Printing photo-crosslinkable constructs for tissue engineering. Biomaterials 2022; 286:121566. [DOI: 10.1016/j.biomaterials.2022.121566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
|
35
|
Li Z, Li H, Zhu X, Peng Z, Zhang G, Yang J, Wang F, Zhang Y, Sun L, Wang R, Zhang J, Yang Z, Yi H, Lan H. Directly Printed Embedded Metal Mesh for Flexible Transparent Electrode via Liquid Substrate Electric-Field-Driven Jet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105331. [PMID: 35233960 PMCID: PMC9108624 DOI: 10.1002/advs.202105331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Indexed: 05/22/2023]
Abstract
Flexible transparent electrodes (FTEs) with embedded metal meshes play an indispensable role in many optoelectronic devices due to their excellent mechanical stability and environmental adaptability. However, low-cost, simple, efficient, and environmental friendly integrated manufacturing of high-performance embedded metal meshes remains a huge challenge. Here, a facile and novel fabrication method is proposed for FTEs with an embedded metal mesh via liquid substrateelectric-field-driven microscale 3D printing process. This direct printing strategy avoids tedious processes and offers low-cost and high-volume production, enabling the fabrication of high-resolution, high-aspect ratio embedded metal meshes without sacrificing transparency. The final manufactured FTEs with 80 mm × 80 mm embedded metal mesh offers excellent optoelectronic performance with a sheet resistance (Rs ) of 6 Ω sq-1 and a transmittance (T) of 85.79%. The embedded metal structure still has excellent mechanical stability and good environmental suitability under different harsh working conditions. The practical feasibility of the FTEs is successfully demonstrated with a thermally driven 4D printing structure and a resistive transparent strain sensor. This method can be used to manufacture large areas with facile, high-efficiency, low-cost, and high-performance FTEs.
Collapse
Affiliation(s)
- Zhenghao Li
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Hongke Li
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Zilong Peng
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Guangming Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Jianjun Yang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Fei Wang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Yuan‐Fang Zhang
- Shien‐Ming Wu School of Intelligent EngineeringSouth China University of TechnologyGuangzhou511442China
| | - Luanfa Sun
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Rui Wang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Jinbao Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Zhongming Yang
- School of Information Science and Engineering and Shandong Provincial Key Laboratory of Laser Technology and ApplicationShandong UniversityQingdao266327China
| | - Hao Yi
- State Key Laboratory of Mechanical TransmissionChongqing UniversityChongqing400044China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| |
Collapse
|
36
|
Zhao W, Yan Y, Chen X, Wang T. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning. Innovation (N Y) 2022; 3:100253. [PMID: 35602121 PMCID: PMC9117940 DOI: 10.1016/j.xinn.2022.100253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Functional nanoparticles (NPs) with unique photoelectric, mechanical, magnetic, and chemical properties have attracted considerable attention. Aggregated NPs rather than individual NPs are generally required for sensing, electronics, and catalysis. However, the transformation of functional NP aggregates into scalable, controllable, and affordable functional devices remains challenging. Printing is a promising additive manufacturing technology for fabricating devices from NP building blocks because of its capabilities for rapid prototyping and versatile multifunctional manufacturing. This paper reviews recent advances in NP patterning based on the combination of self-assembly and printing technologies (including two-, three-, and four-dimensional printing), introduces the basic characteristics of these methods, and discusses various fields of NP patterning applications. Nanoparticles (NPs) printing assembly is a good solution for patterned devices NPs assembly can be combined with 2D, 3D, and 4D printing technologies A variety of ink-dispersed NPs are available for printing assembly NPs printing assembly technology is applied for nanosensing, energy storage, photodetector
Collapse
Affiliation(s)
- Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanling Yan
- National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- Corresponding author
| |
Collapse
|
37
|
Bachmann AL, Hanrahan B, Dickey MD, Lazarus N. Self-Folding PCB Kirigami: Rapid Prototyping of 3D Electronics via Laser Cutting and Forming. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14774-14782. [PMID: 35297602 DOI: 10.1021/acsami.2c01027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper demonstrates laser forming, localized heating with a laser to induce plastic deformation, can self-fold 2D printed circuit boards (PCBs) into 3D structures with electronic function. There are many methods for self-folding but few are compatible with electronic materials. We use a low-cost commercial laser writer to both cut and fold a commercial flexible PCB. Laser settings are tuned to select between cutting and folding with higher power resulting in cutting and lower power resulting in localized heating for folding into 3D shapes. Since the thin copper traces used in commercial PCBs are highly reflective and difficult to directly fold, two approaches are explored for enabling folding: plating with a nickel/gold coating or using a single, high-power laser exposure to oxidize the surface and improve laser absorption. We characterized the physical effect of the exposure on the sample as well as the fold angle as a function of laser passes and demonstrate the ability to lift weights comparable with circuit packages and passive components. This technique can form complex, multifold structures with integrated electronics; as a demonstrator, we fold a commercial board with a common timing circuit. Laser forming to add a third dimension to printed circuit boards is an important technology to enable the rapid prototyping of complex 3D electronics.
