1
|
Onishi K, Shimogori T. Cell type census in cerebral cortex reveals species-specific brain function and connectivity. Neurosci Res 2025; 214:42-47. [PMID: 39643161 DOI: 10.1016/j.neures.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
The cerebral cortex contains a diverse array of functional regions that are conserved across species, such as primary somatosensory and primary visual cortex. However, despite this conservation, these regions exhibit different connectivity and functions in various species. It is hypothesized that these differences arise from distinct cell types within the conserved regions. To uncover these species-specific differences, investigating gene expression at the cellular level can reveal unique cell types. In this review, we highlight recent research on the molecular mechanisms that govern the formation of specific cell types in the rodent primary somatosensory cortex. Furthermore, we explore how these conserved molecular mechanisms are observed across different brain regions in various species. These findings offer new insights into the diversity and evolutionary background of neural circuit formation in the mammalian cortex.
Collapse
Affiliation(s)
- Kohei Onishi
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
2
|
Huang S, Ma L, Li B, Dou J, Xu Q, Wang Y. Genomic analysis reveals population structure and selection signatures in plateau dairy cattle. BMC Genomics 2025; 26:240. [PMID: 40075267 PMCID: PMC11905691 DOI: 10.1186/s12864-025-11335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To solve the problem of an insufficient supply of dairy products in Tibet, work has been carried out to improve native dairy cattle and introduce purebred dairy cattle from low-altitude areas. The harsh environment of the plateau not only severely limits the production performance of high-yielding dairy cattle, such as Holstein and Jersey cattle, but also challenges their survival. The population structure and plateau adaptation mechanism of plateau dairy cattle are rarely reported. In this study, key genes and pathways affecting plateau purebred and crossbred dairy cattle were explored using genetic chip information. RESULTS The results showed that the genetic diversity of the Tibet dairy cattle population was higher than that of the native cattle and plains dairy cattle. Purebred Holstein and Jersey cattle in Tibet were genetically closer to dairy cattle in the plains, and crossbred dairy cattle were admixed with more Tibet cattle and Apaijiza cattle. Based on the fixation index (FST), integrated haplotype score (iHS), and cross-population extend haplotype homozygosity (XP-EHH) approaches, 60 and 40 genes were identified in plateau Holstein and Jersey cattle, respectively. A total of 78 and 70 genes were identified in crossbred cattle compared to Holstein and Tibet cattle respectively. These genes are related to cardiac health and development, neuronal development and function, angiogenesis and hematopoietic, pigmentation, growth and development, and immune response. CONCLUSIONS Our results provide a glimpse into diverse selection signatures in plateau dairy cattle, which can be used to enhance our understanding of the genomic basis of plateau adaptation in dairy cattle. These results support further research on breeding strategies such as marker-assisted selection and gene editing in plateau dairy cattle populations.
Collapse
Affiliation(s)
- Shangzhen Huang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Longgang Ma
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary Medicine, Academy of Agriculture and Animal Husbandry of Tibet Autonomous Region, Lhasa, 850000, China
| | - Jinhuan Dou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Qing Xu
- Institute of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, MARA, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Okada N, Oshima K, Maruko A, Sekine M, Ito N, Wakasugi A, Mori E, Odaguchi H, Kobayashi Y. Intron retention as an excellent marker for diagnosing depression and for discovering new potential pathways for drug intervention. Front Psychiatry 2024; 15:1450708. [PMID: 39364384 PMCID: PMC11446786 DOI: 10.3389/fpsyt.2024.1450708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation. Methods We performed RNA-seq analysis of RNA transcripts of human peripheral blood mononuclear cells from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder and analyzed differentially expressed genes (DEGs) and the frequency of intron retention (IR) using rMATS. Results Among the statistically significant DEGs identified, the 651 upregulated DEGs were particularly enriched in the term "bacterial infection and phagocytosis", whereas the 820 downregulated DEGs were enriched in the terms "antigen presentation" and "T-cell proliferation and maturation". We also analyzed 158 genes for which the IR was increased (IncIR) and 211 genes for which the IR was decreased (DecIR) in the depressed subjects. Although the Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and downregulated genes, respectively, IR genes appeared to be particularly enriched in genes with sensor functions, with a preponderance of the term "ciliary assembly and function". The observation that IR genes specifically interact with innate immunity genes suggests that immune-related genes, as well as cilia-related genes, may be excellent markers of depression. Re-analysis of previously published RNA-seq data from patients with MDD showed that common IR genes, particularly our predicted immune- and cilia-related genes, are commonly detected in populations with different levels of depression, providing validity for using IR to detect depression. Conclusion Depression was found to be associated with activation of the innate immune response and relative inactivation of T-cell signaling. The DEGs we identified reflect physiological demands that are controlled at the transcriptional level, whereas the IR results reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an alteration in IR, namely IncIR or DecIR, is a stress response, and intron-retained transcripts are sensors of the physiological state of the cytoplasm. The results demonstrate the potential of relative IR as a biomarker for the immunological stratification of depressed patients and the utility of IR for the discovery of novel pathways involved in recovery from depression.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mariko Sekine
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naoki Ito
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akino Wakasugi
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Eiko Mori
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
4
|
Nwabudike I, Che A. Early-life maturation of the somatosensory cortex: sensory experience and beyond. Front Neural Circuits 2024; 18:1430783. [PMID: 39040685 PMCID: PMC11260818 DOI: 10.3389/fncir.2024.1430783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Early life experiences shape physical and behavioral outcomes throughout lifetime. Sensory circuits are especially susceptible to environmental and physiological changes during development. However, the impact of different types of early life experience are often evaluated in isolation. In this mini review, we discuss the specific effects of postnatal sensory experience, sleep, social isolation, and substance exposure on barrel cortex development. Considering these concurrent factors will improve understanding of the etiology of atypical sensory perception in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ijeoma Nwabudike
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
Buchan MJ, Gothard G, Mahfooz K, van Rheede JJ, Avery SV, Vourvoukelis A, Demby A, Ellender TJ, Newey SE, Akerman CJ. Higher-order thalamocortical circuits are specified by embryonic cortical progenitor types in the mouse brain. Cell Rep 2024; 43:114157. [PMID: 38678557 DOI: 10.1016/j.celrep.2024.114157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
The sensory cortex receives synaptic inputs from both first-order and higher-order thalamic nuclei. First-order inputs relay simple stimulus properties from the periphery, whereas higher-order inputs relay more complex response properties, provide contextual feedback, and modulate plasticity. Here, we reveal that a cortical neuron's higher-order input is determined by the type of progenitor from which it is derived during embryonic development. Within layer 4 (L4) of the mouse primary somatosensory cortex, neurons derived from intermediate progenitors receive stronger higher-order thalamic input and exhibit greater higher-order sensory responses. These effects result from differences in dendritic morphology and levels of the transcription factor Lhx2, which are specified by the L4 neuron's progenitor type. When this mechanism is disrupted, cortical circuits exhibit altered higher-order responses and sensory-evoked plasticity. Therefore, by following distinct trajectories, progenitor types generate diversity in thalamocortical circuitry and may provide a general mechanism for differentially routing information through the cortex.
