1
|
Dhadwal S, Handa S, Chatterjee M, Banat IM. Sophorolipid: An Effective Biomolecule for Targeting Microbial Biofilms. Curr Microbiol 2024; 81:388. [PMID: 39367190 DOI: 10.1007/s00284-024-03892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Biofilms are microbial aggregates encased in a matrix that is attached to biological or nonbiological surfaces and constitute serious problems in food, medical, and marine industries and can have major negative effects on both health and the economy. Biofilm's complex microbial community provides a resistant environment that is difficult to eradicate and is extremely resilient to antibiotics and sanitizers. There are various conventional techniques for combating biofilms, including, chemical removal, physical or mechanical removal, use of antibiotics and disinfectants to destroy biofilm producing organisms. In contrast to free living planktonic cells, biofilms are very resistant to these methods. Hence, new strategies that differ from traditional approaches are urgently required. Microbial world offers a wide range of effective "green" compounds such as biosurfactants. They outperform synthetic surfactants in terms of biodegradability, superior stabilization, and reduced toxicity concerns. They also have better antiadhesive and anti-biofilm capabilities which can be used to treat biofilm-related problems. Sophorolipids (SLs) are a major type of biosurfactants that have gained immense interest in the healthcare industries because of their antiadhesive and anti-biofilm properties. Sophorolipids may therefore prove to be attractive substances that can be used in biomedical applications as adjuvant to other antibiotics against some infections through growth inhibition and/or biofilm disruption.
Collapse
Affiliation(s)
- Sunidhi Dhadwal
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India
| | - Shristi Handa
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Ibrahim M Banat
- Faculty of Life & Health Sciences, University of Ulster, Coleraine, BT52 1SA, UK.
| |
Collapse
|
2
|
Datta D, Jamwal S, Jyoti N, Patnaik S, Kumar D. Actionable mechanisms of drug tolerance and resistance in Mycobacterium tuberculosis. FEBS J 2024; 291:4433-4452. [PMID: 38676952 DOI: 10.1111/febs.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
The emergence of antimicrobial resistance (AMR) across bacterial pathogens presents a serious threat to global health. This threat is further exacerbated in tuberculosis (TB), mainly due to a protracted treatment regimen involving a combination of drugs. A diversity of factors contributes to the emergence of drug resistance in TB, which is caused by the pathogen Mycobacterium tuberculosis (Mtb). While the traditional genetic mutation-driven drug resistance mechanisms operate in Mtb, there are also several additional unique features of drug resistance in this pathogen. Research in the past decade has enriched our understanding of such unconventional factors as efflux pumps, bacterial heterogeneity, metabolic states, and host microenvironment. Given that the discovery of new antibiotics is outpaced by the emergence of drug resistance patterns displayed by the pathogen, newer strategies for combating drug resistance are desperately needed. In the context of TB, such approaches include targeting the efflux capability of the pathogen, modulating the host environment to prevent bacterial drug tolerance, and activating the host anti-mycobacterial pathways. In this review, we discuss the traditional mechanisms of drug resistance in Mtb, newer understandings and the shaping of a set of unconventional approaches to target both the emergence and treatment of drug resistance in TB.
Collapse
Affiliation(s)
- Dipanwita Datta
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Shaina Jamwal
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nishant Jyoti
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Geetha Sadasivan Nair R, Narayanan Nair AK, Sun S. Adsorption of drugs on B 12N 12 and Al 12N 12 nanocages. RSC Adv 2024; 14:31756-31767. [PMID: 39380648 PMCID: PMC11459447 DOI: 10.1039/d4ra05586a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The adsorption behavior of twelve drug molecules (5-fluorouracil, nitrosourea, pyrazinamide, sulfanilamide, ethionamide, 6-thioguanine, ciclopirox, 6-mercaptopurine, isoniazid, metformin, 4-aminopyridine, and cathinone) on B12N12 and Al12N12 nanocages was studied using density functional theory. In general, the drug molecules prefer to bind with the boron atom of the B12N12 nanocage and the aluminium atoms of the Al12N12 nanocage. However, a hydrogen atom is transferred from each of 5-fluorouracil, nitrosourea, 6-thioguanine, ciclopirox, and 6-mercaptopurine to the nitrogen atom of the Al12N12 nanocage. All the drug molecules are found to be chemisorbed on the B12N12 and Al12N12 nanocages. The adsorption energies of the drug/B12N12 system are linearly correlated with the molecular electrostatic potential minimum values of the drug molecules. The transfer of the hydrogen atom from the drug molecules to the nitrogen atom of the Al12N12 nanocage leads to relatively high adsorption energies. We observed significant changes in the reactivity parameters (e.g. electronic chemical potential) of the nanocages due to the chemisorption process. Overall, the QTAIM analysis indicates that the interactions between drug molecules and nanocages have a partial covalent character. Among the studied systems, the adsorption process was more spontaneous for the ciclopirox/Al12N12 system in water.
Collapse
Affiliation(s)
- Remya Geetha Sadasivan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
4
|
Banoo S, Yadav Y, Tyagi R, Manna A, Sagar R. Recent efforts in the development of glycoconjugate vaccine and available treatment for tuberculosis. Bioorg Chem 2024; 150:107610. [PMID: 38991488 DOI: 10.1016/j.bioorg.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Tuberculosis (TB) continues to pose a grave threat to global health, despite relentless eradication efforts. In 1882, Robert Koch discovered that Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing tuberculosis. It is a fact that tuberculosis has claimed the lives of more than one billion people in the last few decades. It is imperative that we must take immediate and effective action to increase resources for TB research and treatment. Effective TB treatments demand an extensive investment of both time and finances, often requiring 6-9 months of rigorous antibiotic therapy. The most efficient way to control tuberculosis is by receiving a childhood Bacillus Calmette-Guérin (BCG) vaccination. Despite years of research on vaccine development, we still do not have any new approved vaccine for tuberculosis, except BCG, which is partially effective in young children. This review discusses briefly the available treatment for tuberculosis and remarkable advancements in glycoconjugate-based TB vaccine developments in recent years (2013-2024) and offers valuable direction for future research priorities.
Collapse
Affiliation(s)
- Sajida Banoo
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arunava Manna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Requena D, Supo-Escalante RR, Sheen P, Zimic M. Studying the dynamics of the drug processing of pyrazinamide in Mycobacterium tuberculosis. PLoS One 2024; 19:e0309352. [PMID: 39208342 PMCID: PMC11361689 DOI: 10.1371/journal.pone.0309352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Pyrazinamide (PZA) is a key drug in the treatment of Mycobacterium tuberculosis. Although not completely understood yet, the bactericidal mechanism of PZA starts with its diffusion into the cell and subsequent conversion into pyrazinoic acid (POA) after the hydrolysis of ammonia group. This leads to the acidification cycle, which involves: (1) POA extrusion into the extracellular environment, (2) reentry of protonated POA, and (3) release of a proton into the cytoplasm, resulting in acidification of the cytoplasm and accumulation of intracellular POA. To better understand this process, we developed a system of coupled non-linear differential equations, which successfully recapitulates the kinetics of PZA/POA observed in M. tuberculosis. The parametric space was explored, assessing the impact of different PZA and pH concentrations and variations in the kinetic parameters, finding scenarios of PZA susceptibility and resistance. Furthermore, our predictions show that the acidification cycle alone is not enough to result in significant intracellular accumulation of POA in experimental time scales when compared to other neutral pH scenarios. Thus, revealing the need of novel hypotheses and experimental evidence to determine the missing mechanisms that may explain the pH-dependent intracellular accumulation of POA and their subsequent effects.
Collapse
Affiliation(s)
- David Requena
- Laboratory of Bioinformatics and Molecular Biology, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, San Martín de Porres, Peru
- Bioinformatics Group in Multi-Omics and Immunology, New York, NY, United States of America
| | - Rydberg R. Supo-Escalante
- Laboratory of Bioinformatics and Molecular Biology, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, San Martín de Porres, Peru
- Bioinformatics Group in Multi-Omics and Immunology, New York, NY, United States of America
- Department of Systems Biology, Columbia University, New York, NY, United States of America
| | - Patricia Sheen
- Laboratory of Bioinformatics and Molecular Biology, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, San Martín de Porres, Peru
| | - Mirko Zimic
- Laboratory of Bioinformatics and Molecular Biology, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, San Martín de Porres, Peru
| |
Collapse
|
6
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
7
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
8
|
Jayaraman M, Kumar R, Panchalingam S, Jeyaraman J. Mechanistic insights into the conformational changes and alterations in residual communications due to the mutations in the pncA Gene of Mycobacterium tuberculosis: A computational perspective for effective therapeutic solutions. Comput Biol Chem 2024; 110:108065. [PMID: 38615420 DOI: 10.1016/j.compbiolchem.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Due to its emerging resistance to first-line anti-TB medications, tuberculosis (TB) is one of the most contagious illness in the world. According to reports, the effectiveness of treating TB is severely impacted by drug resistance, notably resistance caused by mutations in the pncA gene-encoded pyrazinamidase (PZase) to the front-line drug pyrazinamide (PZA). The present study focused on investigating the resistance mechanism caused by the mutations D12N, T47A, and H137R to better understand the structural and molecular events responsible for the resistance acquired by the pncA gene of Mycobacterium tuberculosis (MTB) at the structural level. Bioinformatics analysis predicted that all three mutations were deleterious and located near the active centre of the pncA, affecting its functional activity. Furthermore, molecular dynamics simulation (MDS) results established that mutations significantly reduced the structural stability and caused the rearrangement of FE2+ in the active centre of pncA. Moreover, essential dynamics analysis, including principal component analysis (PCA) and free energy landscape (FEL), concluded variations in the protein motion and decreased conformational space in the mutants. Additionally, the mutations potentially impacted the network topologies and altered the residual communications in the network. The complex simulation study results established the significant movement of the flap region from the active centre of mutant complexes, further supporting the flap region's significance in developing resistance to the PZA drug. This study advances our knowledge of the primary cause of the mechanism of PZA resistance and the structural dynamics of pncA mutants, which will help us to design new and potent chemical scaffolds to treat drug-resistant TB (DR-TB).
