1
|
Erath J, Kemper D, Mugo E, Jacoby A, Valenzuela E, Jungers CF, Beatty WL, Hashem Y, Jovanovic M, Djuranovic S, Djuranovic SP. A rapid, facile, and economical method for the isolation of ribosomes and translational machinery for structural and functional studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619433. [PMID: 39484553 PMCID: PMC11526893 DOI: 10.1101/2024.10.21.619433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Ribosomes are macromolecular RNA-protein complexes that constitute the central machinery responsible for protein synthesis and quality control in the cell. Ribosomes also serve as a hub for multiple non-ribosomal proteins and RNAs that control protein synthesis. However, the purification of ribosomes and associated factors for functional and structural studies requires a large amount of starting biological material and a tedious workflow. Current methods are challenging as they combine ultracentrifugation, the use of sucrose cushions or gradients, expensive equipment, and multiple hours to days of work. Here, we present a rapid, facile, and cost-effective method to isolate ribosomes from in vivo or in vitro samples for functional and structural studies using single-step enrichment on magnetic beads - RAPPL (RNA Affinity Purification using Poly-Lysine). Using mass spectrometry and western blot analyses, we show that poly-lysine coated beads incubated with E. coli and HEK-293 cell lysates enrich specifically for ribosomes and ribosome-associated factors. We demonstrate the ability of RAPPL to isolate ribosomes and translation-associated factors from limited material quantities, as well as a wide variety of biological samples: cell lysates, cells, organs, and whole organisms. Using RAPPL, we characterized and visualized the different effects of various drugs and translation inhibitors on protein synthesis. Our method is compatible with traditional ribosome isolation. It can be used to purify specific complexes from fractions of sucrose gradients or in tandem affinity purifications for ribosome-associated factors. Ribosomes isolated using RAPPL are functionally active and can be used for rapid screening and in vitro characterization of ribosome antibiotic resistance. Lastly, we demonstrate the structural applications of RAPPL by purifying and solving the 2.7Å cryo-EM structure of ribosomes from the Cryptococcus neoformans, an encapsulated yeast causing cryptococcosis. Ribosomes and translational machinery purified with this method are suitable for subsequent functional or structural analyses and provide a solid foundation for researchers to carry out further applications - academic, clinical, or industrial - on ribosomes.
Collapse
Affiliation(s)
- Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Danielle Kemper
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Elisha Mugo
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Courtney F. Jungers
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
2
|
Kristen M, Lander M, Kilz LM, Gleue L, Jörg M, Bregeon D, Hamdane D, Marchand V, Motorin Y, Friedland K, Helm M. DORQ-seq: high-throughput quantification of femtomol tRNA pools by combination of cDNA hybridization and Deep sequencing. Nucleic Acids Res 2024; 52:e89. [PMID: 39258547 PMCID: PMC11472062 DOI: 10.1093/nar/gkae765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Due to its high modification content tRNAs are notoriously hard to quantify by reverse transcription and RNAseq. Bypassing numerous biases resulting from concatenation of enzymatic treatments, we here report a hybrid approach that harnesses the advantages of hybridization-based and deep sequencing-based approaches. The method renders obsolete any RNAseq related workarounds and correction factors that affect accuracy, sensitivity, and turnaround time. Rather than by reverse transcription, quantitative information on the isoacceptor composition of a tRNA pool is transferred to a cDNA mixture in a single step procedure, thereby omitting all enzymatic conversations except for the subsequent barcoding PCR. As a result, a detailed tRNA composition matrix can be obtained from femtomolar amounts of total tRNA. The method is fast, low in cost, and its bioinformatic data workup surprisingly simple. These properties make the approach amenable to high-throughput investigations including clinical samples, as we have demonstrated by application to a collection of variegated biological questions, each answered with novel findings. These include tRNA pool quantification of polysome-bound tRNA, of tRNA modification knockout strains under stress conditions, and of Alzheimer patients' brain tissues.
Collapse
Affiliation(s)
- Marco Kristen
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Marc Lander
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Lea-Marie Kilz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Lukas Gleue
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Marko Jörg
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Damien Bregeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Virginie Marchand
- Université de Lorraine, IMoPA UMR7365 CNRS-UL, BioPole, 54000 Nancy, France
| | - Yuri Motorin
- Université de Lorraine, IMoPA UMR7365 CNRS-UL, BioPole, 54000 Nancy, France
- Université de Lorraine, Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, UAR2008 IBSLor (CNRS-UL)/US40 (INSERM), 54000 Nancy, France
| | - Kristina Friedland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
3
|
Thomas HB, Demain LAM, Cabrera-Orefice A, Schrauwen I, Shamseldin HE, Rea A, Bharadwaj T, Smith TB, Oláhová M, Thompson K, He L, Kaur N, Shukla A, Abukhalid M, Ansar M, Rehman S, Riazuddin S, Abdulwahab F, Smith JM, Stark Z, Carrera S, Yue WW, Munro KJ, Alkuraya FS, Jamieson P, Ahmed ZM, Leal SM, Taylor RW, Wittig I, O'Keefe RT, Newman WG. Biallelic variants in MRPL49 cause variable clinical presentations, including sensorineural hearing loss, leukodystrophy, and ovarian insufficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315152. [PMID: 39417135 PMCID: PMC11483032 DOI: 10.1101/2024.10.10.24315152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Combined oxidative phosphorylation deficiency (COXPD) is a rare multisystem disorder which is clinically and genetically heterogeneous. Genome sequencing identified biallelic MRPL49 variants in individuals from five unrelated families with presentations ranging from Perrault syndrome (primary ovarian insufficiency and sensorineural hearing loss) to severe childhood onset of leukodystrophy, learning disability, microcephaly and retinal dystrophy. Complexome profiling of fibroblasts from affected individuals revealed reduced levels of the small and, a more pronounced reduction of, the large mitochondrial ribosomal subunits. There was no evidence of altered mitoribosomal assembly. The reductions in levels of OXPHOS enzyme complexes I and IV are consistent with a form of COXPD associated with biallelic MRPL49 variants, expanding the understanding of how disruption of the mitochondrial ribosomal large subunit results in multi-system phenotypes.
Collapse
Affiliation(s)
- Huw B Thomas
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Leigh A M Demain
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Alfredo Cabrera-Orefice
- Centre for Functional Proteomics, Institute for Cardiovascular Physiology, Medical Faculty, Goethe University, 60596 Frankfurt am Main, Germany
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alessandro Rea
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas B Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Monika Oláhová
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kyle Thompson
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Langping He
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Musaad Abukhalid
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Sakina Rehman
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Janine M Smith
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2000, Australia
- Western Sydney Genetics Program, Department of Clinical Genetics, Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Flemington Road, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Samantha Carrera
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Wyatt W Yue
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness (ManCAD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Peter Jamieson
- Department of Radiology, Manchester University Hospital NHS Foundation Trust, Manchester, M13 9PW, UK
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, United States
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY
| | - Robert W Taylor
- Mitochondrial Research Group, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Ilka Wittig
- Centre for Functional Proteomics, Institute for Cardiovascular Physiology, Medical Faculty, Goethe University, 60596 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60596 Frankfurt am Main, Germany
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| |
Collapse
|
4
|
Brischigliaro M, Sierra‐Magro A, Ahn A, Barrientos A. Mitochondrial ribosome biogenesis and redox sensing. FEBS Open Bio 2024; 14:1640-1655. [PMID: 38849194 PMCID: PMC11452305 DOI: 10.1002/2211-5463.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mitoribosome biogenesis is a complex process involving RNA elements encoded in the mitochondrial genome and mitoribosomal proteins typically encoded in the nuclear genome. This process is orchestrated by extra-ribosomal proteins, nucleus-encoded assembly factors, which play roles across all assembly stages to coordinate ribosomal RNA processing and maturation with the sequential association of ribosomal proteins. Both biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided insights into their assembly process. In this article, we will briefly outline the current understanding of mammalian mitoribosome biogenesis pathways and the factors involved. Special attention is devoted to the recent identification of iron-sulfur clusters as structural components of the mitoribosome and a small subunit assembly factor, the existence of redox-sensitive cysteines in mitoribosome proteins and assembly factors, and the role they may play as redox sensor units to regulate mitochondrial translation under stress.
Collapse
Affiliation(s)
| | - Ana Sierra‐Magro
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
| | - Ahram Ahn
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
| | - Antoni Barrientos
- Department of NeurologyUniversity of Miami Miller School of MedicineFLUSA
- Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineFLUSA
- Bruce W. Carter Department of Veterans Affairs VA Medical CenterMiamiFLUSA
| |
Collapse
|
5
|
Rappol T, Waldl M, Chugunova A, Hofacker I, Pauli A, Vilardo E. tRNA expression and modification landscapes, and their dynamics during zebrafish embryo development. Nucleic Acids Res 2024; 52:10575-10594. [PMID: 38989621 PMCID: PMC11417395 DOI: 10.1093/nar/gkae595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
tRNA genes exist in multiple copies in the genome of all organisms across the three domains of life. Besides the sequence differences across tRNA copies, extensive post-transcriptional modification adds a further layer to tRNA diversification. Whilst the crucial role of tRNAs as adapter molecules in protein translation is well established, whether all tRNAs are actually expressed, and whether the differences across isodecoders play any regulatory role is only recently being uncovered. Here we built upon recent developments in the use of NGS-based methods for RNA modification detection and developed tRAM-seq, an experimental protocol and in silico analysis pipeline to investigate tRNA expression and modification. Using tRAM-seq, we analysed the full ensemble of nucleo-cytoplasmic and mitochondrial tRNAs during embryonic development of the model vertebrate zebrafish. We show that the repertoire of tRNAs changes during development, with an apparent major switch in tRNA isodecoder expression and modification profile taking place around the start of gastrulation. Taken together, our findings suggest the existence of a general reprogramming of the expressed tRNA pool, possibly gearing the translational machinery for distinct stages of the delicate and crucial process of embryo development.
