1
|
Doireau R, Jaślan J, Cubero-Font P, Demes-Causse E, Bertaux K, Cassan C, Pétriacq P, De Angeli A. AtALMT5 mediates vacuolar fumarate import and regulates the malate/fumarate balance in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:811-824. [PMID: 39238122 DOI: 10.1111/nph.20077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Malate and fumarate constitute a significant fraction of the carbon fixed by photosynthesis, and they are at the crossroad of central metabolic pathways. In Arabidopsis thaliana, they are transiently stored in the vacuole to keep cytosolic homeostasis. The malate and fumarate transport systems of the vacuolar membrane are key players in the control of cell metabolism. Notably, the molecular identity of these transport systems remains mostly unresolved. We used a combination of imaging, electrophysiology and molecular physiology to identify an important molecular actor of dicarboxylic acid transport across the tonoplast. Here, we report the function of the A. thaliana Aluminium-Activated Malate Transporter 5 (AtALMT5). We characterised its ionic transport properties, expression pattern, localisation and function in vivo. We show that AtALMT5 is expressed in photosynthetically active tissues and localised in the tonoplast. Patch-clamp and in planta analyses demonstrated that AtALMT5 is an ion channel-mediating fumarate loading of the vacuole. We found in almt5 plants a reduced accumulation of fumarate in the leaves, in parallel with increased malate concentrations. These results identified AtALMT5 as an ion channel-mediating fumarate transport in the vacuoles of mesophyll cells and regulating the malate/fumarate balance in Arabidopsis.
Collapse
Affiliation(s)
- Roxane Doireau
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Justyna Jaślan
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Paloma Cubero-Font
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Elsa Demes-Causse
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Karen Bertaux
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Cédric Cassan
- UMR BFP, University Bordeaux, INRAE, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Pierre Pétriacq
- UMR BFP, University Bordeaux, INRAE, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Alexis De Angeli
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| |
Collapse
|
2
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Castillo-Velasquez C, Matamala E, Becerra D, Orio P, Brauchi SE. Optical recordings of organellar membrane potentials and the components of membrane conductance in lysosomes. J Physiol 2024; 602:1637-1654. [PMID: 38625711 DOI: 10.1113/jp283825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.
Collapse
Affiliation(s)
- Cristian Castillo-Velasquez
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Ella Matamala
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| |
Collapse
|
4
|
Miśkiewicz J, Burdach Z, Trela Z, Siemieniuk A, Karcz W. Multifractal Analysis of the Influence of Indole-3-Acetic Acid on Fast-Activating Vacuolar (FV) Channels of Beta vulgaris L. Taproot Cells. MEMBRANES 2023; 13:406. [PMID: 37103833 PMCID: PMC10141395 DOI: 10.3390/membranes13040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In this paper, the multifractal properties of the ion current time series in the fast-activating vacuolar (FV) channels of Beta vulgaris L. taproot cells were investigated. These channels are permeable for only monovalent cations and mediate K+ at very low concentrations of cytosolic Ca2+ and large voltages of either polarity. Using the patch clamp technique, the currents of the FV channels in red beet taproot vacuoles were recorded and analysed by using the multifractal detrended fluctuation analysis (MFDFA) method. The activity of the FV channels depended on the external potential and was sensitive to the auxin. It was also shown that the singularity spectrum of the ion current in the FV channels is non-singular, and the multifractal parameters, i.e., the generalised Hurst exponent and the singularity spectrum, were modified in the presence of IAA. Taking into account the obtained results, it can be suggested that the multifractal properties of fast-activating vacuolar (FV) K+ channels, indicating the existence of long-term memory, should be taken into account in the molecular mechanism of the auxin-induced growth of plant cells.
Collapse
Affiliation(s)
- Janusz Miśkiewicz
- Institute of Theoretical Physics, University of Wrocław, 50-204 Wrocław, Poland
- Physics and Biophysics Department, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Zbigniew Burdach
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Zenon Trela
- Physics and Biophysics Department, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Agnieszka Siemieniuk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Waldemar Karcz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
5
|
Riederer E, Cang C, Ren D. Lysosomal Ion Channels: What Are They Good For and Are They Druggable Targets? Annu Rev Pharmacol Toxicol 2023; 63:19-41. [PMID: 36151054 DOI: 10.1146/annurev-pharmtox-051921-013755] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca2+ signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K+, Na+, H+, Ca2+, and Cl-. The channels are regulated by numerous cellular factors, ranging from H+ in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.