Collapse
Affiliation(s)
- Adam L Bachmann
- Oak Ridge Associated Universities (ORAU) Fellowship Program at U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brendan Hanrahan
- Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nathan Lazarus
- Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| |
Collapse
|
38
|
Xu K, Li D, Shang E, Liu Y. A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity. Polymers (Basel) 2022; 14:polym14071323. [PMID: 35406197 PMCID: PMC9002618 DOI: 10.3390/polym14071323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
In response to the fact that most of the current research on silicone 3D printing suffers from structure collapse and dimensional mismatch, this paper proposes a heating-assisted direct writing printing method for commercial silicone rubber materials for preparing silicone foam with enhanced fidelity. In the experimental processes, the effects of substrate temperature, printing pressure, and printing speed on the filament width were investigated using a controlled variable method. The results showed the following: (1) the diameter of silicone rubber filaments was positively correlated with the printing pressure and substrate temperature, but negatively correlated with the printing speed; (2) the filament collapse of the large filament spaced foams was significantly improved by the addition of the thermal field, which, in turn, improved the mechanical properties and manufacturing stability of the silicon foams. The heating-assisted direct writing process in this paper can facilitate the development of the field of microelectronics and the direct printing of biomaterials.
Collapse
Affiliation(s)
- Kang Xu
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Dongya Li
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Erwei Shang
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Liu
- School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; (K.X.); (D.L.); (E.S.)
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
39
|
Yuan Y, Jiang L, Li X, Zuo P, Zhang X, Lian Y, Ma Y, Liang M, Zhao Y, Qu L. Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110013. [PMID: 35072957 DOI: 10.1002/adma.202110013] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Indexed: 05/21/2023]
Abstract
Ultratransparent electrodes have attracted considerable attention in optoelectronics and energy technology. However, balancing energy storage capability and transparency remains challenging. Herein, an in situ strategy employing a temporally and spatially shaped femtosecond laser is reported for photochemically synthesizing of MXene quantum dots (MQDs) uniformly attached to laser reduced graphene oxide (LRGO) with exceptional electrochemical capacitance and ultrahigh transparency. The mechanism and plasma dynamics of the synthesis process are analyzed and observed at the same time. The unique MQDs loaded on LRGO greatly improve the specific surface area of the electrode due to the nanoscale size and additional edge states. The MQD/LRGO supercapacitor has high flexibility and durability, ultrahigh energy density (2.04 × 10-3 mWh cm-2 ), long cycle life (97.6% after 12 000 cycles), and excellent capacitance (10.42 mF cm-2 ) with both high transparency (transmittance over 90%) and high performance. Furthermore, this method provides a means of preparing nanostructured composite electrode materials and exploiting quantum capacitance effects for energy storage.
Collapse
Affiliation(s)
- Yongjiu Yuan
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Lan Jiang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Xin Li
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Pei Zuo
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Xueqiang Zhang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Yiling Lian
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Yunlong Ma
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Misheng Liang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 10081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Yang Zhao
- Key Laboratory of Cluster Science Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Liangti Qu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
40
|
Park Y, Yun I, Chung WG, Park W, Lee DH, Park J. High-Resolution 3D Printing for Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104623. [PMID: 35038249 PMCID: PMC8922115 DOI: 10.1002/advs.202104623] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/04/2021] [Indexed: 05/17/2023]
Abstract
The ability to form arbitrary 3D structures provides the next level of complexity and a greater degree of freedom in the design of electronic devices. Since recent progress in electronics has expanded their applicability in various fields in which structural conformability and dynamic configuration are required, high-resolution 3D printing technologies can offer significant potential for freeform electronics. Here, the recent progress in novel 3D printing methods for freeform electronics is reviewed, with providing a comprehensive study on 3D-printable functional materials and processes for various device components. The latest advances in 3D-printed electronics are also reviewed to explain representative device components, including interconnects, batteries, antennas, and sensors. Furthermore, the key challenges and prospects for next-generation printed electronics are considered, and the future directions are explored based on research that has emerged recently.
