1
|
Rodriguez LE, Weber JM, Barge LM. Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments. ASTROBIOLOGY 2024; 24:767-782. [PMID: 38768415 DOI: 10.1089/ast.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.
Collapse
Affiliation(s)
- Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Runzheimer K, Lozano C, Boy D, Boy J, Godoy R, Matus FJ, Engel D, Pavletic B, Leuko S, Armengaud J, Moeller R. Exploring Andean High-Altitude Lake Extremophiles through Advanced Proteotyping. J Proteome Res 2024; 23:891-904. [PMID: 38377575 PMCID: PMC10913102 DOI: 10.1021/acs.jproteome.3c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Quickly identifying and characterizing isolates from extreme environments is currently challenging while very important to explore the Earth's biodiversity. As these isolates may, in principle, be distantly related to known species, techniques are needed to reliably identify the branch of life to which they belong. Proteotyping these environmental isolates by tandem mass spectrometry offers a rapid and cost-effective option for their identification using their peptide profiles. In this study, we document the first high-throughput proteotyping approach for environmental extremophilic and halophilic isolates. Microorganisms were isolated from samples originating from high-altitude Andean lakes (3700-4300 m a.s.l.) in the Chilean Altiplano, which represent environments on Earth that resemble conditions on other planets. A total of 66 microorganisms were cultivated and identified by proteotyping and 16S rRNA gene amplicon sequencing. Both the approaches revealed the same genus identification for all isolates except for three isolates possibly representing not yet taxonomically characterized organisms based on their peptidomes. Proteotyping was able to indicate the presence of two potentially new genera from the families of Paracoccaceae and Chromatiaceae/Alteromonadaceae, which have been overlooked by 16S rRNA amplicon sequencing approach only. The paper highlights that proteotyping has the potential to discover undescribed microorganisms from extreme environments.
Collapse
Affiliation(s)
- Katharina Runzheimer
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Clément Lozano
- Département
Médicaments et Technologies pour la Santé (DMTS), CEA,
INRAE, SPI, Université, Paris-Saclay, F-30200 Bagnols-sur-Cèze, France
| | - Diana Boy
- Institute
of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany
| | - Jens Boy
- Institute
of Soil Science, Leibniz University Hannover, 30419 Hannover, Germany
| | - Roberto Godoy
- Instituto
de Ciencias Ambientales y Evolutivas, Universidad
Austral de Chile, 509000 Valdivia, Chile
| | - Francisco J. Matus
- Laboratory
of Conservation and Dynamics of Volcanic Soils, Department of Chemical
Sciences and Natural Resources, Universidad
de La Frontera, 4811230 Temuco, Chile
- Network
for Extreme Environmental Research (NEXER), Universidad de La Frontera, 4811230 Temuco, Chile
| | - Denise Engel
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bruno Pavletic
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Stefan Leuko
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Jean Armengaud
- Département
Médicaments et Technologies pour la Santé (DMTS), CEA,
INRAE, SPI, Université, Paris-Saclay, F-30200 Bagnols-sur-Cèze, France
| | - Ralf Moeller
- Department
of Radiation Biology, Institute of Aerospace
Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
3
|
Glidden A, Seager S, Petkowski JJ, Ono S. Can Isotopologues Be Used as Biosignature Gases in Exoplanet Atmospheres? Life (Basel) 2023; 13:2325. [PMID: 38137926 PMCID: PMC10744769 DOI: 10.3390/life13122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Isotopologue ratios are anticipated to be one of the most promising signs of life that can be observed remotely. On Earth, carbon isotopes have been used for decades as evidence of modern and early metabolic processes. In fact, carbon isotopes may be the oldest evidence for life on Earth, though there are alternative geological processes that can lead to the same magnitude of fractionation. However, using isotopologues as biosignature gases in exoplanet atmospheres presents several challenges. Most significantly, we will only have limited knowledge of the underlying abiotic carbon reservoir of an exoplanet. Atmospheric carbon isotope ratios will thus have to be compared against the local interstellar medium or, better yet, their host star. A further substantial complication is the limited precision of remote atmospheric measurements using spectroscopy. The various metabolic processes that cause isotope fractionation cause less fractionation than anticipated measurement precision (biological fractionation is typically 2 to 7%). While this level of precision is easily reachable in the laboratory or with special in situ instruments, it is out of reach of current telescope technology to measure isotope ratios for terrestrial exoplanet atmospheres. Thus, gas isotopologues are poor biosignatures for exoplanets given our current and foreseeable technological limitations.
Collapse
Affiliation(s)
- Ana Glidden
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- JJ Scientific, Mazowieckie, 02-792 Warsaw, Poland
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Heydari E, Schroeder JF, Calef FJ, Parker TJ, Fairén AG. Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars. Sci Rep 2023; 13:18715. [PMID: 37907611 PMCID: PMC10618461 DOI: 10.1038/s41598-023-45068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
This investigation documents that the Rugged Terrain Unit, the Stimson formation, and the Greenheugh sandstone were deposited in a 1200 m-deep lake that formed after the emergence of Mt. Sharp in Gale crater, Mars, nearly 4 billion years ago. In fact, the Curiosity rover traversed on a surface that once was the bottom of this lake and systematically examined the strata that were deposited in its deepest waters on the crater floor to layers that formed along its shoreline on Mt. Sharp. This provided a rare opportunity to document the evolution of one aqueous episode from its inception to its desiccation and to determine the warming mechanism that caused it. Deep water lacustrine siltstones directly overlie conglomerates that were deposited by mega floods on the crater floor. This indicates that the inception phase of the lake was sudden and took place when flood waters poured into the crater. The lake expanded quickly and its shoreline moved up the slope of Mt. Sharp during the lake-level rise phase and deposited a layer of sandstone with large cross beds under the influence of powerful storm waves. The lake-level highstand phase was dominated by strong bottom currents that transported sediments downhill and deposited one of the most distinctive sedimentological features in Gale crater: a layer of sandstone with a 3 km-long field of meter-high subaqueous antidunes (the Washboard) on Mt. Sharp. Bottom current continued downhill and deposited sandstone and siltstone on the foothills of Mt. Sharp and on the crater floor, respectively. The lake-level fall phase caused major erosion of lacustrine strata that resulted in their patchy distribution on Mt. Sharp. Eroded sediments were then transported to deep waters by gravity flows and were re-deposited as conglomerate and sandstone in subaqueous channels and in debris flow fans. The desiccation phase took place in calm waters of the lake. The aqueous episode we investigated was vigorous but short-lived. Its characteristics as determined by our sedimentological study matches those predicted by an asteroid impact. This suggests that the heat generated by an impact transformed Mars into a warm, wet, and turbulent planet. It resulted in planet-wide torrential rain, giant floods on land, powerful storms in the atmosphere, and strong waves in lakes. The absence of age dates prevents the determination of how long the lake existed. Speculative rates of lake-level change suggest that the lake could have lasted for a period ranging from 16 to 240 Ky.
Collapse
Affiliation(s)
- Ezat Heydari
- Department of Physics, Atmospheric Sciences, and Geoscience, Jackson State University, 1400 Lynch Street, Jackson, MS, 39217, USA.
| | - Jeffrey F Schroeder
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Fred J Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Timothy J Parker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Carr CE, Ramírez-Colón JL, Duzdevich D, Lee S, Taniguchi M, Ohshiro T, Komoto Y, Soderblom JM, Zuber MT. Solid-State Single-Molecule Sensing with the Electronic Life-Detection Instrument for Enceladus/Europa (ELIE). ASTROBIOLOGY 2023; 23:1056-1070. [PMID: 37782210 DOI: 10.1089/ast.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Growing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 μM concentration in a compact system. Based on ELIE's solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO-LUMO gap (energy difference between a molecule's highest energy-occupied molecular orbital and lowest energy-unoccupied molecular orbital) as a novel metric to assess amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived α-amino acid abundance distributions to reduce the false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in a plume, surface, or subsurface of ice moons such as Enceladus or Europa. One-Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don't know it.
Collapse
Affiliation(s)
- Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - José L Ramírez-Colón
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Daniel Duzdevich
- Massachusetts General Hospital, Department of Molecular Biology, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
- Current address: Department of Chemistry, University of Chicago, Chicago, Illinois, USA
| | - Sam Lee
- MIT Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, USA
| | - Masateru Taniguchi
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Takahito Ohshiro
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Yuki Komoto
- Osaka University, Institute of Scientific and Industrial Research, Osaka, Japan
| | - Jason M Soderblom
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - M T Zuber
- MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Chen Y, Sun Y, Liu L, Shen J, Qu Y, Pan Y, Lin W. Biosignatures Preserved in Carbonate Nodules from the Western Qaidam Basin, NW China: Implications for Life Detection on Mars. ASTROBIOLOGY 2023; 23:172-182. [PMID: 36577041 DOI: 10.1089/ast.2021.0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The search for organic matter on Mars is one of the major objectives of Mars exploration. However, limited detection of organic signals by Mars rovers to date demands further investigation on this topic. The Curiosity rover recently discovered numerous nodules in Gale Crater on Mars. These nodules have been considered to precipitate in the neutral-to-alkaline and saline diagenetic fluids and could be beneficial for organic preservation. Here, we examine this possibility by studying the carbonate nodules in the western Qaidam Basin, NW China, one of the terrestrial analog sites for Mars. Fourier transform infrared spectra of the carbonate nodules reveal that the aliphatic and aromatic molecules can be readily preserved inside nodules in Mars-like environments. The chain-branching index of the Qaidam nodules suggests that the diagenetic fluids where nodules precipitated were able to support diverse microbial communities that could vary with the water salinity. Findings of this study provide new perspectives on the astrobiological significance of nodules in Gale Crater and the further detection of organic matter on Mars.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yu Sun
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuangao Qu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Mora MF, Kok MGM, Noell A, Willis PA. Detection of Biosignatures by Capillary Electrophoresis Mass Spectrometry in the Presence of Salts Relevant to Ocean Worlds Missions. ASTROBIOLOGY 2022; 22:914-925. [PMID: 35913998 DOI: 10.1089/ast.2021.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Capillary electrophoresis (CE) is a promising liquid-based technique for in situ chemical analysis on ocean worlds that allows the detection of a wide range of organic molecules relevant to the search for life. CE coupled with mass spectrometry (MS) is particularly valuable as it also enables the discovery of unknown compounds. Here we demonstrate that CE coupled to MS via electrospray ionization (ESI) can readily analyze samples containing up to half the saturation levels of salts relevant to ocean worlds when using 5 M acetic acid as the separation media. A mixture containing amino acids, peptides, nucleobases, and nucleosides was analyzed in the presence of two salts, NaCl and MgSO4, based on their relevance to Europa and Enceladus. We demonstrate here CE-MS limits of detection for these organics ranging from 0.05 to 1 μM (8 to 89 ppb) in the absence of salts. More importantly, we demonstrate here for the first time that organics in the low micromolar range (1-50 μM) are detected by CE-MS in the presence of 3 M NaCl without desalting, preconcentration, or derivatization. This demonstration highlights how CE-MS is uniquely suited for organic analysis on future missions to ocean worlds.