Collapse
Affiliation(s)
- Tom Rappol
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Waldl
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
- Institute of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, D-04107 Leipzig, Germany
| | - Anastasia Chugunova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, 1090 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Elisa Vilardo
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Ji L, Wang A, Sonthalia S, Naiman DQ, Younes L, Colantuoni C, Geman D. CellCover Captures Neural Stem Cell Progression in Mammalian Neocortical Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.06.535943. [PMID: 37383947 PMCID: PMC10299349 DOI: 10.1101/2023.04.06.535943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Definition of cell classes across the tissues of living organisms is central in the analysis of growing atlases of single-cell RNA sequencing (scRNA-seq) data across biomedicine. Marker genes for cell classes are most often defined by differential expression (DE) methods that serially assess individual genes across landscapes of diverse cells. This serial approach has been extremely useful, but is limited because it ignores possible redundancy or complementarity across genes that can only be captured by analyzing multiple genes simultaneously. We aim to identify discriminating panels of genes. To efficiently explore the vast space of possible marker panels, leverage the large number of cells often sequenced, and overcome zero-inflation in scRNA-seq data, we propose viewing gene panel selection as a variation of the "minimal set-covering problem" in combinatorial optimization. We show that this new method, CellCover, captures cell-class-specific signals in the developing mouse neocortex that are distinct from those defined by DE methods. Transfer learning experiments across mouse, primate, and human data demonstrate that CellCover identifies markers of conserved cell classes in neurogenesis, as well as temporal progression in both progenitors and neurons. Exploring markers of human outer radial glia (oRG, or basal RG) across mammals, we show that transcriptomic elements of this key cell type in the expansion of the human cortex appeared in gliogenic precursors of the rodent before the full program emerged in the primate lineage. We have assembled the public datasets we use in this report at NeMO analytics where the expression of individual genes {NeMO Individual Genes} and marker gene panels can be freely explored {NeMO: Telley 3 Sets Covering Panels}, {NeMO: Telley 12 Sets Covering Panels}, and {NeMO: Sorted Brain Cell Covering Panels}. CellCover is available in {CellCover R} and {CellCover Python}.
Collapse
|
7
|
Box JM, Higgins ME, Stuart RA. Importance of conserved hydrophobic pocket region in yeast mitoribosomal mL44 protein for mitotranslation and transcript preference. J Biol Chem 2024; 300:107519. [PMID: 38950860 PMCID: PMC11345376 DOI: 10.1016/j.jbc.2024.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The mitochondrial ribosome (mitoribosome) is responsible for the synthesis of key oxidative phosphorylation subunits encoded by the mitochondrial genome. Defects in mitoribosomal function therefore can have serious consequences for the bioenergetic capacity of the cell. Mutation of the conserved mitoribosomal mL44 protein has been directly linked to childhood cardiomyopathy and progressive neurophysiology issues. To further explore the functional significance of the mL44 protein in supporting mitochondrial protein synthesis, we have performed a mutagenesis study of the yeast mL44 homolog, the MrpL3/mL44 protein. We specifically investigated the conserved hydrophobic pocket region of the MrpL3/mL44 protein, where the known disease-related residue in the human mL44 protein (L156R) is located. While our findings identify a number of residues in this region critical for MrpL3/mL44's ability to support the assembly of translationally active mitoribosomes, the introduction of the disease-related mutation into the equivalent position in the yeast protein (residue A186) was found to not have a major impact on function. The human and yeast mL44 proteins share many similarities in sequence and structure; however results presented here indicate that these two proteins have diverged somewhat in evolution. Finally, we observed that mutation of the MrpL3/mL44 does not impact the translation of all mitochondrial encoded proteins equally, suggesting the mitochondrial translation system may exhibit a transcript hierarchy and prioritization.
Collapse
Affiliation(s)
- Jodie M Box
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Margo E Higgins
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
8
|
Chambers TL, Dimet-Wiley A, Keeble AR, Haghani A, Lo WJ, Kang G, Brooke R, Horvath S, Fry CS, Watowich SJ, Wen Y, Murach KA. Methylome-proteome integration after late-life voluntary exercise training reveals regulation and target information for improved skeletal muscle health. J Physiol 2024. [PMID: 39058663 DOI: 10.1113/jp286681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise is a potent stimulus for combatting skeletal muscle ageing. To study the effects of exercise on muscle in a preclinical setting, we developed a combined endurance-resistance training stimulus for mice called progressive weighted wheel running (PoWeR). PoWeR improves molecular, biochemical, cellular and functional characteristics of skeletal muscle and promotes aspects of partial epigenetic reprogramming when performed late in life (22-24 months of age). In this investigation, we leveraged pan-mammalian DNA methylome arrays and tandem mass-spectrometry proteomics in skeletal muscle to provide detailed information on late-life PoWeR adaptations in female mice relative to age-matched sedentary controls (n = 7-10 per group). Differential CpG methylation at conserved promoter sites was related to transcriptional regulation genes as well as Nr4a3, Hes1 and Hox genes after PoWeR. Using a holistic method of -omics integration called binding and expression target analysis (BETA), methylome changes were associated with upregulated proteins related to global and mitochondrial translation after PoWeR (P = 0.03). Specifically, BETA implicated methylation control of ribosomal, mitoribosomal, and mitochondrial complex I protein abundance after training. DNA methylation may also influence LACTB, MIB1 and UBR4 protein induction with exercise - all are mechanistically linked to muscle health. Computational cistrome analysis predicted several transcription factors including MYC as regulators of the exercise trained methylome-proteome landscape, corroborating prior late-life PoWeR transcriptome data. Correlating the proteome to muscle mass and fatigue resistance revealed positive relationships with VPS13A and NPL levels, respectively. Our findings expose differential epigenetic and proteomic adaptations associated with translational regulation after PoWeR that could influence skeletal muscle mass and function in aged mice. KEY POINTS: Late-life combined endurance-resistance exercise training from 22-24 months of age in mice is shown to improve molecular, biochemical, cellular and in vivo functional characteristics of skeletal muscle and promote aspects of partial epigenetic reprogramming and epigenetic age mitigation. Integration of DNA CpG 36k methylation arrays using conserved sites (which also contain methylation ageing clock sites) with exploratory proteomics in skeletal muscle extends our prior work and reveals coordinated and widespread regulation of ribosomal, translation initiation, mitochondrial ribosomal (mitoribosomal) and complex I proteins after combined voluntary exercise training in a sizeable cohort of female mice (n = 7-10 per group and analysis). Multi-omics integration predicted epigenetic regulation of serine β-lactamase-like protein (LACTB - linked to tumour resistance in muscle), mind bomb 1 (MIB1 - linked to satellite cell and type 2 fibre maintenance) and ubiquitin protein ligase E3 component N-recognin 4 (UBR4 - linked to muscle protein quality control) after training. Computational cistrome analysis identified MYC as a regulator of the late-life training proteome, in agreement with prior transcriptional analyses. Vacuolar protein sorting 13 homolog A (VPS13A) was positively correlated to muscle mass, and the glycoprotein/glycolipid associated sialylation enzyme N-acetylneuraminate pyruvate lyase (NPL) was associated to in vivo muscle fatigue resistance.
Collapse
Affiliation(s)
- Toby L Chambers
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | | | - Alexander R Keeble
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Amin Haghani
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Wen-Juo Lo
- Department of Educational Statistics and Research Methods, University of Arkansas, Fayetteville, AR, USA
| | - Gyumin Kang
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - Christopher S Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Stanley J Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
9
|
Hilander T, Awadhpersad R, Monteuuis G, Broda KL, Pohjanpelto M, Pyman E, Singh SK, Nyman TA, Crevel I, Taylor RW, Saada A, Balboa D, Battersby BJ, Jackson CB, Carroll CJ. Supernumerary proteins of the human mitochondrial ribosomal small subunit are integral for assembly and translation. iScience 2024; 27:110185. [PMID: 39015150 PMCID: PMC11251090 DOI: 10.1016/j.isci.2024.110185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 07/18/2024] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) have undergone substantial evolutionary structural remodeling accompanied by loss of ribosomal RNA, while acquiring unique protein subunits located on the periphery. We generated CRISPR-mediated knockouts of all 14 unique (mitochondria-specific/supernumerary) human mitoribosomal proteins (snMRPs) in the small subunit to study the effect on mitoribosome assembly and protein synthesis, each leading to a unique mitoribosome assembly defect with variable impact on mitochondrial protein synthesis. Surprisingly, the stability of mS37 was reduced in all our snMRP knockouts of the small and large ribosomal subunits and patient-derived lines with mitoribosome assembly defects. A redox-regulated CX9C motif in mS37 was essential for protein stability, suggesting a potential mechanism to regulate mitochondrial protein synthesis. Together, our findings support a modular assembly of the human mitochondrial small ribosomal subunit mediated by essential supernumerary subunits and identify a redox regulatory role involving mS37 in mitochondrial protein synthesis in health and disease.
