1
|
Anashkin VA, Bogachev AV, Serebryakova MV, Zavyalova EG, Bertsova YV, Baykov AA. Rapid kinetics of H + transport by membrane pyrophosphatase: Evidence for a "direct-coupling" mechanism. Biochem Biophys Res Commun 2025; 744:151203. [PMID: 39708396 DOI: 10.1016/j.bbrc.2024.151203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Stress resistance-conferring membrane pyrophosphatase (mPPase) found in microbes and plants couples pyrophosphate hydrolysis with H+ transport out of the cytoplasm. There are two opposing views on the energy-coupling mechanism in this transporter: the pumping is associated with either pyrophosphate binding to mPPase or the hydrolysis step. We used our recently developed stopped-flow pyranine assay to measure H+ transport into mPPase-containing inverted membrane vesicles on the timescale of a single turnover. The vesicles were prepared from Escherichia coli overproducing the H+-translocating mPPase of Desulfitobacterium hafniense. Pyrophosphate induced linear accumulation of H+ in the vesicles, without evident lag or burst. In contrast, the binding of three nonhydrolyzable pyrophosphate analogs essentially induced no H+ accumulation. These findings are inconsistent with the "pumping-before-hydrolysis" model of mPPase functioning and support the alternative model positing the hydrolysis reaction as the source of the transported H+ ions. mPPase is thus a first "directly-coupled" proton pump.
Collapse
Affiliation(s)
- Viktor A Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia.
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia.
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Elena G Zavyalova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119899, Russia.
| |
Collapse
|
2
|
Lushchekina S, Weiner L, Ashani Y, Emrizal R, Firdaus‐Raih M, Silman I, Sussman JL. Why is binding of a divalent metal cation to a structural motif containing four carboxylate residues not accompanied by a conformational change? Protein Sci 2024; 33:e5206. [PMID: 39548604 PMCID: PMC11567836 DOI: 10.1002/pro.5206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
We earlier showed that Torpedo californica acetylcholinesterase (AChE) contains a cluster of four conserved aspartates that can strongly bind divalent cations, which we named the 4D motif. Binding of the divalent metal cations greatly increases its thermal stability. Here we systematically examined all available crystallographic structures of T. californica AChE. Two additional metal-binding sites were identified, both composed of acidic and histidine residues. Relative binding to the 4D and additional sites was studied using metadynamics simulations. It was observed that in crystal structures devoid of metal ions in the 4D site, the conformation of T. californica AChE is almost identical to that in structures in which it is occupied by a divalent metal ion. Closer examination of the 4D motif reveals that three of the four acidic residues form ion pairs with conserved basic residues surrounding them. We named this new motif the 4A/3B motif. Molecular dynamics with quantum potential simulations was used to quantify the 4D motif's binding strength compared with that of the metal-binding site in the protein fXIIIa, which consists of four aspartates, but is devoid of adjacent cationic residues. Whereas fXIIIa's 4D site, in the absence of a metal cation, expanded significantly in the simulation, that of Torpedo AChE displayed only minor periodic changes in size. Furthermore, the energy of metal ion unbinding from the two sites differs by ca. 10 kcal/mol. We identified several other proteins in the PDB that contain the 4A/3B motif, whose conformations are identical in the presence or absence of a metal ion. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:Protein_Science:4.
Collapse
Affiliation(s)
- Sofya Lushchekina
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lev Weiner
- Department of Brain SciencesWeizmann Institute of ScienceRehovotIsrael
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Yacov Ashani
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Mohd Firdaus‐Raih
- Department of Applied Physics, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
- Institute of Systems BiologyUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Israel Silman
- Department of Brain SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Joel L. Sussman
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
- Structural Proteomics Unit, Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
3
|
Bogachev AV, Anashkin VA, Bertsova YV, Zavyalova EG, Baykov AA. Na + Translocation Dominates over H +-Translocation in the Membrane Pyrophosphatase with Dual Transport Specificity. Int J Mol Sci 2024; 25:11963. [PMID: 39596033 PMCID: PMC11593465 DOI: 10.3390/ijms252211963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cation-pumping membrane pyrophosphatases (mPPases; EC 7.1.3.1) vary in their transport specificity from obligatory H+ transporters found in all kingdoms of life, to Na+/H+-co-transporters found in many prokaryotes. The available data suggest a unique "direct-coupling" mechanism of H+ transport, in which the transported proton is generated from nucleophilic water molecule. Na+ transport is best rationalized by assuming that the water-borne proton propels a prebound Na+ ion through the ion conductance channel ("billiard" mechanism). However, the "billiard" mechanism, in its simple form, is not applicable to the mPPases that simultaneously transport Na+ and H+ without evident competition between the cations (Na+,H+-PPases). In this study, we used a pyranine-based fluorescent assay to explore the relationship between the cation transport reactions catalyzed by recombinant Bacteroides vulgatus Na+,H+-PPase in membrane vesicles. Under appropriately chosen conditions, including the addition of an H+ ionophore to convert Na+ influx into equivalent H+ efflux, the pyranine signal measures either H+ or Na+ translocation. Using a stopped-flow version of this assay, we demonstrate that H+ and Na+ are transported by Na+,H+-PPase in a ratio of approximately 1:8, which is independent of Na+ concentration. These findings were rationalized using an "extended billiard" model, whose most likely variant predicts the kinetic limitation of Na+ delivery to the pump-loading site.
Collapse
Affiliation(s)
- Alexander V. Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia; (A.V.B.); (V.A.A.)
| | - Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia; (A.V.B.); (V.A.A.)
| | - Yulia V. Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia; (A.V.B.); (V.A.A.)
| | - Elena G. Zavyalova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia;
| | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia; (A.V.B.); (V.A.A.)
| |
Collapse
|
4
|
Araujo-Ruiz K, Mondragón-Flores R. H +-translocating pyrophosphatases in protozoan parasites. Parasitol Res 2024; 123:353. [PMID: 39419910 PMCID: PMC11486809 DOI: 10.1007/s00436-024-08362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Integral membrane pyrophosphatases (mPPases) hydrolyze pyrophosphate. This enzymatic mechanism is coupled with the pumping of H + and/or Na + across membranes, which can be either K + -dependent or K + -independent. Inorganic proton-translocating pyrophosphatases (H + -PPases) can transport protons across cell membranes and are reported in various organisms such as plants, bacteria, and protozoan parasites. The evolutionary implications of these enzymes are of great interest for proposing approaches related to the treatment of parasitic of phytopathogenic diseases. This work presents a literature review on pyrophosphate, pyrophosphatases, their inhibitors and emphasizes H + -PPases found in various medically significant protozoan parasites such as Toxoplasma gondii, the causative agent of toxoplasmosis, and Plasmodium falciparum, the causative agent of malaria, as well as protozoan species that primarily affect animals, such as Eimeria maxima and Besnoitia besnoiti.
Collapse
Affiliation(s)
- Karina Araujo-Ruiz
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 Col. Zacatenco, Ciudad de México, 07360, México
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 Col. Zacatenco, Ciudad de México, 07360, México.