Collapse
Affiliation(s)
- Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Miranda G M Kok
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Aaron Noell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
9
|
Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proc Natl Acad Sci U S A 2022; 119:e2201139119. [PMID: 35759667 PMCID: PMC9271195 DOI: 10.1073/pnas.2201139119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work presents the first quantification of bulk organic carbon in Mars surface sedimentary rocks, enabled by a stepped combustion experiment performed by the Curiosity Rover in Gale crater, Mars. The mudstone sample analyzed by Curiosity represents a previously habitable lacustrine environment and a depositional environment favorable for preservation of organics formed in situ and/or transported from a wide catchment area. Here we present the abundance of bulk organic carbon in these mudstone samples and discuss the contributions from various carbon reservoirs on Mars. The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO2. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 μg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8‰) representing a minimum of 431 μg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 μg C/g was evolved as CO2 and CO (with estimated δ13C = −32.9‰ to −10.1‰ for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.
Collapse
|
10
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry Throughout This Solar System. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:197-219. [PMID: 35300527 DOI: 10.1146/annurev-anchem-061020-125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the greatest and most long-lived scientific pursuits of humankind has been to discover and study the planetary objects comprising our solar system. Information gained from solar system observations, via both remote sensing and in situ measurements, is inherently constrained by the analytical (often chemical) techniques we employ in these endeavors. The past 50 years of planetary science missions have resulted in immense discoveries within and beyond our solar system, enabled by state-of-the-art analytical chemical instrument suites on board these missions. In this review, we highlight and discuss some of the most impactful analytical chemical instruments flown on planetary science missions within the last 20 years, including analytical techniques ranging from remote spectroscopy to in situ chemical separations. We first highlight mission-based remote and in situ spectroscopic techniques, followed by in situ separation and mass spectrometry analyses. The results of these investigations are discussed, and their implications examined, from worlds as close as Venus and familiar as Mars to as far away and exotic as Titan. Instruments currently in development for planetary science missions in the near future are also discussed, as are the promises their capabilities bring. Analytical chemistry is critical to understanding what lies beyond Earth in our solar system, and this review seeks to highlight how questions, analytical tools, and answers have intersected over the past 20 years and their implications for the near future.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
11
|
Rzymski P, Poniedziałek B, Hippmann N, Kaczmarek Ł. Screening the Survival of Cyanobacteria Under Perchlorate Stress. Potential Implications for Mars In Situ Resource Utilization. ASTROBIOLOGY 2022; 22:672-684. [PMID: 35196144 PMCID: PMC9233533 DOI: 10.1089/ast.2021.0100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are good candidates for various martian applications as a potential source of food, fertilizer, oxygen, and biofuels. However, the increased levels of highly toxic perchlorates may be a significant obstacle to their growth on Mars. Therefore, in the present study, 17 cyanobacteria strains that belong to Chroococcales, Chroococcidiopsidales, Nostocales, Oscillatoriales, Pleurocapsales, and Synechococcales were exposed to 0.25-1.0% magnesium perchlorate concentrations (1.5-6.0 mM ClO4- ions) for 14 days. The exposure to perchlorate induced at least partial inhibition of growth in all tested strains, although five of them were able to grow at the highest perchlorate concentration: Chroococcidiopsis thermalis, Leptolyngbya foveolarum, Arthronema africanum, Geitlerinema cf. acuminatum, and Cephalothrix komarekiana. Chroococcidiopsis sp. Chroococcidiopsis cubana demonstrated growth up to 0.5%. Strains that maintained growth displayed significantly increased malondialdehyde content, indicating perchlorate-induced oxidative stress, whereas the chlorophyll a/carotenoids ratio tended to be decreased. The results show that selected cyanobacteria from different orders can tolerate perchlorate concentrations typical for the martian regolith, indicating that they may be useful in Mars exploration. Further studies are required to elucidate the biochemical and molecular basis for the perchlorate tolerance in selected cyanobacteria.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Natalia Hippmann
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
12
|
Vasavada AR. Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. SPACE SCIENCE REVIEWS 2022; 218:14. [PMID: 35399614 PMCID: PMC8981195 DOI: 10.1007/s11214-022-00882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED NASA's Mars Science Laboratory mission, with its Curiosity rover, has been exploring Gale crater (5.4° S, 137.8° E) since 2012 with the goal of assessing the potential of Mars to support life. The mission has compiled compelling evidence that the crater basin accumulated sediment transported by marginal rivers into lakes that likely persisted for millions of years approximately 3.6 Ga ago in the early Hesperian. Geochemical and mineralogical assessments indicate that environmental conditions within this timeframe would have been suitable for sustaining life, if it ever were present. Fluids simultaneously circulated in the subsurface and likely existed through the dry phases of lake bed exposure and aeolian deposition, conceivably creating a continuously habitable subsurface environment that persisted to less than 3 Ga in the early Amazonian. A diversity of organic molecules has been preserved, though degraded, with evidence for more complex precursors. Solid samples show highly variable isotopic abundances of sulfur, chlorine, and carbon. In situ studies of modern wind-driven sediment transport and multiple large and active aeolian deposits have led to advances in understanding bedform development and the initiation of saltation. Investigation of the modern atmosphere and environment has improved constraints on the timing and magnitude of atmospheric loss, revealed the presence of methane and the crater's influence on local meteorology, and provided measurements of high-energy radiation at Mars' surface in preparation for future crewed missions. Rover systems and science instruments remain capable of addressing all key scientific objectives. Emphases on advance planning, flexibility, operations support work, and team culture have allowed the mission team to maintain a high level of productivity in spite of declining rover power and funding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11214-022-00882-7.
Collapse
Affiliation(s)
- Ashwin R. Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
13
|
Huidobro J, Aramendia J, Arana G, Madariaga JM. Reviewing in situ analytical techniques used to research Martian geochemistry: From the Viking Project to the MMX future mission. Anal Chim Acta 2022; 1197:339499. [DOI: 10.1016/j.aca.2022.339499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/01/2022]
|
14
|
Depleted carbon isotope compositions observed at Gale crater, Mars. Proc Natl Acad Sci U S A 2022; 119:2115651119. [PMID: 35042808 PMCID: PMC8795525 DOI: 10.1073/pnas.2115651119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Carbon isotopic analysis is among the most pervasive geochemical approaches because the fractionation of carbon isotopes produces a natural tracer of biological and chemical processes. Rover-based carbon isotopic analyses of sedimentary rocks on Mars have the potential to reveal modes of Martian carbon cycling. We report carbon isotopic values of the methane released during pyrolysis of samples obtained at Gale crater. The values show remarkable variation indicating different origins for the carbon evolved from different samples. Samples from multiple locations within Gale crater evolved methane with highly fractionated carbon isotopes. We suggest three routes by which highly fractionated carbon could be deposited on Mars, with each suggesting that Martian carbon cycling is quite distinct from that of the present Earth. Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δ13CVPDB) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (−137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δ13C values less than −70‰ found for six different sampling locations, all potentially associated with a possible paleosurface. There are multiple plausible explanations for the anomalously depleted 13C observed in evolved methane, but no single explanation can be accepted without further research. Three possible explanations are the photolysis of biological methane released from the subsurface, photoreduction of atmospheric CO2, and deposition of cosmic dust during passage through a galactic molecular cloud. All three of these scenarios are unconventional, unlike processes common on Earth.
Collapse
|
15
|
A Remote Raman System and Its Applications for Planetary Material Studies. SENSORS 2021; 21:s21216973. [PMID: 34770280 PMCID: PMC8587591 DOI: 10.3390/s21216973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
A remote Raman prototype with a function of excitation energy adjusting for the purpose of obtaining a Raman signal with good signal-to-noise ratio (SNR), saving power consumption, and possibly avoiding destroying a target by high energy pulses, which may have applications for Chinese planetary explorations, has been setup and demonstrated for detecting different minerals. The system consists of a spectrograph equipped with a thermoelectrically cooled charge-coupled device (CCD) detector, a telescope with 150 mm diameter and 1500 mm focus length, and a compact 1064 nm Nd:YAG Q-switched laser with an electrical adjusted pulse energy from 0 to 200 mJ/pulse. A KTP crystal was used for second harmonic generation in a 1064 nm laser to generate a 532 nm laser, which is the source of Raman scatting. Different laser pulse energies and integration time were used to obtain distinguishable remote Raman spectra of various samples. Results show that observed remote Raman spectra at a distance of 4 m enable us to identify silicates, carbonates, sulfates, perchlorates, water/water ice, and organics that have been found or may exist on extraterrestrial planets. Detailed Raman spectral assignments of the measured planetary materials and the feasible applications of remote Raman system for planetary explorations are discussed.