Collapse
Affiliation(s)
- Taru Hilander
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Ryan Awadhpersad
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Geoffray Monteuuis
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krystyna L. Broda
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Max Pohjanpelto
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Elizabeth Pyman
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| | - Sachin Kumar Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Isabelle Crevel
- Core Facilities, St George’s, University of London, London, UK
| | - Robert W. Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center & Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001 Israel
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher J. Carroll
- Genetics Section, Cardiovascular and Genomics Research Institute, St George’s, University of London, London, UK
| |
Collapse
|
10
|
Lavdovskaia E, Hanitsch E, Linden A, Pašen M, Challa V, Horokhovskyi Y, Roetschke HP, Nadler F, Welp L, Steube E, Heinrichs M, Mai MMQ, Urlaub H, Liepe J, Richter-Dennerlein R. A roadmap for ribosome assembly in human mitochondria. Nat Struct Mol Biol 2024:10.1038/s41594-024-01356-w. [PMID: 38992089 DOI: 10.1038/s41594-024-01356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Mitochondria contain dedicated ribosomes (mitoribosomes), which synthesize the mitochondrial-encoded core components of the oxidative phosphorylation complexes. The RNA and protein components of mitoribosomes are encoded on two different genomes (mitochondrial and nuclear) and are assembled into functional complexes with the help of dedicated factors inside the organelle. Defects in mitoribosome biogenesis are associated with severe human diseases, yet the molecular pathway of mitoribosome assembly remains poorly understood. Here, we applied a multidisciplinary approach combining biochemical isolation and analysis of native mitoribosomal assembly complexes with quantitative mass spectrometry and mathematical modeling to reconstitute the entire assembly pathway of the human mitoribosome. We show that, in contrast to its bacterial and cytosolic counterparts, human mitoribosome biogenesis involves the formation of ribosomal protein-only modules, which then assemble on the appropriate ribosomal RNA moiety in a coordinated fashion. The presence of excess protein-only modules primed for assembly rationalizes how mitochondria cope with the challenge of forming a protein-rich ribonucleoprotein complex of dual genetic origin. This study provides a comprehensive roadmap of mitoribosome biogenesis, from very early to late maturation steps, and highlights the evolutionary divergence from its bacterial ancestor.
Collapse
Affiliation(s)
- Elena Lavdovskaia
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Elisa Hanitsch
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Pašen
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Venkatapathi Challa
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hanna P Roetschke
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, London, UK
- Francis Crick Institute, London, UK
| | - Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Luisa Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Emely Steube
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marleen Heinrichs
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Mandy Mong-Quyen Mai
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Ricarda Richter-Dennerlein
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Wang P, Zhang L, Chen S, Li R, Liu P, Li X, Luo H, Huo Y, Zhang Z, Cai Y, Liu X, Huang J, Zhou G, Sun Z, Ding S, Shi J, Zhou Z, Yuan R, Liu L, Wu S, Wang G. ANT2 functions as a translocon for mitochondrial cross-membrane translocation of RNAs. Cell Res 2024; 34:504-521. [PMID: 38811766 PMCID: PMC11217343 DOI: 10.1038/s41422-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Bidirectional transcription of mammalian mitochondrial DNA generates overlapping transcripts that are capable of forming double-stranded RNA (dsRNA) structures. Release of mitochondrial dsRNA into the cytosol activates the dsRNA-sensing immune signaling, which is a defense mechanism against microbial and viral attack and possibly cancer, but could cause autoimmune diseases when unchecked. A better understanding of the process is vital in therapeutic application of this defense mechanism and treatment of cognate human diseases. In addition to exporting dsRNAs, mitochondria also export and import a variety of non-coding RNAs. However, little is known about how these RNAs are transported across mitochondrial membranes. Here we provide direct evidence showing that adenine nucleotide translocase-2 (ANT2) functions as a mammalian RNA translocon in the mitochondrial inner membrane, independent of its ADP/ATP translocase activity. We also show that mitochondrial dsRNA efflux through ANT2 triggers innate immunity. Inhibiting this process alleviates inflammation in vivo, providing a potential therapeutic approach for treating autoimmune diseases.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Lixiao Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Siyi Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Renjian Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Peipei Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Hongdi Luo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujia Huo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhirong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yiqi Cai
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xu Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangkeng Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhe Sun
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Shanwei Ding
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiahao Shi
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zizhuo Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Ruoxi Yuan
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Liang Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
12
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
13
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk. Nat Commun 2024; 15:4272. [PMID: 38769321 PMCID: PMC11106087 DOI: 10.1038/s41467-024-48163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.
Collapse
Affiliation(s)
- Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Tokyo, Japan
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Asem Hassan
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Andreas Naschberger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Keiichi Izumikawa
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Juni Andréll
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Antoni Barrientos
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Westlake University, Hangzhou, China.
| |
Collapse
|
14
|
Singh J, Singh S, Emam EAF, Varshney U. Role of Rmd9p in 3'-end processing of mitochondrial 15S rRNA in Saccharomyces cerevisiae. Mitochondrion 2024; 76:101876. [PMID: 38599301 DOI: 10.1016/j.mito.2024.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Ribosome biogenesis, involving processing/assembly of rRNAs and r-proteins is a vital process. In Saccharomyces cerevisiae mitochondria, ribosomal small subunit comprises 15S rRNA (15S). While the 15S 5'-end processing uses Ccm1p and Pet127p, the mechanisms of the 3'-end processing remain unclear. We reveal involvement of Rmd9p in safeguarding/processing 15S 3'-end. Rmd9p deficiency results in a cleavage at a position 183 nucleotides upstream of 15S 3'-end, and in the loss of the 3'-minor domain. Rmd9p binds to the sequences in the 3'-end region of 15S, and a genetic interaction between rmd9 and dss1 indicates that Rmd9p regulates/limits mtEXO activity during the 3'-end spacer processing.
Collapse
Affiliation(s)
- Jitendra Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Sudhir Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Elhassan Ali Fathi Emam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
15
|
Zhong H, Barrientos A. The zinc finger motif in the mitochondrial large ribosomal subunit protein bL36m is essential for optimal yeast mitoribosome assembly and function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119707. [PMID: 38493895 PMCID: PMC11009049 DOI: 10.1016/j.bbamcr.2024.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Ribosomes across species contain subsets of zinc finger proteins that play structural roles by binding to rRNA. While the majority of these zinc fingers belong to the C2-C2 type, the large subunit protein L36 in bacteria and mitochondria exhibits an atypical C2-CH motif. To comprehend the contribution of each coordinating residue in S. cerevisiae bL36m to mitoribosome assembly and function, we engineered and characterized strains carrying single and double mutations in the zinc coordinating residues. Our findings reveal that although all four residues markedly influence protein stability, C to A mutations in C66 and/or C69 have a more pronounced effect compared to those at C82 and H88. Importantly, protein stability directly correlates with the assembly and function of the mitoribosome and the growth rate of yeast in respiratory conditions. Mass spectrometry analysis of large subunit particles indicates that strains deleted for bL36m or expressing mutant variants have defective assembly of the L7/L12 stalk base, limiting their functional competence. Furthermore, we employed a synthetic bL36m protein collection, including both wild-type and mutant proteins, to elucidate their ability to bind zinc. Our data indicate that mutations in C82 and, particularly, H88 allow for some zinc binding albeit inefficient or unstable, explaining the residual accumulation and activity in mitochondria of bL36m variants carrying mutations in these residues. In conclusion, stable zinc binding by bL36m is essential for optimal mitoribosome assembly and function. MS data are available via ProteomeXchange with identifierPXD046465.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th St, Miami, FL 33125, USA.
| |
Collapse
|
16
|
Jung SJ, Sridhara S, Ott M. Early steps in the biogenesis of mitochondrially encoded oxidative phosphorylation subunits. IUBMB Life 2024; 76:125-139. [PMID: 37712772 DOI: 10.1002/iub.2784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
The complexes mediating oxidative phosphorylation (OXPHOS) in the inner mitochondrial membrane consist of proteins encoded in the nuclear or the mitochondrial DNA. The mitochondrially encoded membrane proteins (mito-MPs) represent the catalytic core of these complexes and follow complicated pathways for biogenesis. Owing to their overall hydrophobicity, mito-MPs are co-translationally inserted into the inner membrane by the Oxa1 insertase. After insertion, OXPHOS biogenesis factors mediate the assembly of mito-MPs into complexes and participate in the regulation of mitochondrial translation, while protein quality control factors recognize and degrade faulty or excess proteins. This review summarizes the current understanding of these early steps occurring during the assembly of mito-MPs by concentrating on results obtained in the model organism baker's yeast.
