1
|
Nagashima H, Shayne J, Jiang K, Petermann F, Pękowska A, Kanno Y, O'Shea JJ. Remodeling of Il4-Il13-Il5 locus underlies selective gene expression. Nat Immunol 2024; 25:2220-2233. [PMID: 39567762 DOI: 10.1038/s41590-024-02007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci.
Collapse
Affiliation(s)
| | - Justin Shayne
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Franziska Petermann
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
- NGS Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Aleksandra Pękowska
- Genomics and Immunity Section, NIAMS, NIH, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Heredia M, Barendregt DMH, Tindemans I, Klomberg RCW, Aardoom MA, Calado B, Costes LMM, Joosse ME, Hulleman-van Haaften DH, Tuk B, van Berkel LA, Kemos P, Ruemmele FM, Croft NM, Escher JC, de Ridder L, Samsom JN. Gut-homing and intestinal TIGIT negCD38 + memory T cells acquire an IL-12-induced, ex-Th17 pathogenic phenotype in a subgroup of Crohn's disease patients with a severe disease course. Mucosal Immunol 2024:S1933-0219(24)00116-8. [PMID: 39586377 DOI: 10.1016/j.mucimm.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
CD4+ memory T cell (TM) reactivation drives chronicity in inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis. Defects driving loss of TM regulation likely differ between patients but remain undefined. In health, approximately 40 % of circulating gut-homing CD38+TM express co-inhibitory receptor T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT). TIGIT+CD38+TM have regulatory function while TIGITnegCD38+TM are enriched in IFN-γ-producing cells. We hypothesized TIGITnegCD38+TM are inflammatory and drive disease in a subgroup of IBD patients. We characterized TIGIT+CD38+TM in a uniquely large cohort of pediatric IBD patients from time of diagnosis into adulthood. Circulating TIGITnegCD38+TM frequencies were higher in a subgroup of therapy-naïve CD patients with high plasma IFN-γ and a more severe disease course. TIGITnegCD38+TM were highly enriched in HLA-DR+ and ex-Th17/Th1-like cells, high producers of IFN-γ. Cultures of healthy-adult-stimulated TM identified IL-12 as the only IBD-related inflammatory cytokine to drive the pathogenic ex-Th17-TIGITnegCD38+ phenotype. Moreover, IL12RB2 mRNA expression was higher in TIGITnegCD38+TM than TIGIT+CD38+TM, elevated in CD biopsies compared to controls, and correlated with severity of intestinal inflammation. Overall, we argue that in a subgroup of pediatric CD, increased IL-12 signaling drives reprogramming of Th17 to inflammatory Th1-like TIGITnegCD38+TM and causes more severe disease.
Collapse
Affiliation(s)
- Maud Heredia
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Daniëlle M H Barendregt
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Irma Tindemans
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Renz C W Klomberg
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martine A Aardoom
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Beatriz Calado
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Léa M M Costes
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maria E Joosse
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Daniëlle H Hulleman-van Haaften
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Bastiaan Tuk
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lisette A van Berkel
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Polychronis Kemos
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Frank M Ruemmele
- Department of Pediatric Gastroenterology, Necker-Enfants Malades University Hospital, Institut Imagine, AP-HP, Université de Paris, Paris, France
| | - Nicholas M Croft
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lissy de Ridder
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Iqbal J, Inghirami G, Chan WC. New insights into the biology of T-cell lymphomas. Blood 2024; 144:1873-1886. [PMID: 39213420 PMCID: PMC11551850 DOI: 10.1182/blood.2023021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Peripheral T-cell lymphomas (PTCLs) encompass a heterogeneous group of postthymic T-cell lymphomas with >30 distinct subtypes associated with varied clinicopathological features. Unfortunately, the overall survival of the major PTCL subtypes is dismal and has not improved for decades; thus, there is an urgent unmet clinical need to improve diagnosis, therapies, and clinical outcomes. The diagnosis is often challenging, requiring a combinatorial evaluation of clinical, morphologic, and immunophenotypic features. PTCL pathobiology is difficult to investigate due to enormous intertumor and intratumor heterogeneity, limited tissue availability, and the paucity of authentic T-cell lymphoma cell lines or genetically faithful animal models. The application of transcriptomic profiling and genomic sequencing has markedly accelerated the discovery of new biomarkers, molecular signatures, and genetic lesions, and some of the discoveries have been included in the revised World Health Organization or International Consensus Classification. Genome-wide investigations have revealed the mutational landscape and transcriptomic profiles of PTCL entities, defined the cell of origin as a major determinant of T-cell lymphoma biology, and allowed for the refinement of biologically and clinically meaningful entities for precision therapy. In this review, we prioritize the discussion on common nodal PTCL subtypes together with 2 virus-associated T-cell and natural killer cell lymphomas. We succinctly review normal T-cell development, differentiation, and T-cell receptor signaling as they relate to PTCL pathogenesis and biology. This review will facilitate a better biological understanding of the different PTCL entities and their stratification for additional studies and target-directed clinical trials.
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
5
|
Huo MH, Adeerjiang Y, Abulitipu A, Khan U, Li XX, Zhang L, Tian Y, Jiang S, Xu CC, Chao XZ, Yang YF, Zhang JX, Du GL. Th17/Treg cell balance in patients with papillary thyroid carcinoma: a new potential biomarker and therapeutic target. Front Oncol 2024; 14:1325575. [PMID: 39534095 PMCID: PMC11554530 DOI: 10.3389/fonc.2024.1325575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid carcinoma. The most effective treatment for PTC is surgical resection, and patients who undergo surgery have good survival outcomes, but some patients have distant metastasis or even multiorgan metastases at the time of initial diagnosis. Distant metastasis is associated with poorer prognosis and a higher mortality rate. Helper T lymphocyte 17 (Th17) cells and regulatory T lymphocytes (Tregs) play different roles in PTC, and the Th17/Treg balance is closely related to the progression of PTC. Th17 cells play anticancer roles, whereas Tregs play cancer-promoting roles. A Th17/Treg imbalance promotes tumor progression and accelerates invasive behaviors such as tumor metastasis. Th17/Treg homeostasis can be regulated by the TGF-β/IL-2 and IL-6 cytokine axes. Immune checkpoint inhibitors contribute to Treg/Th17 cell homeostasis. For PTC, monoclonal antibodies against CTLA-4, PD-1 and PD-L1 inhibit the activation of Tregs, reversing the Th17/Treg cell imbalance and providing a new option for the prevention and treatment of PTC. This article reviews the role of Tregs and Th17 cells in PTC and their potential targets, aiming to provide better treatment options for PTC.
Collapse
Affiliation(s)
- Meng-Han Huo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Gastroenterology and Endocrinology, Tianjin Haihe Hospital, Tianjin, China
| | - Yilinuer Adeerjiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ayiguzhali Abulitipu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Umair Khan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xin-Xi Li
- Department of Endocrine Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Zhang
- Department of Endocrine Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ye Tian
- Department of Endocrine Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Sheng Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Can-Can Xu
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xian-Zhen Chao
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ye-Fan Yang
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin-Xia Zhang
- First Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guo-Li Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Endocrinology, Bayingolin Mongolian Autonomous Prefecture People's Hospital, Kuerle, China
| |
Collapse
|
6
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2024:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Mesaros O, Onciul M, Matei E, Joldes C, Jimbu L, Neaga A, Serban O, Zdrenghea M, Nanut AM. Macrophages as Potential Therapeutic Targets in Acute Myeloid Leukemia. Biomedicines 2024; 12:2306. [PMID: 39457618 PMCID: PMC11505058 DOI: 10.3390/biomedicines12102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous malignant hemopathy, and although new drugs have emerged recently, current treatment options still show limited efficacy. Therapy resistance remains a major concern due to its contribution to treatment failure, disease relapse, and increased mortality among patients. The underlying mechanisms of resistance to therapy are not fully understood, and it is crucial to address this challenge to improve therapy. Macrophages are immune cells found within the bone marrow microenvironment (BMME), of critical importance for leukemia development and progression. One defining feature of macrophages is their plasticity, which allows them to adapt to the variations in the microenvironment. While this adaptability is advantageous during wound healing, it can also be exploited in cancer scenarios. Thus, clinical and preclinical investigations that target macrophages as a therapeutic strategy appear promising. Existing research indicates that targeting macrophages could enhance the effectiveness of current AML treatments. This review addresses the importance of macrophages as therapeutic targets including relevant drugs investigated in clinical trials such as pexidartinib, magrolimab or bexmarilimab, but also provides new insights into lesser-known therapies, like macrophage receptor with a collagenous structure (MACRO) inhibitors and Toll-like receptor (TLR) agonists.