Collapse
Affiliation(s)
- Manikandan Jayaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630004, India
| | - Rajalakshmi Kumar
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pillayarkuppam, Puducherry 607402, India
| | - Santhiya Panchalingam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu 600119, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630004, India.
| |
Collapse
|
9
|
Fang N, Wu L, Duan S, Li J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules 2024; 29:2058. [PMID: 38731549 PMCID: PMC11085428 DOI: 10.3390/molecules29092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Lingyun Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Shuyan Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| |
Collapse
|
10
|
Alotaibi BS. In silico identification of phytochemical inhibitors for multidrug-resistant tuberculosis based on novel pharmacophore generation and molecular dynamics simulation studies. BMC Chem 2024; 18:77. [PMID: 38637835 PMCID: PMC11027422 DOI: 10.1186/s13065-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis (particularly resistant to pyrazinoic acid) is a life-threatening chronic pulmonary disease. Running a marketed regime specifically targets the ribosomal protein subunit-1 (RpsA) and stops trans-translation in the non-mutant bacterium, responsible for the lysis of bacterial cells. However, in the strains of mutant bacteria, this regime has failed in curing TB and killing pathogens, which may only because of the ala438 deletion, which inhibit the binding of pyrazinoic acid to the RpsA active site. Therefore, such cases of tuberculosis need an immediate and effective regime. OBJECTIVE This study has tried to determine and design such chemotypes that are able to bind to the mutant RpsA protein. METHODS For these purposes, two phytochemical databases, i.e., NPASS and SANCDB, were virtually screened by a pharmacophore model using an online virtual screening server Pharmit. RESULTS The model of pharmacophore was developed using the potential inhibitor (zr115) for the mutant of RpsA. Pharmacophore-based virtual screening results into 154 hits from the NPASS database, and 22 hits from the SANCDB database. All the predicted hits were docked in the binding pocket of the mutant RpsA protein. Top-ranked five and two compounds were selected from the NPASS and SANCDB databases respectively. On the basis of binding energies and binding affinities of the compounds, three compounds were selected from the NPASS database and one from the SANCDB database. All compounds were found to be non-toxic and highly active against the mutant pathogen. To further validate the docking results and check the stability of hits, molecular dynamic simulation of three compounds were performed. The MD simulation results showed that all these finally selected compounds have stronger binding interactions, lesser deviation or fluctuations, with greater compactness compared to the reference compound. CONCLUSION These findings indicate that these compounds could be effective inhibitors for mutant RpsA.
Collapse
Affiliation(s)
- Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al- Quwayiyah, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Huang CK, Yu MC, Hung CS, Lin JC. Emerging insight of whole genome sequencing coupled with protein structure prediction into the pyrazinamide-resistance signature of Mycobacterium tuberculosis. Int J Antimicrob Agents 2024; 63:107053. [PMID: 38081550 DOI: 10.1016/j.ijantimicag.2023.107053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 11/11/2023] [Accepted: 12/04/2023] [Indexed: 02/25/2024]
Abstract
Pyrazinamide (PZA) is considered to be a pivotal drug to shorten the treatment of both drug-susceptible and drug-resistant tuberculosis, but its use is challenged by the reliability of drug-susceptibility testing (DST). PZA resistance in Mycobacterium tuberculosis (MTB) is relevant to the amino acid substitution of pyrazinamidase that is responsible for the conversion of PZA to active pyrazinoic acid (POA). The single nucleotide variants (SNVs) within ribosomal protein S1 (rpsA) or aspartate decarboxylase (panD), the binding targets of POA, has been reported to drive the PZA-resistance signature of MTB. In this study, whole genome sequencing (WGS) was used to identify SNVs within the pncA, rpsA and panD genes in 100 clinical MTB isolates associated with DST results for PZA. The potential influence of high-confidence, interim-confidence or emerging variants on the interplay between target genes and PZA or POA was simulated computationally, and predicted with a protein structure modelling approach. The DST results showed weak agreement with the identification of high-confidence variants within the pncA gene (Cohen's kappa coefficient=0.58), the analytic results of WGS coupled with protein structure modelling on pncA mutants (Cohen's kappa coefficient=0.524) or related genes (Cohen's kappa coefficient=0.504). Taken together, these results suggest the practicable application of a genotypic-coupled bioinformatic approach to manage PZA-containing regimens for patients with MTB.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Centre, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Centre, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
13
|
Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1251-1273. [PMID: 37665346 DOI: 10.1007/s00210-023-02679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium's genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
Collapse
Affiliation(s)
- Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Zoology, Feroze Gandhi College, Raebareli, 229001, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Botany, BMK Government. Girls College, Balod, Chhattisgarh, 491226, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India.
| |
Collapse
|
14
|
Fontes FL, Rooker SA, Lynn-Barbe JK, Lyons MA, Crans DC, Crick DC. Pyrazinoic acid, the active form of the anti-tuberculosis drug pyrazinamide, and aromatic carboxylic acid analogs are protonophores. Front Mol Biosci 2024; 11:1350699. [PMID: 38414662 PMCID: PMC10896915 DOI: 10.3389/fmolb.2024.1350699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Pyrazinoic acid is the active form of pyrazinamide, a first-line antibiotic used to treat Mycobacterium tuberculosis infections. However, the mechanism of action of pyrazinoic acid remains a subject of debate, and alternatives to pyrazinamide in cases of resistance are not available. The work presented here demonstrates that pyrazinoic acid and known protonophores including salicylic acid, benzoic acid, and carbonyl cyanide m-chlorophenyl hydrazone all exhibit pH-dependent inhibition of mycobacterial growth activity over a physiologically relevant range of pH values. Other anti-tubercular drugs, including rifampin, isoniazid, bedaquiline, and p-aminosalicylic acid, do not exhibit similar pH-dependent growth-inhibitory activities. The growth inhibition curves of pyrazinoic, salicylic, benzoic, and picolinic acids, as well as carbonyl cyanide m-chlorophenyl hydrazone, all fit a quantitative structure-activity relationship (QSAR) derived from acid-base equilibria with R2 values > 0.95. The QSAR model indicates that growth inhibition relies solely on the concentration of the protonated forms of these weak acids (rather than the deprotonated forms). Moreover, pyrazinoic acid, salicylic acid, and carbonyl cyanide m-chlorophenyl hydrazone all caused acidification of the mycobacterial cytoplasm at concentrations that inhibit bacterial growth. Thus, it is concluded that pyrazinoic acid acts as an uncoupler of oxidative phosphorylation and that disruption of proton motive force is the primary mechanism of action of pyrazinoic acid rather than the inhibition of a classic enzyme activity.
Collapse
Affiliation(s)
- Fabio L. Fontes
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Steven A. Rooker
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jamie K. Lynn-Barbe
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Michael A. Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Debbie C. Crans
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Dean C. Crick
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Liu B, Su P, Hu P, Yan M, Li W, Yi S, Chen Z, Zhang X, Guo J, Wan X, Wang J, Gong D, Bai H, Wan K, Liu H, Li G, Tan Y. Prevalence, Transmission and Genetic Diversity of Pyrazinamide Resistance Among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Hunan, China. Infect Drug Resist 2024; 17:403-416. [PMID: 38328339 PMCID: PMC10849141 DOI: 10.2147/idr.s436161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Background China is a country with a burden of high rates of both TB and multidrug-resistant TB (MDR-TB). However, published data on pyrazinamide (PZA) resistance are still limited in Hunan province, China. This study investigated the prevalence, transmission, and genetic diversity of PZA resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Hunan province. Methods Drug susceptibility testing (DST) with the Bactec MGIT 960 PZA kit and pyrazinamidase (PZase) testing were conducted on all 298 MDR clinical isolates. Moreover, 24-locus MIRU-VNTR and DNA sequencing of pncA, rpsA, and panD genes were conducted on 180 PZA-resistant (PZA-R) isolates. Results The prevalence of PZA resistance among MDR-TB strains reached 60.4%. Newly diagnosed PZA-R TB patients and clustered isolates with identical pncA, rpsA, and panD mutations showed that transmission of PZA-R isolates played a significant role in the formation of PZA-R TB. Ninety-eight mutation patterns were observed in the pncA among 180 PZA-R isolates, and seventy-one (72.4%) were point mutations. Twenty-four of these mutations are new, including 2 base substitutions (V93G and T153S) and 22 nucleotide deletions or insertions. The W119C was found in PZA-S isolates, on the other hand, F94L and V155A mutations were found in both PZA resistant and susceptible isolates with positive PZase activity, indicating that they were not associated with PZA resistance. This is not entirely in line with the WHO catalogue. Ten novel rpsA mutations were found in 10 PZA-R isolates, which all combined with mutations in pncA. Thus, it is unpredictable whether these mutations in rpsA can impact PZA resistance. No panD mutation was found in all PZA-R isolates. Conclusion DNA sequencing of pncA and PZase activity testing have great potential in predicting PZA resistance.