Collapse
Affiliation(s)
- Sung-Jun Jung
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Key J, Gispert S, Kandi AR, Heinz D, Hamann A, Osiewacz HD, Meierhofer D, Auburger G. CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation. Biomolecules 2024; 14:241. [PMID: 38397478 PMCID: PMC10886707 DOI: 10.3390/biom14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Daniela Heinz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany;
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| |
Collapse
|
18
|
Zhang YH, Liu XS, Gao Y, Yuan LL, Huang ZM, Zhang Y, Liu ZY, Yang Y, Liu XY, Ke CB, Pei ZJ. SFXN1 as a potential diagnostic and prognostic biomarker of LUAD is associated with 18F-FDG metabolic parameters. Lung Cancer 2024; 188:107449. [PMID: 38184958 DOI: 10.1016/j.lungcan.2023.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Sideroflexin 1 (SFXN1) has been discovered as a novel tumor marker for lung adenocarcinoma, but data on its importance in the development of lung adenocarcinoma is still limited. This study evaluated the correlation between SFXN1 and parameters related to 18F-flurodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT), and further explored the role of SFXN1 in the value-added and glycolytic processes of LUAD. METHOD The expression and prognostic value of SFXN1 mRNA in LUAD were analyzed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data base. Retrospective analysis of 18F-FDG PET imaging and metabolic parameters in 42 patients to explore the relationship between the expression of SFXN1 and glucose metabolism levels in lung adenocarcinoma and its clinical significance. H1975 cells were selected as the in vitro research object, and the biological effects of SFXN1 on LUAD were further elucidated through Edu proliferation assay, CCK8 activity assay, wound healing experiment, and cell flow cytometry. RESULT SFXN1 is highly expressed in various tumors, including LUAD, and its high expression can serve as an independent predictor of overall survival in lung adenocarcinoma. In addition, the expression of SFXN1 in LUAD was significantly correlated with 18F-FDG PET/CT parameters: maximum and average standardized uptake values (SUVmax and SUVmean), as well as total lesion glycolysis (TLG) (rho = 0.574, 0.589, and 0.338, p < 0.05), which can predict the expression of SFXN1 with an accuracy of 0.934. In vitro functional experiments have shown that knocking down SFXN1 inhibits the proliferation and migration of LUAD cells, promotes cell apoptosis, and may inhibit tumor activity by regulating the expression of glycolytic related genes SLC2A1, HK2, GPI, ALDOA, GAPDH, ENO1, PKM, and LDHA. CONCLUSION The overexpression of SFXN1 is closely related to FDG uptake, and SFXN1, as a promising prognostic biomarker, may mediate the development of LUAD through the glycolytic pathway.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan 442000, Hubei, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ling-Ling Yuan
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhong-Min Huang
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yu Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zi-Yue Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yi Yang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Chang-Bin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan 442000, Hubei, China.
| |
Collapse
|
19
|
Bruni F. Human mtDNA-Encoded Long ncRNAs: Knotty Molecules and Complex Functions. Int J Mol Sci 2024; 25:1502. [PMID: 38338781 PMCID: PMC10855489 DOI: 10.3390/ijms25031502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Until a few decades ago, most of our knowledge of RNA transcription products was focused on protein-coding sequences, which were later determined to make up the smallest portion of the mammalian genome. Since 2002, we have learnt a great deal about the intriguing world of non-coding RNAs (ncRNAs), mainly due to the rapid development of bioinformatic tools and next-generation sequencing (NGS) platforms. Moreover, interest in non-human ncRNAs and their functions has increased as a result of these technologies and the accessibility of complete genome sequences of species ranging from Archaea to primates. Despite not producing proteins, ncRNAs constitute a vast family of RNA molecules that serve a number of regulatory roles and are essential for cellular physiology and pathology. This review focuses on a subgroup of human ncRNAs, namely mtDNA-encoded long non-coding RNAs (mt-lncRNAs), which are transcribed from the mitochondrial genome and whose disparate localisations and functions are linked as much to mitochondrial metabolism as to cellular physiology and pathology.
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
20
|
Xiong Z, Wang H, Qu Y, Peng S, He Y, Yang Q, Xu X, Lv D, Liu Y, Xie C, Zhang X. The mitochondria in schizophrenia with 22q11.2 deletion syndrome: From pathogenesis to therapeutic promise of targeted natural drugs. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110831. [PMID: 37451595 DOI: 10.1016/j.pnpbp.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Schizophrenia is a complex multi-factor neurological disorder that caused an array of severe indelible consequences to the individuals and society. Additionally, anti-schizophrenic drugs are unsuitable for treating negative symptoms and have more significant side effects and drug resistance. For better treatment and prevention, we consider exploring the pathogenesis of schizophrenia from other perspectives. A growing body of evidence of 22q11.2 deletion syndrome (22q11DS) suggested that the occurrence and progression of schizophrenia are related to mitochondrial dysfunction. So combing through the literature of 22q11DS published from 2000 to 2023, this paper reviews the mechanism of schizophrenia based on mitochondrial dysfunction, and it focuses on the natural drugs targeting mitochondria to enhance mitochondrial function, which are potential to improve the current treatment of schizophrenia.
Collapse
Affiliation(s)
- Zongxiang Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutian Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingyan Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - De Lv
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Ya Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiyu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
21
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
22
|
Box JM, Anderson JM, Stuart RA. Mutation of the PEBP-like domain of the mitoribosomal MrpL35/mL38 protein results in production of nascent chains with impaired capacity to assemble into OXPHOS complexes. Mol Biol Cell 2023; 34:ar131. [PMID: 37792492 PMCID: PMC10848944 DOI: 10.1091/mbc.e23-04-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Located in the central protuberance region of the mitoribosome and mitospecific mL38 proteins display homology to PEBP (Phosphatidylethanolamine Binding Protein) proteins, a diverse family of proteins reported to bind anionic substrates/ligands and implicated in cellular signaling and differentiation pathways. In this study, we have performed a mutational analysis of the yeast mitoribosomal protein MrpL35/mL38 and demonstrate that mutation of the PEBP-invariant ligand binding residues Asp(D)232 and Arg(R)288 impacted MrpL35/mL38's ability to support OXPHOS-based growth of the cell. Furthermore, our data indicate these residues exist in a functionally important charged microenvironment, which also includes Asp(D)167 of MrpL35/mL38 and Arg(R)127 of the neighboring Mrp7/bL27m protein. We report that mutation of each of these charged residues resulted in a strong reduction in OXPHOS complex levels that was not attributed to a corresponding inhibition of the mitochondrial translation process. Rather, our findings indicate that a disconnect exists in these mutants between the processes of mitochondrial protein translation and the events required to ensure the competency and/or availability of the newly synthesized proteins to assemble into OXPHOS enzymes. Based on our findings, we postulate that the PEBP-homology domain of MrpL35/mL38, together with its partner Mrp7/bL27m, form a key regulatory region of the mitoribosome.
Collapse
Affiliation(s)
- Jodie M. Box
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Jessica M. Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Rosemary A. Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
23
|
Wang L, Hilander T, Liu X, Tsang HY, Eriksson O, Jackson CB, Varjosalo M, Zhao H. GTPBP8 is required for mitoribosomal biogenesis and mitochondrial translation. Cell Mol Life Sci 2023; 80:361. [PMID: 37971521 PMCID: PMC10654211 DOI: 10.1007/s00018-023-05014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Mitochondrial translation occurs on the mitochondrial ribosome, also known as the mitoribosome. The assembly of mitoribosomes is a highly coordinated process. During mitoribosome biogenesis, various assembly factors transiently associate with the nascent ribosome, facilitating the accurate and efficient construction of the mitoribosome. However, the specific factors involved in the assembly process, the precise mechanisms, and the cellular compartments involved in this vital process are not yet fully understood. In this study, we discovered a crucial role for GTP-binding protein 8 (GTPBP8) in the assembly of the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. GTPBP8 is identified as a novel GTPase located in the matrix and peripherally bound to the inner mitochondrial membrane. Importantly, GTPBP8 is specifically associated with the mt-LSU during its assembly. Depletion of GTPBP8 leads to an abnormal accumulation of mt-LSU, indicating that GTPBP8 is critical for proper mt-LSU assembly. Furthermore, the absence of GTPBP8 results in reduced levels of fully assembled 55S monosomes. This impaired assembly leads to compromised mitochondrial translation and, consequently, impaired mitochondrial function. The identification of GTPBP8 as an important player in these processes provides new insights into the molecular mechanisms underlying mitochondrial protein synthesis and its regulation.
Collapse
Affiliation(s)
- Liang Wang
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, West China, Chengdu, 610041, China
| | - Taru Hilander
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Hoi Ying Tsang
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
24
|
Loguercio Polosa P, Capriglia F, Bruni F. Molecular Investigation of Mitochondrial RNA19 Role in the Pathogenesis of MELAS Disease. Life (Basel) 2023; 13:1863. [PMID: 37763267 PMCID: PMC10532844 DOI: 10.3390/life13091863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.