Collapse
Affiliation(s)
- Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Madalina Onciul
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
| | - Emilia Matei
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Pathology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 19-21 Croitorilor Str., 400162 Cluj-Napoca, Romania
| | - Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Alexandra Neaga
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Serban
- Regina Maria” Regional Laboratory in Cluj-Napoca, 109 Observatorului Str., 400363 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Ana Maria Nanut
- Regina Maria” Regional Laboratory in Cluj-Napoca, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Kanno T, Miyako K, Endo Y. Lipid metabolism: a central modulator of RORγt-mediated Th17 cell differentiation. Int Immunol 2024; 36:487-496. [PMID: 38824406 DOI: 10.1093/intimm/dxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Among the T helper cell subsets, Th17 cells contribute to the development of various inflammatory and autoimmune diseases, including psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, serves as a master transcription factor for Th17 cell differentiation. Recent findings have shown that modulating the metabolic pathway is critical for Th17 cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Suppression of lipid biosynthesis, either through the pharmacological inhibition or gene deletion of related enzymes in CD4+ T cells, results in significant impairment of Th17 cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways have a pivotal role in the regulation of RORγt activity through the generation of endogenous RORγt lipid ligands. This review discusses recent discoveries highlighting the importance of lipid metabolism in Th17 cell differentiation and function, as well as exploring specific molecular pathways involved in RORγt activation through cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach to improve inflammatory and autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
9
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
10
|
Kazemifard N, Golestani N, Jahankhani K, Farmani M, Ghavami SB. Ulcerative colitis: the healing power of macrophages. Tissue Barriers 2024:2390218. [PMID: 39127887 DOI: 10.1080/21688370.2024.2390218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic and debilitating disorder that falls under the broad category of inflammatory bowel disease (IBD). Therefore, affects the colon and rectum, resulting in inflammation and ulcers in the lining of these organs. Over the years, there has been a significant shift in the management of UC. The focus has moved from achieving symptom-free daily living to attaining mucosal healing. Mucosal healing means completely restoring the colon and rectum's lining, significantly reducing the risk of complications and relapse. Macrophages are a crucial component of the immune system that play a vital role in the regeneration and repair of colonic ulcers. These immune cells are responsible for production of a variety of cytokines and growth factors that facilitate tissue repair. Macrophages are responsible for maintaining a balance between inflammation and healing. When this balance is disrupted, it can lead to chronic inflammation and tissue damage, exacerbating UC symptoms. Thus, this review aims to investigate the contribution of macrophages to mucosal repair and remission maintenance in UC patients.
Collapse
Affiliation(s)
- Nesa Kazemifard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kasra Jahankhani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Farmani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Gordon MG, Kathail P, Choy B, Kim MC, Mazumder T, Gearing M, Ye CJ. Population Diversity at the Single-Cell Level. Annu Rev Genomics Hum Genet 2024; 25:27-49. [PMID: 38382493 DOI: 10.1146/annurev-genom-021623-083207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Population-scale single-cell genomics is a transformative approach for unraveling the intricate links between genetic and cellular variation. This approach is facilitated by cutting-edge experimental methodologies, including the development of high-throughput single-cell multiomics and advances in multiplexed environmental and genetic perturbations. Examining the effects of natural or synthetic genetic variants across cellular contexts provides insights into the mutual influence of genetics and the environment in shaping cellular heterogeneity. The development of computational methodologies further enables detailed quantitative analysis of molecular variation, offering an opportunity to examine the respective roles of stochastic, intercellular, and interindividual variation. Future opportunities lie in leveraging long-read sequencing, refining disease-relevant cellular models, and embracing predictive and generative machine learning models. These advancements hold the potential for a deeper understanding of the genetic architecture of human molecular traits, which in turn has important implications for understanding the genetic causes of human disease.
Collapse
Affiliation(s)
| | - Pooja Kathail
- Center for Computational Biology, University of California, Berkeley, California, USA
| | - Bryson Choy
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Min Cheol Kim
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Thomas Mazumder
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Chun Jimmie Ye
- Arc Institute, Palo Alto, California, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, Gladstone-UCSF Institute of Genomic Immunology, Parker Institute for Cancer Immunotherapy, Department of Epidemiology and Biostatistics, Department of Microbiology and Immunology, and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA;
| |
Collapse
|
12
|
Ghoushi E, Poudineh M, Parsamanesh N, Jamialahmadi T, Sahebkar A. Curcumin as a regulator of Th17 cells: Unveiling the mechanisms. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100198. [PMID: 38525269 PMCID: PMC10959653 DOI: 10.1016/j.fochms.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Curcumin, a polyphenol natural product derived from turmeric, possesses diverse pharmacological effects due to its interactions with various cells and molecules. Recent studies have highlighted its immunomodulatory properties, including its impact on immune cells and mediators involved in immune responses. Th17 cells play a crucial role in promoting immune responses against extracellular pathogens by recruiting neutrophils and inducing inflammation. These cells produce inflammatory cytokines such as TNF-α, IL-21, IL-17A, IL-23, IL-17F, IL-22, and IL-26. Curcumin has been shown to significantly inhibit the proliferation of Th17 cells and reduce the production of inflammatory cytokines, including TNF-α, IL-22, and IL-17. This review aims to assess the effectiveness of curcumin and its underlying mechanisms in modulating Th17 cells.
Collapse
Affiliation(s)
- Ehsan Ghoushi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Turuntaš V, de Luka S, Ristić-Djurovic JL, Ćirković S, Djordjevich D, Ristić S, Lalović N, Marić V, Lazić B, Joksimović B, Stanojevic I, Vasilijić S, Trbovich AM. The Effect of Static Magnetic Fields of Different Strengths and Polarities on Cytokine Production by Human Lymphocytes In Vitro. Bioengineering (Basel) 2024; 11:749. [PMID: 39199708 PMCID: PMC11352146 DOI: 10.3390/bioengineering11080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 09/01/2024] Open
Abstract
In contrast to electromagnetic fields, static magnetic fields (SMFs) have not been extensively studied in terms of their potential health consequences. Although upward- and downward-oriented magnetic poles may cause various biological effects, only the pole with the upward orientation has been mainly investigated. Considering that the interaction of antigen-presenting cells (APCs) and T lymphocytes is crucial to trigger an immune response, we assessed the effect of long-term exposure of human T lymphocytes and dendritic cells (DCs) to moderate strength SMFs of different orientations focusing on the cytokine profile of activated T cells. Cultures of allogenic T lymphocytes and DCs (immature and matured by TLR3 and TLR7 agonists) were continuously exposed to four SMFs. The intensity of the applied field was 1 militesla (mT) or 56 mT of the upward- and downward-oriented pole of the SMF. Cell culture supernatants were assayed for IFN-γ, IL-4, IL-17, TNF-α, TNF-β, IL-1 β, IL-6, IL-8, and IL-10 by ELISA or flow cytometry. The upward-oriented 56 mT SMF significantly increased the release of IFN-γ and TNF-β (both p < 0.05) in the cell culture supernatants of T cells and immature DCs. In contrast, the same cultures exposed to the upward-oriented 1 mT SMF showed significantly elevated levels of IL-17 (p < 0.05). The levels of IL-4, TNF-α, IL-1 β, IL-6, IL-8, and IL-10 were not affected by the upward-oriented SMF. The downward-oriented 56 mT SMF increased TNF-α release when T cells were stimulated with mature DCs. The production of other cytokines was unchanged by the downward-oriented SMF. These findings demonstrate for the first time different in vitro biological effects of upward- and downward-oriented static magnetic fields on the cytokine production of T cells activated by DCs, helping to better understand SMF effects on the immune system and suggesting that the selective SMF effect on the immune response could have potential therapeutic effects in different immune-mediated disorders.
Collapse
Affiliation(s)
- Vladimir Turuntaš
- University Hospital Foča, 73300 Foca, Republic of Srpska, Bosnia and Herzegovina (N.L.); (V.M.)
- Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Republic of Srpska, Bosnia and Herzegovina;
| | - Silvio de Luka
- Department of Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.d.L.); (D.D.); (A.M.T.)
| | - Jasna L. Ristić-Djurovic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, 11060 Beograd, Serbia; (J.L.R.-D.); (S.Ć.)
| | - Saša Ćirković
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, 11060 Beograd, Serbia; (J.L.R.-D.); (S.Ć.)
| | - Drago Djordjevich
- Department of Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.d.L.); (D.D.); (A.M.T.)
| | - Siniša Ristić
- Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Republic of Srpska, Bosnia and Herzegovina;
| | - Nenad Lalović
- University Hospital Foča, 73300 Foca, Republic of Srpska, Bosnia and Herzegovina (N.L.); (V.M.)
- Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Republic of Srpska, Bosnia and Herzegovina;
| | - Veljko Marić
- University Hospital Foča, 73300 Foca, Republic of Srpska, Bosnia and Herzegovina (N.L.); (V.M.)
- Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Republic of Srpska, Bosnia and Herzegovina;
| | - Bratislav Lazić
- Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Bojan Joksimović
- Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Republic of Srpska, Bosnia and Herzegovina;
| | - Ivan Stanojevic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (I.S.); (S.V.)
- Faculty of Medicine of the Military Medical Academy, University of Defense in Belgrade, 11000 Belgrade, Serbia
| | - Saša Vasilijić
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (I.S.); (S.V.)
- Faculty of Medicine of the Military Medical Academy, University of Defense in Belgrade, 11000 Belgrade, Serbia
| | - Alexander M. Trbovich
- Department of Pathological Physiology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.d.L.); (D.D.); (A.M.T.)
| |
Collapse
|
14
|
Kar R, Chattopadhyay S, Sharma A, Sharma K, Sinha S, Arimbasseri GA, Patil VS. Single-cell transcriptomic and T cell antigen receptor analysis of human cytomegalovirus (hCMV)-specific memory T cells reveals effectors and pre-effectors of CD8 +- and CD4 +-cytotoxic T cells. Immunology 2024; 172:420-439. [PMID: 38501302 PMCID: PMC7616077 DOI: 10.1111/imm.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Latent human cytomegalovirus (hCMV) infection can pose a serious threat of reactivation and disease occurrence in immune-compromised individuals. Although T cells are at the core of the protective immune response to hCMV infection, a detailed characterization of different T cell subsets involved in hCMV immunity is lacking. Here, in an unbiased manner, we characterized over 8000 hCMV-reactive peripheral memory T cells isolated from seropositive human donors, at a single-cell resolution by analysing their single-cell transcriptomes paired with the T cell antigen receptor (TCR) repertoires. The hCMV-reactive T cells were highly heterogeneous and consisted of different developmental and functional memory T cell subsets such as, long-term memory precursors and effectors, T helper-17, T regulatory cells (TREGs) and cytotoxic T lymphocytes (CTLs) of both CD4 and CD8 origin. The hCMV-specific TREGs, in addition to being enriched for molecules known for their suppressive functions, showed enrichment for the interferon response signature gene sets. The hCMV-specific CTLs were of two types, the pre-effector- and effector-like. The co-clustering of hCMV-specific CD4-CTLs and CD8-CTLs in both pre-effector as well as effector clusters suggest shared transcriptomic signatures between them. The huge TCR clonal expansion of cytotoxic clusters suggests a dominant role in the protective immune response to CMV. The study uncovers the heterogeneity in the hCMV-specific memory T cells revealing many functional subsets with potential implications in better understanding of hCMV-specific T cell immunity. The data presented can serve as a knowledge base for designing vaccines and therapeutics.