| |
Collapse
|
5
|
García-Contreras R, de la Mora J, Mora-Montes HM, Martínez-Álvarez JA, Vicente-Gómez M, Padilla-Vaca F, Vargas-Maya NI, Franco B. The inorganic pyrophosphatases of microorganisms: a structural and functional review. PeerJ 2024; 12:e17496. [PMID: 38938619 PMCID: PMC11210485 DOI: 10.7717/peerj.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Pyrophosphatases (PPases) are enzymes that catalyze the hydrolysis of pyrophosphate (PPi), a byproduct of the synthesis and degradation of diverse biomolecules. The accumulation of PPi in the cell can result in cell death. Although the substrate is the same, there are variations in the catalysis and features of these enzymes. Two enzyme forms have been identified in bacteria: cytoplasmic or soluble pyrophosphatases and membrane-bound pyrophosphatases, which play major roles in cell bioenergetics. In eukaryotic cells, cytoplasmic enzymes are the predominant form of PPases (c-PPases), while membrane enzymes (m-PPases) are found only in protists and plants. The study of bacterial cytoplasmic and membrane-bound pyrophosphatases has slowed in recent years. These enzymes are central to cell metabolism and physiology since phospholipid and nucleic acid synthesis release important amounts of PPi that must be removed to allow biosynthesis to continue. In this review, two aims were pursued: first, to provide insight into the structural features of PPases known to date and that are well characterized, and to provide examples of enzymes with novel features. Second, the scientific community should continue studying these enzymes because they have many biotechnological applications. Additionally, in this review, we provide evidence that there are m-PPases present in fungi; to date, no examples have been characterized. Therefore, the diversity of PPase enzymes is still a fruitful field of research. Additionally, we focused on the roles of H+/Na+ pumps and m-PPases in cell bioenergetics. Finally, we provide some examples of the applications of these enzymes in molecular biology and biotechnology, especially in plants. This review is valuable for professionals in the biochemistry field of protein structure-function relationships and experts in other fields, such as chemistry, nanotechnology, and plant sciences.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier de la Mora
- Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Marcos Vicente-Gómez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Roterman I, Stapor K, Dułak D, Konieczny L. External Force Field for Protein Folding in Chaperonins-Potential Application in In Silico Protein Folding. ACS OMEGA 2024; 9:18412-18428. [PMID: 38680295 PMCID: PMC11044213 DOI: 10.1021/acsomega.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
The present study discusses the influence of the TRiC chaperonin involved in the folding of the component of reovirus mu1/σ3. The TRiC chaperone is treated as a provider of a specific external force field in the fuzzy oil drop model during the structural formation of a target folded protein. The model also determines the status of the final product, which represents the structure directed by an external force field in the form of a chaperonin. This can be used for in silico folding as the process is environment-dependent. The application of the model enables the quantitative assessment of the folding dependence of an external force field, which appears to have universal application.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, Kraków 30-688, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| | - Dawid Dułak
- ABB
Business Services Sp. z o.o, ul Żegańska 1, Warszawa 04-713, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry—Jagiellonian University—Medical
College, Kopernika 7, Kraków 31-034, Poland
| |
Collapse
|
7
|
Strauss J, Wilkinson C, Vidilaseris K, de Castro Ribeiro OM, Liu J, Hillier J, Wichert M, Malinen AM, Gehl B, Jeuken LJ, Pearson AR, Goldman A. Functional and structural asymmetry suggest a unifying principle for catalysis in membrane-bound pyrophosphatases. EMBO Rep 2024; 25:853-875. [PMID: 38182815 PMCID: PMC10897367 DOI: 10.1038/s44319-023-00037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024] Open
Abstract
Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that couple the transport of Na+- and/or H+ across membranes to the hydrolysis of pyrophosphate. Their role in the virulence of protist pathogens like Plasmodium falciparum makes them an intriguing target for structural and functional studies. Here, we show the first structure of a K+-independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved structures of a K+-dependent M-PPase and demonstrate pumping-before-hydrolysis by electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops affect ion selectivity and K+-activation due to a complex interplay of residues that are involved in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases but also why they display half-of-the-sites reactivity. Based on this, we propose, for the first time, a unified model for ion-pumping, hydrolysis, and energy coupling in all M-PPases, including those that pump both Na+ and H+.
Collapse
Affiliation(s)
- Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
- Numaferm GmbH, Düsseldorf, Germany
| | - Craig Wilkinson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
| | - Keni Vidilaseris
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - Orquidea M de Castro Ribeiro
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - Jianing Liu
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
| | - James Hillier
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
- Bio-Rad Laboratories Ltd., Watford, UK
| | - Maximilian Wichert
- Leiden Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Anssi M Malinen
- Department of Life Technologies, University of Turku, FIN-20014, Turku, Finland
| | - Bernadette Gehl
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland
- Department of Applied Physics, Aalto University, FI-00076, AALTO, Espoo, Finland
| | - Lars Jc Jeuken
- Leiden Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Arwen R Pearson
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761, Hamburg, Germany
| | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.
- Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki, 00100, Helsinki, Finland.
| |
Collapse
|
8
|
Huang LK, Huang YC, Chen PC, Lee CH, Lin SM, Hsu YHH, Pan RL. Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H +-Translocating Pyrophosphatases Through Hydrogen-Deuterium Exchange Mass Spectrometry. J Membr Biol 2023; 256:443-458. [PMID: 37955797 DOI: 10.1007/s00232-023-00295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Vigna radiata H+-translocating pyrophosphatases (VrH+-PPases, EC 3.6.1.1) are present in various endomembranes of plants, bacteria, archaea, and certain protozoa. They transport H+ into the lumen by hydrolyzing pyrophosphate, which is a by-product of many essential anabolic reactions. Although the crystal structure of H+-PPases has been elucidated, the H+ translocation mechanism of H+-PPases in the solution state remains unclear. In this study, we used hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (MS) to investigate the dynamics of H+-PPases between the previously proposed R state (resting state, Apo form), I state (intermediate state, bound to a substrate analog), and T state (transient state, bound to inorganic phosphate). When hydrogen was replaced by proteins in deuterium oxide solution, the backbone hydrogen atoms, which were exchanged with deuterium, were identified through MS. Accordingly, we used deuterium uptake to examine the structural dynamics and conformational changes of H+-PPases in solution. In the highly conserved substrate binding and proton exit regions, HDX-MS revealed the existence of a compact conformation with deuterium exchange when H+-PPases were bound with a substrate analog and product. Thus, a novel working model was developed to elucidate the in situ catalytic mechanism of pyrophosphate hydrolysis and proton transport. In this model, a proton is released in the I state, and the TM5 inner wall serves as a proton piston.
Collapse
Affiliation(s)
- Li-Kun Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Yi-Cyuan Huang
- Department of Chemistry, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 40704, Taiwan, Republic of China
| | - Pin-Chuan Chen
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Ching-Hung Lee
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan, Republic of China
| | - Yuan-Hao Howard Hsu
- Department of Chemistry, Tunghai University, No.1727, Sec. 4, Taiwan Boulevard, Taichung, 40704, Taiwan, Republic of China.
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No.101, Sec. 2, Kuangfu Rd., Hsinchu City, 30013, Taiwan, Republic of China.
| |
Collapse
|
9
|
Nath S. Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by F OF 1-ATP Synthase. Molecules 2023; 28:7486. [PMID: 38005208 PMCID: PMC10673332 DOI: 10.3390/molecules28227486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The integration of phosphorus chemistry with the mechanism of ATP synthesis/hydrolysis requires dynamical information during ATP turnover and catalysis. Oxygen exchange reactions occurring at β-catalytic sites of the FOF1-ATP synthase/F1-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. They have been shown to provide valuable time-resolved information on enzyme catalysis during ATP synthesis and ATP hydrolysis. The present work conducts new experiments on oxygen exchange catalyzed by submitochondrial particles designed to (i) measure the relative rates of Pi-ATP, Pi-HOH, and ATP-HOH isotope exchanges; (ii) probe the effect of ADP removal on the extent of inhibition of the exchanges, and (iii) test their uncoupler sensitivity/resistance. The objectives have been realized based on new experiments on submitochondrial particles, which show that both the Pi-HOH and ATP-HOH exchanges occur at a considerably higher rate relative to the Pi-ATP exchange, an observation that cannot be explained by previous mechanisms. A unifying explanation of the kinetic data that rationalizes these observations is given. The experimental results in (ii) show that ADP removal does not inhibit the intermediate Pi-HOH exchange when ATP and submitochondrial particles are incubated, and that the nucleotide requirement of the intermediate Pi-HOH exchange is adequately met by ATP, but not by ADP. These results contradicts the central postulate in Boyer's binding change mechanism of reversible catalysis at a F1 catalytic site with Keq~1 that predicts an absolute requirement of ADP for the occurrence of the Pi-HOH exchange. The prominent intermediate Pi-HOH exchange occurring under hydrolytic conditions is shown to be best explained by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis, which postulates an essentially irreversible cleavage of ATP by mitochondria/particles, independent from a reversible formation of ATP from ADP and Pi. The explanation within the torsional mechanism is also shown to rationalize the relative insensitivity of the intermediate Pi-HOH exchange to uncouplers observed in the experiments in (iii) compared to the Pi-ATP and ATP-HOH exchanges. This is shown to lead to new concepts and perspectives based on ligand displacement/substitution and ligand permutation for the elucidation of the oxygen exchange reactions within the framework of fundamental phosphorus chemistry. Fast mechanisms that realize the rotation/twist, tilt, permutation and switch of ligands, as well as inversion at the γ-phosphorus synchronously and simultaneously and in a concerted manner, have been proposed, and their stereochemical consequences have been analyzed. These considerations take us beyond the binding change mechanism of ATP synthesis/hydrolysis in bioenergetics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; or
- Institute of Molecular Psychiatry, Rheinische-Friedrichs-Wilhelm Universität Bonn, D-53127 Bonn, Germany
| |
Collapse
|
10
|
H +-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation. Microorganisms 2023; 11:microorganisms11020294. [PMID: 36838259 PMCID: PMC9959109 DOI: 10.3390/microorganisms11020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out by soluble cytoplasmic PPase (S-PPases) with the released energy dissipated in the form of heat. In Rhodospirillum rubrum, part of this energy can be conserved by proton-pumping pyrophosphatase (H+-PPaseRru) in the form of a proton electrochemical gradient for further ATP synthesis. Here, the codon-harmonized gene hppaRru encoding H+-PPaseRru was expressed in the Escherichia coli chromosome. We demonstrate, for the first time, that H+-PPaseRru complements the essential native S-PPase in E. coli cells. 13C-MFA confirmed that replacing native PPase to H+-PPaseRru leads to the re-distribution of carbon fluxes; a statistically significant 36% decrease in tricarboxylic acid (TCA) cycle fluxes was found compared with wild-type E. coli MG1655. Such a flux re-distribution can indicate the presence of an additional method for energy generation (e.g., ATP), which can be useful for the microbiological production of a number of compounds, the biosynthesis of which requires the consumption of ATP.