Collapse
Affiliation(s)
| | | | - Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, 70125 Bari, Italy; (P.L.P.); (F.C.)
| |
Collapse
|
25
|
Nadler F, Richter-Dennerlein R. Translation termination in human mitochondria - substrate specificity of mitochondrial release factors. Biol Chem 2023; 404:769-779. [PMID: 37377370 DOI: 10.1515/hsz-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Mitochondria are the essential players in eukaryotic ATP production by oxidative phosphorylation, which relies on the maintenance and accurate expression of the mitochondrial genome. Even though the basic principles of translation are conserved due to the descendance from a bacterial ancestor, some deviations regarding translation factors as well as mRNA characteristics and the applied genetic code are present in human mitochondria. Together, these features are certain challenges during translation the mitochondrion has to handle. Here, we discuss the current knowledge regarding mitochondrial translation focusing on the termination process and the associated quality control mechanisms. We describe how mtRF1a resembles bacterial RF1 mechanistically and summarize in vitro and recent in vivo data leading to the conclusion of mtRF1a being the major mitochondrial release factor. On the other hand, we discuss the ongoing debate about the function of the second codon-dependent mitochondrial release factor mtRF1 regarding its role as a specialized termination factor. Finally, we link defects in mitochondrial translation termination to the activation of mitochondrial rescue mechanisms highlighting the importance of ribosome-associated quality control for sufficient respiratory function and therefore for human health.
Collapse
Affiliation(s)
- Franziska Nadler
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Ricarda Richter-Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, D-37075 Göttingen, Germany
- Goettingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
26
|
Amarasekera SSC, Hock DH, Lake NJ, Calvo SE, Grønborg SW, Krzesinski EI, Amor DJ, Fahey MC, Simons C, Wibrand F, Mootha VK, Lek M, Lunke S, Stark Z, Østergaard E, Christodoulou J, Thorburn DR, Stroud DA, Compton AG. Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. Hum Mol Genet 2023; 32:2441-2454. [PMID: 37133451 PMCID: PMC10360397 DOI: 10.1093/hmg/ddad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.
Collapse
Affiliation(s)
- Sumudu S C Amarasekera
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole J Lake
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Sabine W Grønborg
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Center for Inherited Metabolic Disease, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Emma I Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - David J Amor
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael C Fahey
- Monash Genetics, Monash Health, Melbourne, VIC 3168 Australia
- Department of Paediatrics, Monash University, Melbourne, VIC 3168 Australia
| | - Cas Simons
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Flemming Wibrand
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02446, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510 USA
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Department of Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - Elsebet Østergaard
- Department of Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David R Thorburn
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Alison G Compton
- Murdoch Children’s Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
27
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Structure of mitoribosome reveals mechanism of mRNA binding, tRNA interactions with L1 stalk, roles of cofactors and rRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542018. [PMID: 37503168 PMCID: PMC10369894 DOI: 10.1101/2023.05.24.542018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNA Val . The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transition in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide the most complete description so far of the structure and function of the human mitoribosome.
Collapse
|
28
|
Valach M, Benz C, Aguilar LC, Gahura O, Faktorová D, Zíková A, Oeffinger M, Burger G, Gray MW, Lukeš J. Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway. Nucleic Acids Res 2023; 51:6443-6460. [PMID: 37207340 PMCID: PMC10325924 DOI: 10.1093/nar/gkad422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Quebec, Canada
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Lisbeth C Aguilar
- Center for Genetic and Neurological Diseases, Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Marlene Oeffinger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Quebec, Canada
- Center for Genetic and Neurological Diseases, Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montréal, Quebec, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Institute of Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
29
|
Khawaja A, Cipullo M, Krüger A, Rorbach J. Insights into mitoribosomal biogenesis from recent structural studies. Trends Biochem Sci 2023; 48:629-641. [PMID: 37169615 DOI: 10.1016/j.tibs.2023.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
The mitochondrial ribosome (mitoribosome) is a multicomponent machine that has unique structural features. Biogenesis of the human mitoribosome includes correct maturation and folding of the mitochondria-encoded RNA components (12S and 16S mt-rRNAs, and mt-tRNAVal) and their assembly together with 82 nucleus-encoded mitoribosomal proteins. This complex process requires the coordinated action of multiple assembly factors. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided detailed insights into the specific functions of several mitoribosome assembly factors and have defined their timing. In this review we summarize mitoribosomal small (mtSSU) and large subunit (mtLSU) biogenesis based on structural findings, and we discuss potential crosstalk between mtSSU and mtLSU assembly pathways as well as coordination between mitoribosome biogenesis and other processes involved in mitochondrial gene expression.
Collapse
Affiliation(s)
- Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Biomedicum, 171 65 Solna, Sweden; Max Planck Institute Biology of Ageing, Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Xie E, Chen J, Wang B, Shen Y, Tang D, Du G, Li Y, Cheng Z. The transcribed centromeric gene OsMRPL15 is essential for pollen development in rice. PLANT PHYSIOLOGY 2023; 192:1063-1079. [PMID: 36905369 PMCID: PMC10231452 DOI: 10.1093/plphys/kiad153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 06/01/2023]
Abstract
Centromeres consist of highly repetitive sequences that are challenging to map, clone, and sequence. Active genes exist in centromeric regions, but their biological functions are difficult to explore owing to extreme suppression of recombination in these regions. In this study, we used the CRISPR/Cas9 system to knock out the transcribed gene Mitochondrial Ribosomal Protein L15 (OsMRPL15), located in the centromeric region of rice (Oryza sativa) chromosome 8, resulting in gametophyte sterility. Osmrpl15 pollen was completely sterile, with abnormalities appearing at the tricellular stage including the absence of starch granules and disrupted mitochondrial structure. Loss of OsMRPL15 caused abnormal accumulation of mitoribosomal proteins and large subunit rRNA in pollen mitochondria. Moreover, the biosynthesis of several proteins in mitochondria was defective, and expression of mitochondrial genes was upregulated at the mRNA level. Osmrpl15 pollen contained smaller amounts of intermediates related to starch metabolism than wild-type pollen, while biosynthesis of several amino acids was upregulated, possibly to compensate for defective mitochondrial protein biosynthesis and initiate consumption of carbohydrates necessary for starch biosynthesis. These results provide further insight into how defects in mitoribosome development cause gametophyte male sterility.
Collapse
Affiliation(s)
- En Xie
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiawei Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingxin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Bartolec TK, Vázquez-Campos X, Norman A, Luong C, Johnson M, Payne RJ, Wilkins MR, Mackay JP, Low JKK. Cross-linking mass spectrometry discovers, evaluates, and corroborates structures and protein-protein interactions in the human cell. Proc Natl Acad Sci U S A 2023; 120:e2219418120. [PMID: 37071682 PMCID: PMC10151615 DOI: 10.1073/pnas.2219418120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
Significant recent advances in structural biology, particularly in the field of cryoelectron microscopy, have dramatically expanded our ability to create structural models of proteins and protein complexes. However, many proteins remain refractory to these approaches because of their low abundance, low stability, or-in the case of complexes-simply not having yet been analyzed. Here, we demonstrate the power of using cross-linking mass spectrometry (XL-MS) for the high-throughput experimental assessment of the structures of proteins and protein complexes. This included those produced by high-resolution but in vitro experimental data, as well as in silico predictions based on amino acid sequence alone. We present the largest XL-MS dataset to date, describing 28,910 unique residue pairs captured across 4,084 unique human proteins and 2,110 unique protein-protein interactions. We show that models of proteins and their complexes predicted by AlphaFold2, and inspired and corroborated by the XL-MS data, offer opportunities to deeply mine the structural proteome and interactome and reveal mechanisms underlying protein structure and function.
Collapse
Affiliation(s)
- Tara K. Bartolec
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, NSW2052, Australia
| | - Xabier Vázquez-Campos
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, NSW2052, Australia
| | - Alexander Norman
- School of Chemistry, University of Sydney, Sydney, NSW2006, Australia
| | - Clement Luong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW2006, Australia
| | - Marcus Johnson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW2006, Australia
| | - Richard J. Payne
- School of Chemistry, University of Sydney, Sydney, NSW2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW2006, Australia
| | - Marc R. Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, NSW2052, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW2006, Australia
| | - Jason K. K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW2006, Australia
| |
Collapse
|
32
|
Harper NJ, Burnside C, Klinge S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 2023; 614:175-181. [PMID: 36482135 PMCID: PMC9892005 DOI: 10.1038/s41586-022-05621-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism1. Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly. Furthermore, this series of intermediates from two species with divergent mitoribosomal architecture uncovers both conserved principles and species-specific adaptations that govern the maturation of mitoribosomal small subunits in eukaryotes. By revealing the dynamic interplay between assembly factors, mitoribosomal proteins and rRNA that are required to generate functional subunits, our structural analysis provides a vignette for how molecular complexity and diversity can evolve in large ribonucleoprotein assemblies.
Collapse
Affiliation(s)
- Nathan J Harper
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Chloe Burnside
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
33
|
Remes C, Khawaja A, Pearce SF, Dinan AM, Gopalakrishna S, Cipullo M, Kyriakidis V, Zhang J, Dopico XC, Yukhnovets O, Atanassov I, Firth AE, Cooperman B, Rorbach J. Translation initiation of leaderless and polycistronic transcripts in mammalian mitochondria. Nucleic Acids Res 2023; 51:891-907. [PMID: 36629253 PMCID: PMC9881170 DOI: 10.1093/nar/gkac1233] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.