Collapse
Affiliation(s)
| | - Gemma Gothard
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Kashif Mahfooz
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | | | - Sophie V Avery
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | | | - Alexander Demby
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Tommas J Ellender
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK; Experimental Neurobiology Unit, Universiteitsplein, 2610 Antwerp, Belgium
| | - Sarah E Newey
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Colin J Akerman
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK.
| |
Collapse
|
6
|
Nakagawa N, Iwasato T. Activity-dependent dendrite patterning in the postnatal barrel cortex. Front Neural Circuits 2024; 18:1409993. [PMID: 38827189 PMCID: PMC11140076 DOI: 10.3389/fncir.2024.1409993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
For neural circuit construction in the brain, coarse neuronal connections are assembled prenatally following genetic programs, being reorganized postnatally by activity-dependent mechanisms to implement area-specific computational functions. Activity-dependent dendrite patterning is a critical component of neural circuit reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. In the rodent primary somatosensory cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory neurons extensively remodel their basal dendrites at neonatal stages to ensure specific responses of barrels to the corresponding individual whiskers. This feature of barrel cortex L4 neurons makes them an excellent model, significantly contributing to unveiling the activity-dependent nature of dendrite patterning and circuit reorganization. In this review, we summarize recent advances in our understanding of the activity-dependent mechanisms underlying dendrite patterning. Our focus lays on the mechanisms revealed by in vivo time-lapse imaging, and the role of activity-dependent Golgi apparatus polarity regulation in dendrite patterning. We also discuss the type of neuronal activity that could contribute to dendrite patterning and hence connectivity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
7
|
Bilgic M, Wu Q, Suetsugu T, Shitamukai A, Tsunekawa Y, Shimogori T, Kadota M, Nishimura O, Kuraku S, Kiyonari H, Matsuzaki F. Truncated radial glia as a common precursor in the late corticogenesis of gyrencephalic mammals. eLife 2023; 12:RP91406. [PMID: 37988289 PMCID: PMC10662950 DOI: 10.7554/elife.91406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
The diversity of neural stem cells is a hallmark of the cerebral cortex development in gyrencephalic mammals, such as Primates and Carnivora. Among them, ferrets are a good model for mechanistic studies. However, information on their neural progenitor cells (NPC), termed radial glia (RG), is limited. Here, we surveyed the temporal series of single-cell transcriptomes of progenitors regarding ferret corticogenesis and found a conserved diversity and temporal trajectory between human and ferret NPC, despite the large timescale difference. We found truncated RG (tRG) in ferret cortical development, a progenitor subtype previously described in humans. The combination of in silico and in vivo analyses identified that tRG differentiate into both ependymal and astrogenic cells. Via transcriptomic comparison, we predict that this is also the case in humans. Our findings suggest that tRG plays a role in the formation of adult ventricles, thereby providing the architectural bases for brain expansion.
Collapse
Affiliation(s)
- Merve Bilgic
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School for Biostudies, Kyoto UniversityKyotoJapan
| | - Quan Wu
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Taeko Suetsugu
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, RIKEN Center for Brain ScienceWakoJapan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School for Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
8
|
Gargano SP, Santos MG, Taylor SM, Pastis I. A closer look to neural pathways and psychopharmacology of obsessive compulsive disorder. Front Behav Neurosci 2023; 17:1282246. [PMID: 38033477 PMCID: PMC10687174 DOI: 10.3389/fnbeh.2023.1282246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The intricate neural pathways involved in obsessive-compulsive disorder (OCD) affect areas of our brain that control executive functioning, organization, and planning. OCD is a chronic condition that can be debilitating, afflicting millions of people worldwide. The lifetime prevalence of OCD in the US is 2.3%. OCD is predominantly characterized by obsessions consisting of intrusive and unwanted thoughts, often with impulses that are strongly associated with anxiety. Compulsions with OCD encompass repetitive behaviors or mental acts to satisfy their afflicted obsessions or impulses. While these factors can be unique to each individual, it has been widely established that the etiology of OCD is complex as it relates to neuronal pathways, psychopharmacology, and brain chemistry involved and warrants further exploration.
Collapse
Affiliation(s)
- Steven P. Gargano
- East Carolina University Brody School of Medicine, Greenville, NC, United States
| | - Melody G. Santos
- Internal Medicine and Psychiatry Combined Program, Department of Psychiatry and Behavioral Medicine, East Carolina University, Greenville, NC, United States
| | - Sydney M. Taylor
- East Carolina University Brody School of Medicine, Greenville, NC, United States
| | - Irene Pastis
- Department of Psychiatry and Behavioral Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
9
|
Niiyama T, Fujimoto S, Imai T. Microglia Are Dispensable for Developmental Dendrite Pruning of Mitral Cells in Mice. eNeuro 2023; 10:ENEURO.0323-23.2023. [PMID: 37890992 PMCID: PMC10644373 DOI: 10.1523/eneuro.0323-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
During early development, neurons in the brain often form excess synaptic connections. Later, they strengthen some connections while eliminating others to build functional neuronal circuits. In the olfactory bulb, a mitral cell initially extends multiple dendrites to multiple glomeruli but eventually forms a single primary dendrite through the activity-dependent dendrite pruning process. Recent studies have reported that microglia facilitate synapse pruning during the circuit remodeling in some systems. It has remained unclear whether microglia are involved in the activity-dependent dendrite pruning in the developing brains. Here, we examined whether microglia are required for the developmental dendrite pruning of mitral cells in mice. To deplete microglia in the fetal brain, we treated mice with a colony-stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622, from pregnancy. Microglia were reduced by >90% in mice treated with PLX5622. However, dendrite pruning of mitral cells was not significantly affected. Moreover, we found no significant differences in the number, density, and size of excitatory synapses formed in mitral cell dendrites. We also found no evidence for the role of microglia in the activity-dependent dendrite remodeling of layer 4 (L4) neurons in the barrel cortex. In contrast, the density of excitatory synapses (dendritic spines) in granule cells in the olfactory bulb was significantly increased in mice treated with PLX5622 at postnatal day (P) 6, suggesting a role for the regulation of dendritic spines. Our results indicate that microglia do not play a critical role in activity-dependent dendrite pruning at the neurite level during early postnatal development in mice.
Collapse
Affiliation(s)
- Tetsushi Niiyama
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Satoshi Fujimoto
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | - Takeshi Imai
- Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| |
Collapse
|
10
|
Young TR, Yamamoto M, Kikuchi SS, Yoshida AC, Abe T, Inoue K, Johansen JP, Benucci A, Yoshimura Y, Shimogori T. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat Commun 2023; 14:6077. [PMID: 37770450 PMCID: PMC10539368 DOI: 10.1038/s41467-023-41749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.
Collapse
Affiliation(s)
- Timothy R Young
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Aya C Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Andrea Benucci
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
11
|
Yang C, Shitamukai A, Yang S, Kawaguchi A. Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders. Int J Mol Sci 2023; 24:14128. [PMID: 37762431 PMCID: PMC10531473 DOI: 10.3390/ijms241814128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
Collapse
Affiliation(s)
- Chen Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsunori Shitamukai
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shucai Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Ayano Kawaguchi
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
12
|
Nakagawa N, Iwasato T. Golgi polarity shift instructs dendritic refinement in the neonatal cortex by mediating NMDA receptor signaling. Cell Rep 2023; 42:112843. [PMID: 37516101 DOI: 10.1016/j.celrep.2023.112843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
Dendritic refinement is a critical component of activity-dependent neuronal circuit maturation, through which individual neurons establish specific connectivity with their target axons. Here, we demonstrate that the developmental shift of Golgi polarity is a key process in dendritic refinement. During neonatal development, the Golgi apparatus in layer 4 spiny stellate (SS) neurons in the mouse barrel cortex lose their original apical positioning and acquire laterally polarized distributions. This lateral Golgi polarity, which is oriented toward the barrel center, peaks on postnatal days 5-7 (P5-P7) and disappears by P15, which aligns with the developmental time course of SS neuron dendritic refinement. Genetic ablation of N-methyl-D-aspartate (NMDA) receptors, key players in dendritic refinement, disturbs the lateral Golgi polarity. Golgi polarity manipulation disrupts the asymmetric dendritic projection pattern and the primary-whisker-specific response of SS neurons. Our results elucidate activity-dependent Golgi dynamics and their critical role in developmental neuronal circuit refinement.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
13
|
Sekine K, Onoguchi M, Hamada M. Transposons contribute to the acquisition of cell type-specific cis-elements in the brain. Commun Biol 2023; 6:631. [PMID: 37301950 PMCID: PMC10257727 DOI: 10.1038/s42003-023-04989-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mammalian brains have evolved in stages over a long history to acquire higher functions. Recently, several transposable element (TE) families have been shown to evolve into cis-regulatory elements of brain-specific genes. However, it is not fully understood how TEs are important for gene regulatory networks. Here, we performed a single-cell level analysis using public data of scATAC-seq to discover TE-derived cis-elements that are important for specific cell types. Our results suggest that DNA elements derived from TEs, MER130 and MamRep434, can function as transcription factor-binding sites based on their internal motifs for Neurod2 and Lhx2, respectively, especially in glutamatergic neuronal progenitors. Furthermore, MER130- and MamRep434-derived cis-elements were amplified in the ancestors of Amniota and Eutheria, respectively. These results suggest that the acquisition of cis-elements with TEs occurred in different stages during evolution and may contribute to the acquisition of different functions or morphologies in the brain.