Collapse
|
16
|
He Y, Buch A, Szopa C, Millan M, Freissinet C, Navarro-Gonzalez R, Guzman M, Johnson S, Glavin D, Williams A, Eigenbrode J, Teinturier S, Malespin C, Coscia D, Bonnet JY, Lu P, Cabane M, Mahaffy P. Influence of Calcium Perchlorate on the Search for Martian Organic Compounds with MTBSTFA/DMF Derivatization. ASTROBIOLOGY 2021; 21:1137-1156. [PMID: 34534003 DOI: 10.1089/ast.2020.2393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA), mixed with the solvent N,N-dimethylformamide (DMF), is used as a derivatizing reagent by the Sample Analysis at Mars (SAM) experiment onboard NASA's Curiosity rover and will soon be utilized by the Mars Organic Molecule Analyzer experiment onboard the ESA/Roscosmos Rosalind Franklin rover. The pyrolysis products of MTBSTFA, DMF, and the MTBSTFA/DMF mixtures, obtained at different temperatures, were analyzed. Two different pyrolysis modes were studied, flash pyrolysis and ramp pyrolysis (35°C/min), to evaluate the potential influence of the sample heating speed on the production of products in space chromatographs. The effect of the presence of calcium perchlorate on the pyrolysis products of MTBSTFA/DMF was also studied to ascertain the potential effect of perchlorate species known to be present at the martian surface. The results show that MTBSTFA/DMF derivatization should be applied below 300°C when using flash pyrolysis, as numerous products of MTBSTFA/DMF were formed at high pyrolysis temperatures. However, when an SAM-like ramp pyrolysis was applied, the final pyrolysis temperature did not appear to influence the degradation products of MTBSTFA/DMF. All products of MTBSTFA/DMF pyrolysis are listed in this article, providing a major database of products for the analysis of martian analog samples, meteorites, and the in situ analysis of martian rocks and soils. In addition, the presence of calcium perchlorate does not show any obvious effects on the pyrolysis of MTBSTFA/DMF: Only chloromethane and TBDMS-Cl (chloro-tertbutyldimethylsilane) were detected, whereas chlorobenzene and other chlorine-bearing compounds were not detected. However, other chlorine-bearing compounds were detected after pyrolysis of the Murchison meteorite in the presence of calcium perchlorate. This result reinforces previous suggestions that chloride-bearing compounds could be reaction products of martian samples and perchlorate.
Collapse
Affiliation(s)
- Yuanyuan He
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Arnaud Buch
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Maëva Millan
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Caroline Freissinet
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Rafael Navarro-Gonzalez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, Mexico
| | - Melissa Guzman
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Sarah Johnson
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Danny Glavin
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Amy Williams
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Jennifer Eigenbrode
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Samuel Teinturier
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Charles Malespin
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - David Coscia
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Jean-Yves Bonnet
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
- Telespazio France, Toulouse, France
| | - Pin Lu
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Université Paris-Saclay, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Michel Cabane
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Paul Mahaffy
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
17
|
A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover. MINERALS 2021. [DOI: 10.3390/min11080847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curiosity, the Mars Science Laboratory (MSL) rover, landed on Mars in August 2012 to investigate the ~3.5-billion-year-old (Ga) fluvio-lacustrine sedimentary deposits of Aeolis Mons (informally known as Mount Sharp) and the surrounding plains (Aeolis Palus) in Gale crater. After nearly nine years, Curiosity has traversed over 25 km, and the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on-board Curiosity has analyzed 30 drilled rock and three scooped soil samples to date. The principal strategic goal of the mission is to assess the habitability of Mars in its ancient past. Phyllosilicates are common in ancient Martian terrains dating to ~3.5–4 Ga and were detected from orbit in some of the lower strata of Mount Sharp. Phyllosilicates on Earth are important for harboring and preserving organics. On Mars, phyllosilicates are significant for exploration as they are hypothesized to be a marker for potential habitable environments. CheMin data demonstrate that ancient fluvio-lacustrine rocks in Gale crater contain up to ~35 wt. % phyllosilicates. Phyllosilicates are key indicators of past fluid–rock interactions, and variation in the structure and composition of phyllosilicates in Gale crater suggest changes in past aqueous environments that may have been habitable to microbial life with a variety of possible energy sources.
Collapse
|
18
|
Díaz-Rullo J, Rodríguez-Valdecantos G, Torres-Rojas F, Cid L, Vargas IT, González B, González-Pastor JE. Mining for Perchlorate Resistance Genes in Microorganisms From Sediments of a Hypersaline Pond in Atacama Desert, Chile. Front Microbiol 2021; 12:723874. [PMID: 34367123 PMCID: PMC8343002 DOI: 10.3389/fmicb.2021.723874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/15/2022] Open
Abstract
Perchlorate is an oxidative pollutant toxic to most of terrestrial life by promoting denaturation of macromolecules, oxidative stress, and DNA damage. However, several microorganisms, especially hyperhalophiles, are able to tolerate high levels of this compound. Furthermore, relatively high quantities of perchlorate salts were detected on the Martian surface, and due to its strong hygroscopicity and its ability to substantially decrease the freezing point of water, perchlorate is thought to increase the availability of liquid brine water in hyper-arid and cold environments, such as the Martian regolith. Therefore, perchlorate has been proposed as a compound worth studying to better understanding the habitability of the Martian surface. In the present work, to study the molecular mechanisms of perchlorate resistance, a functional metagenomic approach was used, and for that, a small-insert library was constructed with DNA isolated from microorganisms exposed to perchlorate in sediments of a hypersaline pond in the Atacama Desert, Chile (Salar de Maricunga), one of the regions with the highest levels of perchlorate on Earth. The metagenomic library was hosted in Escherichia coli DH10B strain and exposed to sodium perchlorate. This technique allowed the identification of nine perchlorate-resistant clones and their environmental DNA fragments were sequenced. A total of seventeen ORFs were predicted, individually cloned, and nine of them increased perchlorate resistance when expressed in E. coli DH10B cells. These genes encoded hypothetical conserved proteins of unknown functions and proteins similar to other not previously reported to be involved in perchlorate resistance that were related to different cellular processes such as RNA processing, tRNA modification, DNA protection and repair, metabolism, and protein degradation. Furthermore, these genes also conferred resistance to UV-radiation, 4-nitroquinoline-N-oxide (4-NQO) and/or hydrogen peroxide (H2O2), other stress conditions that induce oxidative stress, and damage in proteins and nucleic acids. Therefore, the novel genes identified will help us to better understand the molecular strategies of microorganisms to survive in the presence of perchlorate and may be used in Mars exploration for creating perchlorate-resistance strains interesting for developing Bioregenerative Life Support Systems (BLSS) based on in situ resource utilization (ISRU).
Collapse
Affiliation(s)
- Jorge Díaz-Rullo
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Polytechnic School, University of Alcalá, Alcalá de Henares, Spain
| | - Gustavo Rodríguez-Valdecantos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Felipe Torres-Rojas
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Cid
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Ignacio T. Vargas
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago, Chile
| | - Bernardo González
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | | |
Collapse
|
19
|
Scheller EL, Swindle C, Grotzinger J, Barnhart H, Bhattacharjee S, Ehlmann BL, Farley K, Fischer WW, Greenberger R, Ingalls M, Martin PE, Osorio-Rodriguez D, Smith BP. Formation of Magnesium Carbonates on Earth and Implications for Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006828. [PMID: 34422534 PMCID: PMC8378241 DOI: 10.1029/2021je006828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/29/2021] [Indexed: 05/20/2023]
Abstract
Magnesium carbonates have been identified within the landing site of the Perseverance rover mission. This study reviews terrestrial analog environments and textural, mineral assemblage, isotopic, and elemental analyses that have been applied to establish formation conditions of magnesium carbonates. Magnesium carbonates form in five distinct settings: ultramafic rock-hosted veins, the matrix of carbonated peridotite, nodules in soil, alkaline lake, and playa deposits, and as diagenetic replacements within lime-and dolostones. Dominant textures include fine-grained or microcrystalline veins, nodules, and crusts. Microbial influences on formation are recorded in thrombolites, stromatolites, crinkly, and pustular laminites, spheroids, and filamentous microstructures. Mineral assemblages, fluid inclusions, and carbon, oxygen, magnesium, and clumped isotopes of carbon and oxygen have been used to determine the sources of carbon, magnesium, and fluid for magnesium carbonates as well as their temperatures of formation. Isotopic signatures in ultramafic rock-hosted magnesium carbonates reveal that they form by either low-temperature meteoric water infiltration and alteration, hydrothermal alteration, or metamorphic processes. Isotopic compositions of lacustrine magnesium carbonate record precipitation from lake water, evaporation processes, and ambient formation temperatures. Assessment of these features with similar analytical techniques applied to returned Martian samples can establish whether carbonates on ancient Mars were formed at high or low temperature conditions in the surface or subsurface through abiotic or biotic processes. The timing of carbonate formation processes could be constrained by 147Sm-143Nd isochron, U-Pb concordia, 207Pb-206Pb isochron radiometric dating as well as 3He, 21Ne, 22Ne, or 36Ar surface exposure dating of returned Martian magnesium carbonate samples.