Collapse
Affiliation(s)
- Raunak Kar
- Immunogenomics Lab, National Institute of Immunology, New Delhi, Delhi, India
| | | | - Anjali Sharma
- Department of Transfusion Medicine and Blood Bank, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, Delhi, India
| | - Kirti Sharma
- Immunogenomics Lab, National Institute of Immunology, New Delhi, Delhi, India
| | - Shreya Sinha
- Immunogenomics Lab, National Institute of Immunology, New Delhi, Delhi, India
| | | | - Veena S. Patil
- Immunogenomics Lab, National Institute of Immunology, New Delhi, Delhi, India
| |
Collapse
|
15
|
Jiang L, Tang H, Lin T, Jiang Y, Li Y, Gao W, Deng J, Huang Z, Chen C, Shi J, Zhou T, Lai Y. Epithelium-derived kallistatin promotes CD4 + T-cell chemotaxis to T H2-type inflammation in chronic rhinosinusitis. J Allergy Clin Immunol 2024; 154:120-130. [PMID: 38403085 DOI: 10.1016/j.jaci.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The function of kallistatin in airway inflammation, particularly chronic rhinosinusitis with nasal polyps (CRSwNP), has not been elucidated. OBJECTIVE We sought to investigate the role of kallistatin in airway inflammation. METHODS Kallistatin and proinflammatory cytokine expression levels were detected in nasal polyps. For the in vivo studies, we constructed the kallistatin-overexpressing transgenic mice to elucidate the role of kallistatin in airway inflammation. Furthermore, the levels of plasma IgE and proinflammatory cytokines in the airways were evaluated in the kallistatin-/- rat in vivo model under a type 2 inflammatory background. Finally, the Notch signaling pathway was explored to understand the role of kallistatin in CRSwNP. RESULTS We showed that the expression of kallistatin was significantly higher in nasal polyps than in the normal nasal mucosa and correlated with IL-4 expression. We also discovered that the nasal mucosa of kallistatin-overexpressing transgenic mice expressed higher levels of IL-4 expression, associating to TH2-type inflammation. Interestingly, we observed lower IL-4 levels in the nasal mucosa and lower total plasma IgE of the kallistatin-/- group treated with house dust mite allergen compared with the wild-type house dust mite group. Finally, we observed a significant increase in the expression of Jagged2 in the nasal epithelium cells transduced with adenovirus-kallistatin. This heightened expression correlated with increased secretion of IL-4, attributed to the augmented population of CD4+CD45+Notch1+ T cells. These findings collectively may contribute to the induction of TH2-type inflammation. CONCLUSIONS Kallistatin was demonstrated to be involved in the CRSwNP pathogenesis by enhancing the TH2 inflammation, which was found to be associated with more expression of IL-4, potentially facilitated through Jagged2-Notch1 signaling in CD4+ T cells.
Collapse
Affiliation(s)
- Lijie Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haocheng Tang
- Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tengjiao Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Li
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Wenxiang Gao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoqi Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuxin Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.
| | - Yinyan Lai
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Takeuchi M, Nishio Y, Someya H, Sato T, Yoshimura A, Ito M, Harimoto K. Autoimmune uveitis attenuated in diabetic mice through imbalance of Th1/Th17 differentiation via suppression of AP-1 signaling pathway in Th cells. Front Immunol 2024; 15:1347018. [PMID: 38887289 PMCID: PMC11180723 DOI: 10.3389/fimmu.2024.1347018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Inflammation is involved in the pathogenesis of diabetes, however the impact of diabetes on organ-specific autoimmune diseases remains unexplored. Experimental autoimmune uveoretinitis (EAU) is a widely accepted animal model of human endogenous uveitis. In this study, we investigated the effects of diabetic conditions on the development of EAU using a mouse diabetes model. Methods EAU was induced in wild-type C57BL/6 (WT) mice and Ins2Akita (Akita) mice with spontaneous diabetes by immunization with IRBP peptide. Clinical and histopathological examinations, and analysis of T cell activation state were conducted. In addition, alternations in the composition of immune cell types and gene expression profiles of relevant immune functions were identified using single-cell RNA sequencing. Results The development of EAU was significantly attenuated in immunized Akita (Akita-EAU) mice compared with immunized WT (WT-EAU) mice, although T cells were fully activated in Akita-EAU mice, and the differentiation into Th17 cells and regulatory T (Treg) cells was promoted. However, Th1 cell differentiation was inhibited in Akita-EAU mice, and single-cell analysis indicated that gene expression associated AP-1 signaling pathway (JUN, FOS, and FOSB) was downregulated not only in Th1 cells but also in Th17, and Treg cells in Akita-EAU mice at the onset of EAU. Conclusions In diabetic mice, EAU was significantly attenuated. This was related to selective inhibition of Th1 cell differentiation and downregulated AP-1 signaling pathway in both Th1 and Th17 cells.
Collapse
Affiliation(s)
- Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
17
|
Wang J, Lou Y, Wang S, Zhang Z, You J, Zhu Y, Yao Y, Hao Y, Liu P, Xu LX. IFNγ at the early stage induced after cryo-thermal therapy maintains CD4 + Th1-prone differentiation, leading to long-term antitumor immunity. Front Immunol 2024; 15:1345046. [PMID: 38827732 PMCID: PMC11140566 DOI: 10.3389/fimmu.2024.1345046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1β generation, and thereby further amplifying Th1 response. Discussion Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Liu S, Cao Y, Cui K, Ren G, Zhao T, Wang X, Wei D, Chen Z, Gurram RK, Liu C, Wu C, Zhu J, Zhao K. Regulation of T helper cell differentiation by the interplay between histone modification and chromatin interaction. Immunity 2024; 57:987-1004.e5. [PMID: 38614090 PMCID: PMC11096031 DOI: 10.1016/j.immuni.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingting Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuezheng Wang
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Fortelny N, Farlik M, Fife V, Gorki AD, Lassnig C, Maurer B, Meissl K, Dolezal M, Boccuni L, Ravi Sundar Jose Geetha A, Akagha MJ, Karjalainen A, Shoebridge S, Farhat A, Mann U, Jain R, Tikoo S, Zila N, Esser-Skala W, Krausgruber T, Sitnik K, Penz T, Hladik A, Suske T, Zahalka S, Senekowitsch M, Barreca D, Halbritter F, Macho-Maschler S, Weninger W, Neubauer HA, Moriggl R, Knapp S, Sexl V, Strobl B, Decker T, Müller M, Bock C. JAK-STAT signaling maintains homeostasis in T cells and macrophages. Nat Immunol 2024; 25:847-859. [PMID: 38658806 PMCID: PMC11065702 DOI: 10.1038/s41590-024-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.
Collapse
Affiliation(s)
- Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Victoria Fife
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna-Dorothea Gorki
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Caroline Lassnig
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Maurer
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Meissl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Laura Boccuni
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Mojoyinola Joanna Akagha
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anzhelika Karjalainen
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Stephen Shoebridge
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Asma Farhat
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mann
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rohit Jain
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shweta Tikoo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Esser-Skala
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Sitnik
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sophie Zahalka
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sabine Macho-Maschler
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heidi A Neubauer
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Veronika Sexl
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Birgit Strobl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Gao CF, Vaikuntanathan S, Riesenfeld SJ. Dissection and integration of bursty transcriptional dynamics for complex systems. Proc Natl Acad Sci U S A 2024; 121:e2306901121. [PMID: 38669186 PMCID: PMC11067469 DOI: 10.1073/pnas.2306901121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
RNA velocity estimation is a potentially powerful tool to reveal the directionality of transcriptional changes in single-cell RNA-sequencing data, but it lacks accuracy, absent advanced metabolic labeling techniques. We developed an approach, TopicVelo, that disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable form of latent space factorization, to infer cells and genes associated with individual processes, thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-associated cells and genes enables accurate estimation of process-specific velocities via a master equation for a transcriptional burst model accounting for intrinsic stochasticity. The method obtains a global transition matrix by leveraging cell topic weights to integrate process-specific signals. In challenging systems, this method accurately recovers complex transitions and terminal states, while our use of first-passage time analysis provides insights into transient transitions. These results expand the limits of RNA velocity, empowering future studies of cell fate and functional responses.