Collapse
Affiliation(s)
- Binbin Liu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Pan Su
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Peilei Hu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Mi Yan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Wenbin Li
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Songlin Yi
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Zhenhua Chen
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Xiaoping Zhang
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Jingwei Guo
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Xiaojie Wan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Jue Wang
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Daofang Gong
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Hua Bai
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yunhong Tan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| |
Collapse
|
16
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
17
|
Moon CW, Porges E, Taylor SC, Bacon J. A Microtiter Plate Assay at Acidic pH to Identify Potentiators that Enhance Pyrazinamide Activity Against Mycobacterium tuberculosis. Methods Mol Biol 2024; 2833:65-77. [PMID: 38949702 DOI: 10.1007/978-1-0716-3981-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pyrazinamide (PZA) is a key component of chemotherapy for the treatment of drug-susceptible tuberculosis (TB) and is likely to continue to be included in new drug combinations. Potentiation of PZA could be used to reduce the emergence of resistance, shorten treatment times, and lead to a reduction in the quantity of PZA consumed by patients, thereby reducing the toxic effects. Acidified medium is required for the activity of PZA against Mycobacterium tuberculosis. In vitro assessments of pyrazinamide activity are often avoided because of the lack of standardization, which has led to a lack of effective in vitro tools for assessing and/or enhancing PZA activity.We have developed and optimized a novel, robust, and reproducible, microtiter plate assay, that centers around acidity levels that are low enough for PZA activity. The assay can be applied to the evaluation of novel compounds for the identification of potentiators that enhance PZA activity. In this assay, potentiation of PZA is demonstrated to be statistically significant with the addition of rifampicin (RIF), which can, therefore, be used as a positive control. Conversely, norfloxacin demonstrates no potentiating activity with PZA and can be used as a negative control. The method, and the associated considerations, described here, can be adapted in the search for potentiators of other antimicrobials.
Collapse
Affiliation(s)
| | - Eleanor Porges
- Discovery Group, UK Health Security Agency, Porton Down, Salisbury, UK
| | | | - Joanna Bacon
- Discovery Group, UK Health Security Agency, Porton Down, Salisbury, UK.
| |
Collapse
|
18
|
Xing C, Hang Z, Guo W, Li Y, Shah R, Zhao Y, Zeng Z, Du H. Stem cells from human exfoliated deciduous teeth rejuvenate the liver in naturally aged mice by improving ribosomal and mitochondrial proteins. Cytotherapy 2023; 25:1285-1292. [PMID: 37815776 DOI: 10.1016/j.jcyt.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AIMS Aging is accompanied by a decline in cellular proteome homeostasis, mitochondrial, and metabolic function. Mesenchymal stromal cell (MSC) therapies have been reported to extend lifespan and delay some age-related pathologies, yet the anti-aging rate and mechanisms remain unclear. Here, we investigated the effects and mechanism by transplantation of stem cells from human exfoliated deciduous teeth (SHED) into the naturally aged mice model. METHODS SHED were cultured in vitro and injected into mice by caudal vein. The in vivo imaging uncovered that SHED labeled by DiR dye mainly migrated to the liver, spleen, and lung organs of wild-type mice. As the main metabolic organ and SHED homing place, the liver was selected for proteomics and aging clock algorithm (LiverClock) analysis, which was constructed to estimate the proteomic pattern related to liver age state. RESULTS After 6 months of continuous SHED injections, the liver proteomic pattern was reversed from senescent (∼30 months) to a youthful state (∼3 months), accompanied with upregulation of hepatocytes marker genes, anti-aging protein Klotho, a global improvement of liver functional pathways proteins, and a dramatic regulation of ribosomal and mitochondrial proteins, including upregulation of translation elongation and ribosome-sparing proteins Rpsa and Rplp0; elongation factors Eif4a1, Eef1b2, Eif5a; protein-folding chaperones Hsp90aa and Hspe1; ATP synthesis proteins Atp5b, Atp5o, Atp5j; and downregulation of most ribosomal proteins, suggesting that the proteome homeostasis destruction and mitochondria dysfunction in the aged mice liver might be relieved after SHED treatment. CONCLUSIONS SHED treatment could dramatically relieve the senescent state of the aged liver, affect ribosome component proteins and upregulate the ribosomal biogenesis proteins in the aged mice liver. These results may help understand the improvements and mechanisms of SHED treatment in anti-aging.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Zhongci Hang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Wenhuan Guo
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Reproductive Center, Peking University Third Hospital, Beijing, China
| | - Yingxian Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Roshan Shah
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Yihan Zhao
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Zehua Zeng
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China.
| | - Hongwu Du
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China.
| |
Collapse
|
19
|
Guo Z, Du Z, Zhao Y, Shen X, Liang C. Vanadium-catalyzed Hydration of 2-Cyanopyrazine to Pyrazinamide with Unique Substrate Specificity. Chem Asian J 2023; 18:e202300741. [PMID: 37754564 DOI: 10.1002/asia.202300741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Pyrazinamide is an important medicine used for the treatment of tuberculosis(TB). The preparation of pyrazinamide via catalytic hydration of 2-cyanopyrazine is of great economic interest with high atomic economy. Heterogeneous non-precious transition metal-catalyzed hydration of nitriles under neutral reaction conditions would be rather attractive. Herein vanadium-nitrogen-carbon materials were fabricated and employed for selective hydration of nitriles using water as both the solvent and reactant. 2-Cyanopyrazine could be smoothly converted into to pyrazinamide with unique substrate specificity. Additives with different N and O atoms could significantly affect hydration of 2-cyanopyrazine due to competitive adsorption/coordination in the reaction system. This work provides a new approach for non-precious metal catalyzed hydration of nitriles.
Collapse
Affiliation(s)
- Zhongxu Guo
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Zhongtian Du
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Yanbin Zhao
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Xiaoyu Shen
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Changhai Liang
- School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin, 124221, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
20
|
Schami A, Islam MN, Belisle JT, Torrelles JB. Drug-resistant strains of Mycobacterium tuberculosis: cell envelope profiles and interactions with the host. Front Cell Infect Microbiol 2023; 13:1274175. [PMID: 38029252 PMCID: PMC10664572 DOI: 10.3389/fcimb.2023.1274175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
In the past few decades, drug-resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), have become increasingly prevalent and pose a threat to worldwide public health. These strains range from multi (MDR) to extensively (XDR) drug-resistant, making them very difficult to treat. Further, the current and future impact of the Coronavirus Disease 2019 (COVID-19) pandemic on the development of DR-TB is still unknown. Although exhaustive studies have been conducted depicting the uniqueness of the M.tb cell envelope, little is known about how its composition changes in relation to drug resistance acquisition. This knowledge is critical to understanding the capacity of DR-M.tb strains to resist anti-TB drugs, and to inform us on the future design of anti-TB drugs to combat these difficult-to-treat strains. In this review, we discuss the complexities of the M.tb cell envelope along with recent studies investigating how M.tb structurally and biochemically changes in relation to drug resistance. Further, we will describe what is currently known about the influence of M.tb drug resistance on infection outcomes, focusing on its impact on fitness, persister-bacteria, and subclinical TB.
Collapse
Affiliation(s)
- Alyssa Schami
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - M. Nurul Islam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research & Education, International Center for the Advancement of Research & Education, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
21
|
Kumar G, C A. Natural products and their analogues acting against Mycobacterium tuberculosis: A recent update. Drug Dev Res 2023; 84:779-804. [PMID: 37086027 DOI: 10.1002/ddr.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases caused by Mycobacterium tuberculosis (M.tb). It is responsible for significant causes of mortality and morbidity worldwide. M.tb possesses robust defense mechanisms against most antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. Thus, the efficacy of existing front-line drugs is diminishing, and new and recurring cases of TB arising from multidrug-resistant M.tb are increasing. TB begs the scientific community to explore novel therapeutic avenues. A precise knowledge of the compounds with their mode of action could aid in developing new anti-TB agents that can kill latent and actively multiplying M.tb. This can help in the shortening of the anti-TB regimen and can improve the outcome of treatment strategies. Natural products have contributed several antibiotics for TB treatment. The sources of anti-TB drugs/inhibitors discussed in this work are target-based identification/cell-based and phenotypic screening from natural products. Some of the recently identified natural products derived leads have reached clinical stages of TB drug development, which include rifapentine, CPZEN-45, spectinamide-1599 and 1810. We believe these anti-TB agents could emerge as superior therapeutic compounds to treat TB over known Food and Drug Administration drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| | - Amrutha C
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
22
|
Ji L, Jiang T, Zhao X, Cai D, Hua K, Du P, Chen Y, Xie J. Mycobacterium tuberculosis Rv0494 Protein Contributes to Mycobacterial Persistence. Infect Drug Resist 2023; 16:4755-4762. [PMID: 37501888 PMCID: PMC10370413 DOI: 10.2147/idr.s419914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Purpose Fatty acid metabolism plays an important role in the survival and pathogenesis of Mycobacterium tuberculosis. During dormancy, lipids are considered to be the main source of energy. A previous study found that Rv0494 is a starvation-inducible, lipid-responsive transcriptional regulator. However, the role of Rv0494 in bacterial persister survival has not been studied. Methods We constructed a Rv0494 deletion mutant strain of Mycobacterium tuberculosis H37Rv and evaluated the susceptibility of the mutant strain to antibiotics using a persistence test. Results We found that mutations in Rv0494 lead to survival defects of persisters, which reflected in increased sensitivity to isoniazid. Conclusion We conclude that Rv0494 is important for persister survival and may serve as a good target for developing new antibiotics that kill persister bacteria for improved treatment of persistent bacterial infections.