Collapse
Affiliation(s)
- Eva L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Carl Swindle
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - John Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Holly Barnhart
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Surjyendu Bhattacharjee
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Bethany L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Ken Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca Greenberger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Miquela Ingalls
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Department of Geosciences, Pennsylvania State University, State College, PA, USA
| | - Peter E Martin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Geological Sciences Department, University of Colorado Boulder, Boulder, CO, USA
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Ben P Smith
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
20
|
Valner R, Dydynski JM, Cho S, Kruusamäe K. Communication of Hazards in Mixed-Reality Telerobotic Systems: The Usage of Naturalistic Avoidance Cues in Driving Tasks. HUMAN FACTORS 2021; 63:619-634. [PMID: 32048884 DOI: 10.1177/0018720820902293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE This study investigates the effect of naturalistic visual cues on human avoidance behavior for a potential use in telerobotic user interfaces incorporating mixed-reality environments (e.g., augmented reality). BACKGROUND Telerobotic systems used in hazardous environments require interfaces that draw operators' attention to potential dangers. Existing means of hazard notification can often distract or induce stress in operators. In the design and implementation of such interfaces, visual semiotics plays a critical role in creating more effective interfaces. Naturalistic visual cues such as Aposematism or Kindchenschema have proven effective to communicate danger or caution in nature, but the application of these cues in visual systems have yet to be thoroughly investigated. METHOD A study was conducted where 40 volunteering participants were asked to control a remote vehicle in a simulated environment. The environment contained a set of neutral and visually augmented obstacles that were designed to provoke avoidance behavior. RESULTS The use of visual cues triggered greater avoidance behaviors in participants compared to neutral obstacles. The distance of avoidance was correlated with the type of cue present, with obstacles augmented by Aposematism (Cue A) having a greater participant-obstacle distance than Kindchenschema (Cue K). CONCLUSIONS This study shows the potential for the incorporation of naturalistic visual cues as a means to designate warning or caution in telerobotic environments. APPLICATIONS The findings can offer practical guidelines for the design of visual cues in telerobotic interfaces. The further incorporation of such cues may reduce operator stress and the amount of human errors in telerobotic operations.
Collapse
Affiliation(s)
| | | | - Sookyung Cho
- 166505 University of California Los Angeles, USA
| | | |
Collapse
|
21
|
Royle SH, Tan JSW, Watson JS, Sephton MA. Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars. ASTROBIOLOGY 2021; 21:673-691. [PMID: 33635150 DOI: 10.1089/ast.2020.2226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The search for, and characterization of, organic matter on Mars is central to efforts in identifying habitable environments and detecting evidence of life in the martian surface and near surface. Iron oxides are ubiquitous in the martian regolith and are known to be associated with the deposition and preservation of organic matter in certain terrestrial environments, thus iron oxide-rich sediments are potential targets for life-detection missions. The most frequently used protocol for martian organic matter characterization (also planned for use on ExoMars) has been thermal extraction for the transfer of organic matter to gas chromatography-mass spectrometry (GC-MS) detectors. For the effective use of thermal extraction for martian samples, it is necessary to explore how potential biomarker organic molecules evolve during this process in the presence of iron oxides. We have thermally decomposed iron oxides simultaneously with (z)-octadec-9-enoic and n-octadecanoic acids and analyzed the products through pyrolysis-GC-MS. We found that the thermally driven dehydration, reduction, and recrystallization of iron oxides transformed fatty acids. Overall detectability of products greatly reduced, molecular diversity decreased, unsaturated products decreased, and aromatization increased. The severity of this effect increased as reduction potential of the iron oxide and inferred free radical formation increased. Of the iron oxides tested hematite showed the least transformative effects, followed by magnetite, goethite, then ferrihydrite. It was possible to identify the saturation state of the parent carboxylic acid at high (0.5 wt %) concentrations by the distribution of n-alkylbenzenes in the pyrolysis products. When selecting life-detection targets on Mars, localities where hematite is the dominant iron oxide could be targeted preferentially, otherwise thermal analysis of carboxylic acids, or similar biomarker molecules, will lead to enhanced polymerization, aromatization, and breakdown, which will in turn reduce the fidelity of the original biomarker, similar to changes normally observed during thermal maturation.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S W Tan
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Megevand V, Viennet JC, Balan E, Gauthier M, Rosier P, Morand M, Garino Y, Guillaumet M, Pont S, Beyssac O, Bernard S. Impact of UV Radiation on the Raman Signal of Cystine: Implications for the Detection of S-rich Organics on Mars. ASTROBIOLOGY 2021; 21:566-574. [PMID: 33691484 DOI: 10.1089/ast.2020.2340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traces of life may have been preserved in ancient martian rocks in the form of molecular fossils. Yet the surface of Mars is continuously exposed to intense UV radiation detrimental to the preservation of organics. Because the payload of the next rovers going to Mars to seek traces of life will comprise Raman spectroscopy tools, laboratory simulations that document the effect of UV radiation on the Raman signal of organics appear critically needed. The experiments conducted here evidence that UV radiation is directly responsible for the increase of disorder and for the creation of electronic defects and radicals within the molecular structure of S-rich organics such as cystine, enhancing the contribution of light diffusion processes to the Raman signal. The present results suggest that long exposure to UV radiation would ultimately be responsible for the total degradation of the Raman signal of cystine. Yet because the degradation induced by UV is not instantaneous, it should be possible to detect freshly excavated S-rich organics with the Raman instruments on board the rovers. Alternatively, given the very short lifetime of organic fluorescence (nanoseconds) compared to most mineral luminescence (micro- to milliseconds), exploiting fluorescence signals might allow the detection of S-rich organics on Mars. In any case, as illustrated here, we should not expect to detect pristine S-rich organic compounds on Mars, but rather by-products of their degradation.
Collapse
Affiliation(s)
- V Megevand
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
- Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - J C Viennet
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - E Balan
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Gauthier
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - P Rosier
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Morand
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - Y Garino
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Guillaumet
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - S Pont
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - O Beyssac
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - S Bernard
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| |
Collapse
|
23
|
Abrahamsson V, Henderson BL, Herman J, Zhong F, Lin Y, Kanik I, Nixon CA. Extraction and Separation of Chiral Amino Acids for Life Detection on Ocean Worlds Without Using Organic Solvents or Derivatization. ASTROBIOLOGY 2021; 21:575-586. [PMID: 33533680 DOI: 10.1089/ast.2020.2298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ instrumentation that can detect amino acids at parts-per-billion concentration levels and distinguish an enantiomeric excess of either d- or l-amino acids is vital for future robotic life-detection missions to promising targets in our solar system. In this article, a novel chiral amino acid analysis method is described, which reduces the risk of organic contamination and spurious signals from by-products by avoiding organic solvents and organic additives. Online solid-phase extraction, chiral liquid chromatography, and mass spectrometry were used for automated analysis of amino acids from solid and aqueous environmental samples. Carbonated water (pH ∼3, ∼5 wt % CO2 achieved at 6 MPa) was used as the extraction solvent for solid samples at 150°C and as the mobile phase at ambient temperature for chiral chromatographic separation. Of 18 enantiomeric amino acids, 5 enantiomeric pairs were separated with a chromatographic resolution >1.5 and 12 pairs with a resolution >0.7. The median lower limit of detection of amino acids was 2.5 μg/L, with the lowest experimentally verified as low as 0.25 μg/L. Samples from a geyser site (Great Fountain Geyser) and a geothermal spring site (Lemon Spring) in Yellowstone National Park were analyzed to demonstrate the viability of the method for future in situ missions to Ocean Worlds.
Collapse
Affiliation(s)
- Victor Abrahamsson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bryana L Henderson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Julia Herman
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Fang Zhong
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Ying Lin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Isik Kanik
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Icy Worlds, NASA Astrobiology Institute, Pasadena, California, USA
| | - Conor A Nixon
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
24
|
A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. MINERALS 2021. [DOI: 10.3390/min11050475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover has detected evidence of oxychlorine compounds (i.e., perchlorates and chlorates) in Gale crater, which has implications for past habitability, diagenesis, aqueous processes, interpretation of in situ organic analyses, understanding the martian chlorine cycle, and hazards and resources for future human exploration. Pure oxychlorines and mixtures of oxychlorines with Mars-analog phases have been analyzed for their oxygen (O2) and hydrogen chloride (HCl) releases on SAM laboratory analog instruments in order to constrain which phases are present in Gale crater. These studies demonstrated that oxychlorines evolve O2 releases with peaks between ~200 and 600 °C, although the thermal decomposition temperatures and the amount of evolved O2 decrease when iron phases are present in the sample. Mg and Fe oxychlorines decompose into oxides and release HCl between ~200 and 542 °C. Ca, Na, and K oxychlorines thermally decompose into chlorides and do not evolve HCl by themselves. However, the chlorides (original or from oxychlorine decomposition) can react with water-evolving phases (e.g., phyllosilicates) in the sample and evolve HCl within the temperature range of SAM (<~870 °C). These laboratory analog studies support that the SAM detection of oxychlorine phases is consistent with the presence of Mg, Ca, Na, and K perchlorate and/or chlorate along with possible contributions from adsorbed oxychlorines in Gale crater samples.
Collapse
|
25
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry in Astrobiology. Anal Chem 2021; 93:5981-5997. [PMID: 33835785 DOI: 10.1021/acs.analchem.0c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Feature introduces and discusses the findings of key analytical techniques used to study planetary bodies in our solar system in the search for life beyond Earth, future missions planned for high-priority astrobiology targets in our solar system, and the challenges we face in performing these investigations.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Amanda Michelle Stockton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Scheller EL, Ehlmann BL, Hu R, Adams DJ, Yung YL. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science 2021; 372:56-62. [PMID: 33727251 DOI: 10.1126/science.abc7717] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/04/2021] [Indexed: 11/02/2022]
Abstract
Geological evidence shows that ancient Mars had large volumes of liquid water. Models of past hydrogen escape to space, calibrated with observations of the current escape rate, cannot explain the present-day deuterium-to-hydrogen isotope ratio (D/H). We simulated volcanic degassing, atmospheric escape, and crustal hydration on Mars, incorporating observational constraints from spacecraft, rovers, and meteorites. We found that ancient water volumes equivalent to a 100 to 1500 meter global layer are simultaneously compatible with the geological evidence, loss rate estimates, and D/H measurements. In our model, the volume of water participating in the hydrological cycle decreased by 40 to 95% over the Noachian period (~3.7 billion to 4.1 billion years ago), reaching present-day values by ~3.0 billion years ago. Between 30 and 99% of martian water was sequestered through crustal hydration, demonstrating that irreversible chemical weathering can increase the aridity of terrestrial planets.