Collapse
Affiliation(s)
- Cristina Remes
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sarah F Pearce
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Adam M Dinan
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Vasileios Kyriakidis
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Olessya Yukhnovets
- RWTH Aachen, I. Physikalisches Institut (IA), Aachen, Germany
- Forschungszentrum Jülich, Institute of Complex Systems ICS-5, Jülich, Germany
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Barry Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm 17165, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- STIAS: Stellenbosch Institute for Advanced Study at Stellenbosch University, Marais Rd, Stellenbosch 7600, South Africa
| |
Collapse
|
34
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
35
|
Conor Moran J, Del'Olio S, Choi A, Zhong H, Barrientos A. Mitoribosome Biogenesis. Methods Mol Biol 2023; 2661:23-51. [PMID: 37166630 PMCID: PMC10639111 DOI: 10.1007/978-1-0716-3171-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitoribosome biogenesis is a complex and energetically costly process that involves RNA elements encoded in the mitochondrial genome and mitoribosomal proteins most frequently encoded in the nuclear genome. The process is catalyzed by extra-ribosomal proteins, nucleus-encoded assembly factors that act in all stages of the assembly process to coordinate the processing and maturation of ribosomal RNAs with the hierarchical association of ribosomal proteins. Biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided hints regarding their assembly. In this general concept chapter, we will briefly describe the current knowledge, mainly regarding the mammalian mitoribosome biogenesis pathway and factors involved, and will emphasize the biological sources and approaches that have been applied to advance the field.
Collapse
Affiliation(s)
- J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Austin Choi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
36
|
Dobrynina LA, Makarova AG, Shabalina AA, Burmak AG, Shlapakova PS, Shamtieva KV, Tsypushtanova MM, Trubitsyna VV, Gnedovskaya EV. [A role of altered inflammation-related gene expression in cerebral small vessel disease with cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:58-68. [PMID: 37796069 DOI: 10.17116/jnevro202312309158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE To identify the role of changes in the expression of inflammation-related genes in cerebral microangiopathy/cerebral small vessel disease (cSVD). MATERIAL AND METHODS Forty-four cSVD patients (mean age 61.4±9.2) and 11 controls (mean age 57.3±9.7) were studied. Gene expression was assessed on an individual NanoString nCounter panel of 58 inflammation-related genes and 4 reference genes. A set of genes was generated based on converging results of complete genome-wide association studies (GWAS) in cSVD and Alzheimer's disease (AD) and circulating markers associated with vascular wall and Brain lesions in cSVD. RNA was isolated from blood leukocytes and analyzed with the nCounter Analysis System, followed by analysis in nSolver 4.0. Results were verified by real-time PCR. RESULTS CSVD patients had a significant decrease in BIN1 (log2FC=-1.272; p=0.039) and VEGFA (log2FC=-1.441; p=0.038) expression compared to controls, which showed predictive ability for cSVD. The cut-off for BIN1 expression was 5.76 a.u. (sensitivity 73%; specificity 75%) and the cut-off for VEGFA expression was 9.27 a.u. (sensitivity 64%; specificity 86%). Reduced expression of VEGFA (p=0.011), VEGFC (p=0.017), CD2AP (p=0.044) was associated with cognitive impairment (CI). There was a significant direct correlation between VEGFC expression and the scores on the Montreal Cognitive Assessment test and between BIN1 and VEGFC expression and delayed memory. CONCLUSION The possible prediction of cSVD by reduced expression levels of BIN1, VEGFA and the association of clinically significant CI with reduced VEGFA and VEGFC expression indicate their importance in the development and progression of the disease. The established importance of these genes in the pathogenesis of AD suggests that similar changes in their expression profile in cSVD may be one of the conditions for the comorbidity of the two pathologies.
Collapse
Affiliation(s)
| | | | | | - A G Burmak
- Research Center of Neurology, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
37
|
Silencing of the mitochondrial ribosomal protein L-24 gene activates the oxidative stress response in Caenorhabditis elegans. Biochim Biophys Acta Gen Subj 2023; 1867:130255. [PMID: 36265765 DOI: 10.1016/j.bbagen.2022.130255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
The mitochondrial translation machinery allows the synthesis of the mitochondrial-encoded subunits of the electron transport chain. Defects in this process lead to mitochondrial physiology failure; in humans, they are associated with early-onset, extremely variable and often fatal disorder. The use of a simple model to study the mitoribosomal defects is mandatory to overcome the difficulty to analyze the impact of pathological mutations in humans. In this paper we study in nematode Caenorhabditis elegans the silencing effect of the mrpl-24 gene, coding for the mitochondrial ribosomal protein L-24 (MRPL-24). This is a structural protein of the large subunit 39S of the mitoribosome and its effective physiological function is not completely elucidated. We have evaluated the nematode's fitness fault and investigated the mitochondrial defects associated with MRPL-24 depletion. The oxidative stress response activation due to the mitochondrial alteration has been also investigated as a compensatory physiological mechanism. For the first time, we demonstrated that MRPL-24 reduction increases the expression of detoxifying enzymes such as SOD-3 and GST-4 through the involvement of transcription factor SKN-1. BACKGROUND In humans, mutations in genes encoding mitochondrial ribosomal proteins (MRPs) often cause early-onset, severe, fatal and extremely variable clinical defects. Mitochondrial ribosomal protein L-24 (MRPL24) is a structural protein of the large subunit 39S of the mitoribosome. It is highly conserved in different species and its effective physiological function is not completely elucidated. METHODS We characterized the MRPL24 functionality using the animal model Caenorhabditis elegans. We performed the RNA mediated interference (RNAi) by exposing the nematodes' embryos to double-stranded RNA (dsRNA) specific for the MRPL-24 coding sequence. We investigated for the first time in C. elegans, the involvement of the MRPL-24 on the nematode's fitness and its mitochondrial physiology. RESULTS Mrpl-24 silencing in C. elegans negatively affected the larval development, progeny production and body bending. The analysis of mitochondrial functionality revealed loss of mitochondrial network and impairment of mitochondrial functionality, as the decrease of oxygen consumption rate and the ROS production, as well as reduction of mitochondrial protein synthesis. Finally, the MRPL-24 depletion activated the oxidative stress response, increasing the expression levels of two detoxifying enzymes, SOD-3 and GST-4. CONCLUSIONS In C. elegans the MRPL-24 depletion activated the oxidative stress response. This appears as a compensatory mechanism to the alteration of the mitochondrial functionality and requires the involvement of transcription factor SKN-1. GENERAL SIGNIFICANCE C. elegans resulted in a good model for the study of mitochondrial disorders and its use as a simple and pluricellular organism could open interesting perspectives to better investigate the pathologic mechanisms underlying these devastating diseases.
Collapse
|
38
|
Hillen HS. Cryo-EM for Structure Determination of Mitochondrial Ribosome Samples. Methods Mol Biol 2023; 2661:89-100. [PMID: 37166633 DOI: 10.1007/978-1-0716-3171-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single-particle cryoelectron microscopy (cryo-EM) allows structure determination of large macromolecular complexes from conformationally and compositionally heterogeneous mixtures of particles. This technique has been used to reveal the architecture of the mitochondrial ribosome and to visualize transient states that occur during the translation cycle or during mitoribosome biogenesis. Here, we outline an exemplary workflow for the analysis of single-particle cryo-EM data of human mitoribosome samples. In addition, we provide an example dataset which can be used for training purposes alongside the protocol.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
39
|
Agrawal RK, Majumdar S. Evolution: Mitochondrial Ribosomes Across Species. Methods Mol Biol 2023; 2661:7-21. [PMID: 37166629 DOI: 10.1007/978-1-0716-3171-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ribosome is among the most complex and ancient cellular macromolecular assemblies that plays a central role in protein biosynthesis in all living cells. Its function of translation of genetic information encoded in messenger RNA into protein molecules also extends to subcellular compartments in eukaryotic cells such as apicoplasts, chloroplasts, and mitochondria. The origin of mitochondria is primarily attributed to an early endosymbiotic event between an alpha-proteobacterium and a primitive (archaeal) eukaryotic cell. The timeline of mitochondrial acquisition, the nature of the host, and their diversification have been studied in great detail and are continually being revised as more genomic and structural data emerge. Recent advancements in high-resolution cryo-EM structure determination have provided architectural details of mitochondrial ribosomes (mitoribosomes) from various species, revealing unprecedented diversifications among them. These structures provide novel insights into the evolution of mitoribosomal structure and function. Here, we present a brief overview of the existing mitoribosomal structures in the context of the eukaryotic evolution tree showing their diversification from their last common ancestor.
Collapse
Affiliation(s)
- Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health Empire State Plaza, Albany, NY, USA.