Collapse
|
11
|
Holmes AOM, Goldman A, Kalli AC. mPPases create a conserved anionic membrane fingerprint as identified via multi-scale simulations. PLoS Comput Biol 2022; 18:e1010578. [PMID: 36191052 PMCID: PMC9560603 DOI: 10.1371/journal.pcbi.1010578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/13/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Membrane-integral pyrophosphatases (mPPases) are membrane-bound enzymes responsible for hydrolysing inorganic pyrophosphate and translocating a cation across the membrane. Their function is essential for the infectivity of clinically relevant protozoan parasites and plant maturation. Recent developments have indicated that their mechanism is more complicated than previously thought and that the membrane environment may be important for their function. In this work, we use multiscale molecular dynamics simulations to demonstrate for the first time that mPPases form specific anionic lipid interactions at 4 sites at the distal and interfacial regions of the protein. These interactions are conserved in simulations of the mPPases from Thermotoga maritima, Vigna radiata and Clostridium leptum and characterised by interactions with positive residues on helices 1, 2, 3 and 4 for the distal site, or 9, 10, 13 and 14 for the interfacial site. Due to the importance of these helices in protein stability and function, these lipid interactions may play a crucial role in the mPPase mechanism and enable future structural and functional studies.
Collapse
Affiliation(s)
- Alexandra O. M. Holmes
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Malinen AM, Anashkin VA, Orlov VN, Bogachev AV, Lahti R, Baykov AA. Pre-steady-state kinetics and solvent isotope effects support the "billiard-type" transport mechanism in Na + -translocating pyrophosphatase. Protein Sci 2022; 31:e4394. [PMID: 36040263 PMCID: PMC9405524 DOI: 10.1002/pro.4394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
Membrane-bound pyrophosphatase (mPPase) found in microbes and plants is a membrane H+ pump that transports the H+ ion generated in coupled pyrophosphate hydrolysis out of the cytoplasm. Certain bacterial and archaeal mPPases can in parallel transport Na+ via a hypothetical "billiard-type" mechanism, also involving the hydrolysis-generated proton. Here, we present the functional evidence supporting this coupling mechanism. Rapid-quench and pulse-chase measurements with [32 P]pyrophosphate indicated that the chemical step (pyrophosphate hydrolysis) is rate-limiting in mPPase catalysis and is preceded by a fast isomerization of the enzyme-substrate complex. Na+ , whose binding is a prerequisite for the hydrolysis step, is not required for substrate binding. Replacement of H2 O with D2 O decreased the rates of pyrophosphate hydrolysis by both Na+ - and H+ -transporting bacterial mPPases, the effect being more significant than with a non-transporting soluble pyrophosphatase. We also show that the Na+ -pumping mPPase of Thermotoga maritima resembles other dimeric mPPases in demonstrating negative kinetic cooperativity and the requirement for general acid catalysis. The findings point to a crucial role for the hydrolysis-generated proton both in H+ -pumping and Na+ -pumping by mPPases.
Collapse
Affiliation(s)
| | - Viktor A. Anashkin
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Victor N. Orlov
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Alexander V. Bogachev
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Reijo Lahti
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Alexander A. Baykov
- Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
13
|
Baykov AA, Anashkin VA, Malinen AM, Bogachev AV. The Mechanism of Energy Coupling in H +/Na +-Pumping Membrane Pyrophosphatase-Possibilities and Probabilities. Int J Mol Sci 2022; 23:9504. [PMID: 36012762 PMCID: PMC9408878 DOI: 10.3390/ijms23169504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Membrane pyrophosphatases (mPPases) found in plant vacuoles and some prokaryotes and protists are ancient cation pumps that couple pyrophosphate hydrolysis with the H+ and/or Na+ transport out of the cytoplasm. Because this function is reversible, mPPases play a role in maintaining the level of cytoplasmic pyrophosphate, a known regulator of numerous metabolic reactions. mPPases arouse interest because they are among the simplest membrane transporters and have no homologs among known ion pumps. Detailed phylogenetic studies have revealed various subtypes of mPPases and suggested their roles in the evolution of the "sodium" and "proton" bioenergetics. This treatise focuses on the mechanistic aspects of the transport reaction, namely, the coupling step, the role of the chemically produced proton, subunit cooperation, and the relationship between the proton and sodium ion transport. The available data identify H+-PPases as the first non-oxidoreductase pump with a "direct-coupling" mechanism, i.e., the transported proton is produced in the coupled chemical reaction. They also support a "billiard" hypothesis, which unifies the H+ and Na+ transport mechanisms in mPPase and, probably, other transporters.
Collapse
Affiliation(s)
- Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Anssi M. Malinen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Alexander V. Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| |
Collapse
|
14
|
A Lumenal Loop Associated with Catalytic Asymmetry in Plant Vacuolar H +-Translocating Pyrophosphatase. Int J Mol Sci 2021; 22:ijms222312902. [PMID: 34884707 PMCID: PMC8657866 DOI: 10.3390/ijms222312902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Membrane-integral inorganic pyrophosphatases (mPPases) couple pyrophosphate hydrolysis with H+ and Na+ pumping in plants and microbes. mPPases are homodimeric transporters with two catalytic sites facing the cytoplasm and demonstrating highly different substrate-binding affinities and activities. The structural aspects of the functional asymmetry are still poorly understood because the structure of the physiologically relevant dimer form with only one active site occupied by the substrate is unknown. We addressed this issue by molecular dynamics (MD) simulations of the H+-transporting mPPase of Vigna radiata, starting from its crystal structure containing a close substrate analog (imidodiphosphate, IDP) in both active sites. The MD simulations revealed pre-existing subunit asymmetry, which increased upon IDP binding to one subunit and persisted in the fully occupied dimer. The most significant asymmetrical change caused by IDP binding is a ‘rigid body’-like displacement of the lumenal loop connecting α-helices 2 and 3 in the partner subunit and opening its exit channel for water. This highly conserved 14–19-residue loop is found only in plant vacuolar mPPases and may have a regulatory function, such as pH sensing in the vacuole. Our data define the structural link between the loop and active sites and are consistent with the published structural and functional data.
Collapse
|
15
|
Johansson NG, Dreano L, Vidilaseris K, Khattab A, Liu J, Lasbleiz A, Ribeiro O, Kiriazis A, Boije af Gennäs G, Meri S, Goldman A, Yli‐Kauhaluoma J, Xhaard H. Exploration of Pyrazolo[1,5-a]pyrimidines as Membrane-Bound Pyrophosphatase Inhibitors. ChemMedChem 2021; 16:3360-3367. [PMID: 34459148 PMCID: PMC8597055 DOI: 10.1002/cmdc.202100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Inhibition of membrane-bound pyrophosphatase (mPPase) with small molecules offer a new approach in the fight against pathogenic protozoan parasites. mPPases are absent in humans, but essential for many protists as they couple pyrophosphate hydrolysis to the active transport of protons or sodium ions across acidocalcisomal membranes. So far, only few nonphosphorus inhibitors have been reported. Here, we explore the chemical space around previous hits using a combination of screening and synthetic medicinal chemistry, identifying compounds with low micromolar inhibitory activities in the Thermotoga maritima mPPase test system. We furthermore provide early structure-activity relationships around a new scaffold having a pyrazolo[1,5-a]pyrimidine core. The most promising pyrazolo[1,5-a]pyrimidine congener was further investigated and found to inhibit Plasmodium falciparum mPPase in membranes as well as the growth of P. falciparum in an ex vivo survival assay.