Collapse
Affiliation(s)
- Cheng Frank Gao
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Suriyanarayanan Vaikuntanathan
- Department of Chemistry, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| | - Samantha J. Riesenfeld
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Department of Medicine, University of Chicago, Chicago, IL60637
- Committee on Immunology, Biological Sciences Division, University of Chicago, Chicago, IL60637
| |
Collapse
|
22
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
23
|
Li C, Wu K, Yang R, Liao M, Li J, Zhu Q, Zhang J, Zhang X. Comprehensive analysis of immunogenic cell death-related gene and construction of prediction model based on WGCNA and multiple machine learning in severe COVID-19. Sci Rep 2024; 14:8450. [PMID: 38600309 PMCID: PMC11006847 DOI: 10.1038/s41598-024-59117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
The death of coronavirus disease 2019 (COVID-19) is primarily due to from critically ill patients, especially from ARDS complications caused by SARS-CoV-2. Therefore, it is essential to contribute an in-depth understanding of the pathogenesis of the disease and to identify biomarkers for predicting critically ill patients at the molecular level. Immunogenic cell death (ICD), as a specific variant of regulatory cell death driven by stress, can induce adaptive immune responses against cell death antigens in the host. Studies have confirmed that both innate and adaptive immune pathways are involved in the pathogenesis of SARS-CoV-2 infection. However, the role of ICD in the pathogenesis of severe COVID-19 has rarely been explored. In this study, we systematically evaluated the role of ICD-related genes in COVID-19. We conducted consensus clustering, immune infiltration analysis, and functional enrichment analysis based on ICD differentially expressed genes. The results showed that immune infiltration characteristics were altered in severe and non-severe COVID-19. In addition, we used multiple machine learning methods to screen for five risk genes (KLF5, NSUN7, APH1B, GRB10 and CD4), which are used to predict COVID-19 severity. Finally, we constructed a nomogram to predict the risk of severe COVID-19 based on the classification and recognition model, and validated the model with external data sets. This study provides a valuable direction for the exploration of the pathogenesis and progress of COVID-19, and helps in the early identification of severe cases of COVID-19 to reduce mortality.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ke Wu
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Rui Yang
- Department of Internal Medicine, Guiyang First People's Hospital, Guiyang, 550004, Guizhou, China
| | - Minghua Liao
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jun Li
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qian Zhu
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiayi Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xianming Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
24
|
Arunachalam AB. Vaccines Induce Homeostatic Immunity, Generating Several Secondary Benefits. Vaccines (Basel) 2024; 12:396. [PMID: 38675778 PMCID: PMC11053716 DOI: 10.3390/vaccines12040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The optimal immune response eliminates invading pathogens, restoring immune equilibrium without inflicting undue harm to the host. However, when a cascade of immunological reactions is triggered, the immune response can sometimes go into overdrive, potentially leading to harmful long-term effects or even death. The immune system is triggered mostly by infections, allergens, or medical interventions such as vaccination. This review examines how these immune triggers differ and why certain infections may dysregulate immune homeostasis, leading to inflammatory or allergic pathology and exacerbation of pre-existing conditions. However, many vaccines generate an optimal immune response and protect against the consequences of pathogen-induced immunological aggressiveness, and from a small number of unrelated pathogens and autoimmune diseases. Here, we propose an "immuno-wave" model describing a vaccine-induced "Goldilocks immunity", which leaves fine imprints of both pro-inflammatory and anti-inflammatory milieus, derived from both the innate and the adaptive arms of the immune system, in the body. The resulting balanced, 'quiet alert' state of the immune system may provide a jump-start in the defense against pathogens and any associated pathological inflammatory or allergic responses, allowing vaccines to go above and beyond their call of duty. In closing, we recommend formally investigating and reaping many of the secondary benefits of vaccines with appropriate clinical studies.
Collapse
Affiliation(s)
- Arun B Arunachalam
- Analytical Sciences, R&D Sanofi Vaccines, 1 Discovery Dr., Swiftwater, PA 18370, USA
| |
Collapse
|
25
|
Abberger H, Groom JR. Macro-clusters: CD301b+ DCs prime Th2 responses. J Exp Med 2024; 221:e20240088. [PMID: 38442269 PMCID: PMC10911086 DOI: 10.1084/jem.20240088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
In this issue of JEM, Lyons-Cohen et al. (https://doi.org/10.1084/jem.20231282) reveal that lymph node macro-clusters provide a spatial niche where CD301b+ cDC2s and CD4+ T cells interact. These integrin-mediated cellular hubs promote enhanced co-stimulation and cytokine signaling to drive Th2 differentiation.
Collapse
Affiliation(s)
- Hanna Abberger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
Logghe T, van Zwol E, Immordino B, Van den Cruys K, Peeters M, Giovannetti E, Bogers J. Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment. Cancers (Basel) 2024; 16:505. [PMID: 38339258 PMCID: PMC10854776 DOI: 10.3390/cancers16030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in the development of novel therapies, cancer continues to stand as a prominent global cause of death. In many cases, the cornerstone of standard-of-care therapy consists of chemotherapy (CT), radiotherapy (RT), or a combination of both. Notably, hyperthermia (HT), which has been in clinical use in the last four decades, has proven to enhance the effectiveness of CT and RT, owing to its recognized potency as a sensitizer. Furthermore, HT exerts effects on all steps of the cancer-immunity cycle and exerts a significant impact on key oncogenic pathways. Most recently, there has been a noticeable expansion of cancer research related to treatment options involving immunotherapy (IT) and targeted therapy (TT), a trend also visible in the research and development pipelines of pharmaceutical companies. However, the potential results arising from the combination of these innovative therapeutic approaches with HT remain largely unexplored. Therefore, this review aims to explore the oncology pipelines of major pharmaceutical companies, with the primary objective of identifying the principal targets of forthcoming therapies that have the potential to be advantageous for patients by specifically targeting molecular pathways involved in HT. The ultimate goal of this review is to pave the way for future research initiatives and clinical trials that harness the synergy between emerging IT and TT medications when used in conjunction with HT.
Collapse
Affiliation(s)
- Tine Logghe
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Eke van Zwol
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Benoît Immordino
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | | | - Marc Peeters
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johannes Bogers
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
27
|
Bui I, Bonavida B. Polarization of M2 Tumor-Associated Macrophages (TAMs) in Cancer Immunotherapy. Crit Rev Oncog 2024; 29:75-95. [PMID: 38989739 DOI: 10.1615/critrevoncog.2024053830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We have witnessed in the last decade new milestones in the treatment of various resistant cancers with new immunotherapeutic modalities. These advances have resulted in significant objective durable clinical responses in a subset of cancer patients. These findings strongly suggested that immunotherapy should be considered for the treatment of all subsets of cancer patients. Accordingly, the mechanisms underlying resistance to immunotherapy must be explored and develop new means to target these resistant factors. One of the pivotal resistance mechanisms in the tumor microenvironment (TME) is the high infiltration of tumor-associated macrophages (TAMs) that are highly immunosuppressive and responsible, in large part, of cancer immune evasion. Thus, various approaches have been investigated to target the TAMs to restore the anti-tumor immune response. One approach is to polarize the M2 TAMS to the M1 phenotype that participates in the activation of the anti-tumor response. In this review, we discuss the various and differential properties of the M1 and M2 phenotypes, the molecular signaling pathways that participate in the polarization, and various approaches used to target the polarization of the M2 TAMs into the M1 anti-tumor phenotype. These approaches include inhibitors of histone deacetylases, PI3K inhibitors, STAT3 inhibitors, TLR agonists, and metabolic reprogramming. Clearly, due to the distinct features of various cancers and their heterogeneities, a single approach outlined above might only be effective against some cancers and not others. In addition, targeting by itself may not be efficacious unless used in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Indy Bui
- University of California Los Angeles
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
28
|
Mohammad TAM, Hamad BK, Maroof AMA, Mahmud SO. STA-21 regulates Th-17/Treg balance and synovial fibroblasts functions in rheumatoid arthritis. Int J Rheum Dis 2024; 27:e15032. [PMID: 38287543 DOI: 10.1111/1756-185x.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024]
Abstract
JAK/STAT signaling pathway plays a significant role in cytokines and growth factors signaling involved in the pathogenesis of rheumatoid arthritis (RA). STAT3 is a major downstream signaling mediator of important pro-inflammatory cytokines involved in Th-17 cell differentiation playing a significant role in regulating Th-17/ Treg balance and the development of autoimmune diseases, especially RA. Studies also have reported the role of the STAT3 pathway in inflammatory and destructive functions of synovial fibroblasts (SFs) in RA. STA-21 is a small molecule inhibitor that can inhibit STAT3 activation impairing the expression of STAT3 target genes. In this study, we tested whether a STAT3 inhibitor, STA-21, can alter Th-17/Treg balance and SF functions in RA. Peripheral blood mononuclear cells (PBMC) and SFs were isolated from 34 RA patients undergoing orthopedic surgery and 15 healthy controls to investigate in vitro effects of STA-21. The main assays were MTT assay, PI staining, reverse transcription-PCR (RT-PCR), flow cytometric analysis, and ELISA. Results showed that STA-21 reduced the proportion of Th-17 cells and the expression of STAT3 target genes, RORγt, IL-21, and IL-23R involved in Th-17 cells differentiation while it conversely increased the proportion of Treg cells, which theoretically may result in suppression of inflammation. We found that STAT3 activation and its target gene expression increased in RA-SFs. In addition, results showed that STA-21 can reduce the expression of STAT3 target genes related to cell proliferation, apoptosis, and inflammation leading to a decrease in proliferation and conversely increase in apoptosis of RA-SFs. Overall, our findings provide evidence that STA-21 can reduce inflammatory immune processes conducted by T cells and RA-SFs in RA, suggesting that this compound is a suitable option for clinical studies in RA.