- Department of Biomedical Sciences, University at Albany, SUNY, Rensselaer, NY, USA.
| | - Soneya Majumdar
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health Empire State Plaza, Albany, NY, USA
| |
Collapse
|
40
|
Jeandard D, Smirnova A, Fasemore AM, Coudray L, Entelis N, Förstner K, Tarassov I, Smirnov A. CoLoC-seq probes the global topology of organelle transcriptomes. Nucleic Acids Res 2022; 51:e16. [PMID: 36537202 PMCID: PMC9943681 DOI: 10.1093/nar/gkac1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Proper RNA localisation is essential for physiological gene expression. Various kinds of genome-wide approaches permit to comprehensively profile subcellular transcriptomes. Among them, cell fractionation methods, that couple RNase treatment of isolated organelles to the sequencing of protected transcripts, remain most widely used, mainly because they do not require genetic modification of the studied system and can be easily implemented in any cells or tissues, including in non-model species. However, they suffer from numerous false-positives since incompletely digested contaminant RNAs can still be captured and erroneously identified as resident transcripts. Here we introduce Controlled Level of Contamination coupled to deep sequencing (CoLoC-seq) as a new subcellular transcriptomics approach that efficiently bypasses this caveat. CoLoC-seq leverages classical enzymatic kinetics and tracks the depletion dynamics of transcripts in a gradient of an exogenously added RNase, with or without organellar membranes. By means of straightforward mathematical modelling, CoLoC-seq infers the localisation topology of RNAs and robustly distinguishes between genuinely resident, luminal transcripts and merely abundant surface-attached contaminants. Our generic approach performed well on human mitochondria and is in principle applicable to other membrane-bounded organelles, including plastids, compartments of the vacuolar system, extracellular vesicles, and viral particles.
Collapse
Affiliation(s)
| | | | | | - Léna Coudray
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Nina Entelis
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Konrad U Förstner
- ZB MED – Information Centre for Life Sciences, Cologne, D-50931, Germany,TH Köln – University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne, D-50678, Germany
| | - Ivan Tarassov
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | | |
Collapse
|
41
|
Mechanisms and players of mitoribosomal biogenesis revealed in trypanosomatids. Trends Parasitol 2022; 38:1053-1067. [PMID: 36075844 DOI: 10.1016/j.pt.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Translation in mitochondria is mediated by mitochondrial ribosomes, or mitoribosomes, complex ribonucleoprotein machines with dual genetic origin. Mitoribosomes in trypanosomatid parasites diverged markedly from their bacterial ancestors and other eukaryotic lineages in terms of protein composition, rRNA content, and overall architecture, yet their core functional elements remained conserved. Recent cryo-electron microscopy studies provided atomic models of trypanosomatid large and small mitoribosomal subunits and their precursors, making these parasites the organisms with the best-understood biogenesis of mitoribosomes. The structures revealed molecular mechanisms and players involved in the assembly of mitoribosomes not only in the parasites, but also in eukaryotes in general.
Collapse
|
42
|
Structure of a mitochondrial ribosome with fragmented rRNA in complex with membrane-targeting elements. Nat Commun 2022; 13:6132. [PMID: 36253367 PMCID: PMC9576764 DOI: 10.1038/s41467-022-33582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Mitoribosomes of green algae display a great structural divergence from their tracheophyte relatives, with fragmentation of both rRNA and proteins as a defining feature. Here, we report a 2.9 Å resolution structure of the mitoribosome from the alga Polytomella magna harbouring a reduced rRNA split into 13 fragments. We found that the rRNA contains a non-canonical reduced form of the 5S, as well as a permutation of the LSU domain I. The mt-5S rRNA is stabilised by mL40 that is also found in mitoribosomes lacking the 5S, which suggests an evolutionary pathway. Through comparison to other ribosomes with fragmented rRNAs, we observe that the pattern is shared across large evolutionary distances, and between cellular compartments, indicating an evolutionary convergence and supporting the concept of a primordial fragmented ribosome. On the protein level, eleven peripherally associated HEAT-repeat proteins are involved in the binding of 3' rRNA termini, and the structure features a prominent pseudo-trimer of one of them (mL116). Finally, in the exit tunnel, mL128 constricts the tunnel width of the vestibular area, and mL105, a homolog of a membrane targeting component mediates contacts with an inner membrane bound insertase. Together, the structural analysis provides insight into the evolution of the ribosomal machinery in mitochondria.
Collapse
|
43
|
Koc EC, Koc FC, Kartal F, Tirona M, Koc H. Role of mitochondrial translation in remodeling of energy metabolism in ER/PR(+) breast cancer. Front Oncol 2022; 12:897207. [PMID: 36119536 PMCID: PMC9472243 DOI: 10.3389/fonc.2022.897207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Remodeling of mitochondrial energy metabolism is essential for the survival of tumor cells in limited nutrient availability and hypoxic conditions. Defects in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis also cause a switch in energy metabolism from oxidative to aerobic glycolysis contributing to the tumor heterogeneity in cancer. Specifically, the aberrant expressions of mitochondrial translation components such as ribosomal proteins (MRPs) and translation factors have been increasingly associated with many different cancers including breast cancer. The mitochondrial translation is responsible for the synthesis 13 of mitochondrial-encoded OXPHOS subunits of complexes. In this study, we investigated the contribution of mitochondrial translation in the remodeling of oxidative energy metabolism through altered expression of OXPHOS subunits in 26 ER/PR(+) breast tumors. We observed a significant correlation between the changes in the expression of mitochondrial translation-related proteins and OXPHOS subunits in the majority of the ER/PR(+) breast tumors and breast cancer cell lines. The reduced expression of OXPHOS and mitochondrial translation components also correlated well with the changes in epithelial-mesenchymal transition (EMT) markers, E-cadherin (CHD1), and vimentin (VIM) in the ER/PR(+) tumor biopsies. Data mining analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast cancer proteome further supported the correlation between the reduced OXPHOS subunit expression and increased EMT and metastatic marker expression in the majority of the ER/PR(+) tumors. Therefore, understanding the role of MRPs in the remodeling of energy metabolism will be essential in the characterization of heterogeneity at the molecular level and serve as diagnostic and prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| | - Fatih C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Funda Kartal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria Tirona
- Department of Medical Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Hasan Koc
- Department of Pharmaceutical Science, School of Pharmacy, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| |
Collapse
|
44
|
Bao S, Wang X, Li M, Gao Z, Zheng D, Shen D, Liu L. Potential of Mitochondrial Ribosomal Genes as Cancer Biomarkers Demonstrated by Bioinformatics Results. Front Oncol 2022; 12:835549. [PMID: 35719986 PMCID: PMC9204274 DOI: 10.3389/fonc.2022.835549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing and bioinformatics analyses have clearly revealed the roles of mitochondrial ribosomal genes in cancer development. Mitochondrial ribosomes are composed of three RNA components encoded by mitochondrial DNA and 82 specific protein components encoded by nuclear DNA. They synthesize mitochondrial inner membrane oxidative phosphorylation (OXPHOS)-related proteins and participate in various biological activities via the regulation of energy metabolism and apoptosis. Mitochondrial ribosomal genes are strongly associated with clinical features such as prognosis and foci metastasis in patients with cancer. Accordingly, mitochondrial ribosomes have become an important focus of cancer research. We review recent advances in bioinformatics research that have explored the link between mitochondrial ribosomes and cancer, with a focus on the potential of mitochondrial ribosomal genes as biomarkers in cancer.
Collapse
Affiliation(s)
- Shunchao Bao
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, China
| | - Mo Li
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhao Gao
- Nuclear Medicine Department, Second Hospital of Jilin University, Changchun, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dihan Shen
- Medical Research Center, Second Hospital of Jilin University, Changchun, China
| | - Linlin Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Yuan L, Yang Y, Li X, Zhou X, Du YH, Liu WJ, Zhang L, Yu L, Ma TT, Li JX, Chen Y, Nan Y. 18β-glycyrrhetinic acid regulates mitochondrial ribosomal protein L35-associated apoptosis signaling pathways to inhibit proliferation of gastric carcinoma cells. World J Gastroenterol 2022; 28:2437-2456. [PMID: 35979263 PMCID: PMC9258276 DOI: 10.3748/wjg.v28.i22.2437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric carcinoma (GC) is a common gastrointestinal malignancy worldwide. Based on the cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets.
AIM To explore the mechanism by which 18β-glycyrrhetinic acid (18β-GRA) regulates mitochondrial ribosomal protein L35 (MRPL35) related signal proteins to inhibit the proliferation of GC cells.
METHODS Cell counting kit-8 assay was used to detect the effects of 18β-GRA on the survival rate of human normal gastric mucosal cell line GES-1 and the proliferation of GC cell lines MGC80-3 and BGC-823. The apoptosis and cell cycle were assessed by flow cytometry. Cell invasion and migration were evaluated by Transwell assay, and cell scratch test was used to detect cell migration. Furthermore, a tumor model was established by hypodermic injection of 2.5 × 106 BGC-823 cells at the selected positions of BALB/c nude mice to determine the effect of 18β-GRA on GC cell proliferation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect MRPL35 expression in the engrafted tumors in mice. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography–tandem mass spectrometry to screen for differentially expressed proteins (DEPs) extracted from GC cells and control cells after 18β-GRA intervention. A detailed bioinformatics analysis of these DEPs was performed, including Gene Ontology annotation and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and so on. Moreover, STRING database (https://string-db.org/) was used to predict protein-protein interaction (PPI) relationships and Western blot was used to detect the expression of proteins of interest in GC cells.