Collapse
Affiliation(s)
- Erika Riederer
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| | - Chunlei Cang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China;
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| |
Collapse
|
6
|
Chen CC. Electrophysiological Techniques on the Study of Endolysosomal Ion Channels. Handb Exp Pharmacol 2023; 278:217-233. [PMID: 36871125 DOI: 10.1007/164_2023_638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Endolysosomal ion channels are a group of ion channel proteins that are functionally expressed on the membrane of endolysosomal vesicles. The electrophysiological properties of these ion channels in the intracellular organelle membrane cannot be observed using conventional electrophysiological techniques. This section compiles the different electrophysiological techniques utilized in recent years to study endolysosomal ion channels and describes their methodological characteristics, emphasizing the most widely used technique for whole endolysosome recordings to date. This includes the use of different pharmacological tools and genetic tools for the application of patch-clamping techniques for specific stages of endolysosomes, allowing the recording of ion channel activity in different organelles, such as recycling endosomes, early endosomes, late endosomes, and lysosomes. These electrophysiological techniques are not only cutting-edge technologies that help to investigate the biophysical properties of known and unknown intracellular ion channels but also help us to investigate the physiopathological role of these ion channels in the distribution of dynamic vesicles and to identify new therapeutic targets for precision medicine and drug screening.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Dietrich P, Gradogna A, Carpaneto A. The Plant Vacuole as Heterologous System to Characterize the Functional Properties of TPC Channels. Handb Exp Pharmacol 2023; 278:235-247. [PMID: 35879579 DOI: 10.1007/164_2022_604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Human TPC channels are an emerging family of intracellular proteins fundamental for cell physiology and involved in various severe pathologies. Their localization in the membranes of endo-lysosomes, intracellular compartments of submicrometric dimensions, makes their study difficult with usual electrophysiological techniques. In this work, we show how the plant vacuole, a versatile organelle that can occupy up to 90% of the volume in mature plant cells, can be used as a heterologous system of expression for functional characterization. For this purpose, the use of vacuoles isolated from mesophyll cells of the Arabidopsis thaliana mutant lacking the endogenous TPC avoids unwanted interferences. The patch-clamp technique can be successfully applied to plant vacuoles in all different configuration modes; of note, the whole-vacuole configuration allows to study channel modulation by cytosolic factors. The combination of patch-clamp with fluorescence techniques, for example, by using fluorescent probes sensitive to specific ions of interest, represents a useful extension to investigate the selectivity properties of the channels. Therefore, the plant vacuole, similar to Xenopus oocytes for ion channels and transporters localized in the plasma membrane, has the capability to become a model system for functional studies on intracellular ion channels and transporters.
Collapse
Affiliation(s)
- P Dietrich
- Lehrstuhl für Molekulare Pflanzenphysiologie, Department Biologie Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - A Carpaneto
- Institute of Biophysics, Genoa, Italy.
- Department of Earth, Environment and Life Sciences (DISTAV) - University of Genoa, Genoa, Italy.
| |
Collapse
|
8
|
Gradogna A, Carpaneto A. Electrophysiology and fluorescence to investigate cation channels and transporters in isolated plant vacuoles. STRESS BIOLOGY 2022; 2:42. [PMID: 37676514 PMCID: PMC10442027 DOI: 10.1007/s44154-022-00064-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 09/08/2023]
Abstract
The plant vacuole plays a fundamental role in cell homeostasis. The successful application of patch-clamp technique on isolated vacuoles allows the determination of the functional characteristics of tonoplast ion channels and transporters. The parallel use of a sensor-based fluorescence approach capable of detecting changes in calcium and proton concentrations opens up new possibilities for investigation. In excised patch, the presence of fura-2 in the vacuolar solution reveals the direct permeation of calcium in plant TPC channels. In whole-vacuole, the activity of non-electrogenic NHX potassium proton antiporters can be measured by using the proton sensitive dye BCECF loaded in the vacuolar lumen by the patch pipette. Both vacuolar NHXs and CLCa (chloride/nitrate antiporter) are inhibited by the phosphoinositide PI(3,5)P2, suggesting a coordinated role of these proteins in salt accumulation. Increased knowledge in the molecular mechanisms of vacuolar ion channels and transporters has the potential to improve our understanding on how plants cope with a rapidly changing environment.