Collapse
Affiliation(s)
- Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Loïc Dreano
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Keni Vidilaseris
- Department of Biosciences, Division of BiochemistryUniversity of HelsinkiP.O. Box 56 (Viikinkaari 9)00014HelsinkiFinland
| | - Ayman Khattab
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman InstituteUniversity of HelsinkiP.O. Box 21 (Haartmaninkatu 3)00014HelsinkiFinland
| | - Jianing Liu
- Department of Biosciences, Division of BiochemistryUniversity of HelsinkiP.O. Box 56 (Viikinkaari 9)00014HelsinkiFinland
| | - Arthur Lasbleiz
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Orquidea Ribeiro
- Department of Biosciences, Division of BiochemistryUniversity of HelsinkiP.O. Box 56 (Viikinkaari 9)00014HelsinkiFinland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Seppo Meri
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman InstituteUniversity of HelsinkiP.O. Box 21 (Haartmaninkatu 3)00014HelsinkiFinland
| | - Adrian Goldman
- Department of Biosciences, Division of BiochemistryUniversity of HelsinkiP.O. Box 56 (Viikinkaari 9)00014HelsinkiFinland
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of Leeds, Clarendon WayLeeds LS2 9JTUK
| | - Jari Yli‐Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| |
Collapse
|
16
|
Ehsan M, Wang H, Cecchetti C, Mortensen JS, Du Y, Hariharan P, Nygaard A, Lee HJ, Ghani L, Guan L, Loland CJ, Byrne B, Kobilka BK, Chae PS. Maltose-bis(hydroxymethyl)phenol (MBPs) and Maltose-tris(hydroxymethyl)phenol (MTPs) Amphiphiles for Membrane Protein Stability. ACS Chem Biol 2021; 16:1779-1790. [PMID: 34445864 DOI: 10.1021/acschembio.1c00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Membrane protein structures provide a fundamental understanding of their molecular actions and are of importance for drug development. Detergents are widely used to solubilize, stabilize, and crystallize membrane proteins, but membrane proteins solubilized in conventional detergents are prone to denaturation and aggregation. Thus, developing novel detergents with enhanced efficacy for protein stabilization remains important. We report herein the design and synthesis of a class of phenol-derived maltoside detergents. Using two different linkers, we prepared two sets of new detergents, designated maltose-bis(hydroxymethyl)phenol (MBPs) and maltose-tris(hydroxymethyl)phenol (MTPs). The evaluation of these detergents with three transporters and two G-protein coupled receptors allowed us to identify a couple of new detergents (MBP-C9 and MTP-C12) that consistently conferred enhanced stability to all tested proteins compared to a gold standard detergent (DDM). Furthermore, the data analysis based on the detergent structures provides key detergent features responsible for membrane protein stabilization that together will facilitate the future design of novel detergents.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ho Jin Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Lubna Ghani
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, California 94305, United States
| | - Pil Seok Chae
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea
| |
Collapse
|
17
|
Anashkin VA, Malinen AM, Bogachev AV, Baykov AA. Catalytic Asymmetry in Homodimeric H +-Pumping Membrane Pyrophosphatase Demonstrated by Non-Hydrolyzable Pyrophosphate Analogs. Int J Mol Sci 2021; 22:ijms22189820. [PMID: 34575984 PMCID: PMC8469034 DOI: 10.3390/ijms22189820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Membrane-bound inorganic pyrophosphatase (mPPase) resembles the F-ATPase in catalyzing polyphosphate-energized H+ and Na+ transport across lipid membranes, but differs structurally and mechanistically. Homodimeric mPPase likely uses a “direct coupling” mechanism, in which the proton generated from the water nucleophile at the entrance to the ion conductance channel is transported across the membrane or triggers Na+ transport. The structural aspects of this mechanism, including subunit cooperation, are still poorly understood. Using a refined enzyme assay, we examined the inhibition of K+-dependent H+-transporting mPPase from Desulfitobacterium hafniensee by three non-hydrolyzable PPi analogs (imidodiphosphate and C-substituted bisphosphonates). The kinetic data demonstrated negative cooperativity in inhibitor binding to two active sites, and reduced active site performance when the inhibitor or substrate occupied the other active site. The nonequivalence of active sites in PPi hydrolysis in terms of the Michaelis constant vanished at a low (0.1 mM) concentration of Mg2+ (essential cofactor). The replacement of K+, the second metal cofactor, by Na+ increased the substrate and inhibitor binding cooperativity. The detergent-solubilized form of mPPase exhibited similar active site nonequivalence in PPi hydrolysis. Our findings support the notion that the mPPase mechanism combines Mitchell’s direct coupling with conformational coupling to catalyze cation transport across the membrane.
Collapse
Affiliation(s)
- Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
| | - Anssi M. Malinen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland;
| | - Alexander V. Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
| | - Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia; (V.A.A.); (A.V.B.)
- Correspondence:
| |
Collapse
|
18
|
Cecchetti C, Strauss J, Stohrer C, Naylor C, Pryor E, Hobbs J, Tanley S, Goldman A, Byrne B. A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution. PLoS One 2021; 16:e0254118. [PMID: 34252116 PMCID: PMC8274869 DOI: 10.1371/journal.pone.0254118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
Membrane proteins have a range of crucial biological functions and are the target of about 60% of all prescribed drugs. For most studies, they need to be extracted out of the lipid-bilayer, e.g. by detergent solubilisation, leading to the loss of native lipids, which may disturb important protein-lipid/bilayer interactions and thus functional and structural integrity. Relipidation of membrane proteins has proven extremely successful for studying challenging targets, but the identification of suitable lipids can be expensive and laborious. Therefore, we developed a screen to aid the high-throughput identification of beneficial lipids. The screen covers a large lipid space and was designed to be suitable for a range of stability assessment methods. Here, we demonstrate its use as a tool for identifying stabilising lipids for three membrane proteins: a bacterial pyrophosphatase (Tm-PPase), a fungal purine transporter (UapA) and a human GPCR (A2AR). A2AR is stabilised by cholesteryl hemisuccinate, a lipid well known to stabilise GPCRs, validating the approach. Additionally, our screen also identified a range of new lipids which stabilised our test proteins, providing a starting point for further investigation and demonstrating its value as a novel tool for membrane protein research. The pre-dispensed screen will be made commercially available to the scientific community in future and has a number of potential applications in the field.
Collapse
Affiliation(s)
- Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Claudia Stohrer
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Edward Pryor
- Anatrace, Maumee, Ohio, United States of America
| | | | | | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- MIBS, Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (AG); (BB)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (AG); (BB)
| |
Collapse
|
19
|
Russell MJ. The "Water Problem"( sic), the Illusory Pond and Life's Submarine Emergence-A Review. Life (Basel) 2021; 11:429. [PMID: 34068713 PMCID: PMC8151828 DOI: 10.3390/life11050429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023] Open
Abstract
The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.
Collapse
Affiliation(s)
- Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
20
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
21
|
Das M, Mahler F, Hariharan P, Wang H, Du Y, Mortensen JS, Patallo EP, Ghani L, Glück D, Lee HJ, Byrne B, Loland CJ, Guan L, Kobilka BK, Keller S, Chae PS. Diastereomeric Cyclopentane-Based Maltosides (CPMs) as Tools for Membrane Protein Study. J Am Chem Soc 2020; 142:21382-21392. [PMID: 33315387 PMCID: PMC8015409 DOI: 10.1021/jacs.0c09629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-β-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc. 2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure-property-efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Florian Mahler
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Eugenio Pérez Patallo
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Lubna Ghani
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| | - David Glück
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Ho Jin Lee
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Sandro Keller
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Pil Seok Chae
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
22
|
Kozlova MI, Bushmakin IM, Belyaeva JD, Shalaeva DN, Dibrova DV, Cherepanov DA, Mulkidjanian AY. Expansion of the "Sodium World" through Evolutionary Time and Taxonomic Space. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1518-1542. [PMID: 33705291 DOI: 10.1134/s0006297920120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1986, Vladimir Skulachev and his colleagues coined the term "Sodium World" for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that "the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions". Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.
Collapse
Affiliation(s)
- M I Kozlova
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I M Bushmakin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - J D Belyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D N Shalaeva
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany.
| | - D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D A Cherepanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A Y Mulkidjanian
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
23
|
IMPROvER: the Integral Membrane Protein Stability Selector. Sci Rep 2020; 10:15165. [PMID: 32938971 PMCID: PMC7495477 DOI: 10.1038/s41598-020-71744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Identifying stabilising variants of membrane protein targets is often required for structure determination. Our new computational pipeline, the Integral Membrane Protein Stability Selector (IMPROvER) provides a rational approach to variant selection by employing three independent approaches: deep-sequence, model-based and data-driven. In silico tests using known stability data, and in vitro tests using three membrane protein targets with 7, 11 and 16 transmembrane helices provided measures of success. In vitro, individual approaches alone all identified stabilising variants at a rate better than expected by random selection. Low numbers of overlapping predictions between approaches meant a greater success rate was achieved (fourfold better than random) when approaches were combined and selections restricted to the highest ranked sites. The mix of information IMPROvER uses can be extracted for any helical membrane protein. We have developed the first general-purpose tool for selecting stabilising variants of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha$$\end{document}α-helical membrane proteins, increasing efficiency and reducing workload. IMPROvER can be accessed at http://improver.ddns.net/IMPROvER/.