Collapse
Affiliation(s)
- Young‐Geun Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Insik Yun
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Won Gi Chung
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Wonjung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Dong Ha Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Jang‐Ung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
41
|
Chen H, Min X, Hui Y, Qin W, Zhang B, Yao Y, Xing W, Zhang W, Zhou N. Colloidal oxide nanoparticle inks for micrometer-resolution additive manufacturing of three-dimensional gas sensors. MATERIALS HORIZONS 2022; 9:764-771. [PMID: 34889925 DOI: 10.1039/d1mh01021b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micrometer-resolution 3D printing of functional oxides is of growing importance for the fabrication of micro-electromechanical systems (MEMSs) with customized 3D geometries. Compared to conventional microfabrication methods, additive manufacturing presents new opportunities for the low-cost, energy-saving, high-precision, and rapid manufacturing of electronics with complex 3D architectures. Despite these promises, methods for printable oxide inks are often hampered by challenges in achieving the printing resolution required by today's MEMS electronics and integration capabilities with various other electronic components. Here, a novel, facile ink design strategy is presented to overcome these challenges. Specifically, we first prepare a high-solid loading (∼78 wt%) colloidal suspension that contains polyethyleneimine (PEI)-coated stannic dioxide (SnO2) nanoparticles, followed by PEI desorption that is induced by nitric acid (HNO3) titration to optimize the rheological properties of the printable inks. Our achieved ∼3-5 μm printing resolution is at least an order of magnitude higher than those of other printed oxide studies employing nanoparticle ink-based printing methods demonstrated previously. Finally, various SnO2 structures were directly printed on a MEMS-based microelectrode for acetylene detection application. The gas sensitivity measurements reveal that the device performance is strongly dependent on the printed SnO2 structures. Specifically, the 3D structured SnO2 gas sensor exhibits the highest response of ∼ 29.9 to 100 ppm acetylene with the fastest total response time of ∼ 65.8 s. This work presents a general ink formulation and printing strategy for functional oxides, which further provides a pathway for the additive manufacturing of oxide-based MEMSs.
Collapse
Affiliation(s)
- Hehao Chen
- Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, P. R. China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, P. R. China
| | - Xinjie Min
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Yue Hui
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, P. R. China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, P. R. China
| | - Weiwei Qin
- School of Instrument Science and Opto-electronics Engineering and Institute of Sensor Technology, Hefei university of technology, 193 Tunxi Road, Hefei 230009, P. R. China.
| | - Boyu Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, P. R. China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, P. R. China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, P. R. China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, P. R. China
| | - Wang Xing
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, P. R. China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, P. R. China
| | - Wei Zhang
- School of Instrument Science and Opto-electronics Engineering and Institute of Sensor Technology, Hefei university of technology, 193 Tunxi Road, Hefei 230009, P. R. China.
| | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, P. R. China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, P. R. China
| |
Collapse
|
42
|
Lu Q, Zhou Y, Yin X, Cao S, Wang X, Kong D. A Printable and Conductive Yield-Stress Fluid as an Ultrastretchable Transparent Conductor. Research (Wash D C) 2022; 2021:9874939. [PMID: 34993489 PMCID: PMC8696283 DOI: 10.34133/2021/9874939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/14/2021] [Indexed: 11/25/2022] Open
Abstract
In contrast to ionically conductive liquids and gels, a new type of yield-stress fluid featuring reversible transitions between solid and liquid states is introduced in this study as a printable, ultrastretchable, and transparent conductor. The fluid is formulated by dispersing silica nanoparticles into the concentrated aqueous electrolyte. The as-printed features show solid-state appearances to allow facile encapsulation with elastomers. The transition into liquid-like behavior upon tensile deformations is the enabler for ultrahigh stretchability up to the fracture strain of the elastomer. Successful integrations of yield-stress fluid electrodes in highly stretchable strain sensors and light-emitting devices illustrate the practical suitability. The yield-stress fluid represents an attractive building block for stretchable electronic devices and systems in terms of giant deformability, high ionic conductivity, excellent optical transmittance, and compatibility with various elastomers.