Collapse
Affiliation(s)
- Kotaro Sekine
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Masahiro Onoguchi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.
- Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
14
|
Nanda S, Bhattacharjee S, Cox DN, Ascoli GA. Local Microtubule and F-Actin Distributions Fully Constrain the Spatial Geometry of Drosophila Sensory Dendritic Arbors. Int J Mol Sci 2023; 24:6741. [PMID: 37047715 PMCID: PMC10095360 DOI: 10.3390/ijms24076741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Dendritic morphology underlies the source and processing of neuronal signal inputs. Morphology can be broadly described by two types of geometric characteristics. The first is dendrogram topology, defined by the length and frequency of the arbor branches; the second is spatial embedding, mainly determined by branch angles and straightness. We have previously demonstrated that microtubules and actin filaments are associated with arbor elongation and branching, fully constraining dendrogram topology. Here, we relate the local distribution of these two primary cytoskeletal components with dendritic spatial embedding. We first reconstruct and analyze 167 sensory neurons from the Drosophila larva encompassing multiple cell classes and genotypes. We observe that branches with a higher microtubule concentration tend to deviate less from the direction of their parent branch across all neuron types. Higher microtubule branches are also overall straighter. F-actin displays a similar effect on angular deviation and branch straightness, but not as consistently across all neuron types as microtubule. These observations raise the question as to whether the associations between cytoskeletal distributions and arbor geometry are sufficient constraints to reproduce type-specific dendritic architecture. Therefore, we create a computational model of dendritic morphology purely constrained by the cytoskeletal composition measured from real neurons. The model quantitatively captures both spatial embedding and dendrogram topology across all tested neuron groups. These results suggest a common developmental mechanism regulating diverse morphologies, where the local cytoskeletal distribution can fully specify the overall emergent geometry of dendritic arbors.
Collapse
Affiliation(s)
- Sumit Nanda
- Center for Neural Informatics, Structures, and Plasticity and Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA;
| | - Shatabdi Bhattacharjee
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; (S.B.); (D.N.C.)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; (S.B.); (D.N.C.)
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, and Plasticity and Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA;
- Bioengineering Department, College of Engineering and Computing, George Mason University, Fairfax, VA 22032, USA
| |
Collapse
|
15
|
Brazane M, Dimitrova DG, Pigeon J, Paolantoni C, Ye T, Marchand V, Da Silva B, Schaefer E, Angelova MT, Stark Z, Delatycki M, Dudding-Byth T, Gecz J, Plaçais PY, Teysset L, Préat T, Piton A, Hassan BA, Roignant JY, Motorin Y, Carré C. The ribose methylation enzyme FTSJ1 has a conserved role in neuron morphology and learning performance. Life Sci Alliance 2023; 6:e202201877. [PMID: 36720500 PMCID: PMC9889914 DOI: 10.26508/lsa.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.
Collapse
Affiliation(s)
- Mira Brazane
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Julien Pigeon
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tao Ye
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, EpiRNASeq Core Facility, UMS2008/US40 IBSLor,Nancy, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Margarita T Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Thomas Préat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Amélie Piton
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Bassem A Hassan
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
16
|
Tsytsarev V, Kwon SE, Plachez C, Zhao S, O'Connor DH, Erzurumlu RS. Layers 3 and 4 Neurons of the Bilateral Whisker-Barrel Cortex. Neuroscience 2022; 494:140-151. [PMID: 35598701 PMCID: PMC9884091 DOI: 10.1016/j.neuroscience.2022.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023]
Abstract
In Robo3R3-5cKO mouse brain, rhombomere 3-derived trigeminal principal nucleus (PrV) neurons project bilaterally to the somatosensory thalamus. As a consequence, whisker-specific neural modules (barreloids and barrels) representing whiskers on both sides of the face develop in the sensory thalamus and the primary somatosensory cortex. We examined the morphological complexity of layer 4 barrel cells, their postsynaptic partners in layer 3, and functional specificity of layer 3 pyramidal cells. Layer 4 spiny stellate cells form much smaller barrels and their dendritic fields are more focalized and less complex compared to controls, while layer 3 pyramidal cells did not show notable differences. Using in vivo 2-photon imaging of a genetically encoded fluorescent [Ca2+] sensor, we visualized neural activity in the normal and Robo3R3-5cKO barrel cortex in response to ipsi- and contralateral single whisker stimulation. Layer 3 neurons in control animals responded only to their contralateral whiskers, while in the mutant cortex layer 3 pyramidal neurons showed both ipsi- and contralateral whisker responses. These results indicate that bilateral whisker map inputs stimulate different but neighboring groups of layer 3 neurons which normally relay contralateral whisker-specific information to other cortical areas.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 20 Penn St, HSF-2, 21201 MD, Baltimore, United States.
| | - Sung E Kwon
- Department of Neuroscience, John Hopkins School of Medicine, 855 N. Wolfe Street, Rangos 295, Baltimore, MD 21205, United States.
| | - Celine Plachez
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 20 Penn St, HSF-2, 21201 MD, Baltimore, United States.
| | - Shuxin Zhao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 20 Penn St, HSF-2, 21201 MD, Baltimore, United States.
| | - Daniel H O'Connor
- Department of Neuroscience and Krieger Mind/Brain Institute Johns Hopkins University, 3400 N Charles St, 338 Krieger Hall, Baltimore, MD 21218, United States.