Collapse
Affiliation(s)
- Lei Ji
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xin Zhao
- Department of International Registration, Ustar Biotechnologies (Hangzhou) Ltd, Hangzhou, Zhejiang, People’s Republic of China
| | - Damin Cai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Kouzhen Hua
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuanyuan Chen
- Tuberculosis Diagnosis and Treatment Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
23
|
Yadav R, Meena D, Singh K, Tyagi R, Yadav Y, Sagar R. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv 2023; 13:21890-21925. [PMID: 37483662 PMCID: PMC10359851 DOI: 10.1039/d3ra03862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
This review highlights the recent synthetic developments of benzothiazole based anti-tubercular compounds and their in vitro and in vivo activity. The inhibitory concentrations of the newly synthesized molecules were compared with the standard reference drugs. The better inhibition potency was found in new benzothiazole derivatives against M. tuberculosis. Synthesis of benzothiazole derivatives was achieved through various synthetic pathways including diazo-coupling, Knoevenagel condensation, Biginelli reaction, molecular hybridization techniques, microwave irradiation, one-pot multicomponent reactions etc. Other than recent synthetic developments, mechanism of resistance of anti-TB drugs is also incorporated in this review. Structure activity relationships of the new benzothiazole derivatives along with the molecular docking studies of selected compounds have been discussed against the target DprE1 in search of a potent inhibitor with enhanced anti-tubercular activity.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Dilkhush Meena
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
24
|
Sau S, Roy A, Agnivesh PK, Kumar S, Guru SK, Sharma S, Kalia NP. Unravelling the flexibility of Mycobacterium tuberculosis: an escape way for the bacilli. J Med Microbiol 2023; 72. [PMID: 37261969 DOI: 10.1099/jmm.0.001695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The persistence of Mycobacterium tuberculosis makes it difficult to eradicate the associated infection from the host. The flexible nature of mycobacteria and their ability to adapt to adverse host conditions give rise to different drug-tolerant phenotypes. Granuloma formation restricts nutrient supply, limits oxygen availability and exposes bacteria to a low pH environment, resulting in non-replicating bacteria. These non-replicating mycobacteria, which need high doses and long exposure to anti-tubercular drugs, are the root cause of lengthy chemotherapy. Novel strategies, which are effective against non-replicating mycobacteria, need to be adopted to shorten tuberculosis treatment. This not only will reduce the treatment time but also will help prevent the emergence of multi-drug-resistant strains of mycobacteria.
Collapse
Affiliation(s)
- Shashikanta Sau
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arnab Roy
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sunil Kumar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab -144411, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
25
|
Morra R, Pratama F, Butterfield T, Tomazetto G, Young K, Lopez R, Dixon N. arfA antisense RNA regulates MscL excretory activity. Life Sci Alliance 2023; 6:e202301954. [PMID: 37012050 PMCID: PMC10070815 DOI: 10.26508/lsa.202301954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Excretion of cytoplasmic protein (ECP) is a commonly observed phenomenon in bacteria, and this partial extracellular localisation of the intracellular proteome has been implicated in a variety of stress response mechanisms. In response to hypoosmotic shock and ribosome stalling in Escherichia coli, ECP is dependent upon the presence of the large-conductance mechanosensitive channel and the alternative ribosome-rescue factor A gene products. However, it is not known if a mechanistic link exists between the corresponding genes and the respective stress response pathways. Here, we report that the corresponding mscL and arfA genes are commonly co-located on the genomes of Gammaproteobacteria and display overlap in their respective 3' UTR and 3' CDS. We show this unusual genomic arrangement permits an antisense RNA-mediated regulatory control between mscL and arfA, and this modulates MscL excretory activity in E. coli These findings highlight a mechanistic link between osmotic, translational stress responses and ECP in E. coli, further elucidating the previously unknown regulatory function of arfA sRNA.
Collapse
Affiliation(s)
- Rosa Morra
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Fenryco Pratama
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Institut Teknologi Bandung, Bandung, Indonesia
| | - Thomas Butterfield
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Geizecler Tomazetto
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Kate Young
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Ruth Lopez
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Neil Dixon
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Robbins L, Balaram A, Dejneka S, McMahon M, Najibi Z, Pawlowicz P, Conrad WH. Heterologous production of the D-cycloserine intermediate O-acetyl-L-serine in a human type II pulmonary cell model. Sci Rep 2023; 13:8551. [PMID: 37237156 DOI: 10.1038/s41598-023-35632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is the second leading cause of death by a single infectious disease behind COVID-19. Despite a century of effort, the current TB vaccine does not effectively prevent pulmonary TB, promote herd immunity, or prevent transmission. Therefore, alternative approaches are needed. We seek to develop a cell therapy that produces an effective antibiotic in response to TB infection. D-cycloserine (D-CS) is a second-line antibiotic for TB that inhibits bacterial cell wall synthesis. We have determined D-CS to be the optimal candidate for anti-TB cell therapy due to its effectiveness against TB, relatively short biosynthetic pathway, and its low-resistance incidence. The first committed step towards D-CS synthesis is catalyzed by the L-serine-O-acetyltransferase (DcsE) which converts L-serine and acetyl-CoA to O-acetyl-L-serine (L-OAS). To test if the D-CS pathway could be an effective prophylaxis for TB, we endeavored to express functional DcsE in A549 cells as a human pulmonary model. We observed DcsE-FLAG-GFP expression using fluorescence microscopy. DcsE purified from A549 cells catalyzed the synthesis of L-OAS as observed by HPLC-MS. Therefore, human cells synthesize functional DcsE capable of converting L-serine and acetyl-CoA to L-OAS demonstrating the first step towards D-CS production in human cells.
Collapse
Affiliation(s)
- Laurel Robbins
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Ariane Balaram
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Stefanie Dejneka
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Matthew McMahon
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Zarina Najibi
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Peter Pawlowicz
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - William H Conrad
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA.
| |
Collapse
|
27
|
Sreelatha S, Nagarajan U, Natarajan S. Protein targets in Mycobacterium tuberculosis and their inhibitors for therapeutic implications: A narrative review. Int J Biol Macromol 2023:125022. [PMID: 37244342 DOI: 10.1016/j.ijbiomac.2023.125022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Advancement in the area of anti-tubercular drug development has been full-fledged, yet, a very less number of drug molecules have reached phase II clinical trials, and therefore "End-TB" is still a global challenge. Inhibitors to specific metabolic pathways of Mycobacterium tuberculosis (Mtb) gain importance in strategizing anti-tuberculosis drug discovery. The lead compounds that target DNA replication, protein synthesis, cell wall biosynthesis, bacterial virulence and energy metabolism are emerging as potential chemotherapeutic options against Mtb growth and survival within the host. In recent times, the in silico approaches have become most promising tools in the identification of suitable inhibitors for specific protein targets of Mtb. An update in the fundamental understanding of these inhibitors and the mechanism of interaction may bring hope to future perspectives in novel drug development and delivery approaches. This review provides a collective impression of the small molecules with potential antimycobacterial activities and their target pathways in Mtb such as cell wall biosynthesis, DNA replication, transcription and translation, efflux pumps, antivirulence pathways and general metabolism. The mechanism of interaction of specific inhibitor with their respective protein targets has been discussed. The comprehensive knowledge of such an impactful area of research would essentially reflect in the discovery of novel drug molecules and effective delivery approaches. This narrative review encompasses the knowledge of emerging targets and promising n that could potentially translate in to the anti-TB-drug discovery.
Collapse
Affiliation(s)
- Souparnika Sreelatha
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | - Usharani Nagarajan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | - Saravanan Natarajan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India.
| |
Collapse
|
28
|
Gaglani P, Dwivedi M, Upadhyay TK, Kaushal RS, Ahmad I, Saeed M. A pro-oxidant property of vitamin C to overcome the burden of latent Mycobacterium tuberculosis infection: A cross-talk review with Fenton reaction. Front Cell Infect Microbiol 2023; 13:1152269. [PMID: 37153159 PMCID: PMC10155705 DOI: 10.3389/fcimb.2023.1152269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/17/2023] [Indexed: 05/09/2023] Open
Abstract
Tuberculosis (TB), caused by the bacillus M. tuberculosis, is one of the deadliest infectious illnesses of our day, along with HIV and malaria.Chemotherapy, the cornerstone of TB control efforts, is jeopardized by the advent of M. tuberculosis strains resistant to many, if not all, of the existing medications.Isoniazid (INH), rifampicin (RIF), pyrazinamide, and ethambutol are used to treat drug-susceptible TB for two months, followed by four months of INH and RIF, but chemotherapy with potentially harmful side effects is sometimes needed to treat multidrug-resistant (MDR) TB for up to two years. Chemotherapy might be greatly shortened by drugs that kill M. tuberculosis more quickly while simultaneously limiting the emergence of drug resistance.Regardless of their intended target, bactericidal medicines commonly kill pathogenic bacteria (gram-negative and gram-positive) by producing hydroxyl radicals via the Fenton reaction.Researchers have concentrated on vitamins with bactericidal properties to address the rising cases globally and have discovered that these vitamins are effective when given along with first-line drugs. The presence of elevated iron content, reactive oxygen species (ROS) generation, and DNA damage all contributed to VC's sterilizing action on M. tb in vitro. Moreover, it has a pleiotropic effect on a variety of biological processes such as detoxification, protein folding - chaperons, cell wall processes, information pathways, regulatory, virulence, metabolism etc.In this review report, the authors extensively discussed the effects of VC on M. tb., such as the generation of free radicals and bactericidal mechanisms with existing treatments, and their further drug development based on ROS production.