Collapse
Affiliation(s)
- Talar Ahmad Merza Mohammad
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Kurdistan Region-Erbil, Iraq
| | - Badraldin Kareem Hamad
- Department of pharmacology and toxicology, College of Pharmacy, Hawler Medical University, Kurdistan Region-Erbil, Iraq
| | | | - Shokhan Osman Mahmud
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region-Erbil, Iraq
| |
Collapse
|
29
|
Khan S. Interleukin 6 Antagonists in Severe COVID-19 Disease: Cardiovascular and Respiratory Outcomes. Protein Pept Lett 2024; 31:178-191. [PMID: 38375841 DOI: 10.2174/0109298665266730240118054023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Inhibitors of interleukin 6 [IL-6] have been utilized to treat severe COVID-19 disease. Their immunosuppressive or immunomodulating impact may be beneficial in COVID-19. OBJECTIVES To discuss the role of IL-6 inhibitors and assess various trials conducted to evaluate the efficacy of IL-6 inhibitors in COVID-19 disease. SUMMARY Two of the most common causes of mortality in COVID-19-infected critically ill individuals are acute respiratory distress syndrome (ARDS) and multiorgan failure. Increased levels of inflammatory cytokines suggest that a cytokine storm, also known as cytokine release syndrome (CRS), is involved in the etiology of COVID-19. Most tissue damage, sepsis, and pulmonary and cardiovascular problems are caused mainly by the host defense system. Therefore, regulating this inflammatory cascade using immunomodulators is a prudent strategy. Although corticosteroids, as immunomodulators, are routinely used in COVID-19 management, interleukin (IL) inhibitors, especially IL-6 inhibitors, are also tested in many trials. Many studies have demonstrated that IL-6 inhibitors improve disease outcomes and decrease mortality, whereas others have shown that they are ineffective. In this paper, we briefly examined the role of IL-6 in COVID-19 pathogenesis and trials that support or refute the use of IL-6 inhibitors in treating COVID-19 disease. RESULTS Though mixed results are coming from trials regarding the adjuvant use of IL-6 inhibitors and standard anti-viral therapy with dexamethasone, a consensus favors using IL-6 inhibitors in severely ill COVID-19 patients regardless of the outcome.
Collapse
Affiliation(s)
- Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
| |
Collapse
|
30
|
Dos Santos AC, França TCS, Venzon L, Polli V, Polleti G, Trembulak E, Pilati SFM, da Silva LM. Are silymarin and N-acetylcysteine able to prevent liver damage mediated by multiple factors? Findings against ethanol plus LPS-induced liver injury in mice. J Biochem Mol Toxicol 2024; 38:e23560. [PMID: 37860953 DOI: 10.1002/jbt.23560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the effect of N-acetylcysteine (NAC) and silymarin (SIL) in the liver of mice exposed to ethanol and lipopolysaccharides (LPS). Mice were divided into four groups (n = 6): naive, vehicle, NAC (200 mg/kg), and SIL (200 mg/kg). Treatments were given orally (po) once daily for 10 days. Liver injury was induced by administration of ethanol (30%, po) for 10 days, once daily, followed by a single administration of LPS (2 mg/kg, ip) 24 h before euthanasia. After the treatment period, animals were euthanized, and liver and blood samples were collected. NAC, but not SIL, prevented the increase in oxalacetic glutamic transaminase (OGT) and pyruvic glutamic transaminase (PGT) serum levels. NAC and SIL did not restore levels of reduced glutathione or hepatic malonaldehyde. The treatments with NAC or SIL showed no difference in the activity of glutathione S-transferase, superoxide dismutase, and catalase compared to vehicle group. Myeloperoxidase and N-acetylglucosaminidase activities are increased, as well as the IL-6 and IL-10 levels in the liver. The treatment with NAC, but not SIL, reduced the N-acetylglucosamines activity and the IL-6 and IL-10 amount in the liver. Histological findings revealed microsteatosis in the vehicle group, which was not prevented by SIL but was partially reduced in animals receiving NAC. Unlike other liver injury models, NAC (200 mg/kg) or SIL (200 mg/kg) did not positively affect antioxidant patterns in liver tissue of animals exposed to ethanol plus LPS, but NAC treatment displays anti-inflammatory properties in this model.
Collapse
Affiliation(s)
- Ana Caroline Dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Larissa Venzon
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Vitor Polli
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Gustavo Polleti
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Erica Trembulak
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Luísa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
- LaFaTI-Laboratório de Farmacologia do Trato Gastrointestinal e suas Interações, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
31
|
Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, August A, Huang W. Th2 and Th17-associated immunopathology following SARS-CoV-2 breakthrough infection in Spike-vaccinated ACE2-humanized mice. J Med Virol 2024; 96:e29408. [PMID: 38258331 PMCID: PMC10832989 DOI: 10.1002/jmv.29408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Artuc M, Zuberbier T, Peiser M. Nickel Challenge In Vitro Affects CD38 and HLA-DR Expression in T Cell Subpopulations from the Blood of Patients with Nickel Allergy. Int J Mol Sci 2023; 25:298. [PMID: 38203472 PMCID: PMC10778727 DOI: 10.3390/ijms25010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Nickel allergy is a major health problem and shows clinical manifestation of contact eczema. The response of specific lymphocyte subpopulations in sensitized patients after new challenge to nickel has until now not been studied in detail. To evaluate if nickel-based elicitation reaction could be objectively identified by multi-parametric flow cytometry, immunophenotyping of specific T cells was applied. White blood cells from 7 patients (4 positive in patch test, 3 negative) were challenged by nickel and in vitro short-term culture. Standardized antibody-dye combinations, specific for T helper(h)1, Th17 and cytotoxic T cell activation, were selected according to the recommendations of Stanford Human Immune Monitoring Center. In cytotoxic CD8+CCR7+CD45RA+ T cells from patients suffering from nickel allergy, CD38 and HLA-DR were elevated comparing to healthy donors. After challenge to nickel in vitro both markers decreased in CD8+CCR7+CD45RA+ T cells but found up-regulated in CD4+CCR7+CD45RA+CCR6-CXCR3+Th1 cells. Intracellular expression of T-bet and RORγt further indicated Th1 and Th17 cells. Finally, CD4+CD25+CCR4- T cells increased after challenge with nickel in PBMCs of patients with nickel allergy. Flow cytometry based quantification of T cell markers might be used as a specific and reliable method to detect chemical induced skin sensitization and confirm diagnostic patch testing in the clinics.
Collapse
Affiliation(s)
- Metin Artuc
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Torsten Zuberbier
- Berlin Institute of Allergology, Charité-Universitätsmedizin, Campus Benjamin Franklin, 12203 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Matthias Peiser
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| |
Collapse
|
33
|
Peng X, Ding H, Huo H, Zheng Y, Zhou J, Li H, Hou Y, Li X, Geng W, Shang H, Liu T. Cardiac MRI-Based Assessment of Myocardial Injury in Asymptomatic People Living With Human Immunodeficiency Virus: Correlation With nadir CD4 Count. J Magn Reson Imaging 2023; 58:1815-1823. [PMID: 36988474 DOI: 10.1002/jmri.28699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There are known cardiac manifestations of HIV, but the findings in asymptomatic subjects are still not fully explored. PURPOSE To evaluate for the presence of subclinical myocardial injury in asymptomatic people living with human immunodeficiency virus (PLWH) by cardiac MRI and to explore the possible association between subclinical myocardial injury and HIV-related clinical characteristics. STUDY TYPE Cross-sectional. POPULATION A total of 80 asymptomatic PLWH (age: 53 years [47-56 years]; 90% male) and 50 age- and sex-matched healthy participants. FIELD STRENGTH/SEQUENCE A 3-T, cine sequence, T1, T2, and T2* mapping. ASSESSMENT Function analysis was derived from short axis, two-, three-, and four-chamber cine images by feature tracking. Regions of interest were manually selected in the midventricular septum T1, T2, and T2* mapping sequences. PLWH were evaluated for T1 increment (△T1 mapping = native T1 - cutoff values) and HIV-related clinical characteristics, particularly the nadir CD4 count. And PLWH were stratified into two groups according to the cutoff value of native T1: elevated native T1 and normal. STATISTICAL TESTS T test, Wilcoxon rank-sum test, Chi-square test, Spearman rank correlation, and logistic regression. P <0.05 indicated statistical significance. RESULTS Asymptomatic PLWH revealed significantly higher native myocardial T1 values (1241 ± 29 msec vs. 1189 ± 21 msec), T2 values (40.7 ± 1.5 msec vs. 37.9 ± 1.4 msec), and lower LVGRS (30.2% ± 6.2% vs. 35.8% ± 6.4%), LVGCS (-18.0% ± 2.5% vs. -19.5% ± 2.0%), and LVGLS (-16.0% ± 3.8% vs. -17.9% ± 2.6%) but showed no difference in T2* values (17.3 msec [16.3-19.1 msec] vs. 18.3 msec [16.5-19.3 msec], P = 0.201). A negative correlation between the native T1 increment in PLWH with subclinical myocardial injury and the nadir CD4 count (u = -0.316). Nadir CD4 count <500 cells/mm3 was associated with higher odds of elevated native T1 myocardial values (odds ratio, 6.12 [95% CI, 1.07-34.91]) in PLWH. DATA CONCLUSION Subclinical myocardial inflammation and dysfunction were present in asymptomatic PLWH, and a lower nadir CD4 count may be a risk factor for subclinical myocardial injury. EVIDENCE LEVEL 1. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Xin Peng
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huaibi Huo
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zheng
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Jie Zhou
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenqing Geng
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ting Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Yuan Y, Li Y, Zhao W, Hu Y, Zhou C, Long T, Long L. WNT4 promotes macrophage polarization via granulosa cell M-CSF and reduces granulosa cell apoptosis in endometriosis. Cytokine 2023; 172:156400. [PMID: 37839333 DOI: 10.1016/j.cyto.2023.156400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND WNT4 gene polymorphism are common in endometriosis and may functionally link estrogen and estrogen receptor signaling. Previous study confirmed estrogen and estrogen receptor signaling recruit macrophage to promote the pathogenesis of endometriosis. To investigate the effect of WNT4 in endometriosis involved in macrophage polarization and whether WNT4 could reduce the apoptosis of granulosa cells. METHODS An observational study consisting of 8 cases of women with endometriosis (diagnosed by surgery and histology) and 22 mice of endometriosis animal model was conducted. Granulosa cells were isolated from 16 patients with endometriosis and co-cultured with macrophage under WNT4 treatment using TUNEL assay, quantitative reverse transcription PCR, flow cytometry and ELISA analysis. 22 mice of endometriosis animal model confirmed the WNT4 treatment effects using histology and immunohistochemistry, Western blot and flow cytometry. RESULTS We observed that the apoptotic proportion of granulosa cells was significantly decreased and M2 macrophage was significantly increased after WNT4 treatment during the granulosa cell and macrophage co-culture system. To reveal the underlying mechanism for this, we conducted a series of experiments and found that high expression of granulosa cell M-CSF led to the M2 polarization of macrophages. The animal model also suggested that the anti-apoptotic effect of WNT4 on granulosa cells were conducted by the M2 polarized macrophage. CONCLUSIONS WNT4 could reduce granulosa cell apoptosis and improve ovarian reserve by promoting macrophage polarization in endometriosis. M-CSF secreted by granulosa cell after WNT4 treatment was the main mediator of macrophage polarization.