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 20 Penn St, HSF-2, 21201 MD, Baltimore, United States.
| |
Collapse
|
17
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
18
|
Genescu I, Aníbal-Martínez M, Kouskoff V, Chenouard N, Mailhes-Hamon C, Cartonnet H, Lokmane L, Rijli FM, López-Bendito G, Gambino F, Garel S. Dynamic interplay between thalamic activity and Cajal-Retzius cells regulates the wiring of cortical layer 1. Cell Rep 2022; 39:110667. [PMID: 35417707 PMCID: PMC9035679 DOI: 10.1016/j.celrep.2022.110667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development. Prenatal thalamic waves of activity regulate CRc density in L1 Prenatal and postnatal CRc manipulations alter specific interneuron populations Postnatal CRc shape L5 apical dendrite structural and functional properties Early sensory activity selectively regulates L5 basal dendrite spine formation
Collapse
Affiliation(s)
- Ioana Genescu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Mar Aníbal-Martínez
- Instituto de Neurosciencias de Alicante, Universidad Miguel Hernandez, Sant Joan d'Alacant, Spain
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Caroline Mailhes-Hamon
- Acute Transgenesis Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | | | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Collège de France, 75005 Paris, France.
| |
Collapse
|
19
|
何 建, 唐 健, 苏 虹, 沈 翠, 罗 胜, 王 海, 钱 源, 吕 梦. [Whole-transcriptome sequencing analysis of placental differential miRNA expression profile in Down syndrome]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:418-424. [PMID: 35426807 PMCID: PMC9010987 DOI: 10.12122/j.issn.1673-4254.2022.03.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To identify new biomarkers and molecular pathogenesis of Down syndrome (DS) by analyzing differentially expressed miRNAs in the placentas and their biological pathways. METHODS Whole transcriptome sequencing was used to identify the differentially expressed miRNAs in DS (n=3) and normal placental samples (n=3) diagnosed by prenatal diagnosis. The target genes were predicted using miRWalk, Targetscan and miRDB, and GO and KEGG pathway analyses were performed for gene enrichment studies. RESULTS We identified a total of 82 differentially expressed miRNAs in the placental tissues of DS, including 29 up-regulated miRNAs (fold change ≥2, P < 0.05) and 15 down-regulated miRNAs (fold change ≥2, P < 0.05), among which 10 miRNAs with relatively high expression abundance were selected for further analysis, including 4 up-regulated and 6 down-regulated miRNAs. These selected miRNAs shared the common target genes BTBD3 and AUTS2, both of which were associated with neurodevelopment. GO analysis showed that the target genes of the selected miRNAs were mainly enriched in protein binding, hydrolytic enzymes, metal ion binding protein combining, transferase activity, nucleotide, cytoplasmic constituents, nucleus composition, transcriptional regulation, RNA metabolism regulation, DNA-dependent RNA polymerase Ⅱ promoter transcriptional regulation, eye development, and sensory organ development. KEGG enrichment analysis showed that the target genes of these differentially expressed miRNAs were involved in the signaling pathways including tumor-related signaling pathway, PI3K-Akt signaling pathway, Ras signaling pathway, Rap1 signaling pathway, cytoskeletal regulatory signaling pathway, purine metabolization-related signaling pathway and P53 signaling pathway. CONCLUSION The differentially expressed miRNAs may play important roles in placental damage and pregnancy pathology in DS and provide clues for the prevention and treatment of mental retardation-related diseases.
Collapse
Affiliation(s)
- 建萍 何
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 健 唐
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 虹 苏
- 昆明市妇幼保健院遗传咨询门诊,云南 昆明 650031Genetic Counseling Clinic, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 翠花 沈
- 昆明市妇幼保健院产科,云南 昆明 650031Department of Obstetrics, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 胜军 罗
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 海涛 王
- 昆明市妇幼保健院病理科,云南 昆明 650031Department of Pathology, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 源 钱
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| | - 梦欣 吕
- 昆明市妇幼保健院医学遗传与产前诊断科,云南 昆明 650031Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Care Hospital, Kunming 650031, China
| |
Collapse
|
20
|
Sato H, Hatakeyama J, Iwasato T, Araki K, Yamamoto N, Shimamura K. Thalamocortical axons control the cytoarchitecture of neocortical layers by area-specific supply of VGF. eLife 2022; 11:67549. [PMID: 35289744 PMCID: PMC8959604 DOI: 10.7554/elife.67549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/12/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal abundance and thickness of each cortical layer are specific to each area, but how this fundamental feature arises during development remains poorly understood. While some of area-specific features are controlled by intrinsic cues such as morphogens and transcription factors, the exact influence and mechanisms of action by cues extrinsic to the cortex, in particular the thalamic axons, have not been fully established. Here, we identify a thalamus-derived factor, VGF, which is indispensable for thalamocortical axons to maintain the proper amount of layer 4 neurons in the mouse sensory cortices. This process is prerequisite for further maturation of the primary somatosensory area, such as barrel field formation instructed by a neuronal activity-dependent mechanism. Our results provide an actual case in which highly site-specific axon projection confers further regional complexity upon the target field through locally secreting signaling molecules from axon terminals.
Collapse
Affiliation(s)
- Haruka Sato
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
| | - Kimi Araki
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| | - Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
21
|
Molecular mechanisms regulating the spatial configuration of neurites. Semin Cell Dev Biol 2022; 129:103-114. [PMID: 35248463 DOI: 10.1016/j.semcdb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Precise neural networks, composed of axons and dendrites, are the structural basis for information processing in the brain. Therefore, the correct formation of neurites is critical for accurate neural function. In particular, the three-dimensional structures of dendrites vary greatly among neuron types, and the unique shape of each dendrite is tightly linked to specific synaptic connections with innervating axons and is correlated with its information processing. Although many systems are involved in neurite formation, the developmental mechanisms that control the orientation, size, and arborization pattern of neurites definitively defines their three-dimensional structure in tissues. In this review, we summarize these regulatory mechanisms that establish proper spatial configurations of neurites, especially dendrites, in invertebrates and vertebrates.
Collapse
|
22
|
Concas MP, Minelli A, Aere S, Morgan A, Tesolin P, Gasparini P, Gennarelli M, Girotto G. Genetic Dissection of Temperament Personality Traits in Italian Isolates. Genes (Basel) 2021; 13:genes13010004. [PMID: 35052345 PMCID: PMC8774962 DOI: 10.3390/genes13010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Human personality (i.e., temperament and character) is a complex trait related to mental health, influenced by genetic and environmental factors. Despite the efforts performed during the past decades, its genetic background is only just beginning to be identified. With the aim of dissecting the genetic basis of temperament, we performed a Genome-Wide Association Study (GWAS) on Cloninger’s Temperament and Character Inventory in 587 individuals belonging to different Italian genetic isolates. Data analysis led to the identification of four new genes associated with different temperament scales, such as Novelty Seeking (NS), Harm Avoidance (HA), and Reward Dependence (RD). In detail, we identified suggestive and significant associations between: MAGI2 (highest p-value = 9.14 × 10−8), a gene already associated with schizophrenia and depressive disorder, and the NS–Extravagance scale; CALCB (highest p-value = 4.34 × 10−6), a gene likely involved in the behavioral evolution from wild wolf to domestic dog, and the NS–Disorderliness scale; BTBD3 (highest p-value = 2.152 × 10−8), a gene already linked to obsessive–compulsive disorder, and the HA–Fatigability scale; PRKN (highest p-value = 8.27 × 10−9), a gene described for early onset Parkinson’s disease, and the RD scale. Our work provides new relevant insights into the genetics of temperament, helping to elucidate the molecular basis of psychiatric disorders.
Collapse
Affiliation(s)
- Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34127 Trieste, Italy; (A.M.); (P.G.); (G.G.)
- Correspondence:
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.M.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Susanna Aere
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34139 Trieste, Italy; (S.A.); (P.T.)
| | - Anna Morgan
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34127 Trieste, Italy; (A.M.); (P.G.); (G.G.)
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34139 Trieste, Italy; (S.A.); (P.T.)
| | - Paolo Gasparini
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34127 Trieste, Italy; (A.M.); (P.G.); (G.G.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34139 Trieste, Italy; (S.A.); (P.T.)