Collapse
Affiliation(s)
- Pratikkumar Gaglani
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics and Structural Biology Laboratory, Center of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
29
|
Alshabrmi FM, Alatawi EA. Deciphering the mechanism of resistance by novel double mutations in pncA in Mycobacterium tuberculosis using protein structural graphs (PSG) and structural bioinformatic approaches. Comput Biol Med 2023; 154:106599. [PMID: 36731361 DOI: 10.1016/j.compbiomed.2023.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
The evolution of MDR and XDR-TB is a growing concern and public health safety threat around the world. Gene mutations are the prime cause of drug resistance in tuberculosis, however the reports of double mutations further aggravated the situation. Despite the large-scale genomic sequencing and identification of novel mutations, structure investigation of the protein is still required to structurally and functionally characterize these novel mutations to design novel drugs for improved clinical outcome. Hence, we used structural bioinformatics approaches i.e. molecular modeling, residues communication and molecular simulation to understand the impact of novel double S59Y-L85P, D86G-V180F and S104G-V130 M mutation on the structure, function of pncA encoded Pyrazinamidase (PZase) and resistance of Pyrazinamide (PZA). Our results revealed that these mutations alter the binding paradigm and destabilize the protein to release the drug. Protein commination network (PCN) revealed variations in the hub residues and sub-networks which consequently alter the internal communication and signaling. The region 1-75 demonstrated higher flexibility in the mutant structures and minimal by the wild type which destabilize of the internally arranged beta-sheets which consequently reduce the binding of PZA and potentially Fe ion in the mutants. Hydrogen bonding analysis further validated the findings. The total binding free energy (ΔG) for each complex i.e. wild type -7.46 kcal/mol, S59Y-L85P -5.21 kcal/mol, S104G-V130 M -5.33 kcal/mol while for the D86G-V180F mutant the TBE was calculated to be -6.26 kcal/mol. This further confirms that these mutations reduce the binding energy of PZA for PZase and causes resistance in the effective therapy for TB. The trajectories motion was also observed to be affected by these mutations. In conclusion, these mutations use destabilizing approach to reduce the binding of PZA and causes resistance. These features can be used to design novel structure-based drugs against Tuberculosis.
Collapse
Affiliation(s)
- Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Eid A Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
30
|
Wu N, Zhang Y, Zhang S, Yuan Y, Liu S, Xu T, Cui P, Zhang W, Zhang Y. Polynucleotide Phosphorylase Mediates a New Mechanism of Persister Formation in Escherichia coli. Microbiol Spectr 2023; 11:e0154622. [PMID: 36475972 PMCID: PMC9927094 DOI: 10.1128/spectrum.01546-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the identification of many genes and pathways involved in the persistence phenomenon in bacteria, the mechanisms of persistence are not well understood. Here, using Escherichia coli, we identified polynucleotide phosphorylase (PNPase) as a key regulator of persister formation. We constructed the pnp knockout strain (Δpnp) and its complemented strain and exposed them to antibiotics and stress conditions. The results showed that, compared with the wild-type strain W3110, the Δpnp strain had significant defects in persistence to antibiotics and stresses, and the persistence phenotype was restored upon complementation with the pnp gene. Transcriptome sequencing (RNA-seq) analysis revealed that 242 (166 upregulated and 76 downregulated) genes were differentially expressed in the Δpnp strain compared with the W3110 strain. KEGG analysis of the upregulated genes showed that these genes were mostly mapped to metabolism and virulence pathways, of which most are positively regulated by the global regulator cyclic AMP receptor protein (CRP). Correspondingly, the transcription level of the crp gene in the Δpnp strain increased 3.22-fold in the early stationary phase. We further explored the indicators of cellular metabolism of the Δpnp strain, the phenotype of the pnp and crp double-deletion mutant, and the transcriptional activity of the crp gene. Our results indicate that PNPase controls cellular metabolism by negatively regulating the crp operon via targeting the 5'-untranslated region of the crp transcript. This study reveals a persister mechanism and provides novel targets for the development of drugs against persisters for more effective treatment. IMPORTANCE Persisters pose significant challenges for a more effective treatment of persistent infections. An improved understanding of mechanisms of persistence will provide therapeutic targets important for the development of better treatments. Since recent studies with the key tuberculosis persister drug pyrazinamide have implicated polynucleotide phosphorylase (PNPase) as a drug target, in this study, we addressed the possibility that PNPase might be involved in persistence in Escherichia coli. Our study demonstrates PNPase indeed being involved in persistence, provides a mechanism by which PNPase controls persister formation, and suggests a new therapeutic target for treating persistent bacterial infections.
Collapse
Affiliation(s)
- Nan Wu
- Department of Clinical Laboratory, Shanghai Stomatological Hospital, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yumeng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shanshan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Youhua Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Rossini NDO, Dias MVB. Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first-line. Genet Mol Biol 2023; 46:e20220261. [PMID: 36718771 PMCID: PMC9887390 DOI: 10.1590/1678-4685-gmb-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Genetically antimicrobial resistance in Mycobacterium tuberculosis is currently one of the most important aspects of tuberculosis, considering that there are emerging resistant strains for almost every known drug used for its treatment. There are multiple antimicrobials used for tuberculosis treatment, and the most effective ones are the first-line drugs, which include isoniazid, pyrazinamide, rifampicin, and ethambutol. In this context, understanding the mechanisms of action and resistance of these molecules is essential for proposing new therapies and strategies of treatment. Additionally, understanding how and where mutations arise conferring a resistance profile to the bacteria and their effect on bacterial metabolism is an important requisite to be taken in producing safer and less susceptible drugs to the emergence of resistance. In this review, we summarize the most recent literature regarding novel mutations reported between 2017 and 2022 and the advances in the molecular mechanisms of action and resistance against first-line drugs used in tuberculosis treatment, highlighting recent findings in pyrazinamide resistance involving PanD and, additionally, resistance-conferring mutations for novel drugs such as bedaquiline, pretomanid, delamanid and linezolid.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
| | - Marcio Vinicius Bertacine Dias
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
- University of Warwick, Department of Chemistry, Coventry, United Kingdom. University of WarwickDepartment of ChemistryCoventryUnited Kingdom
| |
Collapse
|
32
|
Finger V, Kufa M, Soukup O, Castagnolo D, Roh J, Korabecny J. Pyrimidine derivatives with antitubercular activity. Eur J Med Chem 2023; 246:114946. [PMID: 36459759 DOI: 10.1016/j.ejmech.2022.114946] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Small molecules with antitubercular activity containing the pyrimidine motif in their structure have gained more attention after three drugs, namely GSK 2556286 (GSK-286), TBA-7371 and SPR720, have entered clinical trials. This review provides an overview of recent advances in the hit-to-lead drug discovery studies of antitubercular pyrimidine-containing compounds with the aim to highlight their structural diversity. In the first part, the review discusses the pyrimidine compounds according to their targets, pinpointing the structure-activity relationships of each pyrimidine family. The second part of this review is concentrated on antitubercular pyrimidine derivatives with a yet unexplored or speculative target, dividing the compounds according to their structural types.
Collapse
Affiliation(s)
- Vladimir Finger
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Martin Kufa
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic.
| |
Collapse
|
33
|
Feng F, Zhang W, Chai Y, Guo D, Chen X. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. J Pharm Biomed Anal 2023; 223:115107. [DOI: 10.1016/j.jpba.2022.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
34
|
Bi K, Cao D, Ding C, Lu S, Lu H, Zhang G, Zhang W, Li L, Xu K, Li L, Zhang Y. The past, present and future of tuberculosis treatment. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:657-668. [PMID: 36915970 PMCID: PMC10262004 DOI: 10.3724/zdxbyxb-2022-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023]
Abstract
Tuberculosis (TB) is an ancient infectious disease. Before the availability of effective drug therapy, it had high morbidity and mortality. In the past 100 years, the discovery of revolutionary anti-TB drugs such as streptomycin, isoniazid, pyrazinamide, ethambutol and rifampicin, along with drug combination treatment, has greatly improved TB control globally. As anti-TB drugs were widely used, multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis emerged due to acquired genetic mutations, and this now presents a major problem for effective treatment. Genes associated with drug resistance have been identified, including katG mutations in isoniazid resistance, rpoB mutations in rifampin resistance, pncA mutations in pyrazinamide resistance, and gyrA mutations in quinolone resistance. The major mechanisms of drug resistance include loss of enzyme activity in prodrug activation, drug target alteration, overexpression of drug target, and overexpression of the efflux pump. During the disease process, Mycobacterium tuberculosis may reside in different microenvironments where it is expose to acidic pH, low oxygen, reactive oxygen species and anti-TB drugs, which can facilitate the development of non-replicating persisters and promote bacterial survival. The mechanisms of persister formation may include toxin-antitoxin (TA) modules, DNA protection and repair, protein degradation such as trans-translation, efflux, and altered metabolism. In recent years, the use of new anti-TB drugs, repurposed drugs, and their drug combinations has greatly improved treatment outcomes in patients with both drug-susceptible TB and MDR/XDR-TB. The importance of developing more effective drugs targeting persisters of Mycobacterium tuberculosis is emphasized. In addition, host-directed therapeutics using both conventional drugs and herbal medicines for more effective TB treatment should also be explored. In this article, we review historical aspects of the research on anti-TB drugs and discuss the current understanding and treatments of drug resistant and persistent tuberculosis to inform future therapeutic development.