Collapse
Affiliation(s)
- Antonella Gradogna
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149, Genoa, Italy
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149, Genoa, Italy.
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy.
| |
Collapse
|
9
|
Dickinson MS, Lu J, Gupta M, Marten I, Hedrich R, Stroud RM. Molecular basis of multistep voltage activation in plant two-pore channel 1. Proc Natl Acad Sci U S A 2022; 119:e2110936119. [PMID: 35210362 PMCID: PMC8892357 DOI: 10.1073/pnas.2110936119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated ion channels confer excitability to biological membranes, initiating and propagating electrical signals across large distances on short timescales. Membrane excitation requires channels that respond to changes in electric field and couple the transmembrane voltage to gating of a central pore. To address the mechanism of this process in a voltage-gated ion channel, we determined structures of the plant two-pore channel 1 at different stages along its activation coordinate. These high-resolution structures of activation intermediates, when compared with the resting-state structure, portray a mechanism in which the voltage-sensing domain undergoes dilation and in-membrane plane rotation about the gating charge-bearing helix, followed by charge translocation across the charge transfer seal. These structures, in concert with patch-clamp electrophysiology, show that residues in the pore mouth sense inhibitory Ca2+ and are allosterically coupled to the voltage sensor. These conformational changes provide insight into the mechanism of voltage-sensor domain activation in which activation occurs vectorially over a series of elementary steps.
Collapse
Affiliation(s)
- Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94143
| | - Jinping Lu
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Irene Marten
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
| |
Collapse
|
10
|
Hashimoto K, Koselski M, Tsuboyama S, Dziubinska H, Trębacz K, Kuchitsu K. Functional Analyses of the Two Distinctive Types of Two-Pore Channels and the Slow Vacuolar Channel in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:163-175. [PMID: 34936705 DOI: 10.1093/pcp/pcab176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The two-pore channel (TPC) family is widely conserved in eukaryotes. Many vascular plants, including Arabidopsis and rice, possess a single TPC gene which functions as a slow vacuolar (SV) channel-voltage-dependent cation-permeable channel located in the vacuolar membrane (tonoplast). On the other hand, a liverwort Marchantia polymorpha genome encodes three TPC homologs: MpTPC1 is similar to TPCs in vascular plants (type 1 TPC), while MpTPC2 and MpTPC3 are classified into a distinctive group (type 2 TPC). Phylogenetic analysis suggested that the type 2 TPC emerged before the land colonization in plant evolution and was lost in vascular plants and hornworts. All of the three MpTPCs were shown to be localized at the tonoplast. We generated knockout mutants of tpc1, tpc2, tpc3 and tpc2 tpc3 double mutant by clustered regularly interspaced short palindromic repeats/Cas9 genome editing and performed patch-clamp analyses of isolated vacuoles. The SV channel activity was abolished in the Mptpc1 loss-of-function mutant (Mptpc1-1KO), while Mptpc2-1KO, Mptpc3-1KO and Mptpc2-2/tpc3-2KO double mutant exhibited similar activity to the wild type, indicating that MpTPC1 (type 1) is solely responsible for the SV channel activity. Activators of mammalian TPCs, phosphatidylinositol-3,5-bisphosphate and nicotinic acid adenine dinucleotide phosphate, did not affect the ion channel activity of any MpTPCs. These results indicate that the type 1 TPCs, which are well conserved in all land plant species, encode the SV channel, while the type 2 TPCs likely encode other tonoplast cation channel(s) distinct from the SV channel and animal TPCs.