Collapse
Affiliation(s)
- Yuan Yuan
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 1 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Yubin Li
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 1 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Wen Zhao
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 1 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Yue Hu
- Translational Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 1 Zhongshan Road II, Guangzhou, Guangdong 510080, China
| | - Tengfei Long
- Department of Gynaecology and Obstetrics, Sun Yat-sen Memorial Hospital, 107 Yanjiang West Road, Guangzhou, Guangdong 510120, China.
| | - Lingli Long
- Clinical Research Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
35
|
Ohira C, Tomita K, Kaneki M, Iwashita N, Takagi Y, Kurihara T, Nagane M, Kamiie J, Fukuyama T. Effects of low concentrations of ozone gas exposure on percutaneous oxygen saturation and inflammatory responses in a mouse model of Dermatophagoides farinae-induced asthma. Arch Toxicol 2023; 97:3151-3162. [PMID: 37733069 DOI: 10.1007/s00204-023-03593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Ozone gas is widely used in hospitals as well as homes to control COVID-19 infection owing to its cost-effectiveness. Safety standard value and the tolerable value of ozone gas are set at 0.05 ppm and 0.1 ppm, respectively, in developed countries; however, this value was principally determined for healthy individuals, and the risks associated with ozone gas inhalation in patients with pulmonary diseases remains unknown. Recently, we demonstrated that 0.1 ppm ozone gas exposure significantly aggravates the symptoms of acute lung injury in mice. In the present study, we further examined the influence of ≤ 0.1 ppm ozone gas exposure on percutaneous oxygen saturation (SpO2) and pro-inflammatory responses in a mouse model of asthma. Female BALB/c mice were subjected to repetitive intranasal sensitization of Dermatophagoides farinae to generate a mouse model of asthma. Inhalation exposure of ozone gas (0.1, 0.03, 0.01 ppm), generated using an ultraviolet lamp, was performed for five consecutive days immediately before the final sacrifice. There were no abnormal findings in control mice exposed to 0.1 ppm ozone; however, 0.1 ppm ozone exposure significantly reduced the SpO2 level in asthmatic mice. Histological evaluation and gene expression analysis revealed that pro-inflammatory cytokine levels were significantly increased in mice exposed to 0.1 ppm ozone, indicating that 0.1 ppm ozone exposure affects the development of asthma symptoms. Notably, 0.03 and 0.01 ppm ozone exposure did not have any effects even in asthmatic mice. Our findings indicate that the tolerable level of ozone gas should be adjusted for individuals based on a history of respiratory disorders.
Collapse
Affiliation(s)
- Chiharu Ohira
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara-Shi, Kanagawa, 2525201, Japan
| | - Kengo Tomita
- Institute of Technology, Shimizu Corporation, 3-4-17 Etchujima, Koto-Ku, Tokyo, Japan
| | - Mao Kaneki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara-Shi, Kanagawa, 2525201, Japan
| | - Naoki Iwashita
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara-Shi, Kanagawa, 2525201, Japan
- Bioalch Co., Ltd., 3-28 Honshuku-Cho, Fuchu-Shi, Tokyo, Japan
| | - Yoshiichi Takagi
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara-Shi, Kanagawa, 2525201, Japan
- Japan SLC, Inc, 85 Ohara-Cho, Kita-Ku, Hamamatsu-Shi, Shizuoka, Japan
| | - Takashi Kurihara
- Institute of Technology, Shimizu Corporation, 3-4-17 Etchujima, Koto-Ku, Tokyo, Japan
| | - Masaki Nagane
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara-Shi, Kanagawa, 2525201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara-Shi, Kanagawa, 2525201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tomoki Fukuyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara-Shi, Kanagawa, 2525201, Japan.
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
36
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
37
|
Heldager Pedersen N, Bjerregaard Jeppesen H, Persson G, Bojesen S, Hviid TVF. An increase in regulatory T cells in peripheral blood correlates with an adverse prognosis for malignant melanoma patients - A study of T cells and natural killer cells. CURRENT RESEARCH IN IMMUNOLOGY 2023; 5:100074. [PMID: 38059204 PMCID: PMC10696160 DOI: 10.1016/j.crimmu.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
Malignant melanoma is a highly immunogenic tumour, and the immune profile significantly influences cancer development and response to immunotherapy. The peripheral immune profile may identify high risk patients. The current study showed reduced levels of CD4+ T cells and increased levels of CD8+ T cells in peripheral blood from malignant melanoma patients compared with controls. Percentages of peripheral CD56dimCD16+ NK cells were reduced and CD56brightCD16-KIR3+ NK cells were increased in malignant melanoma patients. Late stage malignant melanoma was correlated with low levels of CD4+ T cells and high levels of CD56brightCD16-KIR3+ NK cells. Finally, high levels of Tregs in peripheral blood were correlated with poor overall survival and disease-free survival. The results indicate that changes in specific immune cell subsets in peripheral blood samples from patients at the time of diagnosis may be potential biomarkers for prognosis and survival. Further studies will enable clarification of independent roles in tumour pathogenesis.
Collapse
Affiliation(s)
- Nanna Heldager Pedersen
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Helene Bjerregaard Jeppesen
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Gry Persson
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Sophie Bojesen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
- Department of Plastic and Breast Surgery, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
| | - Thomas Vauvert F. Hviid
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
38
|
Bolandi Z, Hashemi SM, Abasi M, Musavi M, Aghamiri S, Miyanmahaleh N, Ghanbarian H. In vitro naive CD4 + T cell differentiation upon treatment with miR-29b-loaded exosomes from mesenchymal stem cells. Mol Biol Rep 2023; 50:9037-9046. [PMID: 37725284 DOI: 10.1007/s11033-023-08767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Gene regulation by microRNA (miRNA) is central in T lymphocytes differentiation processes. Here, we investigate miRNA-29b (miR-29b) roles in the reprogramming of T cell differentiation, which can be a promising therapeutic avenue for various types of inflammatory disorders such as rheumatoid arthritis and multiple sclerosis. METHODS AND RESULTS Adipose Mesenchymal Stem Cell-derived exosomes (AMSC-Exo) enriched with miR-29b were delivered into naive CD4+ T (nCD4+) cells. The expression level of important transcription factors including RAR-related orphan receptor gamma (RORγt), GATA3 binding protein (GATA3), T-box transcription factor 21, and Forkhead box P3 was determined by quantitative Real-Time PCR. Moreover, flow cytometry and Enzyme-linked Immunosorbent Assay were respectively used to measure the frequency of T regulatory cells and the levels of cytokines production (Interleukin 17, Interleukin 4, Interferon-gamma, and transforming growth factor beta. This study indicates that the transfection of miR-29b mimics into T lymphocytes through AMSC-Exo can alter the CD4+ T cells' differentiation into other types of T cells. CONCLUSIONS In conclusion, AMSC-Exo-based delivery of miR-29b can be considered as a new fascinating avenue for T cell differentiation inhibition and the future treatment of several inflammatory disorders.
Collapse
Affiliation(s)
- Zohreh Bolandi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Musavi
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Miyanmahaleh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Akiyama M, Alshehri W, Yoshimoto K, Kaneko Y. T follicular helper cells and T peripheral helper cells in rheumatic and musculoskeletal diseases. Ann Rheum Dis 2023; 82:1371-1381. [PMID: 37414520 DOI: 10.1136/ard-2023-224225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Recent technological progress has greatly advanced our understanding of human immunology. In particular, the discovery of human T follicular helper (Tfh) and T peripheral helper (Tph) cells has significantly advanced our understanding of human adaptive immune system. Tfh and Tph cells share similar molecular characteristics and both play critical roles in B cell differentiation and maturation. However, they differ in their functional properties, such as chemokine receptor expression and cytokine production. As a result, Tfh cells are mainly involved in B cell differentiation and maturation in germinal centres of secondary lymphoid tissues, while Tph cells are involved in B cell differentiation and tissue damage in peripheral inflammatory lesions. Importantly, the involvement of Tfh and Tph cells in the pathogenesis of rheumatic and musculoskeletal diseases has become clear. In rheumatoid arthritis and systemic lupus erythematosus, Tph cell infiltration is predominant in peripheral inflammatory lesions, whereas Tfh cell infiltration is predominant in the affected lesions of IgG4-related disease. Therefore, the contribution of Tfh and Tph cells to the development of rheumatic and musculoskeletal diseases varies depending on each disease. In this review, we provide an overview of human Tfh and Tph cells and summarise the latest findings on these novel T cell subsets in various rheumatic and musculoskeletal diseases.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Waleed Alshehri
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
40
|
Li XM, Liu SP, Liu DM, Li Y, Cai XM, Su Y, Xie ZF. Identification of disulfidptosis-related genes and immune infiltration in lower-grade glioma. Open Med (Wars) 2023; 18:20230825. [PMID: 37900961 PMCID: PMC10612529 DOI: 10.1515/med-2023-0825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Lower-grade glioma (LGG), a prevalent malignant tumor in the central nervous system, requires accurate prediction and treatment to prevent aggressive progression. We aimed to explore the role of disulfidptosis-related genes (DRGs) in LGG, a recently discovered form of programmed cell death characterized by abnormal disulfide accumulation. Leveraging public databases, we analyzed 532 LGG tumor tissues (The Cancer Genome Atlas), 1,157 normal samples (Genotype-Tissue Expression), and 21 LGG tumor samples with 8 paired normal samples (GSE16011). Our research uncovered intricate relationships between DRGs and crucial aspects of LGG, including gene expression, immune response, mutation, drug sensitivity, and functional enrichment. Notably, we identified significant heterogeneity among disulfidptosis sub-clusters and elucidated specific differential gene expression in LGG, with myeloid cell leukemia-1 (MCL1) as a key candidate. Machine learning techniques validated the relevance of MCL1, considering its expression patterns, prognostic value, diagnostic potential, and impact on immune infiltration. Our study offers opportunities and challenges to unravel potential mechanisms underlying LGG prognosis, paving the way for personalized cancer care and innovative immunotherapeutic strategies. By shedding light on DRGs, particularly MCL1, we enhance understanding and management of LGG.