Collapse
Affiliation(s)
- Kefan Bi
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Dan Cao
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Cheng Ding
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
| | - Shuihua Lu
- 3. Department for Infectious Diseases, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen 518000, Guangdong Province, China
| | - Hongzhou Lu
- 3. Department for Infectious Diseases, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen 518000, Guangdong Province, China
| | - Guangyu Zhang
- 4. Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Wenhong Zhang
- 5. Department of Infectious Diseases, Huashan Hospital, Fudan University, National Medical Center for Infectious Diseases, Shanghai 200040, China
| | - Liang Li
- 6. Beijing Chest Hospital, Capital Medical University, Beijing 101199, China
| | - Kaijin Xu
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
| | - Lanjuan Li
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| | - Ying Zhang
- 1. The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003,China
- 2. Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
35
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
36
|
Sharma S, Takkella D, Kumar P, Gavvala K. Spectroscopic analysis to identify the binding site for Rifampicin on Bovine Serum Albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121721. [PMID: 35964352 DOI: 10.1016/j.saa.2022.121721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This article reports the interaction of rifampicin, one of the important antituberculosis drugs, with Bovine Serum Albumin (BSA). Herein, we have monitored the fluorescence properties of tryptophan (Trp) residue in BSA to understand the interactions between protein and rifampicin. Fluorescence intensity of BSA was quenched tremendously upon interacting with the drug. Using steady state and time-resolved spectroscopic tools the static and dynamic nature of quenching have been characterised. Time correlated single photon counting technique confirmed that out of two lifetime components ∼6.2 ns and ∼2.8 ns of BSA, the rifampicin has affected only the shorter lifetime component a lot that was assigned to Trp-213 residue. Hence, it was thought that the drug must have been located near to the amino acid residue. Molecular docking studies have revealed the structural information of drug-protein complex which supported the above conjecture, confirming the nearest tryptophan as Trp-213 to the complexing rifampicin molecule.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Dineshbabu Takkella
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Pintu Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Krishna Gavvala
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
37
|
PurN Is Involved in Antibiotic Tolerance and Virulence in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11121702. [PMID: 36551359 PMCID: PMC9774800 DOI: 10.3390/antibiotics11121702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus can cause chronic infections which are closely related to persister formation. Purine metabolism is involved in S. aureus persister formation, and purN, encoding phosphoribosylglycinamide formyltransferase, is an important gene in the purine metabolism process. In this study, we generated a ΔpurN mutant of the S. aureus Newman strain and assessed its roles in antibiotic tolerance and virulence. The ΔpurN in the late exponential phase had a significant defect in persistence to antibiotics. Complementation of the ΔpurN restored its tolerance to different antibiotics. PurN significantly affected virulence gene expression, hemolytic ability, and biofilm formation in S. aureus. Moreover, the LD50 (3.28 × 1010 CFU/mL) of the ΔpurN for BALB/c mice was significantly higher than that of the parental strain (2.81 × 109 CFU/mL). Transcriptome analysis revealed that 58 genes that were involved in purine metabolism, alanine, aspartate, glutamate metabolism, and 2-oxocarboxylic acid metabolism, etc., were downregulated, while 24 genes involved in ABC transporter and transferase activity were upregulated in ΔpurN vs. parental strain. Protein-protein interaction network showed that there was a close relationship between PurN and GltB, and SaeRS. The study demonstrated that PurN participates in the formation of the late exponential phase S. aureus persisters via GltB and regulates its virulence by activating the SaeRS two-component system.
Collapse
|
38
|
Hegde PV, Aragaw WW, Cole MS, Jachak G, Ragunathan P, Sharma S, Harikishore A, Grüber G, Dick T, Aldrich CC. Structure activity relationship of pyrazinoic acid analogs as potential antimycobacterial agents. Bioorg Med Chem 2022; 74:117046. [PMID: 36228522 PMCID: PMC10551889 DOI: 10.1016/j.bmc.2022.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2022]
Abstract
Tuberculosis (TB) remains a leading cause of infectious disease-related mortality and morbidity. Pyrazinamide (PZA) is a critical component of the first-line TB treatment regimen because of its sterilizing activity against non-replicating Mycobacterium tuberculosis (Mtb), but its mechanism of action has remained enigmatic. PZA is a prodrug converted by pyrazinamidase encoded by pncA within Mtb to the active moiety, pyrazinoic acid (POA) and PZA resistance is caused by loss-of-function mutations to pyrazinamidase. We have recently shown that POA induces targeted protein degradation of the enzyme PanD, a crucial component of the coenzyme A biosynthetic pathway essential in Mtb. Based on the newly identified mechanism of action of POA, along with the crystal structure of PanD bound to POA, we designed several POA analogs using structure for interpretation to improve potency and overcome PZA resistance. We prepared and tested ring and carboxylic acid bioisosteres as well as 3, 5, 6 substitutions on the ring to study the structure activity relationships of the POA scaffold. All the analogs were evaluated for their whole cell antimycobacterial activity, and a few representative molecules were evaluated for their binding affinity, towards PanD, through isothermal titration calorimetry. We report that analogs with ring and carboxylic acid bioisosteres did not significantly enhance the antimicrobial activity, whereas the alkylamino-group substitutions at the 3 and 5 position of POA were found to be up to 5 to 10-fold more potent than POA. Further development and mechanistic analysis of these analogs may lead to a next generation POA analog for treating TB.
Collapse
Affiliation(s)
- Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Wassihun W Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Gorakhnath Jachak
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Departmentof Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
39
|
Yee R, Yuan Y, Tarff A, Brayton C, Gour N, Feng J, Zhang Y. Eradication of Staphylococcus aureus Biofilm Infection by Persister Drug Combination. Antibiotics (Basel) 2022; 11:1278. [PMID: 36289936 PMCID: PMC9598165 DOI: 10.3390/antibiotics11101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus can cause a variety of infections, including persistent biofilm infections, which are difficult to eradicate with current antibiotic treatments. Here, we demonstrate that combining drugs that have robust anti-persister activity, such as clinafloxacin or oritavancin, in combination with drugs that have high activity against growing bacteria, such as vancomycin or meropenem, could completely eradicate S. aureus biofilm bacteria in vitro. In contrast, single or two drugs, including the current treatment doxycycline plus rifampin for persistent S. aureus infection, failed to kill all biofilm bacteria in vitro. In a chronic persistent skin infection mouse model, we showed that the drug combination clinafloxacin + meropenem + daptomycin which killed all biofilm bacteria in vitro completely eradicated S. aureus biofilm infection in mice while the current treatments failed to do so. The complete eradication of biofilm bacteria is attributed to the unique high anti-persister activity of clinafloxacin, which could not be replaced by other fluoroquinolones including moxifloxacin, levofloxacin, or ciprofloxacin. We also compared our persister drug combination with the current approaches for treating persistent infections, including gentamicin + fructose and ADEP4 + rifampin in the S. aureus biofilm infection mouse model, and found neither treatment could eradicate the biofilm infection. Our study demonstrates an important treatment principle, the Yin-Yang model, for persistent infections by targeting both growing and non-growing heterogeneous bacterial populations, utilizing persister drugs for the more effective eradication of persistent and biofilm infections. Our findings have implications for the improved treatment of other persistent and biofilm infections in general.
Collapse
Affiliation(s)
- Rebecca Yee
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuting Yuan
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andreina Tarff
- Department of Graduate Medical Education, Louis A. Weiss Memorial Hospital, Chicago, IL 60640, USA
| | - Cory Brayton
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Naina Gour
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Feng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
40
|
Role of Antimicrobial Peptides in Treatment and Prevention of Mycobacterium Tuberculosis: A Review. Int J Pept Res Ther 2022; 28:132. [PMID: 35891800 PMCID: PMC9305673 DOI: 10.1007/s10989-022-10435-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/01/2022]
Abstract
Tuberculosis (TB) is one of the leading cause of death worldwide, and the world is fighting with this global health emergency from the past 25 year. The current clinical interventions for the management of TB face a number of inherent challenges which includes low patient compliance due to the long therapy regimen, and emerging antimicrobial resistance. Therefore, there is an unmet need of new anti-TB therapeutic agent with enhanced safety profile, which can reduce the duration of therapy, enhanced bioavailability and efficacy against drug resistant forms of TB. Bacteriocins or anti microbial peptides (AMPs) occurring in microbes, human beings and other life forms have been investigated as host defense peptides. Structurally AMPs are short and ionized and play crucial role in innate immunity of host. Some AMPs can kill microbial infections directly while others function indirectly by altering the host defense mechanisms. Amidst rising issue of antibiotic resistance, AMPs are being tested in clinical research as potential antibiotics and novel therapeutics to fight against infections and non-infectious diseases. Studies have also highlighted the ability of AMPs to act against the bacteria spreading tuberculosis. The present review provides information on antimicrobial peptides, highlights their biological role, classification and mode of action in treatment and prevention of tuberculosis. It further mentions the prospects and challenges of developing peptides for their therapeutic applications against mycobacterium tuberculosis.