Collapse
Affiliation(s)
| | - Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Shoko Tsuboyama
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Halina Dziubinska
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Kazimierz Trębacz
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, Lublin 20-033, Poland
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| |
Collapse
|
11
|
Zhang W, Bai J, Hang K, Xu J, Zhou C, Li L, Wang Z, Wang Y, Wang K, Xue D. Role of Lysosomal Acidification Dysfunction in Mesenchymal Stem Cell Senescence. Front Cell Dev Biol 2022; 10:817877. [PMID: 35198560 PMCID: PMC8858834 DOI: 10.3389/fcell.2022.817877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been widely used as a potential treatment for a variety of diseases. However, the contradiction between the low survival rate of transplanted cells and the beneficial therapeutic effects has affected its clinical use. Lysosomes as organelles at the center of cellular recycling and metabolic signaling, play essential roles in MSC homeostasis. In the first part of this review, we summarize the role of lysosomal acidification dysfunction in MSC senescence. In the second part, we summarize some of the potential strategies targeting lysosomal proteins to enhance the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwu Bai
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengwei Zhou
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Li
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongxiang Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Deting Xue,
| |
Collapse
|
12
|
Wu Y, Xu M, Wang P, Syeda AKR, Huang P, Dong XP. Lysosomal potassium channels. Cell Calcium 2022; 102:102536. [PMID: 35016151 DOI: 10.1016/j.ceca.2022.102536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
The lysosome is an important membrane-bound acidic organelle that is regarded as the degradative center as well as multifunctional signaling hub. It digests unwanted macromolecules, damaged organelles, microbes, and other materials derived from endocytosis, autophagy, and phagocytosis. To function properly, the ionic homeostasis and membrane potential of the lysosome are strictly regulated by transporters and ion channels. As the most abundant cation inside the cell, potassium ions (K+) are vital for lysosomal membrane potential and lysosomal calcium (Ca2+) signaling. However, our understanding about how lysosomal K+homeostasis is regulated and what are the functions of K+in the lysosome is very limited. Currently, two lysosomal K+channels have been identified: large-conductance Ca2+-activated K+channel (BK) and transmembrane Protein 175 (TMEM175). In this review, we summarize recent development in our understanding of K+ homeostasis and K+channels in the lysosome. We hope to guide the readers into a more in-depth discussion of lysosomal K+ channels in lysosomal physiology and human diseases.
Collapse
Affiliation(s)
- Yi Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China
| | - Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Pingping Wang
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada
| | - Peng Huang
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China; School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd, Shanghai 201318, China.
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova NS B3H 4R2, Canada.
| |
Collapse
|
13
|
Siemieniuk A, Burdach Z, Karcz W. A Comparison of the Effect of Lead (Pb) on the Slow Vacuolar (SV) and Fast Vacuolar (FV) Channels in Red Beet ( Beta vulgaris L.) Taproot Vacuoles. Int J Mol Sci 2021; 22:12621. [PMID: 34884427 PMCID: PMC8657509 DOI: 10.3390/ijms222312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.
Collapse
Affiliation(s)
| | | | - Waldemar Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St., 40-032 Katowice, Poland; (A.S.); (Z.B.)
| |
Collapse
|
14
|
Deslauriers SD, Spalding EP. Electrophysiological study of Arabidopsis ABCB4 and PIN2 auxin transporters: Evidence of auxin activation and interaction enhancing auxin selectivity. PLANT DIRECT 2021; 5:e361. [PMID: 34816076 PMCID: PMC8595762 DOI: 10.1002/pld3.361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Polar auxin transport through plant tissue strictly requires polarly localized PIN proteins and uniformly distributed ABCB proteins. A functional synergy between the two types of membrane protein where their localizations overlap may create the degree of asymmetric auxin efflux required to produce polar auxin transport. We investigated this possibility by expressing ABCB4 and PIN2 in human embryonic kidney cells and measuring whole-cell ionic currents with the patch-clamp technique and CsCl-based electrolytes. ABCB4 activity was 1.81-fold more selective for Cl- over Cs+ and for PIN2 the value was 2.95. We imposed auxin gradients and determined that ABCB4 and PIN2 were 12-fold more permeable to the auxin anion (IAA-) than Cl-. This measure of the intrinsic selectivity of the transport pathway was 21-fold when ABCB4 and PIN2 were co-expressed. If this increase occurs in plants, it could explain why asymmetric PIN localization is not sufficient to create polar auxin flow. Some form of co-action or synergy between ABCB4 and PIN2 that increases IAA- selectivity at the cell face where both occur may be important. We also found that auxin stimulated ABCB4 activity, which may contribute to a self-reinforcement of auxin transport known as canalization.
Collapse
Affiliation(s)
- Stephen D. Deslauriers
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Division of Science and MathUniversity of MinnesotaMorrisMNUSA
| | | |
Collapse
|
15
|
Amini M, Chang Y, Wissenbach U, Flockerzi V, Schlenstedt G, Beck A. Activity of the yeast vacuolar TRP channel TRPY1 is inhibited by Ca 2+-calmodulin binding. J Biol Chem 2021; 297:101126. [PMID: 34461097 PMCID: PMC8449268 DOI: 10.1016/j.jbc.2021.101126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.