Collapse
|
24
|
Pérez-Castiñeira JR, Serrano A. The H +-Translocating Inorganic Pyrophosphatase From Arabidopsis thaliana Is More Sensitive to Sodium Than Its Na +-Translocating Counterpart From Methanosarcina mazei. FRONTIERS IN PLANT SCIENCE 2020; 11:1240. [PMID: 32903538 PMCID: PMC7438732 DOI: 10.3389/fpls.2020.01240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Overexpression of membrane-bound K+-dependent H+-translocating inorganic pyrophosphatases (H+-PPases) from higher plants has been widely used to alleviate the sensitivity toward NaCl in these organisms, a strategy that had been previously tested in Saccharomyces cerevisiae. On the other hand, H+-PPases have been reported to functionally complement the yeast cytosolic soluble pyrophosphatase (IPP1). Here, the efficiency of the K+-dependent Na+-PPase from the archaeon Methanosarcina mazei (MVP) to functionally complement IPP1 has been compared to that of its H+-pumping counterpart from Arabidopsis thaliana (AVP1). Both membrane-bound integral PPases (mPPases) supported yeast growth equally well under normal conditions, however, cells expressing MVP grew significantly better than those expressing AVP1 under salt stress. The subcellular distribution of the heterologously-expressed mPPases was crucial in order to observe the phenotypes associated with the complementation. In vitro studies showed that the PPase activity of MVP was less sensitive to Na+ than that of AVP1. Consistently, when yeast cells expressing MVP were grown in the presence of NaCl only a marginal increase in their internal PPi levels was observed with respect to control cells. By contrast, yeast cells that expressed AVP1 had significantly higher levels of this metabolite under the same conditions. The H+-pumping activity of AVP1 was also markedly inhibited by Na+. Our results suggest that mPPases primarily act by hydrolysing the PPi generated in the cytosol when expressed in yeast, and that AVP1 is more susceptible to Na+ inhibition than MVP both in vivo and in vitro. Based on this experimental evidence, we propose Na+-PPases as biotechnological tools to generate salt-tolerant plants.
Collapse
Affiliation(s)
| | - Aurelio Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain
| |
Collapse
|
25
|
Bae HE, Cecchetti C, Du Y, Katsube S, Mortensen JS, Huang W, Rehan S, Lee HJ, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Pendant-bearing glucose-neopentyl glycol (P-GNG) amphiphiles for membrane protein manipulation: Importance of detergent pendant chain for protein stabilization. Acta Biomater 2020; 112:250-261. [PMID: 32522715 PMCID: PMC7366829 DOI: 10.1016/j.actbio.2020.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Glucoside detergents are successfully used for membrane protein crystallization mainly because of their ability to form small protein-detergent complexes. In a previous study, we introduced glucose neopentyl glycol (GNG) amphiphiles with a branched diglucoside structure that has facilitated high resolution crystallographic structure determination of several membrane proteins. Like other glucoside detergents, however, these GNGs were less successful than DDM in stabilizing membrane proteins, limiting their wide use in protein structural study. As a strategy to improve GNG efficacy for protein stabilization, we introduced two different alkyl chains (i.e., main and pendant chains) into the GNG scaffold while maintaining the branched diglucoside head group. Of these pendant-bearing GNGs (P-GNGs), three detergents (GNG-2,14, GNG-3,13 and GNG-3,14) were not only notably better than both DDM (a gold standard detergent) and the previously described GNGs at stabilizing all six membrane proteins tested here, but were also as efficient as DDM at membrane protein extraction. The results suggest that the C14 main chain of the P-GNGs is highly compatible with the hydrophobic widths of membrane proteins, while the C2/C3 pendant chain is effective at strengthening detergent hydrophobic interactions. Based on the marked effect on protein stability and solubility, these glucoside detergents hold significant potential for membrane protein structural study. Furthermore, the independent roles of the detergent two alkyl chains first introduced in this study have shed light on new amphiphile design for membrane protein study. STATEMENT OF SIGNIFICANCE: Detergent efficacy for protein stabilization tends to be protein-specific, thus it is challenging to find a detergent that is effective at stabilizing multiple membrane proteins. By incorporating a pendant chain into our previous GNG scaffold, we prepared pendant chain-bearing GNGs (P-GNGs) and identified three P-GNGs that were highly effective at stabilizing all membrane proteins tested here including two GPCRs. In addition, the new detergents were as efficient as DDM at extracting membrane proteins, enabling use of these detergents over the multiple steps of protein isolation. The key difference between the P-GNGs and other glucoside detergents, the presence of a pendant chain, is likely to be responsible for their markedly enhanced protein stabilization behavior.
Collapse
Affiliation(s)
- Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588 (Korea)
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ (UK)
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305 (USA)
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (USA)
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200 (Denmark)
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305 (USA)
| | - Shahid Rehan
- Institute of Biotechnology, University of Helsinki, Helsinki (Finland); HiLIFE, University of Helsinki, Helsinki (Finland)
| | - Ho Jin Lee
- Department of Bionanotechnology, Hanyang University, Ansan, 15588 (Korea)
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200 (Denmark)
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (USA)
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305 (USA)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ (UK)
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588 (Korea).
| |
Collapse
|
26
|
Ehsan M, Katsube S, Cecchetti C, Du Y, Mortensen JS, Wang H, Nygaard A, Ghani L, Loland CJ, Kobilka BK, Byrne B, Guan L, Chae PS. New Malonate-Derived Tetraglucoside Detergents for Membrane Protein Stability. ACS Chem Biol 2020; 15:1697-1707. [PMID: 32501004 DOI: 10.1021/acschembio.0c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins are widely studied in detergent micelles, a membrane-mimetic system formed by amphiphilic compounds. However, classical detergents have serious limitations in their utility, particularly for unstable proteins such as eukaryotic membrane proteins and membrane protein complexes, and thus, there is an unmet need for novel amphiphiles with enhanced ability to stabilize membrane proteins. Here, we developed a new class of malonate-derived detergents with four glucosides, designated malonate-derived tetra-glucosides (MTGs), and compared these new detergents with previously reported octyl glucose neopentyl glycol (OGNG) and n-dodecyl-β-d-maltoside (DDM). When tested with two G-protein coupled receptors (GPCRs) and three transporters, a couple of MTGs consistently conferred enhanced stability to all tested proteins compared to DDM and OGNG. As a result of favorable behaviors for a range of membrane proteins, these MTGs have substantial potential for membrane protein research. This study additionally provides a new detergent design principle based on the effect of a polar functional group (i.e., ether) on protein stability depending on its position in the detergent scaffold.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, 2001 Longxiang Avenue, Shenzhen, Guangdong 518172, China
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Haoqing Wang
- Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Brian K. Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
27
|
Lee S, Ghosh S, Jana S, Robertson N, Tate CG, Vaidehi N. How Do Branched Detergents Stabilize GPCRs in Micelles? Biochemistry 2020; 59:2125-2134. [PMID: 32437610 PMCID: PMC7302508 DOI: 10.1021/acs.biochem.0c00183] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/21/2020] [Indexed: 12/30/2022]
Abstract
The structural and functional properties of G protein-coupled receptors (GPCRs) are often studied in a detergent micellar environment, but many GPCRs tend to denature or aggregate in short alkyl chain detergents. In our previous work [Lee, S., et al. (2016) J. Am. Chem. Soc. 138, 15425-15433], we showed that GPCRs in alkyl glucosides were highly dynamic, resulting in the penetration of detergent molecules between transmembrane α-helices, which is the initial step in receptor denaturation. Although this was not observed for GPCRs in dodecyl maltoside (DDM, also known as lauryl maltoside), even this detergent is not mild enough to preserve the integrity of many GPCRs during purification. Lauryl maltose neopentylglycol (LMNG) detergents have been found to have significant advantages for purifying GPCRs in a native state as they impart more stability to the receptor than DDM. To gain insights into how they stabilize GPCRs, we used atomistic molecular dynamics simulations of wild type adenosine A2A receptor (WT-A2AR), thermostabilized A2AR (tA2AR), and wild type β2-adrenoceptor (β2AR) in a variety of detergents (LMNG, DMNG, OGNG, and DDM). Analysis of molecular dynamics simulations of tA2AR in LMNG, DMNG, and OGNG showed that this series of detergents exhibited behavior very similar to that of an analogous series of detergents DDM, DM, and OG in our previous study. However, there was a striking difference upon comparison of the behavior of LMNG to that of DDM. LMNG showed considerably less motion than DDM, which resulted in the enhanced density of the aliphatic chains around the hydrophobic regions of the receptor and considerably more hydrogen bond formation between the head groups. This contributed to enhanced interaction energies between both detergent molecules and between the receptor and detergent, explaining the enhanced stability of GPCRs purified in this detergent. Branched detergents occlude between transmembrane helices and reduce their flexibility. Our results provide a rational foundation to develop detergent variants for stabilizing membrane proteins.
Collapse
Affiliation(s)
- Sangbae Lee
- Department
of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Soumadwip Ghosh
- Department
of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Suvamay Jana
- Department
of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| | - Nathan Robertson
- Heptares
Therapeutics Ltd., BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, U.K.
| | - Christopher G. Tate
- MRC
Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| | - Nagarajan Vaidehi
- Department
of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, California 91010, United States
| |
Collapse
|
28
|
Johansson NG, Turku A, Vidilaseris K, Dreano L, Khattab A, Ayuso Pérez D, Wilkinson A, Zhang Y, Tamminen M, Grazhdankin E, Kiriazis A, Fishwick CWG, Meri S, Yli-Kauhaluoma J, Goldman A, Boije af Gennäs G, Xhaard H. Discovery of Membrane-Bound Pyrophosphatase Inhibitors Derived from an Isoxazole Fragment. ACS Med Chem Lett 2020; 11:605-610. [PMID: 32292570 PMCID: PMC7153278 DOI: 10.1021/acsmedchemlett.9b00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
![]()
Membrane-bound
pyrophosphatases (mPPases) regulate energy homeostasis
in pathogenic protozoan parasites and lack human homologues, which
makes them promising targets in e.g. malaria. Yet
only few nonphosphorus inhibitors have been reported so far. Here,
we explore an isoxazole fragment hit, leading to the discovery of
small mPPase inhibitors with 6–10 μM IC50 values
in the Thermotoga maritima test system. Promisingly,
the compounds retained activity against Plasmodium falciparum mPPase in membranes and inhibited parasite growth.