Collapse
Affiliation(s)
- E L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D J Adams
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Y L Yung
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
27
|
Rojas Vivas JA, Navarro-González R, de la Rosa J, Molina P, Sedov S, McKay CP. Radiolytic Degradation of Soil Carbon from the Mojave Desert by 60Co Gamma Rays: Implications for the Survival of Martian Organic Compounds Due to Cosmic Radiation. ASTROBIOLOGY 2021; 21:381-393. [PMID: 33351679 DOI: 10.1089/ast.2020.2257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The martian surface has been continuously exposed to galactic cosmic radiation. Since organic compounds are degraded by ionizing radiation, knowledge of their decay constants is fundamental to predicting their stability on the martian surface. In this study, we report the radiolysis constant for the destruction of soil organic compounds at a starting concentration of ∼2011 μg C/gsoil from the Mojave Desert. The soils were exposed to gamma irradiation with absorbed doses of up to 19 MGy at room temperature, representing ∼250 million years of exposure to galactic cosmic rays. The destruction of total soil organic carbon and the formation of gases were investigated by a sequential on-line analytical array coupled to gas chromatography-mass spectrometry. Soil inorganic and organic carbon were degraded exponentially with a radiolysis constant 0.3 MGy-1(30%) producing mostly carbon dioxide (93.2%), carbon monoxide (6.2%), and methane (0.6%). Using the dose rate measured by the Radiation Assessment Detector on board the Curiosity rover, we make predictions on the survival of organic compounds in the cold martian subsurface. It is estimated that soil organic compounds with initial concentrations as those found today at the Mojave Desert would have been destroyed to levels <1 ppb at 0.1 m in depth in ∼2000 Myr. Pristine organic compounds are expected to be present at a depth of ∼1.5 m. These results are relevant for the search of organic compounds in past, present, and future missions to Mars. In particular, we predict that the upcoming ExoMars will encounter pristine organic compounds at this depth.
Collapse
Affiliation(s)
- José Alfredo Rojas Vivas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Circuito de la investigación S/N, Ciudad Universitaria, Ciudad de México, Mexico
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - José de la Rosa
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - Paola Molina
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - Sergey Sedov
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la investigación S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | | |
Collapse
|
28
|
He Y, Buch A, Szopa C, Williams AJ, Millan M, Malespin CA, Glavin DP, Freissinet C, Eigenbrode JL, Teinturier S, Coscia D, Bonnet JY, Stern JC, Stalport F, Guzman M, Chaouche-Mechidal N, Lu P, Navarro-Gonzalez R, Butin V, El Bekri J, Cottin H, Johnson S, Cabane M, Mahaffy PR. Influence of Calcium Perchlorate on the Search for Organics on Mars with Tetramethylammonium Hydroxide Thermochemolysis. ASTROBIOLOGY 2021; 21:279-297. [PMID: 33306917 DOI: 10.1089/ast.2020.2252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Mars Organic Molecule Analyzer (MOMA) and Sample Analysis at Mars (SAM) instruments onboard the Exomars 2022 and Mars Science Laboratory rovers, respectively, are capable of organic matter detection and differentiating potentially biogenic from abiotic organics in martian samples. To identify organics, both these instruments utilize pyrolysis-gas chromatography coupled to mass spectrometry, and the thermochemolysis agent tetramethylammonium hydroxide (TMAH) is also used to increase organic volatility. However, the reactivity and efficiency of TMAH thermochemolysis are affected by the presence of calcium perchlorate on the martian surface. In this study, we determined the products of TMAH pyrolysis in the presence and absence of calcium perchlorate at different heating rates (flash pyrolysis and SAM-like ramp pyrolysis with a 35°C·min-1 heating rate). The decomposition mechanism of TMAH pyrolysis in the presence of calcium perchlorate was studied by using stepped pyrolysis. Moreover, the effect of calcium perchlorate (at Mars-relevant concentrations) on the recovery rate of fatty acids with TMAH thermochemolysis was studied. Results demonstrate that flash pyrolysis yields more diversity and greater abundances of TMAH thermochemolysis products than does the SAM-like ramp pyrolysis method. There is no obvious effect of calcium perchlorate on TMAH degradation when the [ClO4-] is lower than 10 weight percent (wt %). Most importantly, the presence of calcium perchlorate does not significantly impact the recovery rate of fatty acids with TMAH thermochemolysis under laboratory conditions, which is promising for the detection of fatty acids via TMAH thermochemolysis with the SAM and MOMA instruments on Mars.
Collapse
Affiliation(s)
- Yuanyuan He
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Arnaud Buch
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Amy J Williams
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Maëva Millan
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, District of Columbia, USA
| | - Charles A Malespin
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Daniel P Glavin
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Caroline Freissinet
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Jennifer L Eigenbrode
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Samuel Teinturier
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - David Coscia
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Jean-Yves Bonnet
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
- Telespazio France, Toulouse, France
| | - Jennifer C Stern
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Fabien Stalport
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Melissa Guzman
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Naila Chaouche-Mechidal
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Pin Lu
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, Pomacle, France
| | - Rafael Navarro-Gonzalez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, Mexico
| | - Vincent Butin
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Jamila El Bekri
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Cottin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Sarah Johnson
- Georgetown University, Washington, District of Columbia, USA
| | - Michel Cabane
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Paul R Mahaffy
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
29
|
Capacity of Chlorate to Oxidize Ferrous Iron: Implications for Iron Oxide Formation on Mars. MINERALS 2020. [DOI: 10.3390/min10090729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chlorate is an important Cl-bearing species and a strong potential Fe(II) oxidant on Mars. Since the amount of oxychlorine species (perchlorate and chlorate) detected on Mars is limited (<~1 wt.%), the effectiveness of chlorate to produce iron oxides depends heavily on its oxidizing capacity. Decomposition of chlorate or intermediates produced during its reduction, before reaction with Fe(II) would decrease its effective capacity as an oxidant. We thus evaluated the capacity of chlorate to produce Fe(III) minerals in Mars-relevant fluids, via oxidation of dissolved Fe(II). Each chlorate ion can oxidize 6 Fe(II) ions under all conditions investigated. Mass balance demonstrated that 1 wt.% chlorate (as ClO3−) could produce approximately 6 to 12 wt.% Fe(III) or mixed valent mineral products, with the amount varying with the formula of the precipitating phase. The mineral products are primarily determined by the fluid type (chloride- or sulfate-rich), the solution pH, and the rate of Fe(II) oxidation. The pH at the time of initial mineral nucleation and the amount of residual dissolved Fe(II) in the system exert important additional controls on the final mineralogy. Subsequent diagenetic transformation of these phases would yield 5.7 wt.% hematite per wt.% of chlorate reacted, providing a quantitative constraint on the capacity of chlorate to generate iron oxides on Mars.
Collapse
|
30
|
Ligterink NFW, Grimaudo V, Moreno-García P, Lukmanov R, Tulej M, Leya I, Lindner R, Wurz P, Cockell CS, Ehrenfreund P, Riedo A. ORIGIN: a novel and compact Laser Desorption - Mass Spectrometry system for sensitive in situ detection of amino acids on extraterrestrial surfaces. Sci Rep 2020; 10:9641. [PMID: 32541786 PMCID: PMC7296031 DOI: 10.1038/s41598-020-66240-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
For the last four decades space exploration missions have searched for molecular life on planetary surfaces beyond Earth. Often pyrolysis gas chromatography mass spectrometry has been used as payload on such space exploration missions. These instruments have relatively low detection sensitivity and their measurements are often undermined by the presence of chloride salts and minerals. Currently, ocean worlds in the outer Solar System, such as the icy moons Europa and Enceladus, represent potentially habitable environments and are therefore prime targets for the search for biosignatures. For future space exploration missions, novel measurement concepts, capable of detecting low concentrations of biomolecules with significantly improved sensitivity and specificity are required. Here we report on a novel analytical technique for the detection of extremely low concentrations of amino acids using ORIGIN, a compact and lightweight laser desorption ionization - mass spectrometer designed and developed for in situ space exploration missions. The identified unique mass fragmentation patterns of amino acids coupled to a multi-position laser scan, allows for a robust identification and quantification of amino acids. With a detection limit of a few fmol mm-2, and the possibility for sub-fmol detection sensitivity, this measurement technique excels current space exploration systems by three orders of magnitude. Moreover, our detection method is not affected by chemical alterations through surface minerals and/or salts, such as NaCl that is expected to be present at the percent level on ocean worlds. Our results demonstrate that ORIGIN is a promising instrument for the detection of signatures of life and ready for upcoming space missions, such as the Europa Lander.