Collapse
|
41
|
Shi D, Zhou Q, Xu S, Zhu Y, Li H, Xu Y. Pyrazinamide Resistance and pncA Mutation Profiles in Multidrug Resistant Mycobacterium Tuberculosis. Infect Drug Resist 2022; 15:4985-4994. [PMID: 36065280 PMCID: PMC9440668 DOI: 10.2147/idr.s368444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Pyrazinamide (PZA) is a critical component of standardized chemotherapy for tuberculosis (TB) and is recommended for the treatment of multidrug-resistant (MDR) TB. We aimed to characterize mutations in pncA of M. tuberculosis and evaluate their diagnostic accuracy for PZA susceptibility in China. We also combined genotypic methods with phenotypic susceptibility testing and pyrazinamidase (PZAse) activity to confirm PZA-resistant M. tuberculosis isolates. Results An evaluation of 82 MDR M. tuberculosis strains revealed that 28.0% (23/82) were phenotypically resistant to 100 mg/L PZA and 15.9% (13/82) showed resistance to 300 mg/L PZA. Mutations in pncA were detected at 33 unique sites, and the majority were point mutations. No evident mutation hotspots or mutations affecting multiple amino acids were found, but the association between pncA mutations and PZA resistance was significant under 100 and 300 mg/L. The sensitivity of pncA mutation detection for predicting PZA susceptibility was 82.6% (19/23), and the specificity was 61.0% (36/59), based on 100 mg/L PZA, whereas the sensitivity was 84.6% (11/13) and the specificity was 55.1% (38/69), based on 300 mg/L PZA. All mutations identified in the highly PZA-resistant (300 mg/L) strains had an 80% loss relative to PZAse activity. No evident PZAse activity loss was observed in one synonymous mutation strain and the loss exceed 60% in all other strains. Conclusion The association between pncA mutation and PZA resistance was significant. Relatively, the molecular method have shown better reliability than the phenotypic method for the detection of PZA resistance. This provides a theoretical basis for the clinical diagnosis of drug-resistant TB.
Collapse
Affiliation(s)
- Dawei Shi
- National Institutes for Food and Drug Control, Institute of Pathogen Biology at the Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Qiulong Zhou
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Sihong Xu
- National Institutes for Food and Drug Control, Institute of Pathogen Biology at the Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yumei Zhu
- Shenzhen Center for Chronic Disease Control, Shenzhen, People’s Republic of China
| | - Hui Li
- Tuberculosis Reference Laboratory, Henan Provincial Centers for Disease Control and Prevention, Zhengzhou, People’s Republic of China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
42
|
Krajewska J, Nowicki K, Durka K, Marek-Urban PH, Wińska P, Stępniewski T, Woźniak K, Laudy AE, Luliński S. Oxazoline scaffold in synthesis of benzosiloxaboroles and related ring-expanded heterocycles: diverse reactivity, structural peculiarities and antimicrobial activity. RSC Adv 2022; 12:23099-23117. [PMID: 36090419 PMCID: PMC9379557 DOI: 10.1039/d2ra03910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
Two isomeric benzosiloxaborole derivatives 3a and 5a bearing fluorine and 4,4-dimethyl-2-oxazolin-2-yl substituents attached to the aromatic rings were obtained. Both compounds were prone to hydrolytic cleavage of the oxazoline ring after initial protonation or methylation of the nitrogen atom. The derivative 3c featuring N-methylammoniumalkyl ester functionality was successfully subjected to N-sulfonylation and N-acylation reactions to give respective derivatives which demonstrates its potential for modular synthesis of structurally extended benzosiloxaboroles. Compound 5c bearing N-ammoniumalkyl ester underwent conversion to a unique macrocyclic dimer due to siloxaborole ring opening. Furthermore, an unexpected 4-electron reduction of the oxazoline ring occurred during an attempted synthesis of 5a. The reaction gave rise to an unprecedented 7-membered heterocyclic system 4a comprising a relatively stable B-O-B-O-Si linkage and stabilized by an intramolecular N-B coordination. It could be cleaved to derivative 4c bearing BOH and SiMe2OH groups which acts as a pseudo-diol as demonstrated by formation of an adduct with Tavaborole. Apart from the multinuclear NMR spectroscopy characterization, crystal structures of the obtained products were determined in many cases by X-ray diffraction. Investigation of biological activity of the obtained compounds revealed that derivatives 3e and 3f with pendant N-methyl arylsulfonamide groups exhibit high activity against Gram-positive cocci such as methicillin-sensitive Staphylococcus aureus ATCC 6538P, methicillin-resistant S. aureus (MRSA) ATCC 43300 as well as the MRSA clinical strains, with MIC values in the range of 3.12-6.25 mg L-1. These two compounds also showed activity against Enterococcus faecalis ATCC 29212 and Enterococcus faecium ATCC 6057 (with MICs of 25-50 mg L-1). The results of the antimicrobial activity and cytotoxicity studies indicate that 3e and 3f can be considered as potential antibacterial agents, especially against S. aureus MRSA.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Banacha 1 b 02-097 Warsaw Poland
| | - Krzysztof Nowicki
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Krzysztof Durka
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Paulina H Marek-Urban
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Patrycja Wińska
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Tomasz Stępniewski
- GPCR Drug Discovery Lab, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Experimental and Health Sciences of Pompeu Fabra University (UPF) Carrer del Dr Aiguader, 88 08003 Barcelona Spain
| | - Krzysztof Woźniak
- University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw Banacha 1 b 02-097 Warsaw Poland
| | - Sergiusz Luliński
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
43
|
Hu T, Yang X, Liu F, Sun S, Xiong Z, Liang J, Yang X, Wang H, Yang X, Guddat LW, Yang H, Rao Z, Zhang B. Structure-based design of anti-mycobacterial drug leads that target the mycolic acid transporter MmpL3. Structure 2022; 30:1395-1402.e4. [PMID: 35981536 DOI: 10.1016/j.str.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
New anti-tubercular agents are urgently needed to address the emerging threat of drug resistance to human tuberculosis. Here, we have used structure-assisted methods to develop compounds that target mycobacterial membrane protein large 3 (MmpL3). MmpL3 is essential for the transport of mycolic acids, an important cell-wall component of mycobacteria. We prepared compounds that potently inhibit the growth of Mycobacterium tuberculosis (Mtb) and other mycobacteria in cell culture. The cryoelectron microscopy (cryo-EM) structure of mycobacterial MmpL3 in complex with one of these compounds (ST004) was determined using lipid nanodiscs at an overall resolution of 3.36 Å. The structure reveals the binding mode of ST004 to MmpL3, with the S4 and S5 subsites of the inhibitor-binding pocket in the proton translocation channel playing vital roles. These data are a promising starting point for the development of anti-tuberculosis drugs that target MmpL3.