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.M.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34127 Trieste, Italy; (A.M.); (P.G.); (G.G.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34139 Trieste, Italy; (S.A.); (P.T.)
| |
Collapse
|
23
|
Saleh AJ, Nothwang HG. Differential expression of microRNAs in the developing avian auditory hindbrain. J Comp Neurol 2021; 529:3477-3496. [PMID: 34180540 DOI: 10.1002/cne.25205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022]
Abstract
The avian auditory hindbrain is a longstanding model for studying neural circuit development. Information on gene regulatory network (GRN) components underlying this process, however, is scarce. Recently, the spatiotemporal expression of 12 microRNAs (miRNAs) was investigated in the mammalian auditory hindbrain. As a comparative study, we here investigated the spatiotemporal expression of the orthologous miRNAs during development of the chicken auditory hindbrain. All miRNAs were expressed both at E13, an immature stage, and P14, a mature stage of the auditory system. In most auditory nuclei, a homogeneous expression pattern was observed at both stages, like the mammalian system. An exception was the nucleus magnocellularis (NM). There, at E13, nine miRNAs showed a differential expression pattern along the cochleotopic axis with high expression at the rostromedial pole. One of them showed a gradient expression whereas eight showed a spatially selective expression at the rostral pole that reflected the different rhombomeric origins of this composite nucleus. The miRNA differential expression persisted in the NM to the mature stage, with the selective expression changed to linear gradients. Bioinformatics analysis predicted mRNA targets that are associated with neuronal developmental processes such as neurite and synapse organization, calcium and ephrin-Eph signaling, and neurotransmission. Overall, this first analysis of miRNAs in the chicken central auditory system reveals shared and strikingly distinct features between chicken and murine orthologues. The embryonic gradient expression of these GRN elements in the NM adds miRNA patterns to the list of cochleotopic and developmental gradients in the central auditory system.
Collapse
Affiliation(s)
- Ali Jason Saleh
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
24
|
Retinoid X Receptor α Regulates DHA-Dependent Spinogenesis and Functional Synapse Formation In Vivo. Cell Rep 2021; 31:107649. [PMID: 32433958 DOI: 10.1016/j.celrep.2020.107649] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/01/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022] Open
Abstract
Coordinated intracellular and extracellular signaling is critical to synapse development and functional neural circuit wiring. Here, we report that unesterified docosahexaenoic acid (DHA) regulates functional synapse formation in vivo via retinoid X receptor α (Rxra) signaling. Using Rxra conditional knockout (cKO) mice and virus-mediated transient gene expression, we show that endogenous Rxra plays important roles in regulating spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. We further show that the effects of RXRA are mediated through its DNA-binding domain in a cell-autonomous and reversible manner. Moreover, unesterified DHA increases spine formation and excitatory synaptic transmission in vivo in an Rxra-dependent fashion. Rxra cKO mice generally behave normally but show deficits in behavior tasks associated with social memory. Together, these results demonstrate that unesterified DHA signals through RXRA to regulate spinogenesis and functional synapse formation, providing insight into the mechanism through which DHA promotes brain development and cognitive function.
Collapse
|
25
|
El-Quessny M, Maanum K, Feller MB. Visual Experience Influences Dendritic Orientation but Is Not Required for Asymmetric Wiring of the Retinal Direction Selective Circuit. Cell Rep 2021; 31:107844. [PMID: 32610144 DOI: 10.1016/j.celrep.2020.107844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
Changes in dendritic morphology in response to activity have long been thought to be a critical component of how neural circuits develop to properly encode sensory information. Ventral-preferring direction-selective ganglion cells (vDSGCs) have asymmetric dendrites oriented along their preferred direction, and this has been hypothesized to play a critical role in their tuning. Here we report the surprising result that visual experience is critical for the alignment of vDSGC dendrites to their preferred direction. Interestingly, vDSGCs in dark-reared mice lose their inhibition-independent dendritic contribution to direction-selective tuning while maintaining asymmetric inhibitory input. These data indicate that different mechanisms of a cell's computational abilities can be constructed over development through divergent mechanisms.
Collapse
Affiliation(s)
- Malak El-Quessny
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kayla Maanum
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
27
|
NMDA Receptor Enhances Correlation of Spontaneous Activity in Neonatal Barrel Cortex. J Neurosci 2021; 41:1207-1217. [PMID: 33372060 DOI: 10.1523/jneurosci.0527-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Correlated spontaneous activity plays critical role in the organization of neocortical circuits during development. However, cortical mechanisms regulating activity correlation are still elusive. In this study, using two-photon calcium imaging of the barrel cortex layer 4 (L4) in living neonatal mice, we found that NMDA receptors (NMDARs) in L4 neurons are important for enhancement of spontaneous activity correlation. Disruption of GluN1 (Grin1), an obligatory NMDAR subunit, in a sparse population of L4 neurons reduced activity correlation between GluN1 knock-out (GluN1KO) neuron pairs within a barrel. This reduction in activity correlation was even detected in L4 neuron pairs in neighboring barrels and most evident when either or both of neurons are located on the barrel edge. Our results provide evidence for the involvement of L4 neuron NMDARs in spatial organization of the spontaneous firing activity of L4 neurons in the neonatal barrel cortex.SIGNIFICANCE STATEMENT Precise wiring of the thalamocortical circuits is necessary for proper sensory information processing, and thalamus-derived correlated spontaneous activity is important for thalamocortical circuit formation. The molecular mechanisms involved in the correlated activity transfer from the thalamus to the neocortex are largely unknown. In vivo two-photon calcium imaging of the neonatal barrel cortex revealed that correlated spontaneous activity between layer four neurons is reduced by mosaic knock-out (KO) of the NMDA receptor (NMDAR) obligatory subunit GluN1. Our results suggest that the function of NMDARs in layer four neurons is necessary for the communication between presynaptic and postsynaptic partners during thalamocortical circuit formation.
Collapse
|
28
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2021; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
29
|
Sensational developments in somatosensory development? Curr Opin Neurobiol 2021; 66:212-223. [PMID: 33454646 DOI: 10.1016/j.conb.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022]
Abstract
This is an overview of the most recent advances pertaining to the development of the cardinal components of the somatosensory system: the peripheral sensory neurons that perceive somatosensory stimuli, the first line central nervous system circuits that modulate them, and the higher structures such as the somatosensory cortex that eventually compute a motor response to them. Here, I also review the most recent findings concerning the role of neuronal activity in somatosensory development, formation of somatotopic maps, insights into human somatosensory development and the link between aberrant somatosensation and neurodevelopmental disorders.
Collapse
|
30
|
Furusawa K, Emoto K. Scrap and Build for Functional Neural Circuits: Spatiotemporal Regulation of Dendrite Degeneration and Regeneration in Neural Development and Disease. Front Cell Neurosci 2021; 14:613320. [PMID: 33505249 PMCID: PMC7829185 DOI: 10.3389/fncel.2020.613320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023] Open
Abstract
Dendrites are cellular structures essential for the integration of neuronal information. These elegant but complex structures are highly patterned across the nervous system but vary tremendously in their size and fine architecture, each designed to best serve specific computations within their networks. Recent in vivo imaging studies reveal that the development of mature dendrite arbors in many cases involves extensive remodeling achieved through a precisely orchestrated interplay of growth, degeneration, and regeneration of dendritic branches. Both degeneration and regeneration of dendritic branches involve precise spatiotemporal regulation for the proper wiring of functional networks. In particular, dendrite degeneration must be targeted in a compartmentalized manner to avoid neuronal death. Dysregulation of these developmental processes, in particular dendrite degeneration, is associated with certain types of pathology, injury, and aging. In this article, we review recent progress in our understanding of dendrite degeneration and regeneration, focusing on molecular and cellular mechanisms underlying spatiotemporal control of dendrite remodeling in neural development. We further discuss how developmental dendrite degeneration and regeneration are molecularly and functionally related to dendrite remodeling in pathology, disease, and aging.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Rao MS, Mizuno H. Elucidating mechanisms of neuronal circuit formation in layer 4 of the somatosensory cortex via intravital imaging. Neurosci Res 2020; 167:47-53. [PMID: 33309867 DOI: 10.1016/j.neures.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
The cerebral cortex has complex yet perfectly wired neuronal circuits that are important for high-level brain functions such as perception and cognition. The rodent's somatosensory system is widely used for understanding the mechanisms of circuit formation during early developmental periods. In this review, we summarize the developmental processes of circuit formation in layer 4 of the somatosensory cortex, and we describe the molecules involved in layer 4 circuit formation and neuronal activity-dependent mechanisms of circuit formation. We also introduce the dynamic mechanisms of circuit formation in layer 4 revealed by intravital two-photon imaging technologies, which include time-lapse imaging of neuronal morphology and calcium imaging of neuronal activity in newborn mice.