Collapse
Affiliation(s)
| | - Valentine Grimaudo
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Pavel Moreno-García
- Interfacial Electrochemistry Group, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Rustam Lukmanov
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Marek Tulej
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Ingo Leya
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Robert Lindner
- Life Support and Physical Sciences Instrumentation Section, European Space Agency, ESTEC, Bern, The Netherlands
| | - Peter Wurz
- Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Charles S Cockell
- School of Physics and Astronomy, UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Pascale Ehrenfreund
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
- Space Policy Institute, George Washington University, 20052, Washington, DC, USA
| | - Andreas Riedo
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
31
|
The search for organic compounds with TMAH thermochemolysis: From Earth analyses to space exploration experiments. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Abstract
To assess Mars’ potential for both harboring life and providing useable resources for future human exploration, it is of paramount importance to comprehend the water situation on the planet. Therefore, studies have been conducted to determine any evidence of past or present water existence on Mars. While the presence of abundant water on Mars very early in its history is widely accepted, on its modern form, only a fraction of this water can be found, as either ice or locked into the structure of Mars’ plentiful water-rich materials. Water on the planet is evaluated through various evidence such as rocks and minerals, Martian achondrites, low volume transient briny outflows (e.g., dune flows, reactivated gullies, slope streaks, etc.), diurnal shallow soil moisture (e.g., measurements by Curiosity and Phoenix Lander), geomorphic representation (possibly from lakes and river valleys), and groundwater, along with further evidence obtained by probe and rover discoveries. One of the most significant lines of evidence is for an ancient streambed in Gale Crater, implying ancient amounts of “vigorous” water on Mars. Long ago, hospitable conditions for microbial life existed on the surface of Mars, as it was likely periodically wet. However, its current dry surface makes it almost impossible as an appropriate environment for living organisms; therefore, scientists have recognized the planet’s subsurface environments as the best potential locations for exploring life on Mars. As a result, modern research has aimed towards discovering underground water, leading to the discovery of a large amount of underground ice in 2016 by NASA, and a subglacial lake in 2018 by Italian scientists. Nevertheless, the presence of life in Mars’ history is still an open question. In this unifying context, the current review summarizes results from a wide variety of studies and reports related to the history of water on Mars, as well as any related discussions on the possibility of living organism existence on the planet.
Collapse
|
33
|
Koike M, Nakada R, Kajitani I, Usui T, Tamenori Y, Sugahara H, Kobayashi A. In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nat Commun 2020; 11:1988. [PMID: 32332762 PMCID: PMC7181736 DOI: 10.1038/s41467-020-15931-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
Understanding the origin of organic material on Mars is a major issue in modern planetary science. Recent robotic exploration of Martian sedimentary rocks and laboratory analyses of Martian meteorites have both reported plausible indigenous organic components. However, little is known about their origin, evolution, and preservation. Here we report that 4-billion-year-old (Ga) carbonates in Martian meteorite, Allan Hills 84001, preserve indigenous nitrogen(N)-bearing organics by developing a new technique for high-spatial resolution in situ N-chemical speciation. The organic materials were synthesized locally and/or delivered meteoritically on Mars during Noachian age. The carbonates, alteration minerals from the Martian near-surface aqueous fluid, trapped and kept the organic materials intact over long geological times. This presence of N-bearing compounds requires abiotic or possibly biotic N-fixation and ammonia storage, suggesting that early Mars had a less oxidizing environment than today.
Collapse
Affiliation(s)
- Mizuho Koike
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan.
| | - Ryoichi Nakada
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Iori Kajitani
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Usui
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
| | - Yusuke Tamenori
- Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Haruna Sugahara
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
| | - Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
34
|
|
35
|
Szopa C, Freissinet C, Glavin DP, Millan M, Buch A, Franz HB, Summons RE, Sumner DY, Sutter B, Eigenbrode JL, Williams RH, Navarro-González R, Guzman M, Malespin C, Teinturier S, Mahaffy PR, Cabane M. First Detections of Dichlorobenzene Isomers and Trichloromethylpropane from Organic Matter Indigenous to Mars Mudstone in Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument Onboard the Curiosity Rover. ASTROBIOLOGY 2020; 20:292-306. [PMID: 31880468 DOI: 10.1089/ast.2018.1908] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chromatographic analysis of the Cumberland mudstone in Gale crater by the Sample Analysis at Mars (SAM) instrument revealed the detection of two to three isomers of dichlorobenzene. Their individual concentrations were estimated to be in the 0.5-17 ppbw range relative to the sample mass. We also report the first detection of trichloromethylpropane and the confirmation of the detection of chlorobenzene previously reported. Supporting laboratory experiments excluded the SAM internal background as the source of those compounds, thus confirming the organic carbon and chlorine of the newly detected chlorohydrocarbons are indigenous to the mudstone sample. Laboratory experiments also demonstrated that the chlorohydrocarbons were mainly produced from chemical reactions occurring in the SAM ovens between organic molecules and oxychlorines contained in the sample. The results we obtained show that meteoritic organics and tested chemical species (a polycyclic aromatic hydrocarbon, an amino acid, and a carboxylic acid) were plausible organic precursors of the chlorinated aromatic molecules detected with SAM, thus suggesting that they could be among the organic molecules present in the mudstone. Results from this study coupled with previously reported detections of chlorinated aromatics (<300 ppbw) indigenous to the same mudstone highlight that organics can be preserved from the harsh surface conditions even at shallow depth. The detection of new chlorohydrocarbons with SAM confirms that organic molecules should have been available in an environment favorable to life forms, strengthening the habitability aspect of Gale crater.
Collapse
Affiliation(s)
- Cyril Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
- Institut Universitaire de France, Paris, France
| | - Caroline Freissinet
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Maeva Millan
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Arnaud Buch
- Laboratoire de Génie des Procédés et Matériaux (LGPM), EA 4038, Centrale-Supelec, Rue Joliot Curie, Gif-sur-Yvette, France
| | - Heather B Franz
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, California
| | - Brad Sutter
- Jacobs Technology, Inc., Johnson Space Center, National Aeronautics and Space Administration, Houston, Texas
| | - Jennifer L Eigenbrode
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Ross H Williams
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
- Department of Astronomy and CRESST II, University of Maryland, College Park, Maryland
| | - Rafael Navarro-González
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Distrito Federal, México
| | - Melissa Guzman
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
| | - Charles Malespin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Samuel Teinturier
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
- Universities Space Research Association, Goddard Earth Sciences Technology and Research Studies and Investigations, Greenbelt, Maryland
| | - Paul R Mahaffy
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Michel Cabane
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
| |
Collapse
|
36
|
Abrahamsson V, Henderson BL, Zhong F, Lin Y, Kanik I. Online supercritical fluid extraction and chromatography of biomarkers analysis in aqueous samples for in situ planetary applications. Anal Bioanal Chem 2019; 411:8091-8101. [DOI: 10.1007/s00216-019-02189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|
37
|
Shotwell RF, Hays LE, Beaty DW, Goreva Y, Kieft TL, Mellon MT, Moridis G, Peterson LD, Spycher N. Can an Off-Nominal Landing by an MMRTG-Powered Spacecraft Induce a Special Region on Mars When No Ice Is Present? ASTROBIOLOGY 2019; 19:1315-1338. [PMID: 31657948 DOI: 10.1089/ast.2017.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work aims at addressing whether a catastrophic failure of an entry, descent, and landing event of a Multimission Radioisotope Thermoelectric Generator-based lander could embed the heat sources into the martian subsurface and create a local environment that (1) would temporarily satisfy the conditions for a martian Special Region and (2) could establish a transport mechanism through which introduced terrestrial organisms could be mobilized to naturally occurring Special Regions elsewhere on Mars. Two models were run, a primary model by researchers at the Lawrence Berkeley National Laboratory and a secondary model by researchers at the Jet Propulsion Laboratory, both of which were based on selected starting conditions for various surface composition cases that establish the worst-case scenario, including geological data collected by the Mars Science Laboratory at Gale Crater. The summary outputs of both modeling efforts showed similar results: that the introduction of the modeled heat source could temporarily create the conditions established for a Special Region, but that there would be no transport mechanism by which an introduced terrestrial microbe, even if it was active during the temporarily induced Special Region conditions, could be transported to a naturally occurring Special Region of Mars.
Collapse
Affiliation(s)
- Robert F Shotwell
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Lindsay E Hays
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - David W Beaty
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Yulia Goreva
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | - Thomas L Kieft
- Biology Department, New Mexico Tech, Socorro, New Mexico
| | - Michael T Mellon
- The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| | - George Moridis
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Lee D Peterson
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California
| | | |
Collapse
|
38
|
Snyder DT, Szalwinski LJ, St John Z, Cooks RG. Two-Dimensional Tandem Mass Spectrometry in a Single Scan on a Linear Quadrupole Ion Trap. Anal Chem 2019; 91:13752-13762. [PMID: 31592640 DOI: 10.1021/acs.analchem.9b03123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A two-dimensional tandem mass spectrometry (2D MS/MS) scan has been developed for the linear quadrupole ion trap. Precursor ions are mass-selectively excited using a nonlinear ac frequency sweep at constant rf voltage, while simultaneously, all product ions of the excited precursor ions are ejected from the ion trap using a broad-band waveform. The fragmentation time of the precursor ions correlates with the precursor m/z value (the first mass dimension) and also with the ejection time of the product ions, allowing the correlation between precursor and product ions. Additionally, the second mass dimension (product ions' m/z values) is recovered through fast Fourier transform of each mass spectral peak, revealing either intentionally introduced "frequency tags" or the product ion micropacket frequencies, both of which can be converted to product ion m/z through the classical Mathieu parameters, thereby revealing a product ion mass spectrum for every precursor ion without prior isolation. We demonstrate the utility of this method for analyzing a broad range of structurally related precursor ions, including chemical warfare agent simulants, fentanyls and other opioids, amphetamines, cathinones, antihistamines, and tetracyclic antidepressants.