RESULTS The results indicated that 18β-GRA could inhibit the proliferation of GC cells in a dose- and time-dependent manner. It could induce GC cell apoptosis and arrest the cell cycle at G0/G1 phase. The proportion of cells arrested at S phase decreased with the increase of 18-GRA dose, and the migration and invasiveness of GC cells were inhibited. The results of animal experiments showed that 18β-GRA could inhibit tumor formation in BALB/c nude mice, and qRT-PCR results showed that MRPL35 expression level was significantly reduced in the engrafted tumors in mice. Using TMT technology, 609 DEPs, among which 335 were up-regulated and 274 were down-regulated, were identified in 18β-GRA intervention compared with control. We found that the intervention of 18β-GRA in GC cells involved many important biological processes and signaling pathways, such as cellular processes, biological regulation, and TP53 signaling pathway. Notably, after the drug intervention, MRPL35 expression was significantly down-regulated (P = 0.000247), TP53 expression was up-regulated (P = 0.02676), and BCL2L1 was down-regulated (P = 0.01699). Combined with the Retrieval of Interacting Genes/Proteins database, we analyzed the relationship between MRPL35, TP53, and BCL2L1 signaling proteins, and we found that COPS5, BAX, and BAD proteins can form a PPI network with MRPL35, TP53, and BCL2L1. Western blot analysis confirmed the intervention effect of 18β-GRA on GC cells, MRPL35, TP53, and BCL2L1 showed dose-dependent up/down-regulation, and the expression of COPS5, BAX, and BAD also increased/decreased with the change of 18β-GRA concentration.
CONCLUSION 18β-GRA can inhibit the proliferation of GC cells by regulating MRPL35, COPS5, TP53, BCL2L1, BAX, and BAD.
Collapse
Affiliation(s)
- Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xia Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xin Zhou
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Hua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Wen-Jing Liu
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Lei Yu
- Department of Infectious Diseases, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ting-Ting Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia-Xin Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yan Chen
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
46
|
Lake NJ, Zhou L, Xu J, Lek M. MitoVisualize: a resource for analysis of variants in human mitochondrial RNAs and DNA. Bioinformatics 2022; 38:2967-2969. [PMID: 35561159 DOI: 10.1093/bioinformatics/btac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
SUMMARY We present MitoVisualize, a new tool for analysis of the human mitochondrial DNA (mtDNA). MitoVisualize enables visualization of: (i) the position and effect of variants in mitochondrial transfer RNA and ribosomal RNA secondary structures alongside curated variant annotations, (ii) data across RNA structures, such as to show all positions with disease-associated variants or with post-transcriptional modifications and (iii) the position of a base, gene or region in the circular mtDNA map, such as to show the location of a large deletion. All visualizations can be easily downloaded as figures for reuse. MitoVisualize can be useful for anyone interested in exploring mtDNA variation, though is designed to facilitate mtDNA variant interpretation in particular. AVAILABILITY AND IMPLEMENTATION MitoVisualize can be accessed via https://www.mitovisualize.org/. The source code is available at https://github.com/leklab/mito_visualize/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Murdoch Children's Research Institute, Melbourne 3052, Australia
| | - Lily Zhou
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jenny Xu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
47
|
Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022; 23:606-623. [PMID: 35459860 DOI: 10.1038/s41576-022-00480-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
Collapse
|
48
|
Santos B, Zeng R, Jorge SF, Ferreira-Junior JR, Barrientos A, Barros MH. Functional analyses of mitoribosome 54S subunit devoid of mitochondria-specific protein sequences. Yeast 2022; 39:208-229. [PMID: 34713496 PMCID: PMC8969203 DOI: 10.1002/yea.3678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
In Saccharomyces cerevisiae, mitoribosomes are composed of a 54S large subunit (mtLSU) and a 37S small subunit (mtSSU). The two subunits altogether contain 73 mitoribosome proteins (MRPs) and two ribosomal RNAs (rRNAs). Although mitoribosomes preserve some similarities with their bacterial counterparts, they have significantly diverged by acquiring new proteins, protein extensions, and new RNA segments, adapting the mitoribosome to the synthesis of highly hydrophobic membrane proteins. In this study, we investigated the functional relevance of mitochondria-specific protein extensions at the C-terminus (C) or N-terminus (N) present in 19 proteins of the mtLSU. The studied mitochondria-specific extensions consist of long tails and loops extending from globular domains that mainly interact with mitochondria-specific proteins and 21S rRNA moieties extensions. The expression of variants devoid of extensions in uL4 (C), uL5 (N), uL13 (N), uL13 (C), uL16 (C), bL17 (N), bL17 (C), bL21 (24), uL22 (N), uL23 (N), uL23 (C), uL24 (C), bL27 (C), bL28 (N), bL28 (C), uL29 (N), uL29 (C), uL30 (C), bL31 (C), and bL32 (C) did not rescue the mitochondrial protein synthesis capacities and respiratory growth of the respective null mutants. On the contrary, the truncated form of the mitoribosome exit tunnel protein uL24 (N) yields a partially functional mitoribosome. Also, the removal of mitochondria-specific sequences from uL1 (N), uL3 (N), uL16 (N), bL9 (N), bL19 (C), uL29 (C), and bL31 (N) did not affect the mitoribosome function and respiratory growth. The collection of mutants described here provides new means to study and evaluate defective assembly modules in the mitoribosome biogenesis process.
Collapse
Affiliation(s)
- Barbara Santos
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Rui Zeng
- Department of Neurology University of Miami Miller School of Medicine, Miami, USA
| | - Sasa F. Jorge
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Antoni Barrientos
- Department of Neurology University of Miami Miller School of Medicine, Miami, USA
| | - Mario H. Barros
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Rebelo-Guiomar P, Pellegrino S, Dent KC, Sas-Chen A, Miller-Fleming L, Garone C, Van Haute L, Rogan JF, Dinan A, Firth AE, Andrews B, Whitworth AJ, Schwartz S, Warren AJ, Minczuk M. A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit. Nat Commun 2022; 13:929. [PMID: 35177605 PMCID: PMC8854578 DOI: 10.1038/s41467-022-28503-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Many cellular processes, including ribosome biogenesis, are regulated through post-transcriptional RNA modifications. Here, a genome-wide analysis of the human mitochondrial transcriptome shows that 2’-O-methylation is limited to residues of the mitoribosomal large subunit (mtLSU) 16S mt-rRNA, introduced by MRM1, MRM2 and MRM3, with the modifications installed by the latter two proteins being interdependent. MRM2 controls mitochondrial respiration by regulating mitoribosome biogenesis. In its absence, mtLSU particles (visualized by cryo-EM at the resolution of 2.6 Å) present disordered RNA domains, partial occupancy of bL36m and bound MALSU1:L0R8F8:mtACP anti-association module, allowing five mtLSU biogenesis intermediates with different intersubunit interface configurations to be placed along the assembly pathway. However, mitoribosome biogenesis does not depend on the methyltransferase activity of MRM2. Disruption of the MRM2 Drosophila melanogaster orthologue leads to mitochondria-related developmental arrest. This work identifies a key checkpoint during mtLSU assembly, essential to maintain mitochondrial homeostasis. Rebelo-Guiomar et al. unveil late stage assembly intermediates of the human mitochondrial ribosome by inactivating the methyltransferase MRM2 in cells. Absence of MRM2 impairs organismal homeostasis, while its catalytic activity is dispensable for mitoribosomal biogenesis.
Collapse
Affiliation(s)
- Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Simone Pellegrino
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust - MRC Stem Cell Institute, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.,Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Kyle C Dent
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust - MRC Stem Cell Institute, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.,Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Leonor Miller-Fleming
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, 40137, Italy
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Jack F Rogan
- STORM Therapeutics Limited, Babraham Research Campus, Moneta Building, Cambridge, CB22 3AT, UK
| | - Adam Dinan
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Byron Andrews
- STORM Therapeutics Limited, Babraham Research Campus, Moneta Building, Cambridge, CB22 3AT, UK
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alan J Warren
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.,Wellcome Trust - MRC Stem Cell Institute, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.,Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Rd, Cambridge, CB2 0XY, UK.
| |
Collapse
|
50
|
Yang Z, Wang L, Yang C, Pu S, Guo Z, Wu Q, Zhou Z, Zhao H. Mitochondrial Membrane Remodeling. Front Bioeng Biotechnol 2022; 9:786806. [PMID: 35059386 PMCID: PMC8763711 DOI: 10.3389/fbioe.2021.786806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key regulators of many important cellular processes and their dysfunction has been implicated in a large number of human disorders. Importantly, mitochondrial function is tightly linked to their ultrastructure, which possesses an intricate membrane architecture defining specific submitochondrial compartments. In particular, the mitochondrial inner membrane is highly folded into membrane invaginations that are essential for oxidative phosphorylation. Furthermore, mitochondrial membranes are highly dynamic and undergo constant membrane remodeling during mitochondrial fusion and fission. It has remained enigmatic how these membrane curvatures are generated and maintained, and specific factors involved in these processes are largely unknown. This review focuses on the current understanding of the molecular mechanism of mitochondrial membrane architectural organization and factors critical for mitochondrial morphogenesis, as well as their functional link to human diseases.
Collapse
Affiliation(s)
- Ziyun Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, High-Tech Development Zone, Chengdu, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|