Collapse
Affiliation(s)
- Qianying Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Yunlei Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Xiangfei Yin
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Shitai Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
| |
Collapse
|
43
|
Huang Q, Zhu Y. Patterning of Metal Nanowire Networks: Methods and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60736-60762. [PMID: 34919389 DOI: 10.1021/acsami.1c14816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the advance in flexible and stretchable electronics, one-dimensional nanomaterials such as metal nanowires have drawn much attention in the past 10 years or so. Metal nanowires, especially silver nanowires, have been recognized as promising candidate materials for flexible and stretchable electronics. Owing to their high electrical conductivity and high aspect ratio, metal nanowires can form electrical percolation networks, maintaining high electrical conductivity under deformation (e.g., bending and stretching). Apart from coating metal nanowires for making large-area transparent conductive films, many applications require patterned metal nanowires as electrodes and interconnects. Precise patterning of metal nanowire networks is crucial to achieve high device performances. Therefore, a high-resolution, designable, and scalable patterning of metal nanowire networks is important but remains a critical challenge for fabricating high-performance electronic devices. This review summarizes recent advances in patterning of metal nanowire networks, using subtractive methods, additive methods of nanowire dispersions, and printing methods. Representative device applications of the patterned metal nanowire networks are presented. Finally, challenges and important directions in the area of the patterning of metal nanowire networks for device applications are discussed.
Collapse
Affiliation(s)
- Qijin Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
44
|
Cordonier GJ, Sharafati C, Mays S, Thackery L, Gemmen E, Cyphert S, Brown M, Napolillo JQ, Toney S, Moore H, Kuhlman JM, Sierros KA. Direct foam writing in microgravity. NPJ Microgravity 2021; 7:55. [PMID: 34934072 PMCID: PMC8692601 DOI: 10.1038/s41526-021-00185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Herein we report 2D printing in microgravity of aqueous-based foams containing metal oxide nanoparticles. Such hierarchical foams have potential space applications, for example for in situ habitat repair work, or for UV shielding. Foam line patterns of a TiO2-containing foam have been printed onto glass substrates via Direct Foam Writing (DFW) under microgravity conditions through a parabolic aircraft flight. Initial characterization of the foam properties (printed foam line width, bubble size, etc.) are presented. It has been found that gravity plays a significant role in the process of direct foam writing. The foam spread less over the substrate when deposited in microgravity as compared to Earth gravity. This had a direct impact on the cross-sectional area and surface roughness of the printed lines. Additionally, the contact angle of deionized water on a film exposed to microgravity was higher than that of a film not exposed to microgravity, due to the increased surface roughness of films exposed to microgravity.
Collapse
Affiliation(s)
- Guy Jacob Cordonier
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Cicely Sharafati
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Spencer Mays
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Lukas Thackery
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Ellena Gemmen
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Samuel Cyphert
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Megan Brown
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - John Quinn Napolillo
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Savannah Toney
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Hunter Moore
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - John M Kuhlman
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Konstantinos A Sierros
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
45
|
Qu CC, Sun XY, Sun WX, Cao LX, Wang XQ, He ZZ. Flexible Wearables for Plants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104482. [PMID: 34796649 DOI: 10.1002/smll.202104482] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Indexed: 05/27/2023]
Abstract
The excellent stretchability and biocompatibility of flexible sensors have inspired an emerging field of plant wearables, which enable intimate contact with the plants to continuously monitor the growth status and localized microclimate in real-time. Plant flexible wearables provide a promising platform for the development of plant phenotype and the construction of intelligent agriculture via monitoring and regulating the critical physiological parameters and microclimate of plants. Here, the emerging applications of plant flexible wearables together with their pros and cons from four aspects, including physiological indicators, surrounding environment, crop quality, and active control of growth, are highlighted. Self-powered energy supply systems and signal transmission mechanisms are also elucidated. Furthermore, the future opportunities and challenges of plant wearables are discussed in detail.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing, 100083, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
- Sanya Institute of China Agricultural University, China Agricultural University, Hainan, 572000, China
| | - Xu-Yang Sun
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Wen-Xiu Sun
- College of Engineering, China Agricultural University, Beijing, 100083, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Ling-Xiao Cao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi-Qing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
46
|
Hussain N, Jan Nazami M, Ma C, Hirtz M. High-precision tabletop microplotter for flexible on-demand material deposition in printed electronics and device functionalization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:125104. [PMID: 34972400 DOI: 10.1063/5.0061331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Microstructuring, in particular, the additive functionalization of surfaces with, e.g., conductive or bioactive materials plays a crucial role in many applications in sensing or printed electronics. Mostly, the lithography steps are made prior to assembling functionalized surfaces into the desired places of use within a bigger device as a microfluidic channel or an electronic casing. However, when this is not possible, most lithography techniques struggle with access to recessed or inclined/vertical surfaces for geometrical reasons. In particular, for "on-the-fly" printing aiming to add microstructures to already existing devices on demand and maybe even for one-time trials, e.g., in prototyping, a flexible "micropencil" allowing for direct write under direct manual control and on arbitrarily positioned surfaces would be highly desirable. Here, we present a highly flexible, micromanipulator-based setup for capillary printing of conductive and biomaterial ink formulations that can address a wide range of geometries as exemplified on vertical, recessed surfaces and stacked 3D scaffolds as models for hard to access surfaces. A wide range of feature sizes from tens to hundreds of micrometer can be obtained by the choice of capillary sizes and the on-demand in situ writing capabilities are demonstrated with completion of a circuit structure by gold line interconnects deposited with the setup.