Collapse
Affiliation(s)
- Dalton T Snyder
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Lucas J Szalwinski
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Zachary St John
- Department of Chemistry , The College of New Jersey , Ewing Township , New Jersey 08618 , United States
| | - R Graham Cooks
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
39
|
Shen J, Zerkle AL, Stueeken E, Claire MW. Nitrates as a Potential N Supply for Microbial Ecosystems in a Hyperarid Mars Analog System. Life (Basel) 2019; 9:life9040079. [PMID: 31635024 PMCID: PMC6958444 DOI: 10.3390/life9040079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022] Open
Abstract
Nitrate is common in Mars sediments owing to long-term atmospheric photolysis, oxidation, and potentially, impact shock heating. The Atacama Desert in Chile, which is the driest region on Earth and rich in nitrate deposits, is used as a Mars analog in this study to explore the potential effects of high nitrate levels on growth of extremophilic ecosystems. Seven study sites sampled across an aridity gradient in the Atacama Desert were categorized into 3 clusters—hyperarid, middle, and arid sites—as defined by essential soil physical and chemical properties. Intriguingly, the distribution of nitrate concentrations in the shallow subsurface suggests that the buildup of nitrate is not solely controlled by precipitation. Correlations of nitrate with SiO2/Al2O3 and grain sizes suggest that sedimentation rates may also be important in controlling nitrate distribution. At arid sites receiving more than 10 mm/yr precipitation, rainfall shows a stronger impact on biomass than nitrate does. However, high nitrate to organic carbon ratios are generally beneficial to N assimilation, as evidenced both by soil geochemistry and enriched culturing experiments. This study suggests that even in the absence of precipitation, nitrate levels on a more recent, hyperarid Mars could be sufficiently high to benefit potentially extant Martian microorganisms.
Collapse
Affiliation(s)
- Jianxun Shen
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews KY16 9AL, Scotland, UK.
| | - Aubrey L Zerkle
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews KY16 9AL, Scotland, UK.
| | - Eva Stueeken
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews KY16 9AL, Scotland, UK.
| | - Mark W Claire
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews KY16 9AL, Scotland, UK.
| |
Collapse
|
40
|
Waller SE, Belousov A, Kidd RD, Nikolić D, Madzunkov SM, Wiley JS, Darrach MR. Chemical Ionization Mass Spectrometry: Applications for the In Situ Measurement of Nonvolatile Organics at Ocean Worlds. ASTROBIOLOGY 2019; 19:1196-1210. [PMID: 31347911 DOI: 10.1089/ast.2018.1961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new technique that has applications for the detection of nonvolatile organics on Ocean Worlds has been developed. Here, liquid mixtures of fatty acids (FAs) and/or amino acids (AAs) are introduced directly into a miniature quadrupole ion trap mass spectrometer (QITMS) developed at Jet Propulsion Laboratory and analyzed. Two ionization methods, electron impact and chemical ionization (EI and CI, respectively), are compared and contrasted. Further, multiple CI reagents are tested to explore their potential to "soften" ionization of FAs and AAs. Both EI and CI yield mass spectra that bear signatures of FAs or AAs; however, soft CI yields significantly cleaner mass spectra that are easier to interpret. The combination of soft CI with tandem mass spectrometry (MS/MS) has also been demonstrated for AAs, generating "fingerprint" mass spectra of fragments from protonated parent ions. To mimic potential Ocean World conditions, water is used as the primary collision gas in MS/MS experiments. This technique has the potential for the in situ analysis of molecules in the cryogenic plumes of Ocean Worlds (e.g., Enceladus) and comets with the ultimate goal of detecting potential biosignatures.
Collapse
Affiliation(s)
- Sarah E Waller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Anton Belousov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Richard D Kidd
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Dragan Nikolić
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Stojan M Madzunkov
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Joshua S Wiley
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Murray R Darrach
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
41
|
Chan MA, Hinman NW, Potter-McIntyre SL, Schubert KE, Gillams RJ, Awramik SM, Boston PJ, Bower DM, Des Marais DJ, Farmer JD, Jia TZ, King PL, Hazen RM, Léveillé RJ, Papineau D, Rempfert KR, Sánchez-Román M, Spear JR, Southam G, Stern JC, Cleaves HJ. Deciphering Biosignatures in Planetary Contexts. ASTROBIOLOGY 2019; 19:1075-1102. [PMID: 31335163 PMCID: PMC6708275 DOI: 10.1089/ast.2018.1903] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/10/2019] [Indexed: 05/05/2023]
Abstract
Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology & Geophysics, University of Utah, Salt Lake City, Utah
| | - Nancy W. Hinman
- Department of Geosciences, University of Montana, Missoula, Montana
| | | | - Keith E. Schubert
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas
| | - Richard J. Gillams
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Electronics and Computer Science, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Stanley M. Awramik
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California
| | - Penelope J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California
| | - Dina M. Bower
- Department of Astronomy, University of Maryland College Park (CRESST), College Park, Maryland
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | | | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Penelope L. King
- Research School of Earth Sciences, The Australian National University, Canberra, Australia
| | - Robert M. Hazen
- Geophysical Laboratory, Carnegie Institution for Science, Washington, District of Columbia
| | - Richard J. Léveillé
- Department of Earth and Planetary Sciences, McGill University, Montreal, Canada
- Geosciences Department, John Abbott College, Sainte-Anne-de-Bellevue, Canada
| | - Dominic Papineau
- London Centre for Nanotechnology, University College London, London, United Kingdom
- Department of Earth Sciences, University College London, London, United Kingdom
- Centre for Planetary Sciences, University College London, London, United Kingdom
- BioGeology and Environmental Geology State Key Laboratory, School of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado
| | - Mónica Sánchez-Román
- Earth Sciences Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Henderson James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, New Jersey
| |
Collapse
|
42
|
Performance of the SAM gas chromatographic columns under simulated flight operating conditions for the analysis of chlorohydrocarbons on Mars. J Chromatogr A 2019; 1598:183-195. [DOI: 10.1016/j.chroma.2019.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/21/2022]
|
43
|
Chaves Torres L, Kaur G, Melbourne LA, Pancost RD. Selective chemical degradation of silica sinters of the Taupo Volcanic Zone (New Zealand). Implications for early Earth and Astrobiology. GEOBIOLOGY 2019; 17:449-464. [PMID: 31020785 DOI: 10.1111/gbi.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/26/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Most organic matter (OM) on Earth occurs as kerogen-like materials, that is naturally formed macromolecules insoluble with standard organic solvents. The formation of this insoluble organic matter (IOM) is a topic of much interest, especially when it limits the detection of compounds of geomicrobiological interest. For example, studies that search for biomarker evidence of life on early Earth or other planets usually use solvent-based extractions. This leaves behind a pool of OM as unexplored post-extraction residues, potentially containing diagnostic biomarkers. Since the IOM has an enhanced potential for preservation compared to soluble OM, analysing IOM-released biomarkers can also provide even deeper insights into the ecology of ancient settings, with implications for early Earth and Astrobiology investigations. Here, we analyse the prokaryotic lipid biosignature within soluble and IOM of the Taupo Volcanic Zone (TVZ) silica sinters, which are key analogues in the search for life. We apply sequential solvent extractions and a selective chemical degradation upon the post-solvent extraction residue. Moreover, we compare the IOM from TVZ sinters to analogous studies on peat and marine sediments to assess patterns in OM insolubilisation across the geosphere. Consistent with previous work, we find significant but variable proportions-1%-45% of the total prokaryotic lipids recovered-associated with IOM fractions. This occurs even in recently formed silica sinters, likely indicating inherent cell insolubility. Moreover, archaeal lipids seem more prone to insolubilisation as compared to the bacterial analogues, which might enhance their preservation and also bias overall biomarkers interpretation. These observations are similar to those observed in other settings, confirming that even in a setting where the OM derives predominantly from prokaryotic sources, patterns of IOM formation/occurrence are conserved. Differences with other settings, however, such as the occurrence of archaeol in IOM fractions, could be indicative of different mechanisms for IOM formation that merit further exploration.
Collapse
Affiliation(s)
- Lidia Chaves Torres
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Gurpreet Kaur
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Leanne A Melbourne
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Richard D Pancost
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
- School of Earth Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
44
|
Montgomery W, Jaramillo EA, Royle SH, Kounaves SP, Schulze-Makuch D, Sephton MA. Effects of Oxygen-Containing Salts on the Detection of Organic Biomarkers on Mars and in Terrestrial Analog Soils. ASTROBIOLOGY 2019; 19:711-721. [PMID: 31062993 DOI: 10.1089/ast.2018.1888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The detection of chlorinated hydrocarbons by Curiosity on Mars has been attributed to the presence of unidentified indigenous organic matter. Similarly, oxychlorines on Earth have been proposed to be responsible for the apparent lack of organics in the Atacama Desert. The presence of perchlorate (ClO4-) poses a unique challenge to the measurement of organic matter due to the oxidizing power of oxychlorines during commonly used pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) methods. Here, we show that perchlorates and other oxyanion salts inhibit the detection of organic compounds but that removing these problematic species prior to pyrolysis by using an optimal sample extraction duration and suitable ratios of water to sample mass enables analysis. We have characterized leached and unleached samples containing perchlorates from the Atacama Desert and have found that after leaching, the py-GC-MS chromatograms of the dried mineral residues show identifiable biomarkers associated with indigenous cyanobacteria. Samples which were pyrolyzed without leaching showed no detectable organic matter other than background siloxane and very weak or no trace of detectable polychlorinated benzenes. Dried sample residues remaining after leaching, the mineral matrix and water-insoluble organic matter, showed a strong organic response in all cases when analyzed by py-GC-MS. These residues are most likely the product of the pyrolysis of water-insoluble organics originally present in the samples. In addition, our results imply that previous soil analyses which contained high levels of oxyanions and concluded that organics were either not present or were present at extremely low levels should be reexamined.