Collapse
Affiliation(s)
- Madhura S Rao
- Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hidenobu Mizuno
- Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
32
|
Seo YA, Choi EK, Aring L, Paschall M, Iwase S. Transcriptome Analysis of the Cerebellum of Mice Fed a Manganese-Deficient Diet. Front Genet 2020; 11:558725. [PMID: 33408735 PMCID: PMC7780674 DOI: 10.3389/fgene.2020.558725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn), primarily acquired through diet, is required for brain function and development. Epidemiological studies have found an association between both low and high levels of Mn and impaired neurodevelopment in children. Recent genetic studies have revealed that patients with congenital Mn deficiency display severe psychomotor disability and cerebral and cerebellar atrophy. Although the impact of Mn on gene expression is beginning to be appreciated, Mn-dependent gene expression remains to be explored in vertebrate animals. The goal of this study was to use a mouse model to define the impact of a low-Mn diet on brain metal levels and gene expression. We interrogated gene expression changes in the Mn-deficient mouse brain at the genome-wide scale by RNA-seq analysis of the cerebellum of mice fed low or normal Mn diets. A total of 137 genes were differentially expressed in Mn-deficient cerebellums compared with Mn-adequate cerebellums (Padj < 0.05). Mn-deficient mice displayed downregulation of key pathways involved with "focal adhesion," "neuroactive ligand-receptor interaction," and "cytokine-cytokine receptor interaction" and upregulation of "herpes simplex virus 1 infection," "spliceosome," and "FoxO signaling pathway." Reactome pathway analysis identified upregulation of the splicing-related pathways and transcription-related pathways, as well as downregulation of "metabolism of carbohydrate," and "extracellular matrix organization," and "fatty acid metabolism" reactomes. The recurrent identifications of splicing-related pathways suggest that Mn deficiency leads to upregulation of splicing machineries and downregulation of diverse biological pathways.
Collapse
Affiliation(s)
- Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Molly Paschall
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Sugiyama S, Sugi J, Iijima T, Hou X. Single-Cell Visualization Deep in Brain Structures by Gene Transfer. Front Neural Circuits 2020; 14:586043. [PMID: 33328900 PMCID: PMC7710941 DOI: 10.3389/fncir.2020.586043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
A projection neuron targets multiple regions beyond the functional brain area. In order to map neuronal connectivity in a massive neural network, a means for visualizing the entire morphology of a single neuron is needed. Progress has facilitated single-neuron analysis in the cerebral cortex, but individual neurons in deep brain structures remain difficult to visualize. To this end, we developed an in vivo single-cell electroporation method for juvenile and adult brains that can be performed under a standard stereomicroscope. This technique involves rapid gene transfection and allows the visualization of dendritic and axonal morphologies of individual neurons located deep in brain structures. The transfection efficiency was enhanced by directly injecting the expression vector encoding green fluorescent protein instead of monitoring cell attachment to the electrode tip. We obtained similar transfection efficiencies in both young adult (≥P40) and juvenile mice (P21-30). By tracing the axons of thalamocortical neurons, we identified a specific subtype of neuron distinguished by its projection pattern. Additionally, transfected mOrange-tagged vesicle-associated membrane protein 2-a presynaptic protein-was strongly localized in terminal boutons of thalamocortical neurons. Thus, our in vivo single-cell gene transfer system offers rapid single-neuron analysis deep in brain. Our approach combines observation of neuronal morphology with functional analysis of genes of interest, which can be useful for monitoring changes in neuronal activity corresponding to specific behaviors in living animals.
Collapse
Affiliation(s)
- Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | |
Collapse
|
34
|
Iwasato T. In vivo imaging of neural circuit formation in the neonatal mouse barrel cortex. Dev Growth Differ 2020; 62:476-486. [DOI: 10.1111/dgd.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Takuji Iwasato
- Laboratory of Mammalian Neural Circuits National Institute of Genetics Mishima Japan
- Department of Genetics SOKENDAI Mishima Japan
| |
Collapse
|
35
|
Clark EA, Rutlin M, Capano LS, Aviles S, Saadon JR, Taneja P, Zhang Q, Bullis JB, Lauer T, Myers E, Schulmann A, Forrest D, Nelson SB. Cortical RORβ is required for layer 4 transcriptional identity and barrel integrity. eLife 2020; 9:e52370. [PMID: 32851975 PMCID: PMC7492084 DOI: 10.7554/elife.52370] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 08/26/2020] [Indexed: 02/01/2023] Open
Abstract
Retinoic acid-related orphan receptor beta (RORβ) is a transcription factor (TF) and marker of layer 4 (L4) neurons, which are distinctive both in transcriptional identity and the ability to form aggregates such as barrels in rodent somatosensory cortex. However, the relationship between transcriptional identity and L4 cytoarchitecture is largely unknown. We find RORβ is required in the cortex for L4 aggregation into barrels and thalamocortical afferent (TCA) segregation. Interestingly, barrel organization also degrades with age in wildtype mice. Loss of RORβ delays excitatory input and disrupts gene expression and chromatin accessibility, with down-regulation of L4 and up-regulation of L5 genes, suggesting a disruption in cellular specification. Expression and binding site accessibility change for many other TFs, including closure of neurodevelopmental TF binding sites and increased expression and binding capacity of activity-regulated TFs. Lastly, a putative target of RORβ, Thsd7a, is down-regulated without RORβ, and Thsd7a knock-out alone disrupts TCA organization in adult barrels.
Collapse
MESH Headings
- Animals
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Female
- Male
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Neurons/chemistry
- Neurons/cytology
- Neurons/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 2/chemistry
- Nuclear Receptor Subfamily 1, Group F, Member 2/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 2/metabolism
- Somatosensory Cortex/chemistry
- Somatosensory Cortex/cytology
- Somatosensory Cortex/metabolism
- Somatosensory Cortex/physiology
- Thalamus/chemistry
- Thalamus/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptome/genetics
Collapse
Affiliation(s)
- Erin A Clark
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Michael Rutlin
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Lucia S Capano
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Samuel Aviles
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Jordan R Saadon
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Praveen Taneja
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Qiyu Zhang
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - James B Bullis
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Timothy Lauer
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Emma Myers
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | | | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, NIDDKBethesdaUnited States
| | - Sacha B Nelson
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| |
Collapse
|
36
|
Erzurumlu RS, Gaspar P. How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. J Neurosci 2020; 40:6460-6473. [PMID: 32817388 PMCID: PMC7486654 DOI: 10.1523/jneurosci.0582-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Paris Brain Institute, Sorbonne Universités, Paris, France 75013
| |
Collapse
|
37
|
Wang M, Yu Z, Li G, Yu X. Multiple Morphological Factors Underlie Experience-Dependent Cross-Modal Plasticity in the Developing Sensory Cortices. Cereb Cortex 2020; 30:2418-2433. [PMID: 31828301 DOI: 10.1093/cercor/bhz248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/21/2019] [Accepted: 09/18/2019] [Indexed: 11/14/2022] Open
Abstract
Sensory experience regulates the structural and functional wiring of sensory cortices. In previous work, we showed that whisker deprivation (WD) from birth not only reduced excitatory synaptic transmission of layer (L) 2/3 pyramidal neurons of the correspondent barrel cortex in mice, but also cross-modally reduced synaptic transmission of L2/3 pyramidal neurons in other sensory cortices. Here, we used in utero electroporation, in combination with optical clearing, to examine the main morphological components regulating neural circuit wiring, namely presynaptic bouton density, spine density, as well as dendrite and axon arbor lengths. We found that WD from P0 to P14 reduced presynaptic bouton density in both L4 and L2/3 inputs to L2/3 pyramidal neurons, as well as spine density across the dendritic tree of L2/3 pyramidal neurons, in the barrel field of the primary somatosensory cortex. The cross-modal effects in the primary auditory cortex were manifested mostly as reduced dendrite and axon arbor size, as well as reduced bouton density of L2/3 inputs. Increasing sensory experience by rearing mice in an enriched environment rescued the effects of WD. Together, these results demonstrate that multiple morphological factors contribute to experience-dependent structural plasticity during early wiring of the sensory cortices.