Collapse
Affiliation(s)
- Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
44
|
Li H, Yuan J, Duan S, Pang Y. Resistance and tolerance of Mycobacterium tuberculosis to antimicrobial agents-How M. tuberculosis can escape antibiotics. WIREs Mech Dis 2022; 14:e1573. [PMID: 35753313 DOI: 10.1002/wsbm.1573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) poses a serious threat to public health worldwide since it was discovered. Until now, TB has been one of the top 10 causes of death from a single infectious disease globally. The treatment of active TB cases majorly relies on various anti-tuberculosis drugs. However, under the selection pressure by drugs, the continuous evolution of Mycobacterium tuberculosis (Mtb) facilitates the emergence of drug-resistant strains, further resulting in the accumulation of tubercle bacilli with multiple drug resistance, especially deadly multidrug-resistant TB and extensively drug-resistant TB. Researches on the mechanism of drug action and drug resistance of Mtb provide a new scheme for clinical management of TB patients, and prevention of drug resistance. In this review, we summarized the molecular mechanisms of drug resistance of existing anti-TB drugs to better understand the evolution of drug resistance of Mtb, which will provide more effective strategies against drug-resistant TB, and accelerate the achievement of the EndTB Strategy by 2035. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shujuan Duan
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
45
|
Alghamdi S, Asif M. Pyrazinamide Analogs Designed for Rational Drug Designing Strategies against Resistant Tuberculosis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Kumar N, Garg P. Probing the Molecular Basis of Cofactor Affinity and Conformational Dynamics of Mycobacterium tuberculosis Elongation Factor Tu: An Integrated Approach Employing Steered Molecular Dynamics and Umbrella Sampling Simulations. J Phys Chem B 2022; 126:1447-1461. [PMID: 35167282 DOI: 10.1021/acs.jpcb.1c09438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of multidrug-resistant and extensively drug-resistant tuberculosis strains is the reason that the infectious tuberculosis pathogen is still the most common cause of death. The quest for new antitubercular drugs that can fit into multidrug regimens, function swiftly, and overcome the ever-increasing prevalence of drug resistance continues. The crucial role of MtbEF-Tu in translation and trans-translation processes makes it an excellent target for antitubercular drug design. In this study, the primary sequence of MtbEF-Tu was used to model the three-dimensional structures of MtbEF-Tu in the presence of GDP ("off" state) and GTP ("on" state). The binding free energy computed using both the molecular mechanics/Poisson-Boltzmann surface area and umbrella sampling approaches shows that GDP binds to MtbEF-Tu with an ∼2-fold affinity compared to GTP. The steered molecular dynamics (SMD) and umbrella sampling simulation also shows that the dissociation of GDP from MtbEF-Tu in the presence of Mg2+ is a thermodynamically intensive process, while in the absence of Mg2+, the destabilized GDP dissociates very easily from the MtbEF-Tu. Naturally, the dissociation of Mg2+ from the MtbEF-Tu is facilitated by the nucleotide exchange factor EF-Ts, and this prior release of magnesium makes the dissociation process of destabilized GDP easy, similar to that observed in the umbrella sampling and SMD study. The MD simulations of MtbEF-Tu's "on" state conformation in the presence of GTP reveal that the secondary structure of switch-I and Mg2+ coordination network remains similar to its template despite the absence of identity in the conserved region of switch-I. On the other hand, the secondary structure in the conserved region of the switch-I of MtbEF-Tu unwinds from a helix to a loop in the presence of GDP. The major conformational changes observed in switch-I and the movement of Thr64 away from Mg2+ mainly reflect essential conformational changes to make the shift of MtbEF-Tu's "on" state to the "off" state in the presence of GDP. These obtained structural and functional insights into MtbEF-Tu are pivotal for a better understanding of structural-functional linkages of MtbEF-Tu, and these findings may serve as a basis for the design and development of MtbEF-Tu-specific inhibitors.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
47
|
Alatawi EA, Alshabrmi FM. Structural and Dynamic Insights into the W68L, L85P, and T87A Mutations of Mycobacterium tuberculosis Inducing Resistance to Pyrazinamide. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1615. [PMID: 35162636 PMCID: PMC8835092 DOI: 10.3390/ijerph19031615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Abstract
Tuberculosis (TB), the most frequent bacterium-mediated infectious disease caused by Mycobacterium tuberculosis, has been known to infect humans since ancient times. Although TB is common worldwide, the most recent report by the WHO (World Health Organization) listed the three countries of India, China, and Russia with 27%, 14%, and 8% of the global burden of TB, respectively. It has been reported that resistance to TB drugs, particularly by the pncA gene to the pyrazinamide drug due to mutations, significantly affects the effective treatment of TB. Understanding the mechanism of drug resistance using computational methods is of great interest to design effective TB treatment, exploring the structural features with these tools. Thus, keeping in view the importance of these methods, we employed state-of-the-art computational methods to study the mechanism of resistance caused by the W68L, L85P, and T87A mutations recently reported in 2021. We employed a molecular docking approach to predict the binding conformation and studied the dynamic properties of each complex using molecular dynamics simulation approaches. Our analysis revealed that compared to the wildtype, these three mutations altered the binding pattern and reduced the binding affinity. Moreover, the structural dynamic features also showed that these mutations significantly reduced the structural stability and packing, particularly by the W68L and L85P mutations. Moreover, principal component analysis, free energy landscape, and the binding free energy results revealed variation in the protein's motion and the binding energy. The total binding free energy was for the wildtype -9.61 kcal/mol, W68L -7.57 kcal/mol, L85P -6.99 kcal/mol, and T87A -7.77 kcal/mol. Our findings can help to design a structure-based drug against the MDR (multiple drug-resistant) TB.
Collapse
Affiliation(s)
- Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
48
|
Wadood A, Shareef A, Ur Rehman A, Muhammad S, Khurshid B, Khan RS, Shams S, Afridi SG. In Silico Drug Designing for ala438 Deleted Ribosomal Protein S1 (RpsA) on the Basis of the Active Compound Zrl15. ACS OMEGA 2022; 7:397-408. [PMID: 35036709 PMCID: PMC8756442 DOI: 10.1021/acsomega.1c04764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/21/2021] [Indexed: 05/10/2023]
Abstract
Pyrazinoic acid-resistant tuberculosis is a severe chronic disorder. First-line drugs specifically target the ribosomal protein subunit-1 (RpsA) and stop trans-translation in the wild-type bacterium, causing bacterial cell death. In mutant bacterial strain, the deletion of ala438 does not let the pyrazinoic acid to bind to the active site of RpsA and ensures that the bacterium survives. Hence, such tuberculosis cases require an immediate and successful regime. The current study was designed to identify inhibitors that could bind to the mutant state of the RpsA protein. Initially, a pharmacophore model was generated based on the recently published most potent inhibitor for the mutant state of RpsA, i.e., zrl15. The validated pharmacophore model was further used for virtual screening of two chemical libraries, i.e., ZINC and ChemBridge. After applying the Lipinski rule of five (Ro5), a total of 260 and 749 hits from the ChemBridge and ZINC libraries, respectively, were identified using pharmacophore mapping. These hits were then docked into the active site of the mutant state of the RpsA protein, and later, the top 150 compounds from each library were chosen based on the docking score. A total of 21 compounds were shortlisted from each library based on the best protein-ligand interactions. Finally, a total of 05 compounds were subjected to molecular dynamics study to examine the dynamic behavior of each compound in the active site of the mutant state of the RpsA protein. The results revealed that all compounds had good chemical properties such as absorption, distribution, metabolism, excretion, and toxicity (ADMET), and there was no Pan Assay Interference (PAINS) or deviation from Ro5, indicating that these compounds could be useful antagonists for the mutant state of the RpsA protein.
Collapse
Affiliation(s)
- Abdul Wadood
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Azam Shareef
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Ashfaq Ur Rehman
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, Irvine, California 92697, United States
| | - Shabbir Muhammad
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Beenish Khurshid
- Woman
College, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Raham Sher Khan
- Department
of Biotechnology, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Sulaiman Shams
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Sahib Gul Afridi
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| |
Collapse
|
49
|
Wan Y, Wang M, Chan EWC, Chen S. Membrane Transporters of the Major Facilitator Superfamily Are Essential for Long-Term Maintenance of Phenotypic Tolerance to Multiple Antibiotics in E. coli. Microbiol Spectr 2021; 9:e0184621. [PMID: 34787438 PMCID: PMC8597633 DOI: 10.1128/spectrum.01846-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 11/20/2022] Open
Abstract
Antibiotic tolerance is not only the key underlying the cause of recurrent and chronic bacterial infections but it is also a factor linked to exacerbation of diseases, such as tuberculosis, cystic fibrosis-associated lung infection, and candidiasis. This phenomenon was previously attributed to a switch to physiological dormancy in a bacterial subpopulation triggered by environmental signals. However, we recently showed that expression of phenotypic antibiotic tolerance during nutrient starvation is highly dependent on robust production of proteins that actively maintain the bacterial transmembrane proton motive force (PMF), even under a nutrient-deficient environment. To investigate why PMF needs to be maintained for expression of phenotypic antibiotic tolerance, we tested the relative functional role of known transporters and efflux pumps in tolerance development by assessing the effect of deletion of specific efflux pump and transporter-encoding genes on long-term maintenance of antibiotic tolerance in an Escherichia coli population under starvation. We identified eight specific efflux pumps and transporters and two known efflux pump components, namely, ChaA, EmrK, EmrY, SsuA, NhaA, GadC, YdjK, YphD, TolC, and ChaB, that play a key role in tolerance development and maintenance. In particular, deletion of each of the nhaA and chaB genes is sufficient to totally abolish the tolerance phenotypes during prolonged antimicrobial treatment. These findings therefore depict active, efflux-mediated bacterial tolerance mechanisms and facilitate design of intervention strategies to prevent and treat chronic and recurrent infections due to persistence of antibiotic-tolerant subpopulations in the human body. IMPORTANCE We recently showed that the antibiotic-tolerant subpopulation of bacteria or persisters actively maintain the transmembrane proton motive force (PMF) to survive starvation stress for a prolonged period. This work further shows that the reason why antibiotic persisters need to maintain PMF is that PMF is required to support a range of efflux or transportation functions. Intriguingly, we found that tolerance-maintaining efflux activities were mainly encoded by 10 efflux or transporter genes. Because our study showed that deletion of even one of these genes could cause a significant reduction in tolerance level, we conclude that the products of these genes play an essential role in enhancing the survival fitness of bacteria during starvation or under other adverse environmental conditions. These gene products are therefore excellent targets for future design of antimicrobial agents that eradicate antibiotic tolerant persisters and prevent occurrence of chronic and recurrent human infections.
Collapse
Affiliation(s)
- Yingkun Wan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Miaomiao Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
50
|
Campos-Silva R, D’Urso G, Delalande O, Giudice E, Macedo AJ, Gillet R. Trans-Translation Is an Appealing Target for the Development of New Antimicrobial Compounds. Microorganisms 2021; 10:3. [PMID: 35056452 PMCID: PMC8778911 DOI: 10.3390/microorganisms10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/06/2023] Open
Abstract
Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell's energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3'-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and because trans-translation is absent in eukaryotes, but necessary for bacterial fitness or survival, it is an exciting and realistic target for new antibiotics. Here, we describe the current and future prospects for developing what we hope will be a novel generation of trans-translation inhibitors.
Collapse
Affiliation(s)
- Rodrigo Campos-Silva
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | - Gaetano D’Urso
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
| | - Olivier Delalande
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
| | - Emmanuel Giudice
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
| | - Alexandre José Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | - Reynald Gillet
- CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, University of Rennes, 35000 Rennes, France; (R.C.-S.); (G.D.); (O.D.); (E.G.)
| |
Collapse
|