Collapse
Affiliation(s)
- Wren Montgomery
- 1 Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | - Samuel H Royle
- 1 Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Samuel P Kounaves
- 1 Department of Earth Science and Engineering, Imperial College London, London, UK
- 2 Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Dirk Schulze-Makuch
- 3 Astrobiology Group, Center of Astronomy and Astrophysics, Technical University of Berlin, Berlin, Germany
| | - Mark A Sephton
- 1 Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
45
|
Ward LM, Stamenković V, Hand K, Fischer WW. Follow the Oxygen: Comparative Histories of Planetary Oxygenation and Opportunities for Aerobic Life. ASTROBIOLOGY 2019; 19:811-824. [PMID: 31188035 DOI: 10.1089/ast.2017.1779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aerobic respiration-the reduction of molecular oxygen (O2) coupled to the oxidation of reduced compounds such as organic carbon, ferrous iron, reduced sulfur compounds, or molecular hydrogen while conserving energy to drive cellular processes-is the most widespread and bioenergetically favorable metabolism on Earth today. Aerobic respiration is essential for the development of complex multicellular life; thus the presence of abundant O2 is an important metric for planetary habitability. O2 on Earth is supplied by oxygenic photosynthesis, but it is becoming more widely understood that abiotic processes may supply meaningful amounts of O2 on other worlds. The modern atmosphere and rock record of Mars suggest a history of relatively high O2 as a result of photochemical processes, potentially overlapping with the range of O2 concentrations used by biology. Europa may have accumulated high O2 concentrations in its subsurface ocean due to the radiolysis of water ice at its surface. Recent modeling efforts suggest that coexisting water and O2 may be common on exoplanets, with confirmation from measurements of exoplanet atmospheres potentially coming soon. In all these cases, O2 accumulates through abiotic processes-independent of water-oxidizing photosynthesis. We hypothesize that abiogenic O2 may enhance the habitability of some planetary environments, allowing highly energetic aerobic respiration and potentially even the development of complex multicellular life which depends on it, without the need to first evolve oxygenic photosynthesis. This hypothesis is testable with further exploration and life-detection efforts on O2-rich worlds such as Mars and Europa, and comparison to O2-poor worlds such as Enceladus. This hypothesis further suggests a new dimension to planetary habitability: "Follow the Oxygen," in which environments with opportunities for energy-rich metabolisms such as aerobic respiration are preferentially targeted for investigation and life detection.
Collapse
Affiliation(s)
- Lewis M Ward
- 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Vlada Stamenković
- 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Kevin Hand
- 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Woodward W Fischer
- 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
46
|
Arora A, Furlong PM, Fitch R, Sukkarieh S, Fong T. Multi-modal active perception for information gathering in science missions. Auton Robots 2019. [DOI: 10.1007/s10514-019-09836-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Blanco Y, de Diego-Castilla G, Viúdez-Moreiras D, Cavalcante-Silva E, Rodríguez-Manfredi JA, Davila AF, McKay CP, Parro V. Effects of Gamma and Electron Radiation on the Structural Integrity of Organic Molecules and Macromolecular Biomarkers Measured by Microarray Immunoassays and Their Astrobiological Implications. ASTROBIOLOGY 2018; 18:1497-1516. [PMID: 30070898 PMCID: PMC6276817 DOI: 10.1089/ast.2016.1645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/10/2018] [Indexed: 05/20/2023]
Abstract
High-energy ionizing radiation in the form of solar energetic particles and galactic cosmic rays is pervasive on the surface of planetary bodies with thin atmospheres or in space facilities for humans, and it may seriously affect the chemistry and the structure of organic and biological material. We used fluorescent microarray immunoassays to assess how different doses of electron and gamma radiations affect the stability of target compounds such as biological polymers and small molecules (haptens) conjugated to large proteins. The radiation effect was monitored by measuring the loss in the immunoidentification of the target due to an impaired ability of the antibodies for binding their corresponding irradiated and damaged epitopes (the part of the target molecule to which antibodies bind). Exposure to electron radiation alone was more damaging at low doses (1 kGy) than exposure to gamma radiation alone, but this effect was reversed at the highest radiation dose (500 kGy). Differences in the dose-effect immunoidentification patterns suggested that the amount (dose) and not the type of radiation was the main factor for the cumulative damage on the majority of the assayed molecules. Molecules irradiated with both types of radiation showed a response similar to that of the individual treatments at increasing radiation doses, although the pattern obtained with electrons only was the most similar. The calculated radiolysis constant did not show a unique pattern; it rather suggested a different behavior perhaps associated with the unique structure of each molecule. Although not strictly comparable with extraterrestrial conditions because the irradiations were performed under air and at room temperature, our results may contribute to understanding the effects of ionizing radiation on complex molecules and the search for biomarkers through bioaffinity-based systems in planetary exploration.
Collapse
Affiliation(s)
- Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Graciela de Diego-Castilla
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Daniel Viúdez-Moreiras
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | - Erika Cavalcante-Silva
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
| | | | - Alfonso F. Davila
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Christopher P. McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Victor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
- Address correspondence to: Victor Parro, Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, Madrid 28850, Spain
| |
Collapse
|
48
|
Wang A, Sobron P, Kong F, Zheng M, Zhao YYS. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: II. Preservation of Salts with High Hydration Degrees in Subsurface. ASTROBIOLOGY 2018; 18:1254-1276. [PMID: 30152704 DOI: 10.1089/ast.2018.1829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Based on a field expedition to the Dalangtan (DLT) saline playa located in a hyperarid region (Qaidam Basin) on the Tibet Plateau and follow-up investigations, we report the mineralogy and geochemistry of the salt layers in two vertical stratigraphic cross sections in the DLT playa. Na-, Ca-, Mg-, KCaMg-sulfates; Na-, K-, KMg-chlorides; mixed (K, Mg)-chloride-sulfate; and chlorate and perchlorate were identified in the collected samples. This mineral assemblage represents the last-stage precipitation products from Na-K-Mg-Ca-Cl-SO4 brine and the oxychlorine formation from photochemistry reaction similar to other hyperarid regions on Earth. The spatial distributions of these salts in both stratigraphic cross sections suggest very limited brine volumes during the precipitation episodes in the Holocene era. More importantly, sulfates and chlorides with a high degree of hydrations were found preserved within the subsurface salt-rich layers of DLT saline playa, where the environmental conditions at the surface are controlled by the hyperaridity in the Qaidam Basin on the Tibet Plateau. Our findings suggest a very different temperature and relative humidity environment maintained by the hydrous salts in a subsurface salty layer, where the climatic conditions at surface have very little or no influence. This observation bears some similarities with four observations on Mars, which implies not only a large humidity reservoir in midlatitude and equatorial regions on Mars but also habitability potential that warrants further investigation.
Collapse
Affiliation(s)
- Alian Wang
- 1 Department of Earth and Planetary Sciences, McDonnell Center for Space Sciences, Washington University in St. Louis , St. Louis, Missouri
| | - Pablo Sobron
- 2 SETI Institute , Mountain View, California
- 3 Impossible Sensing , St. Louis, Missouri
| | - Fanjing Kong
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Mianping Zheng
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Yu-Yan Sara Zhao
- 5 Institute of Geochemistry , Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
49
|
Ferreira Santos MS, Cordeiro TG, Noell AC, Garcia CD, Mora MF. Analysis of inorganic cations and amino acids in high salinity samples by capillary electrophoresis and conductivity detection: Implications for in‐situ exploration of ocean worlds. Electrophoresis 2018; 39:2890-2897. [DOI: 10.1002/elps.201800266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Thiago Gomes Cordeiro
- Department of ChemistryClemson University Clemson SC USA
- Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São Paulo Sao Paulo Brazil
| | - Aaron C. Noell
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| | | | - Maria F. Mora
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| |
Collapse
|
50
|
Huang T, Wang R, Xiao L, Wang H, Martínez JM, Escudero C, Amils R, Cheng Z, Xu Y. Dalangtan Playa (Qaidam Basin, NW China): Its microbial life and physicochemical characteristics and their astrobiological implications. PLoS One 2018; 13:e0200949. [PMID: 30067805 PMCID: PMC6070256 DOI: 10.1371/journal.pone.0200949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 01/29/2023] Open
Abstract
Dalangtan Playa is the second largest salt playa in the Qaidam Basin, north-western China. The hyper saline deposition, extremely arid climate and high UV radiation make Dalangtan a Mars analogue both for geomorphology and life preservation. To better understand microbial life at Dalangtan, both culture-dependent and culture-independent methods were examined and simultaneously, environment conditions and the evaporitic mineral assemblages were investigated. Ten and thirteen subsurface samples were collected along a 595-cm deep profile (P1) and a 685-cm deep profile (P2) respectively, and seven samples were gathered from surface sediments. These samples are composed of salt minerals, minor silicate mineral fragments and clays. The total bacterial cell numbers are (1.54±0.49) ×10(5) g-1 for P1 and (3.22±0.95) ×10(5) g-1 for P2 as indicated by the CAtalyzed Reporter Deposition- Fluorescent in situ Hybridization (CARD-FISH). 76.6% and 75.7% of the bacteria belong to Firmicutes phylum respectively from P1 and P2. In total, 47 bacteria and 6 fungi were isolated from 22 subsurface samples. In contrast, only 3 bacteria and 1 fungus were isolated from 3 surface samples. The isolated bacteria show high homology (≥97%) with members of the Firmicutes phylum (47 strains, 8 genera) and the Actinobacteria phylum (3 strains, 2 genera), which agrees with the result of CARD-FISH. Isolated fungi showed ≥98% ITS1 homology with members of the phylum Ascomycota. Moisture content and TOC values may control the sediments colonization. Given the deliquescence of salts, evaporites may provide refuge for microbial life, which merits further investigation. Halotolerant and spore-forming microorganisms are the dominant microbial groups capable of surviving under extreme conditions. Our results offer brand-new information on microbial biomass in Dalangtan Playa and shed light on understanding the potential microbial life in the dried playa or paleo-lakes on Mars.
Collapse
Affiliation(s)
- Ting Huang
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Long Xiao
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
- Space Science Institute, Macau University of Science and Technology, Macau, China
- * E-mail: (LX); (HW)
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
- * E-mail: (LX); (HW)
| | - José M. Martínez
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Cristina Escudero
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Ziye Cheng
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Yi Xu
- Space Science Institute, Macau University of Science and Technology, Macau, China
| |
Collapse
|