Collapse
Affiliation(s)
- Mahnaz Amini
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland; Department of Medical Biochemistry and Molecular Biology/PZMS, Medical School, Saarland University, Homburg, Germany
| | - Yiming Chang
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland; Department of Medical Biochemistry and Molecular Biology/PZMS, Medical School, Saarland University, Homburg, Germany
| | - Ulrich Wissenbach
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland
| | - Gabriel Schlenstedt
- Department of Medical Biochemistry and Molecular Biology/PZMS, Medical School, Saarland University, Homburg, Germany
| | - Andreas Beck
- Experimentelle und Klinische Pharmakologie und Toxikologie/PZMS, Universität des Saarlandes, Homburg, Deutschland.
| |
Collapse
|
16
|
Lee JW. Energy Renewal: Isothermal Utilization of Environmental Heat Energy with Asymmetric Structures. ENTROPY (BASEL, SWITZERLAND) 2021; 23:665. [PMID: 34070431 PMCID: PMC8228076 DOI: 10.3390/e23060665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
Through the research presented herein, it is quite clear that there are two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type A, such as glycolysis and the tricarboxylic acid cycle, apparently follows the second law well; Type B, as exemplified by the thermotrophic function with transmembrane electrostatically localized protons presented here, does not necessarily have to be constrained by the second law, owing to its special asymmetric function. This study now, for the first time, numerically shows that transmembrane electrostatic proton localization (Type-B process) represents a negative entropy event with a local protonic entropy change (ΔSL) in a range from -95 to -110 J/K∙mol. This explains the relationship between both the local protonic entropy change (ΔSL) and the mitochondrial environmental temperature (T) and the local protonic Gibbs free energy (ΔGL=TΔSL) in isothermal environmental heat utilization. The energy efficiency for the utilization of total protonic Gibbs free energy (ΔGT including ΔGL=TΔSL) in driving the synthesis of ATP is estimated to be about 60%, indicating that a significant fraction of the environmental heat energy associated with the thermal motion kinetic energy (kBT) of transmembrane electrostatically localized protons is locked into the chemical form of energy in ATP molecules. Fundamentally, it is the combination of water as a protonic conductor, and thus the formation of protonic membrane capacitor, with asymmetric structures of mitochondrial membrane and cristae that makes this amazing thermotrophic feature possible. The discovery of energy Type-B processes has inspired an invention (WO 2019/136037 A1) for energy renewal through isothermal environmental heat energy utilization with an asymmetric electron-gated function to generate electricity, which has the potential to power electronic devices forever, including mobile phones and laptops. This invention, as an innovative Type-B mimic, may have many possible industrial applications and is likely to be transformative in energy science and technologies for sustainability on Earth.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
17
|
Dindas J, Dreyer I, Huang S, Hedrich R, Roelfsema MRG. A voltage-dependent Ca 2+ homeostat operates in the plant vacuolar membrane. THE NEW PHYTOLOGIST 2021; 230:1449-1460. [PMID: 33577135 DOI: 10.1111/nph.17272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Cytosolic calcium signals are evoked by a large variety of biotic and abiotic stimuli and play an important role in cellular and long distance signalling in plants. While the function of the plasma membrane in cytosolic Ca2+ signalling has been intensively studied, the role of the vacuolar membrane remains elusive. A newly developed vacuolar voltage clamp technique was used in combination with live-cell imaging, to study the role of the vacuolar membrane in Ca2+ and pH homeostasis of bulging root hair cells of Arabidopsis. Depolarisation of the vacuolar membrane caused a rapid increase in the Ca2+ concentration and alkalised the cytosol, while hyperpolarisation led to the opposite responses. The relationship between the vacuolar membrane potential, the cytosolic pH and Ca2+ concentration suggests that a vacuolar H+ /Ca2+ exchange mechanism plays a central role in cytosolic Ca2+ homeostasis. Mathematical modelling further suggests that the voltage-dependent vacuolar Ca2+ homeostat could contribute to calcium signalling when coupled to a recently discovered K+ channel-dependent module for electrical excitability of the vacuolar membrane.