Collapse
Affiliation(s)
- Miao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangying Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Thompson SL, Welch AC, Ho EV, Bessa JM, Portugal-Nunes C, Morais M, Young JW, Knowles JA, Dulawa SC. Btbd3 expression regulates compulsive-like and exploratory behaviors in mice. Transl Psychiatry 2019; 9:222. [PMID: 31501410 PMCID: PMC6733800 DOI: 10.1038/s41398-019-0558-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022] Open
Abstract
BTB/POZ domain-containing 3 (BTBD3) was identified as a potential risk gene in the first genome-wide association study of obsessive-compulsive disorder (OCD). BTBD3 is a putative transcription factor implicated in dendritic pruning in developing primary sensory cortices. We assessed whether BTBD3 also regulates neural circuit formation within limbic cortico-striato-thalamo-cortical circuits and behaviors related to OCD in mice. Behavioral phenotypes associated with OCD that are measurable in animals include compulsive-like behaviors and reduced exploration. We tested Btbd3 wild-type, heterozygous, and knockout mice for compulsive-like behaviors including cage-mate barbering, excessive wheel-running, repetitive locomotor patterns, and reduced goal-directed behavior in the probabilistic learning task (PLT), and for exploratory behavior in the open field, digging, and marble-burying tests. Btbd3 heterozygous and knockout mice showed excessive barbering, wheel-running, impaired goal-directed behavior in the PLT, and reduced exploration. Further, chronic treatment with fluoxetine, but not desipramine, reduced barbering in Btbd3 wild-type and heterozygous, but not knockout mice. In contrast, Btbd3 expression did not alter anxiety-like, depression-like, or sensorimotor behaviors. We also quantified dendritic morphology within anterior cingulate cortex, mediodorsal thalamus, and hippocampus, regions of high Btbd3 expression. Surprisingly, Btbd3 knockout mice only showed modest increases in spine density in the anterior cingulate, while dendritic morphology was unaltered elsewhere. Finally, we virally knocked down Btbd3 expression in whole, or just dorsal, hippocampus during neonatal development and assessed behavior during adulthood. Whole, but not dorsal, hippocampal Btbd3 knockdown recapitulated Btbd3 knockout phenotypes. Our findings reveal that hippocampal Btbd3 expression selectively modulates compulsive-like and exploratory behavior.
Collapse
Affiliation(s)
- Summer L Thompson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Amanda C Welch
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emily V Ho
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Mónica Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - James A Knowles
- Department of Cell Biology, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, 11203, USA
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
39
|
Yoong LF, Pai YJ, Moore AW. Stages and transitions in dendrite arbor differentiation. Neurosci Res 2019; 138:70-78. [DOI: 10.1016/j.neures.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022]
|
40
|
Simi A, Studer M. Developmental genetic programs and activity-dependent mechanisms instruct neocortical area mapping. Curr Opin Neurobiol 2018; 53:96-102. [DOI: 10.1016/j.conb.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
|
41
|
Radial glia fibers translate Fgf8 morphogenetic signals to generate a thalamic nuclear complex protomap in the mantle layer. Brain Struct Funct 2018; 224:661-679. [PMID: 30470893 PMCID: PMC6420463 DOI: 10.1007/s00429-018-1794-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 11/09/2018] [Indexed: 01/25/2023]
Abstract
Thalamic neurons are distributed between different nuclear groups of the thalamic multinuclear complex; they develop topologically ordered specific projections that convey information on voluntary motor programs and sensory modalities to functional areas in the cerebral cortex. Since thalamic neurons present a homogeneous morphology, their functional specificity is derived from their afferent and efferent connectivity. Adequate development of thalamic afferent and efferent connections depends on guide signals that bind receptors in nuclear neuropils and axonal growth cones, respectively. These are finally regulated by regionalization processes in the thalamic neurons, codifying topological information. In this work, we studied the role of Fgf8 morphogenetic signaling in establishing the molecular thalamic protomap, which was revealed by Igsf21, Pde10a and Btbd3 gene expression in the thalamic mantle layer. Fgf8 signaling activity was evidenced by pERK expression in radial glia cells and fibers, which may represent a scaffold that translates neuroepithelial positional information to the mantle layer. In this work, we describe the fact that Fgf8-hypomorphic mice did not express pERK in radial glia cells and fibers and presented disorganized thalamic regionalization, increasing neuronal death in the ventro-lateral thalamus and strong disruption of thalamocortical projections. In conclusion, Fgf8 encodes the positional information required for thalamic nuclear regionalization and the development of thalamocortical projections.
Collapse
|
42
|
Kitazawa T, Rijli FM. Barrelette map formation in the prenatal mouse brainstem. Curr Opin Neurobiol 2018; 53:210-219. [PMID: 30342228 DOI: 10.1016/j.conb.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
The rodent whiskers are topographically mapped in brainstem sensory nuclei as neuronal modules known as barrelettes. Little is known about how the facial whisker pattern is copied into a brainstem barrelette topographic pattern, which serves as a template for the establishment of thalamic barreloid and, in turn, cortical barrel maps, and how precisely is the whisker pattern mapped in the brainstem during prenatal development. Here, we review recent insights advancing our understanding of the intrinsic and extrinsic patterning mechanisms contributing to establish topographical equivalence between the facial whisker pattern and the mouse brainstem during prenatal development and their relative importance.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
43
|
Chang M, Suzuki N, Kawai HD. Laminar specific gene expression reveals differences in postnatal laminar maturation in mouse auditory, visual, and somatosensory cortex. J Comp Neurol 2018; 526:2257-2284. [DOI: 10.1002/cne.24481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Minzi Chang
- Department of Bioinformatics; Graduate School of Engineering; Hachioji Tokyo 192-8577 Japan
| | - Nobuko Suzuki
- Department of Bioinformatics; Graduate School of Engineering; Hachioji Tokyo 192-8577 Japan
| | - Hideki Derek Kawai
- Department of Bioinformatics; Graduate School of Engineering; Hachioji Tokyo 192-8577 Japan
- Department of Science and Engineering for Sustainable Innovation; Faculty of Science and Engineering; Hachioji Tokyo 192-8577 Japan
| |
Collapse
|
44
|
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates. Nat Commun 2018; 9:3106. [PMID: 30082783 PMCID: PMC6078955 DOI: 10.1038/s41467-018-05563-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Proper neuronal circuit function relies on precise dendritic projection, which is established through activity-dependent refinement during early postnatal development. Here we revealed dynamics of dendritic refinement in the mammalian brain by conducting long-term imaging of the neonatal mouse barrel cortex. By “retrospective” analyses, we identified “prospective” barrel-edge spiny stellate (SS) neurons in early neonates, which had an apical dendrite and primitive basal dendrites (BDs). These neurons retracted the apical dendrite gradually and established strong BD orientation bias through continuous “dendritic tree” turnover. A greater chance of survival was given to BD trees emerged in the barrel-center side, where thalamocortical axons (TCAs) cluster. When the spatial bias of TCA inputs to SS neurons was lost, BD tree turnover was suppressed, and most BD trees became stable and elaborated mildly. Thus, barrel-edge SS neurons could establish the characteristic BD projection pattern through differential dynamics of dendritic trees induced by spatially biased inputs. Layer 4 stellate neurons in barrel cortex have a characteristic dendritic pattern. Here, the authors conduct long-term imaging from postnatal day 3–6 to show that an orientation bias is established through dendritic tree turnover and selective elaboration, which may be induced by biased thalamocortical inputs.