Collapse
Affiliation(s)
- Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Keni Vidilaseris
- Department of Biosciences, Division of Biochemistry, University of Helsinki, P.O. Box 56
(Viikinkaari 9), FI-00014 Helsinki, Finland
| | - Loïc Dreano
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Ayman Khattab
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, P.O. Box 21
(Haartmaninkatu 3), FI-00014 Helsinki, Finland
| | - Daniel Ayuso Pérez
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Aaron Wilkinson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Yuezhou Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Matti Tamminen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Evgeni Grazhdankin
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Colin W. G. Fishwick
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Seppo Meri
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, P.O. Box 21
(Haartmaninkatu 3), FI-00014 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Adrian Goldman
- Department of Biosciences, Division of Biochemistry, University of Helsinki, P.O. Box 56
(Viikinkaari 9), FI-00014 Helsinki, Finland
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Clarendon Way, Leeds LS2 9JT, United Kingdom
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| |
Collapse
|
29
|
Baykov AA. Energy Coupling in Cation-Pumping Pyrophosphatase-Back to Mitchell. FRONTIERS IN PLANT SCIENCE 2020; 11:107. [PMID: 32117404 PMCID: PMC7034417 DOI: 10.3389/fpls.2020.00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
|
30
|
Ghani L, Munk CF, Zhang X, Katsube S, Du Y, Cecchetti C, Huang W, Bae HE, Saouros S, Ehsan M, Guan L, Liu X, Loland CJ, Kobilka BK, Byrne B, Chae PS. 1,3,5-Triazine-Cored Maltoside Amphiphiles for Membrane Protein Extraction and Stabilization. J Am Chem Soc 2019; 141:19677-19687. [PMID: 31809039 DOI: 10.1021/jacs.9b07883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite their major biological and pharmacological significance, the structural and functional study of membrane proteins remains a significant challenge. A main issue is the isolation of these proteins in a stable and functional state from native lipid membranes. Detergents are amphiphilic compounds widely used to extract membrane proteins from the native membranes and maintain them in a stable form during downstream analysis. However, due to limitations of conventional detergents, it is essential to develop novel amphiphiles with optimal properties for protein stability in order to advance membrane protein research. Here we designed and synthesized 1,3,5-triazine-cored dimaltoside amphiphiles derived from cyanuric chloride. By introducing variations in the alkyl chain linkage (ether/thioether) and an amine-functionalized diol linker (serinol/diethanolamine), we prepared two sets of 1,3,5-triazine-based detergents. When tested with several model membrane proteins, these agents showed remarkable efficacy in stabilizing three transporters and two G protein-coupled receptors. Detergent behavior substantially varied depending on the detergent structural variation, allowing us to explore detergent structure-property-efficacy relationships. The 1,3,5-triazine-based detergents introduced here have significant potential for membrane protein study as a consequence of their structural diversity and universal stabilization efficacy for several membrane proteins.
Collapse
Affiliation(s)
- Lubna Ghani
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Chastine F Munk
- Department of Neuroscience , University of Copenhagen , Copenhagen DK-2200 , Denmark
| | - Xiang Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences , Tsinghua University , 100084 Beijing , China
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Yang Du
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Cristina Cecchetti
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Hyoung Eun Bae
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Savvas Saouros
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Muhammad Ehsan
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences , Tsinghua University , 100084 Beijing , China
| | - Claus J Loland
- Department of Neuroscience , University of Copenhagen , Copenhagen DK-2200 , Denmark
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| |
Collapse
|
31
|
Holmes AOM, Kalli AC, Goldman A. The Function of Membrane Integral Pyrophosphatases From Whole Organism to Single Molecule. Front Mol Biosci 2019; 6:132. [PMID: 31824962 PMCID: PMC6882861 DOI: 10.3389/fmolb.2019.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/08/2019] [Indexed: 12/02/2022] Open
Abstract
Membrane integral pyrophosphatases (mPPases) are responsible for the hydrolysis of pyrophosphate. This enzymatic mechanism is coupled to the pumping of H+ or Na+ across membranes in a process that can be K+ dependent or independent. Understanding the movements and dynamics throughout the mPPase catalytic cycle is important, as this knowledge is essential for improving or impeding protein function. mPPases have been shown to play a crucial role in plant maturation and abiotic stress tolerance, and so have the potential to be engineered to improve plant survival, with implications for global food security. mPPases are also selectively toxic drug targets, which could be pharmacologically modulated to reduce the virulence of common human pathogens. The last few years have seen the publication of many new insights into the function and structure of mPPases. In particular, there is a new body of evidence that the catalytic cycle is more complex than originally proposed. There are structural and functional data supporting a mechanism involving half-of-the-sites reactivity, inter-subunit communication, and exit channel motions. A more advanced and in-depth understanding of mPPases has begun to be uncovered, leaving the field of research with multiple interesting avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Alexandra O. M. Holmes
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Crystal structures of plant inorganic pyrophosphatase, an enzyme with a moonlighting autoproteolytic activity. Biochem J 2019; 476:2297-2319. [PMID: 31371393 DOI: 10.1042/bcj20190427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022]
Abstract
Inorganic pyrophosphatases (PPases, EC 3.6.1.1), which hydrolyze inorganic pyrophosphate to phosphate in the presence of divalent metal cations, play a key role in maintaining phosphorus homeostasis in cells. DNA coding inorganic pyrophosphatases from Arabidopsis thaliana (AtPPA1) and Medicago truncatula (MtPPA1) were cloned into a bacterial expression vector and the proteins were produced in Escherichia coli cells and crystallized. In terms of their subunit fold, AtPPA1 and MtPPA1 are reminiscent of other members of Family I soluble pyrophosphatases from bacteria and yeast. Like their bacterial orthologs, both plant PPases form hexamers, as confirmed in solution by multi-angle light scattering and size-exclusion chromatography. This is in contrast with the fungal counterparts, which are dimeric. Unexpectedly, the crystallized AtPPA1 and MtPPA1 proteins lack ∼30 amino acid residues at their N-termini, as independently confirmed by chemical sequencing. In vitro, self-cleavage of the recombinant proteins is observed after prolonged storage or during crystallization. The cleaved fragment corresponds to a putative signal peptide of mitochondrial targeting, with a predicted cleavage site at Val31-Ala32. Site-directed mutagenesis shows that mutations of the key active site Asp residues dramatically reduce the cleavage rate, which suggests a moonlighting proteolytic activity. Moreover, the discovery of autoproteolytic cleavage of a mitochondrial targeting peptide would change our perception of this signaling process.
Collapse
|
33
|
Vidilaseris K, Kiriazis A, Turku A, Khattab A, Johansson NG, Leino TO, Kiuru PS, Boije af Gennäs G, Meri S, Yli-Kauhaluoma J, Xhaard H, Goldman A. Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor. SCIENCE ADVANCES 2019; 5:eaav7574. [PMID: 31131322 PMCID: PMC6530997 DOI: 10.1126/sciadv.aav7574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Membrane-bound pyrophosphatases are homodimeric integral membrane proteins that hydrolyze pyrophosphate into orthophosphates, coupled to the active transport of protons or sodium ions across membranes. They are important in the life cycle of bacteria, archaea, plants, and parasitic protists, but no homologous proteins exist in vertebrates, making them a promising drug target. Here, we report the first nonphosphorus allosteric inhibitor of the thermophilic bacterium Thermotoga maritima membrane-bound pyrophosphatase and its bound structure together with the substrate analog imidodiphosphate. The unit cell contains two protein homodimers, each binding a single inhibitor dimer near the exit channel, creating a hydrophobic clamp that inhibits the movement of β-strand 1-2 during pumping, and thus prevents the hydrophobic gate from opening. This asymmetry of inhibitor binding with respect to each homodimer provides the first clear structural demonstration of asymmetry in the catalytic cycle of membrane-bound pyrophosphatases.