Collapse
Affiliation(s)
- Julian Dindas
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, D-97082, Germany
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008, Switzerland
| | - Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, 3460000, Chile
| | - Shouguang Huang
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, D-97082, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, D-97082, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Würzburg, D-97082, Germany
| |
Collapse
|
18
|
Koselski M, Pupkis V, Hashimoto K, Lapeikaite I, Hanaka A, Wasko P, Plukaite E, Kuchitsu K, Kisnieriene V, Trebacz K. Impact of Mammalian Two-Pore Channel Inhibitors on Long-Distance Electrical Signals in the Characean Macroalga Nitellopsis obtusa and the Early Terrestrial Liverwort Marchantia polymorpha. PLANTS 2021; 10:plants10040647. [PMID: 33805421 PMCID: PMC8067100 DOI: 10.3390/plants10040647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022]
Abstract
Inhibitors of human two-pore channels (TPC1 and TPC2), i.e., verapamil, tetrandrine, and NED-19, are promising medicines used in treatment of serious diseases. In the present study, the impact of these substances on action potentials (APs) and vacuolar channel activity was examined in the aquatic characean algae Nitellopsis obtusa and in the terrestrial liverwort Marchantia polymorpha. In both plant species, verapamil (20-300 µM) caused reduction of AP amplitudes, indicating impaired Ca2+ transport. In N. obtusa, it depolarized the AP excitation threshold and resting potential and prolonged AP duration. In isolated vacuoles of M. polymorpha, verapamil caused a reduction of the open probability of slow vacuolar SV/TPC channels but had almost no effect on K+ channels in the tonoplast of N. obtusa. In both species, tetrandrine (20-100 µM) evoked a pleiotropic effect: reduction of resting potential and AP amplitudes and prolongation of AP repolarization phases, especially in M. polymorpha, but it did not alter vacuolar SV/TPC activity. NED-19 (75 µM) caused both specific and unspecific effects on N. obtusa APs. In M. polymorpha, NED-19 increased the duration of repolarization. However, no inhibition of SV/TPC channels was observed in Marchantia vacuoles, but an increase in open probability and channel flickering. The results indicate an effect on Ca2+ -permeable channels governing plant excitation.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Vilmantas Pupkis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.H.); (K.K.)
| | - Indre Lapeikaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Piotr Wasko
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
| | - Egle Plukaite
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; (K.H.); (K.K.)
| | - Vilma Kisnieriene
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (V.P.); (I.L.); (E.P.)
- Correspondence: (V.K.); (K.T.)
| | - Kazimierz Trebacz
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.K.); (A.H.); (P.W.)
- Correspondence: (V.K.); (K.T.)
| |
Collapse
|
19
|
Matamala E, Castillo C, Vivar JP, Rojas PA, Brauchi SE. Imaging the electrical activity of organelles in living cells. Commun Biol 2021; 4:389. [PMID: 33758369 PMCID: PMC7988155 DOI: 10.1038/s42003-021-01916-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic cells are complex systems compartmentalized in membrane-bound organelles. Visualization of organellar electrical activity in living cells requires both a suitable reporter and non-invasive imaging at high spatiotemporal resolution. Here we present hVoSorg, an optical method to monitor changes in the membrane potential of subcellular membranes. This method takes advantage of a FRET pair consisting of a membrane-bound voltage-insensitive fluorescent donor and a non-fluorescent voltage-dependent acceptor that rapidly moves across the membrane in response to changes in polarity. Compared to the currently available techniques, hVoSorg has advantages including simple and precise subcellular targeting, the ability to record from individual organelles, and the potential for optical multiplexing of organellar activity.
Collapse
Affiliation(s)
- Ella Matamala
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Cristian Castillo
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Juan P Vivar
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Patricio A Rojas
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Sebastian E Brauchi
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US.