Collapse
Affiliation(s)
- Xiao-min Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shan-peng Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Dan-man Liu
- Breast Surgery Clinics, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Yu Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-ming Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Su
- Department of Microbiology & Immunology, Shantou University Medical College, 22 Xinling Road, Shantou515041, Guangdong, China
| | - Ze-feng Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
41
|
Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, August A, Huang W. Th2 and Th17-Associated Immunopathology Following SARS-CoV-2 Breakthrough Infection in Spike-Vaccinated ACE2-humanized Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563016. [PMID: 37904941 PMCID: PMC10614945 DOI: 10.1101/2023.10.18.563016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
42
|
Jang S, Kim JY, Kim CW, Kim I. Hypertonic Salt Solution Enhances Inflammatory Responses in Cultured Splenic T-Cells from Dahl Salt-Sensitive Rats but Not Dahl Salt-Resistant Rats. J Cardiovasc Dev Dis 2023; 10:414. [PMID: 37887861 PMCID: PMC10607114 DOI: 10.3390/jcdd10100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
This study aimed to delineate the effect of sodium chloride on the induction of inflammatory responses and the development of hypertension in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. Splenocytes were isolated from the spleens of SS and SR rats, and cultured on anti-CD3-coated plates for 5 days. The cultured splenic T-cells were challenged with a hypertonic salt solution (0, 20, or 40 mM) in the absence or presence of IL-6 (0, 20, or 60 ng/mL), TGF-β (0, 5, or 15 ng/mL), or IL-23 (0, 10, or 30 ng/mL), and analyzed via ELISA, flow cytometry, and immunofluorescence. The hypertonic salt solution potentiated IL-17A production, as well as the differentiation of Th17 cells via IL-6/TGF-β/IL-23, exclusively in SS rats. However, it did not affect IL-10 production or the differentiation of Treg cells in any of the groups. Furthermore, it potentiated the signal of RORγt in IL-6-treated splenic T-cells from SS rats. To summarize, cultured splenic T-cells exhibited enhanced inflammatory responses on exposure to a hypertonic salt solution in SS rats only, which indicated that sodium chloride and inflammatory cytokines synergistically drove the induction of pathogenic Th17 cells and the development of hypertension in this group only.
Collapse
Affiliation(s)
- Sungmin Jang
- Department of Pharmacology, School of Medicine, Daegu, 41944, Republic of Korea; (S.J.); (J.Y.K.); (C.-W.K.)
- Cardiovascular Research Institute, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Daegu 41944, Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, School of Medicine, Daegu, 41944, Republic of Korea; (S.J.); (J.Y.K.); (C.-W.K.)
- Cardiovascular Research Institute, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Daegu 41944, Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Daegu, 41944, Republic of Korea; (S.J.); (J.Y.K.); (C.-W.K.)
- Cardiovascular Research Institute, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Daegu 41944, Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Daegu, 41944, Republic of Korea; (S.J.); (J.Y.K.); (C.-W.K.)
- Cardiovascular Research Institute, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Daegu 41944, Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
43
|
Foroudi MR, Yaghobi R, Afshari A, Roozbeh J, Miresmaeili SM, Javid A. The effect of the BK polyomavirus large T antigen on the function and maturity of the CD4 + T cell subsets in kidney transplant recipients. Transpl Immunol 2023; 80:101884. [PMID: 37422092 DOI: 10.1016/j.trim.2023.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND In kidney transplant recipients (KTRs) who are immunosuppressed, human BK polyomavirus (BKPyV) infection can be reactivated, resulting in BKPyV-associated nephropathy (BKPyVN). Considering that BKPyV inhibits CD4+ T cell differentiation, we investigated the effect of BKPyV large T antigen (LT-Ag) on the maturation of CD4+ T cell subsets during active BKPyV infection. METHODS In this cross-sectional study, we examined the following groups: 1) five KTRs with active viral infection (BKPyV+ KTRs), 2) five KTRs without active viral infection (BKPyV-KTRs), and 3) five healthy controls. We measured the frequency of CD4+ T cells and their different subsets, such as naive T cells, central memory T cells (Tcm), and effector memory T cells (Tem). All these subsets were analyzed by flow cytometry in peripheral blood mononuclear cells (PBMCs) stimulated with the overlapping BKPyV LT-Ag peptide pool. In addition, CD4+ T cell subsets were analyzed by flow cytometry for the presence of CD4, CCR7, CD45RO, CD107a, and granzyme B (GB). In addition, mRNA expression of transcription factors (TFs) such as T-bet, GATA-3, STAT-3, and STAT-6 was examined. The probability of inflammation with perforin protein was examined by SYBR Green real-time PCR. RESULTS After stimulation of PBMCs, naive T cells (CD4+CCR7+CD45RO-) (p = 0.9) and CD4+ T cells which release CD107a+ (CD4+CD107a+Geranzyme B-) (p = 0.9) T cells were more abundant in BKPyV+ KTRs than in BKPyV- KTRs. In contrast, central memory T cells (CD4+CCR7+CD45RO+) (p = 0.1) and effector memory T cells (CD4+CCR7-CD45RO+) (p = 0.1) were more abundant in BKPyV- KTRs than in BKPyV+ KTRs. The mRNA expression levels of T-bet, GATA-3, STAT-3, and STAT-6 were significantly higher (p < 0.05) in BKPyV- KTRs than in BKPyV+ KTRs which may be due to a higher differentiation level of CD4+ T cells. Due to inflammation, the mRNA expression level of perforin was higher in BKPyV+ KTRs, than in BKPyV- KTRs, but the difference was not significant (p = 0.175). CONCLUSIONS The high number of naive T cells after PBMC stimulation with the LT-Ag peptide pool was observed in BKPyV+ KTRs due to the interaction of LT-Ag with T cells. This means that BKPyV by using its LT-Ag can inhibit the naive T cell differentiation to other T cell subsets like central and effector memory T cells. However, the frequency of CD4+ T cell subsets and the combination of the activities of these cells with the expression profile of the target genes in this study may be efficient in treating and diagnosing BKPyV infections in kidney recipients.
Collapse
Affiliation(s)
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amaneh Javid
- Department of Biological Sciences, Faculty of Engineering and Science, Science and Arts University, Yazd, Iran
| |
Collapse
|
44
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
45
|
Gong X, Han Z, Fan H, Wu Y, He Y, Fu Y, Zhu T, Li H. The interplay of inflammation and remodeling in the pathogenesis of chronic rhinosinusitis: current understanding and future directions. Front Immunol 2023; 14:1238673. [PMID: 37771597 PMCID: PMC10523020 DOI: 10.3389/fimmu.2023.1238673] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Chronic rhinosinusitis (CRS), a common clinical condition characterized by persistent mucosal inflammation and tissue remodeling, has a complex pathogenesis that is intricately linked to innate and adaptive immunity. A number of studies have demonstrated that a variety of immune cells and cytokines that play a vital role in mediating inflammation in CRS are also involved in remodeling of the nasal mucosa and the cells as well as different cytokines involved in remodeling in CRS are also able to exert some influence on inflammation, even though the exact relationship between inflammation and remodeling in CRS has not yet been fully elucidated. In this review, the potential role of immune cells and cytokines in regulating inflammation and remodeling of CRS mucosa has been described, starting with the immune cells and cytokines that act together in inflammation and remodeling. The goal is to aid researchers in understanding intimate connection between inflammation and remodeling of CRS and to offer novel ideas for future research.
Collapse
Affiliation(s)
- Xinru Gong
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhoutong Han
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongli Fan
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Wu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuanqiong He
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yijie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Tianmin Zhu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
46
|
Gong W, Tian Y, Li L. T cells in abdominal aortic aneurysm: immunomodulation and clinical application. Front Immunol 2023; 14:1240132. [PMID: 37662948 PMCID: PMC10471798 DOI: 10.3389/fimmu.2023.1240132] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is characterized by inflammatory cell infiltration, extracellular matrix (ECM) degradation, and vascular smooth muscle cell (SMC) dysfunction. The inflammatory cells involved in AAA mainly include immune cells including macrophages, neutrophils, T-lymphocytes and B lymphocytes and endothelial cells. As the blood vessel wall expands, more and more lymphocytes infiltrate into the outer membrane. It was found that more than 50% of lymphocytes in AAA tissues were CD3+ T cells, including CD4+, CD8+T cells, γδ T cells and regulatory T cells (Tregs). Due to the important role of T cells in inflammatory response, an increasing number of researchers have paid attention to the role of T cells in AAA and dug into the relevant mechanism. Therefore, this paper focuses on reviewing the immunoregulatory role of T cells in AAA and their role in immunotherapy, seeking potential targets for immunotherapy and putting forward future research directions.