Collapse
Affiliation(s)
- Keni Vidilaseris
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ayman Khattab
- Malaria Research Laboratory, Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Teppo O. Leino
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula S. Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Malaria Research Laboratory, Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Research Program in Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
34
|
Roles of the Hydrophobic Gate and Exit Channel in Vigna radiata Pyrophosphatase Ion Translocation. J Mol Biol 2019; 431:1619-1632. [PMID: 30878480 DOI: 10.1016/j.jmb.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 12/25/2022]
Abstract
Membrane-embedded pyrophosphatase (M-PPase) hydrolyzes pyrophosphate to drive ion (H+ and/or Na+) translocation. We determined crystal structures and functions of Vigna radiata M-PPase (VrH+-PPase), the VrH+-PPase-2Pi complex and mutants at hydrophobic gate (residue L555) and exit channel (residues T228 and E225). Ion pore diameters along the translocation pathway of three VrH+-PPases complexes (Pi-, 2Pi- and imidodiphosphate-bound states) present a unique wave-like profile, with different pore diameters at the hydrophobic gate and exit channel, indicating that the ligands induced pore size alterations. The 2Pi-bound state with the largest pore diameter might mimic the hydrophobic gate open. In mutant structures, ordered waters detected at the hydrophobic gate among VrH+-PPase imply the possibility of solvation, and numerous waters at the exit channel might signify an open channel. A salt-bridge, E225-R562 is at the way out of the exit channel of VrH+-PPase; E225A mutant makes the interaction eliminated and reveals a decreased pumping ability. E225-R562 might act as a latch to regulate proton release. A water wire from the ion gate (R-D-K-E) through the hydrophobic gate and into the exit channel may reflect the path of proton transfer.
Collapse
|
35
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
36
|
Sørensen TLM, Hjorth-Jensen SJ, Oksanen E, Andersen JL, Olesen C, Møller JV, Nissen P. Membrane-protein crystals for neutron diffraction. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1208-1218. [PMID: 30605135 DOI: 10.1107/s2059798318012561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Abstract
Neutron macromolecular crystallography (NMX) has the potential to provide the experimental input to address unresolved aspects of transport mechanisms and protonation in membrane proteins. However, despite this clear scientific motivation, the practical challenges of obtaining crystals that are large enough to make NMX feasible have so far been prohibitive. Here, the potential impact on feasibility of a more powerful neutron source is reviewed and a strategy for obtaining larger crystals is formulated, exemplified by the calcium-transporting ATPase SERCA1. The challenges encountered at the various steps in the process from crystal nucleation and growth to crystal mounting are explored, and it is demonstrated that NMX-compatible membrane-protein crystals can indeed be obtained.
Collapse
Affiliation(s)
- Thomas Lykke Møller Sørensen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Samuel John Hjorth-Jensen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Esko Oksanen
- European Spallation Source ERIC, PO Box 176, 22100 Lund, Sweden
| | | | - Claus Olesen
- Department of Biomedicine, Aarhus University, Ole Worn Alle 3, DK-8000 Aarhus C, Denmark
| | - Jesper Vuust Møller
- Department of Biomedicine, Aarhus University, Ole Worn Alle 3, DK-8000 Aarhus C, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Successful amphiphiles as the key to crystallization of membrane proteins: Bridging theory and practice. Biochim Biophys Acta Gen Subj 2018; 1863:437-455. [PMID: 30419284 DOI: 10.1016/j.bbagen.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Membrane proteins constitute a major group of proteins and are of great significance as pharmaceutical targets, but underrepresented in the Protein Data Bank. Particular reasons are their low expression yields and the constant need for cautious and diligent handling in a sufficiently stable hydrophobic environment substituting for the native membrane. When it comes to protein crystallization, such an environment is often established by detergents. SCOPE OF REVIEW In this review, 475 unique membrane protein X-ray structures from the online data bank "Membrane proteins of known 3D structure" are presented with a focus on the detergents essential for protein crystallization. By systematic analysis of the most successful compounds, including current trends in amphiphile development, we provide general insights for selection and design of detergents for membrane protein crystallization. MAJOR CONCLUSIONS The most successful detergents share common features, giving rise to favorable protein interactions. The hydrophile-lipophile balance concept of well-balanced hydrophilic and hydrophobic detergent portions is still the key to successful protein crystallization. Although a single detergent compound is sufficient in most cases, sometimes a suitable mixture of detergents has to be found to alter the resulting protein-detergent complex. Protein crystals with a high diffraction limit involve a tight crystal packing generally favored by detergents with shorter alkyl chains. GENERAL SIGNIFICANCE The formation of well-diffracting membrane protein crystals strongly depends on suitable surfactants, usually screened in numerous crystallization trials. The here-presented findings provide basic criteria for the assessment of surfactants within the vast space of potential crystallization conditions for membrane proteins.
Collapse
|
38
|
Bioinformatics Analysis and Functional Prediction of Transmembrane Proteins in Entamoeba histolytica. Genes (Basel) 2018; 9:genes9100499. [PMID: 30332795 PMCID: PMC6209943 DOI: 10.3390/genes9100499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Entamoeba histolytica is an invasive, pathogenic parasite causing amoebiasis. Given that proteins involved in transmembrane (TM) transport are crucial for the adherence, invasion, and nutrition of the parasite, we conducted a genome-wide bioinformatics analysis of encoding proteins to functionally classify and characterize all the TM proteins in E. histolytica. In the present study, 692 TM proteins have been identified, of which 546 are TM transporters. For the first time, we report a set of 141 uncharacterized proteins predicted as TM transporters. The percentage of TM proteins was found to be lower in comparison to the free-living eukaryotes, due to the extracellular nature and functional diversification of the TM proteins. The number of multi-pass proteins is larger than the single-pass proteins; though both have their own significance in parasitism, multi-pass proteins are more extensively required as these are involved in acquiring nutrition and for ion transport, while single-pass proteins are only required at the time of inciting infection. Overall, this intestinal parasite implements multiple mechanisms for establishing infection, obtaining nutrition, and adapting itself to the new host environment. A classification of the repertoire of TM transporters in the present study augments several hints on potential methods of targeting the parasite for therapeutic benefits.
Collapse
|
39
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
40
|
Yoo JI, O’Malley MA. Tuning Vector Stability and Integration Frequency Elevates Functional GPCR Production and Homogeneity in Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:1763-1772. [PMID: 29871481 DOI: 10.1021/acssynbio.8b00036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins play a valuable role in biotechnology, yet the difficulty of producing high yields of functional membrane protein limits their use in synthetic biology. The practical application of G protein-coupled receptors in whole cell biosensors, for example, is restricted to those that are functionally produced at the cell surface in the chosen host, limiting the range of detectable molecules. Here, we present a facile approach to significantly improve the yield and homogeneity of functional membrane proteins in Saccharomyces cerevisiae by altering only the choice of expression vector. Expression of a model GPCR, the human adenosine A2a receptor, from commonly used centromeric and episomal vectors leads to low yields and cellular heterogeneity due to plasmid loss in 20-90% of the cell population. In contrast, homogeneous production of GPCR is attained using a multisite integrating vector or a novel, modified high copy vector that does not require genomic integration or addition of any selection agents. Finally, we introduce a FACS-based screen, which enables rapid isolation of cells with 4- to 15-fold increases in gene dosage and up to a 9-fold increase in functional protein yield without loss of homogeneity compared to a strain isolated through conventional, low-throughput methods. These results can be extended to improve the cellular homogeneity and yield of other membrane proteins, expanding the repertoire of useful receptors for synthetic biology applications.
Collapse
Affiliation(s)
- Justin I. Yoo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michelle A. O’Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
41
|
Strauss J, Wilkinson C, Vidilaseris K, Harborne SPD, Goldman A. A Simple Strategy to Determine the Dependence of Membrane-Bound Pyrophosphatases on K + as a Cofactor. Methods Enzymol 2018; 607:131-156. [PMID: 30149856 DOI: 10.1016/bs.mie.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane-bound pyrophosphatases (mPPases) couple pyrophosphate hydrolysis to H+ and/or Na+ pumping across membranes and are found in all domains of life except for multicellular animals including humans. They are important for development and stress resistance in plants. Furthermore, mPPases play a role in virulence of human pathogens that cause severe diseases such as malaria and African sleeping sickness. Sequence analysis, functional studies, and recently solved crystal structures have contributed to the understanding of the mPPase catalytic cycle. However, several key mechanistic features remain unknown. During evolution, several subgroups of mPPases differing in their pumping specificity and cofactor dependency arose. mPPases are classified into one of five subgroups, usually by sequence analysis. However, classification based solely on sequence has been inaccurate in several instances due to our limited understanding of the molecular mechanism of mPPases. Thus, pumping specificity and cofactor dependency of mPPases require experimental confirmation. Here, we describe a simple method for the determination of K+ dependency in mPPases using a hydrolytic activity assay. By coupling these dependency studies with site-directed mutagenesis, we have begun to build a better understanding of the molecular mechanisms of mPPases. We optimized the assay for thermostable mPPases that are commonly used as model systems in our lab, but the method is equally applicable to mesophilic mPPases with minor modifications.