| |
Collapse
|
20
|
Wie J, Liu Z, Song H, Tropea TF, Yang L, Wang H, Liang Y, Cang C, Aranda K, Lohmann J, Yang J, Lu B, Chen-Plotkin AS, Luk KC, Ren D. A growth-factor-activated lysosomal K + channel regulates Parkinson's pathology. Nature 2021; 591:431-437. [PMID: 33505021 DOI: 10.1038/s41586-021-03185-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenjiang Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Haikun Song
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lu Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Huanhuan Wang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yuling Liang
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chunlei Cang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey Lohmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Osei-Owusu J, Yang J, Leung KH, Ruan Z, Lü W, Krishnan Y, Qiu Z. Proton-activated chloride channel PAC regulates endosomal acidification and transferrin receptor-mediated endocytosis. Cell Rep 2021; 34:108683. [PMID: 33503418 PMCID: PMC7869721 DOI: 10.1016/j.celrep.2020.108683] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
During vesicular acidification, chloride (Cl−), as the counterion, provides the electrical shunt for proton pumping by the vacuolar H+ ATPase. Intracellular CLC transporters mediate Cl− influx to the endolysosomes through their 2Cl−/H+ exchange activity. However, whole-endolysosomal patch-clamp recording also revealed a mysterious conductance releasing Cl− from the lumen. It remains unknown whether CLCs or other Cl− channels are responsible for this activity. Here, we show that the newly identified proton-activated Cl− (PAC) channel traffics from the plasma membrane to endosomes via the classical YxxL motif. PAC deletion abolishes the endosomal Cl− conductance, raises luminal Cl− level, lowers luminal pH, and increases transferrin receptor-mediated endocytosis. PAC overexpression generates a large endosomal Cl− current with properties similar to those of endogenous conductance, hypo-acidifies endosomal pH, and reduces transferrin uptake. We propose that the endosomal Cl− PAC channel functions as a low pH sensor and prevents hyper-acidification by releasing Cl− from the lumen. Osei-Owusu et al. show that the recently identified proton-activated chloride (PAC) channel traffics from the plasma membrane to endosomes and forms an intracellular organelle Cl− channel. PAC functions as a low pH sensor in endosomes and prevents luminal hyper-acidification.
Collapse
Affiliation(s)
- James Osei-Owusu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ka Ho Leung
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Zheng Ruan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wei Lü
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Light-Regulated Transcription of a Mitochondrial-Targeted K + Channel. Cells 2020; 9:cells9112507. [PMID: 33228123 PMCID: PMC7699372 DOI: 10.3390/cells9112507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
The inner membranes of mitochondria contain several types of K+ channels, which modulate the membrane potential of the organelle and contribute in this way to cytoprotection and the regulation of cell death. To better study the causal relationship between K+ channel activity and physiological changes, we developed an optogenetic platform for a light-triggered modulation of K+ conductance in mitochondria. By using the light-sensitive interaction between cryptochrome 2 and the regulatory protein CIB1, we can trigger the transcription of a small and highly selective K+ channel, which is in mammalian cells targeted into the inner membrane of mitochondria. After exposing cells to very low intensities (≤0.16 mW/mm2) of blue light, the channel protein is detectable as an accumulation of its green fluorescent protein (GFP) tag in the mitochondria less than 1 h after stimulation. This system allows for an in vivo monitoring of crucial physiological parameters of mitochondria, showing that the presence of an active K+ channel causes a substantial depolarization compatible with the effect of an uncoupler. Elevated K+ conductance also results in a decrease in the Ca2+ concentration in the mitochondria but has no impact on apoptosis.
Collapse
|
23
|
Lee JW. Protonic conductor: better understanding neural resting and action potential. J Neurophysiol 2020; 124:1029-1044. [PMID: 32816602 DOI: 10.1152/jn.00281.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With the employment of the transmembrane electrostatic proton localization theory with a new membrane potential equation, neural resting and action potential is now much better understood as the voltage contributed by the localized protons/cations at a neural liquid- membrane interface. Accordingly, the neural resting/action potential is essentially a protonic/cationic membrane capacitor behavior. It is now understood with a newly formulated action potential equation: when action potential is <0 (negative number), the localized protons/cations charge density at the liquid-membrane interface along the periplasmic side is >0 (positive number); when the action potential is >0, the concentration of the localized protons and localized nonproton cations is <0, indicating a "depolarization" state. The nonlinear curve of the localized protons/cations charge density in the real-time domain of an action potential spike appears as an inverse mirror image to the action potential. The newly formulated action potential equation provides biophysical insights for neuron electrophysiology, which may represent a complementary development to the classic Goldman-Hodgkin-Katz equation. With the use of the action potential equation, the biological significance of axon