Collapse
Affiliation(s)
| | | | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
47
|
Li XM, Liu SP, Li Y, Cai XM, Zhang SB, Xie ZF. Identification of disulfidptosis-related genes with immune infiltration in hepatocellular carcinoma. Heliyon 2023; 9:e18436. [PMID: 37520990 PMCID: PMC10382636 DOI: 10.1016/j.heliyon.2023.e18436] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant primary tumor that is usually diagnosed at an advanced stage; thus, there is an urgent need for efficient and sensitive novel diagnostic markers to determine the prognosis and halt disease progression in patients with HCC. Disulfidptosis is a recently discovered form of programmed cell death, essentially an abnormal accumulation of intracellular bisulfides. Therefore, our study aimed to investigate the role of disulfidptosis-related genes (DRGs) in the pathogenesis of HCC. Based on public databases, our work demonstrates the relationship between DRG and expression, immunity, mutation/drug sensitivity, and functional enrichment in HCC. We also revealed the significant heterogeneity of HCC in different DRGs sub-clusters and in differentially expressed genes (DEGs), respectively. Subsequently, the most relevant candidate gene, SLC7A11, was screened by machine learning to further validate the significance of SLC7A11 in the clinical features, prognosis, nomogram pattern, and immune infiltration of HCC. Our study, which elucidates the potential mechanisms of DRGs and HCC, reveals that SLC7A11 can serve as a novel prognostic biomarker and provides opportunities and challenges for individualized cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Xiao-min Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shan-peng Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yu Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-ming Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shao-bo Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ze-feng Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
48
|
Tuazon JA, Read KA, Sreekumar BK, Roettger JE, Yaeger MJ, Varikuti S, Pokhrel S, Jones DM, Warren RT, Powell MD, Rasheed MN, Duncan EG, Childs LM, Gowdy KM, Oestreich KJ. Eos Promotes TH2 Differentiation by Interacting with and Propagating the Activity of STAT5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:365-376. [PMID: 37314436 PMCID: PMC10524986 DOI: 10.4049/jimmunol.2200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
The Ikaros zinc-finger transcription factor Eos has largely been associated with sustaining the immunosuppressive functions of regulatory T cells. Paradoxically, Eos has more recently been implicated in promoting proinflammatory responses in the dysregulated setting of autoimmunity. However, the precise role of Eos in regulating the differentiation and function of effector CD4+ T cell subsets remains unclear. In this study, we find that Eos is a positive regulator of the differentiation of murine CD4+ TH2 cells, an effector population that has been implicated in both immunity against helminthic parasites and the induction of allergic asthma. Using murine in vitro TH2 polarization and an in vivo house dust mite asthma model, we find that EosKO T cells exhibit reduced expression of key TH2 transcription factors, effector cytokines, and cytokine receptors. Mechanistically, we find that the IL-2/STAT5 axis and its downstream TH2 gene targets are one of the most significantly downregulated pathways in Eos-deficient cells. Consistent with these observations, we find that Eos forms, to our knowledge, a novel complex with and supports the tyrosine phosphorylation of STAT5. Collectively, these data define a regulatory mechanism whereby Eos propagates STAT5 activity to facilitate TH2 cell differentiation.
Collapse
Affiliation(s)
- Jasmine A. Tuazon
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Kaitlin A. Read
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | | | - Jack E. Roettger
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Michael J. Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Sanjay Varikuti
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Devin M. Jones
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Robert T. Warren
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Michael D. Powell
- Department of Microbiology and Immunology; Emory University School of Medicine, Atlanta, GA, 30322; USA
| | - Mustafa N. Rasheed
- Department of Emergency Medicine; Emory University Medical Center, Atlanta, GA, 30322; USA
| | | | - Lauren M. Childs
- Department of Mathematics; Virginia Tech, Blacksburg, VA, 24061; USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
- Infectious Diseases Institute; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| |
Collapse
|
49
|
Brunetti NS, Davanzo GG, de Moraes D, Ferrari AJR, Souza GF, Muraro SP, Knittel TL, Boldrini VO, Monteiro LB, Virgílio-da-Silva JV, Profeta GS, Wassano NS, Nunes Santos L, Carregari VC, Dias AHS, Veras FP, Tavares LA, Forato J, Castro IMS, Silva-Costa LC, Palma AC, Mansour E, Ulaf RG, Bernardes AF, Nunes TA, Ribeiro LC, Agrela MV, Moretti ML, Buscaratti LI, Crunfli F, Ludwig RG, Gerhardt JA, Munhoz-Alves N, Marques AM, Sesti-Costa R, Amorim MR, Toledo-Teixeira DA, Parise PL, Martini MC, Bispos-Dos-Santos K, Simeoni CL, Granja F, Silvestrini VC, de Oliveira EB, Faca VM, Carvalho M, Castelucci BG, Pereira AB, Coimbra LD, Dias MMG, Rodrigues PB, Gomes ABSP, Pereira FB, Santos LMB, Bloyet LM, Stumpf S, Pontelli MC, Whelan S, Sposito AC, Carvalho RF, Vieira AS, Vinolo MAR, Damasio A, Velloso L, Figueira ACM, da Silva LLP, Cunha TM, Nakaya HI, Marques-Souza H, Marques RE, Martins-de-Souza D, Skaf MS, Proenca-Modena JL, Moraes-Vieira PMM, Mori MA, Farias AS. SARS-CoV-2 uses CD4 to infect T helper lymphocytes. eLife 2023; 12:e84790. [PMID: 37523305 PMCID: PMC10390044 DOI: 10.7554/elife.84790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS- CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.
Collapse
Grants
- #2295/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2021/08354-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2015/15626-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/14465-1 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #465489/2014-1 Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação
- #01.20.0003.00 Financiadora de Estudos e Projetos
- #306248/2017-4 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- #2019/17007-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/04726-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2319/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2274/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2266/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2458/20 Fundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
- #2019/16116-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/06372-3 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04583-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2013/08293-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04579-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2018/14933-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04746-0 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/00098-7 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04919-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2017/01184-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2020/04558-0 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2016/00194-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2016/18031- 8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/22398-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/13552-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/05155-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2019/06459-1 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2017/23920-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2016/24163-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2016/23328-0 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #310287/2018-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico
Collapse
Affiliation(s)
- Natalia S Brunetti
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Diogo de Moraes
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Allan J R Ferrari
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela F Souza
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Thiago L Knittel
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Vinicius O Boldrini
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lauar B Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - João Victor Virgílio-da-Silva
- Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gerson S Profeta
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália S Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luana Nunes Santos
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Artur H S Dias
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas (UNICAMP), Campinas, Brazil
| | - Flavio P Veras
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto,, São Paulo, Brazil
| | - Lucas A Tavares
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Julia Forato
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Icaro M S Castro
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lícia C Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - André C Palma
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Eli Mansour
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raisa G Ulaf
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana F Bernardes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Thyago A Nunes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciana C Ribeiro
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcus V Agrela
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Luiza Moretti
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas I Buscaratti
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raissa G Ludwig
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jaqueline A Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Munhoz-Alves
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Maria Marques
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Renata Sesti-Costa
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariene R Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel A Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Pierina Lorencini Parise
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Matheus Cavalheiro Martini
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Karina Bispos-Dos-Santos
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Camila L Simeoni
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Virgínia C Silvestrini
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo B de Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor M Faca
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Murilo Carvalho
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Bianca G Castelucci
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Alexandre B Pereira
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Laís D Coimbra
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marieli M G Dias
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Patricia B Rodrigues
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;, Campinas, Brazil
| | - Arilson Bernardo S P Gomes
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;, Campinas, Brazil
| | - Fabricio B Pereira
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Leonilda M B Santos
- Neuroimmunology Unit, Department of Genetics, Microbiology and Immunology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM) - Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Louis-Marie Bloyet
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
| | - Spencer Stumpf
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
| | - Marjorie C Pontelli
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
| | - Sean Whelan
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
| | - Andrei C Sposito
- Laboratory of Vascular Biology and Arteriosclerosis, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - André S Vieira
- Laboratory of Electrophysiology, Neurobiology and Behavior, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Licio Velloso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Carolina M Figueira
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luis L P da Silva
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Mattar Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto,, São Paulo, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Henrique Marques-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael E Marques
- National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- National Institute of Science and Technology in Biomarkers for Neuropsychiatry (INCTINBION), São Paulo, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas (UNICAMP), Campinas, Brazil
| | - Jose Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo A Mori
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Alessandro S Farias
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Washington University in St Louis, Department of Molecular Microbiology, St. Louis, United States
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
50
|
Li J, Chen Z, Kim G, Luo J, Hori S, Wu C. Cathepsin W restrains peripheral regulatory T cells for mucosal immune quiescence. SCIENCE ADVANCES 2023; 9:eadf3924. [PMID: 37436991 DOI: 10.1126/sciadv.adf3924] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Peripheral regulatory T (pTreg) cells are a key T cell lineage for mucosal immune tolerance and anti-inflammatory responses, and interleukin-2 receptor (IL-2R) signaling is critical for Treg cell generation, expansion, and maintenance. The expression of IL-2R on pTreg cells is tightly regulated to ensure proper induction and function of pTreg cells without a clear molecular mechanism. We here demonstrate that Cathepsin W (CTSW), a cysteine proteinase highly induced in pTreg cells under transforming growth factor-β stimulation is essential for the restraint of pTreg cell differentiation in an intrinsic manner. Loss of CTSW results in elevated pTreg cell generation, protecting the animals from intestinal inflammation. Mechanistically, CTSW inhibits IL-2R signaling in pTreg cells by cytosolic interaction with and process of CD25, repressing signal transducer and activator of transcription 5 activation to restrain pTreg cell generation and maintenance. Hence, our data indicate that CTSW acts as a gatekeeper to calibrate pTreg cell differentiation and function for mucosal immune quiescence.
Collapse
Affiliation(s)
- Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|