Collapse
Affiliation(s)
- Navid Hussain
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mohammad Jan Nazami
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chunyan Ma
- College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
47
|
Zeng M, Zavanelli D, Chen J, Saeidi-Javash M, Du Y, LeBlanc S, Snyder GJ, Zhang Y. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem Soc Rev 2021; 51:485-512. [PMID: 34761784 DOI: 10.1039/d1cs00490e] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices.
Collapse
Affiliation(s)
- Minxiang Zeng
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Duncan Zavanelli
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA.
| | - Jiahao Chen
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Mortaza Saeidi-Javash
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yipu Du
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Saniya LeBlanc
- Department of Mechanical & Aerospace Engineering, George Washington University, 801 22nd St. NW, Suite 739, Washington, DC 20052, USA
| | - G Jeffrey Snyder
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA.
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
48
|
Yi N, Gao Y, Verso AL, Zhu J, Erdely D, Xue C, Lavelle R, Cheng H. Fabricating functional circuits on 3D freeform surfaces via intense pulsed light-induced zinc mass transfer. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:24-34. [PMID: 35177951 PMCID: PMC8846415 DOI: 10.1016/j.mattod.2021.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Deployment of functional circuits on a 3D freeform surface is of significant interest to wearable devices on curvilinear skin/tissue surfaces or smart Internet-of-Things with sensors on 3D objects. Here we present a new fabrication strategy that can directly print functional circuits either transient or long-lasting onto freeform surfaces by intense pulsed light-induced mass transfer of zinc nanoparticles (Zn NPs). The intense pulsed light can locally raise the temperature of Zn NPs to cause evaporation. Lamination of a kirigami-patterned soft semi-transparent polymer film with Zn NPs conforming to a 3D surface results in condensation of Zn NPs to form conductive yet degradable Zn patterns onto a 3D freeform surface for constructing transient electronics. Immersing the Zn patterns into a copper sulfate or silver nitrate solution can further convert the transient device to a long-lasting device with copper or silver. Functional circuits with integrated sensors and a wireless communication component on 3D glass beakers and seashells with complex surface geometries demonstrate the viability of this manufacturing strategy.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Antonino Lo Verso
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jia Zhu
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniel Erdely
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cuili Xue
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road, Shanghai 200240, China
| | - Robert Lavelle
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
49
|
Chortos A. Extrusion
3D
printing of conjugated polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alex Chortos
- Department of Mechanical Engineering Purdue University West Lafayette Indiana USA
| |
Collapse
|
50
|
Chen ZY, Cao HZ, Cao LC, Fang G, Duan XM. Femtosecond laser trapping nanoprinting of silver micro/nanostructures. NANOTECHNOLOGY 2021; 32:505303. [PMID: 34555813 DOI: 10.1088/1361-6528/ac297f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In this paper, silver micro/nanostructures composed of sintered nanoparticles were printed by capturing silver nanoparticles in water with 800 nm femtosecond laser trapping. Relationships of laser power, scanning speed, nanoparticle concentration, and the width and morphology of fabricated silver wire were systematically investigated. It is found that low scanning speed and high nanoparticle concentration favor the printing of silver wire with good morphology. A silver wire with width of 305 nm was printed. Electrical resistivities of printed wires are about 24 times that of bulk silver. Silver grid structures and dot arrays were printed by using this technology. Several three-dimensional silver cuboid structures were also printed. This work provides a protocol for printing of three-dimensional metallic micro/nanostructures using laser trapping. These printed structures have great application prospects in metamaterials, flexible electronics, and SERS.
Collapse
Affiliation(s)
- Zhong-Yun Chen
- Chongqing Key Laboratory of Additive Manufacturing Technology and Systems, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
- Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Hong-Zhong Cao
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Laser Institute, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Liang-Cheng Cao
- Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Gan Fang
- Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Xuan-Ming Duan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|