Collapse
Affiliation(s)
- Jannik Strauss
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Craig Wilkinson
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | - Keni Vidilaseris
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Steven P D Harborne
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom.
| | - Adrian Goldman
- Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
42
|
Role of the potassium/lysine cationic center in catalysis and functional asymmetry in membrane-bound pyrophosphatases. Biochem J 2018. [PMID: 29519958 DOI: 10.1042/bcj20180071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Membrane-bound pyrophosphatases (mPPases), which couple pyrophosphate hydrolysis to transmembrane transport of H+ and/or Na+ ions, are divided into K+,Na+-independent, Na+-regulated, and K+-dependent families. The first two families include H+-transporting mPPases (H+-PPases), whereas the last family comprises one Na+-transporting, two Na+- and H+-transporting subfamilies (Na+-PPases and Na+,H+-PPases, respectively), and three H+-transporting subfamilies. Earlier studies of the few available model mPPases suggested that K+ binds to a site located adjacent to the pyrophosphate-binding site, but is substituted by the ε-amino group of an evolutionarily acquired lysine residue in the K+-independent mPPases. Here, we performed a systematic analysis of the K+/Lys cationic center across all mPPase subfamilies. An Ala → Lys replacement in K+-dependent mPPases abolished the K+ dependence of hydrolysis and transport activities and decreased these activities close to the level (4-7%) observed for wild-type enzymes in the absence of monovalent cations. In contrast, a Lys → Ala replacement in K+,Na+-independent mPPases conferred partial K+ dependence on the enzyme by unmasking an otherwise conserved K+-binding site. Na+ could partially replace K+ as an activator of K+-dependent mPPases and the Lys → Ala variants of K+,Na+-independent mPPases. Finally, we found that all mPPases were inhibited by excess substrate, suggesting strong negative co-operativity of active site functioning in these homodimeric enzymes; moreover, the K+/Lys center was identified as part of the mechanism underlying this effect. These findings suggest that the mPPase homodimer possesses an asymmetry of active site performance that may be an ancient prototype of the rotational binding-change mechanism of F-type ATPases.
Collapse
|
43
|
Harborne SPD, Strauss J, Turku A, Watson MA, Tuma R, Harris SA, Goldman A. Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET. Methods Enzymol 2018; 607:93-130. [PMID: 30149870 DOI: 10.1016/bs.mie.2018.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.
Collapse
Affiliation(s)
- Steven P D Harborne
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matthew A Watson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sarah A Harris
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
44
|
Sadaf A, Du Y, Santillan C, Mortensen JS, Molist I, Seven AB, Hariharan P, Skiniotis G, Loland CJ, Kobilka BK, Guan L, Byrne B, Chae PS. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Chem Sci 2017; 8:8315-8324. [PMID: 29619178 PMCID: PMC5858085 DOI: 10.1039/c7sc03700g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023] Open
Abstract
A novel amphiphile with a dendronic hydrophobic group (DTM-A6) was markedly effective at stabilizing and visualizing a GPCR-Gs complex.
The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein manipulation. Structural and functional stability is a prerequisite for biophysical characterization. However, many conventional detergents are limited in their ability to stabilize membrane proteins, making development of novel detergents for membrane protein manipulation an important research area. The architecture of a detergent hydrophobic group, that directly interacts with the hydrophobic segment of membrane proteins, is a key factor in dictating their efficacy for both membrane protein solubilization and stabilization. In the current study, we developed two sets of maltoside-based detergents with four alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6) clearly outperformed DDM in stabilizing human β2 adrenergic receptor (β2AR) and its complex with Gs protein. A further evaluation of this DTM led to a clear visualization of β2AR-Gs complex via electron microscopic analysis. Thus, the current study not only provides novel detergent tools useful for membrane protein study, but also suggests that the dendronic architecture has a role in governing detergent efficacy for membrane protein stabilization.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| | - Yang Du
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claudia Santillan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Jonas S Mortensen
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Iago Molist
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Alpay B Seven
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Georgios Skiniotis
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claus J Loland
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Brian K Kobilka
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| |
Collapse
|
45
|
Russell MJ, Nitschke W. Methane: Fuel or Exhaust at the Emergence of Life? ASTROBIOLOGY 2017; 17:1053-1066. [PMID: 28949766 PMCID: PMC5655419 DOI: 10.1089/ast.2016.1599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/20/2017] [Indexed: 05/28/2023]
Abstract
As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the "fact" that methanotrophy itself has been termed "reverse methanogenesis," so allotting the methanogens the founding pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would require "unlearning"-a challenge to the subconscious! Here we re-examine the "impossibility" of methanotrophy predating methanogenesis as in what we have termed the "denitrifying methanotrophic acetogenic pathway." Advantages offered by such thinking are that methane would not only be a fuel but also a ready source of reduced carbon to combine with formate or carbon monoxide-available in hydrothermal fluids-to generate acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous ocean simulant is juxtaposed across a precipitate membrane to an alkaline solution of hydrogen and methane. Key Words: Green rust-Methanotrophy-Nitrate reduction-Emergence of life. Astrobiology 17, 1053-1066.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Wolfgang Nitschke
- CNRS/Aix-Marseille University, BIP UMR 7281, IMM FR 3479, Marseille, France
| |
Collapse
|
46
|
Abstract
High-resolution membrane protein structures are essential for understanding the molecular basis of diverse biological events and important in drug development. Detergents are usually used to extract these bio-macromolecules from the membranes and maintain them in a soluble and stable state in aqueous solutions for downstream characterization. However, many eukaryotic membrane proteins solubilized in conventional detergents tend to undergo structural degradation, necessitating the development of new amphiphilic agents with enhanced properties. In this study, we designed and synthesized a novel class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate that these agents have potential in membrane protein research.
Collapse
|
47
|
Overcoming bottlenecks in the membrane protein structural biology pipeline. Biochem Soc Trans 2017; 44:838-44. [PMID: 27284049 DOI: 10.1042/bst20160049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future.
Collapse
|
48
|
Shah NR, Wilkinson C, Harborne SPD, Turku A, Li KM, Sun YJ, Harris S, Goldman A. Insights into the mechanism of membrane pyrophosphatases by combining experiment and computer simulation. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:032105. [PMID: 28345008 PMCID: PMC5336470 DOI: 10.1063/1.4978038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/20/2017] [Indexed: 05/06/2023]
Abstract
Membrane-integral pyrophosphatases (mPPases) couple the hydrolysis of pyrophosphate (PPi) to the pumping of Na+, H+, or both these ions across a membrane. Recently solved structures of the Na+-pumping Thermotoga maritima mPPase (TmPPase) and H+-pumping Vigna radiata mPPase revealed the basis of ion selectivity between these enzymes and provided evidence for the mechanisms of substrate hydrolysis and ion-pumping. Our atomistic molecular dynamics (MD) simulations of TmPPase demonstrate that loop 5-6 is mobile in the absence of the substrate or substrate-analogue bound to the active site, explaining the lack of electron density for this loop in resting state structures. Furthermore, creating an apo model of TmPPase by removing ligands from the TmPPase:IDP:Na structure in MD simulations resulted in increased dynamics in loop 5-6, which results in this loop moving to uncover the active site, suggesting that interactions between loop 5-6 and the imidodiphosphate and its associated Mg2+ are important for holding a loop-closed conformation. We also provide further evidence for the transport-before-hydrolysis mechanism by showing that the non-hydrolyzable substrate analogue, methylene diphosphonate, induces low levels of proton pumping by VrPPase.
Collapse
Affiliation(s)
- Nita R Shah
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, United Kingdom
| | - Craig Wilkinson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, United Kingdom
| | - Steven P D Harborne
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, United Kingdom
| | - Ainoleena Turku
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki, Finland
| | - Kun-Mou Li
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Yuh-Ju Sun
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Sarah Harris
- School of Physics and Astronomy and Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
49
|
Daouda MP, Bouchra EK, Roman PCJ, Aurelio SD, Abdelaziz S. Inorganic Pyrophosphatases: Study of Interest. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abb.2017.810028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Deep Insight into the Phosphatomes of Parasitic Protozoa and a Web Resource ProtozPhosDB. PLoS One 2016; 11:e0167594. [PMID: 27930683 PMCID: PMC5145157 DOI: 10.1371/journal.pone.0167594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation dynamically regulates the function of proteins by maintaining a balance between protein kinase and phosphatase activity. A comprehensive understanding of the role phosphatases in cellular signaling is lacking in case of protozoans of medical and veterinary importance worldwide. The drugs used to treat protozoal diseases have many undesired effects and the development of resistance, highlights the need for new effective and safer antiprotozoal agents. In the present study we have analyzed phosphatomes of 15 protozoans of medical significance. We identified ~2000 phosphatases, out of which 21% are uncharacterized proteins. A significant positive correlation between phosphatome and proteome size was observed except for E. histolytica, having highest density of phosphatases irrespective of its proteome size. A difference in the number of phosphatases among different genera shows the variation in the signaling pathways they are involved in. The phosphatome of parasites is dominated by ser/thr phosphatases contrary to the vertebrate host dominated by tyrosine phosphatases. Phosphatases were widely distributed throughout the cell suggesting physiological adaptation of the parasite to regulate its host. 20% to 45% phosphatome of different protozoa consists of ectophosphatases, i.e. crucial for the survival of parasites. A database and a webserver "ProtozPhosDB" can be used to explore the phosphatomes of protozoans of medical significance.
Collapse
|