Collapse
|
45
|
Iwasato T, Erzurumlu RS. Development of tactile sensory circuits in the CNS. Curr Opin Neurobiol 2018; 53:66-75. [PMID: 29908482 DOI: 10.1016/j.conb.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Molecular identification of neuronal types and genetic and imaging approaches to characterize their properties reveal morphological, physiological and dynamic aspects of sensory circuit development. Here we focus on the mouse tactile sensory circuitry, with particular emphasis on the main trigeminal pathway that connects the whiskers, the major tactile organ in rodents, to the neocortex. At each level of this pathway, neurogenesis, axonal elongation, pathfinding, target recognition and circuit reorganization including dendritic refinement of cortical layer 4 neurons occur contemporaneously and a multitude of molecular signals are used in differing combinations. We highlight recent advances in development of tactile circuitry and note gaps in our understanding.
Collapse
Affiliation(s)
- Takuji Iwasato
- National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI, Mishima, Japan
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
46
|
Abstract
Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.
Collapse
Affiliation(s)
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University , Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
47
|
Gaspar P, Renier N. Constraints on somatosensory map development: mutants lead the way. Curr Opin Neurobiol 2018; 53:43-49. [PMID: 29753205 DOI: 10.1016/j.conb.2018.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
In the rodent somatosensory system, the disproportionally large whisker representation and their specialization into barrel-shaped units in the different sensory relays has offered experimentalists with an ideal tool to identify mechanisms involved in brain map formation. These combine three intertwined constraints: Firstly, fasciculation of the incoming axons; secondly, early neural activity; finally, molecular patterning. Sophisticated genetic manipulations in mice have now allowed dissecting these mechanisms with greater accuracy. Here we discuss some recent papers that provided novel insights into how these different mapping rules and constraints interact to shape the barrel map.
Collapse
Affiliation(s)
- Patricia Gaspar
- Inserm, U839, Institut du Fer à Moulin, Paris, France; Sorbonne Universités, Paris, France.
| | - Nicolas Renier
- Sorbonne Universités, Paris, France; Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France
| |
Collapse
|
48
|
Chen YC, Sudre G, Sharp W, Donovan F, Chandrasekharappa SC, Hansen N, Elnitski L, Shaw P. Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Mol Psychiatry 2018; 23:683-690. [PMID: 28322272 PMCID: PMC5914518 DOI: 10.1038/mp.2017.45] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
The study of monozygotic twins discordant for attention deficit hyperactivity disorder can elucidate mechanisms that contribute to the disorder, which affects ~7% of children. First, using in vivo neuroanatomic imaging on 14 pairs of monozygotic twins (mean age 9.7, s.d. 1.9 years), we found that discordance for the disorder is mirrored by differing dimensions of deep brain structures (the striatum and cerebellum), but not the cerebral cortex. Next, using whole-blood DNA from the same twins, we found a significant enrichment of epigenetic differences in genes expressed in these 'discordant' brain structures. Specifically, there is differential methylation of probes lying in the shore and shelf and enhancer regions of striatal and cerebellar genes. Notably, gene sets pertaining to the cerebral cortex (which did not differ in volume between affected and unaffected twins) were not enriched by differentially methylated probes. Genotypic differences between the twin pairs-such as copy number and rare, single-nucleotide variants-did not contribute to phenotypic discordance. Pathway analyses of the genes implicated by the most differentially methylated probes implicated γ-aminobutyric acid (GABA), dopamine and serotonin neurotransmitter systems. The study illustrates how neuroimaging can help guide the search for epigenomic mechanisms in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yun-Ching Chen
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, NHGRI/NIH, Bethesda
| | - Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| | - Wendy Sharp
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| | - Frank Donovan
- Genomics Core and Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, NHGRI/NIH, Bethesda
| | | | | | - Laura Elnitski
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, NHGRI/NIH, Bethesda
| | - Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| |
Collapse
|
49
|
Wang CF, Hsing HW, Zhuang ZH, Wen MH, Chang WJ, Briz CG, Nieto M, Shyu BC, Chou SJ. Lhx2 Expression in Postmitotic Cortical Neurons Initiates Assembly of the Thalamocortical Somatosensory Circuit. Cell Rep 2017; 18:849-856. [PMID: 28122236 DOI: 10.1016/j.celrep.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/03/2016] [Accepted: 12/29/2016] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons must be specified and make the correct connections during development. Here, we examine a mechanism initiating neuronal circuit formation in the barrel cortex, a circuit comprising thalamocortical axons (TCAs) and layer 4 (L4) neurons. When Lhx2 is selectively deleted in postmitotic cortical neurons using conditional knockout (cKO) mice, L4 neurons in the barrel cortex are initially specified but fail to form cellular barrels or develop polarized dendrites. In Lhx2 cKO mice, TCAs from the thalamic ventral posterior nucleus reach the barrel cortex but fail to further arborize to form barrels. Several activity-regulated genes and genes involved in regulating barrel formation are downregulated in the Lhx2 cKO somatosensory cortex. Among them, Btbd3, an activity-regulated gene controlling dendritic development, is a direct downstream target of Lhx2. We find that Lhx2 confers neuronal competency for activity-dependent dendritic development in L4 neurons by inducing the expression of Btbd3.
Collapse
Affiliation(s)
- Chia-Fang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Hsuan Wen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Carlos G Briz
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Bai Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
50
|
Input-dependent regulation of excitability controls dendritic maturation in somatosensory thalamocortical neurons. Nat Commun 2017; 8:2015. [PMID: 29222517 PMCID: PMC5722950 DOI: 10.1038/s41467-017-02172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/10/2017] [Indexed: 12/04/2022] Open
Abstract
Input from the sensory organs is required to pattern neurons into topographical maps during development. Dendritic complexity critically determines this patterning process; yet, how signals from the periphery act to control dendritic maturation is unclear. Here, using genetic and surgical manipulations of sensory input in mouse somatosensory thalamocortical neurons, we show that membrane excitability is a critical component of dendritic development. Using a combination of genetic approaches, we find that ablation of N-methyl-d-aspartate (NMDA) receptors during postnatal development leads to epigenetic repression of Kv1.1-type potassium channels, increased excitability, and impaired dendritic maturation. Lesions to whisker input pathways had similar effects. Overexpression of Kv1.1 was sufficient to enable dendritic maturation in the absence of sensory input. Thus, Kv1.1 acts to tune neuronal excitability and maintain it within a physiological range, allowing dendritic maturation to proceed. Together, these results reveal an input-dependent control over neuronal excitability and dendritic complexity in the development and plasticity of sensory pathways. Sensory input and neuronal activity are crucial for proper morphological development of neurons. Here, Frangeul and colleagues show that membrane excitability is a critical component of dendritic development in mouse somatosensory thalamocortical neurons.
Collapse
|