myelination is now also elucidated as to provide protonic insulation and prevent any ions both inside and outside of the neuron from interfering with the action potential signal, so that the action potential can quickly propagate along the axon with minimal (e.g., 40 times less) energy requirement.NEW & NOTEWORTHY The newly formulated action potential equation provides biophysical insights for neuron electrophysiology, which may represent a complementary development to the classic Goldman-Hodgkin-Katz equation. The nonlinear curve of the localized protons/cations charge density in the real-time domain of an action potential spike appears as an inverse mirror image to the action potential. The biological significance of axon myelination is now elucidated as to provide protonic insulation and prevent any ions from interfering with action potential signal.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
24
|
Lee JW. Isothermal Environmental Heat Energy Utilization by Transmembrane Electrostatically Localized Protons at the Liquid-Membrane Interface. ACS OMEGA 2020; 5:17385-17395. [PMID: 32715223 PMCID: PMC7377078 DOI: 10.1021/acsomega.0c01768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
This study employing the latest theory on transmembrane electrostatic proton localization has now, for the first time, consistently elucidated a decades-longstanding bioenergetic conundrum in alkalophilic bacteria and more importantly discovered an entirely new feature: isothermal environmental heat utilization by electrostatically localized protons at the liquid-membrane interface. It was surprisingly revealed that the protonic motive force (equivalent to Gibbs free energy) from the isothermal environmental heat energy utilization through the electrostatically localized protons is not constrained by the overall energetics of the redox-driven proton pump system because of the following: (a) the transmembrane electrostatically localized protons are not free to move away from the membrane surface as a protonic capacitor feature; (b) the proton pumps embedded in the cell membrane extend beyond the localized proton layer apparently as an asymmetric property of the biological membrane; and (c) the protonic inlet mouth of the ATP synthase that accepts protons is located within this layer as another natural property of the asymmetric biological membrane. This work has now, for the first time, shown a novel thermotrophic feature where biological systems can isothermally utilize environmental heat energy through transmembrane electrostatically localized protons to help drive ATP synthesis.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry and
Biochemistry, Old Dominion University, 4402 Elkhorn Ave, Norfolk, Virginia 23529, United States
| |
Collapse
|
25
|
Effect of Auxin (IAA) on the Fast Vacuolar (FV) Channels in Red Beet ( Beta vulgaris L.) Taproot Vacuoles. Int J Mol Sci 2020; 21:ijms21144876. [PMID: 32664260 PMCID: PMC7402332 DOI: 10.3390/ijms21144876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
In contrast to the well-studied effect of auxin on the plasma membrane K+ channel activity, little is known about the role of this hormone in regulating the vacuolar K+ channels. Here, the patch-clamp technique was used to investigate the effect of auxin (IAA) on the fast-activating vacuolar (FV) channels. It was found that the macroscopic currents displayed instantaneous currents, which at the positive potentials were about three-fold greater compared to the one at the negative potentials. When auxin was added to the bath solution at a final concentration of 1 µM, it increased the outward currents by about 60%, but did not change the inward currents. The imposition of a ten-fold vacuole-to-cytosol KCl gradient stimulated the efflux of K+ from the vacuole into the cytosol and reduced the K+ current in the opposite direction. The addition of IAA to the bath solution with the 10/100 KCl gradient decreased the outward current and increased the inward current. Luminal auxin reduced both the outward and inward current by approximately 25% compared to the control. The single channel recordings demonstrated that cytosolic auxin changed the open probability of the FV channels at the positive voltages to a moderate extent, while it significantly increased the amplitudes of the single channel outward currents and the number of open channels. At the positive voltages, auxin did not change the unitary conductance of the single channels. We suggest that auxin regulates the activity of the fast-activating vacuolar (FV) channels, thereby causing changes of the K+ fluxes across the vacuolar membrane. This mechanism might serve to tightly adjust the volume of the vacuole during plant cell expansion.
Collapse
|
26
|
Miśkiewicz J, Trela Z, Burdach Z, Karcz W, Balińska-Miśkiewicz W. Long range correlations of the ion current in SV channels. Met3PbCl influence study. PLoS One 2020; 15:e0229433. [PMID: 32126096 PMCID: PMC7053716 DOI: 10.1371/journal.pone.0229433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
The long-range correlations within the current signal time series of the Beta vulgaris vacuolar membrane under the influence of organolead compound (Met3PbCl) are investigated. The current time series is transformed into a dwell time series. Then the rescaled range and detrended fluctuations analyses are used. It is shown that the presence of Met3PbCl in the solution decreases the mean value of the Hurst exponent and therefore influences the long-range correlations in ionic channel current. This observation is statistically significant. An ion channel model is built and the experimental results reconstructed and analysed.
Collapse
Affiliation(s)
- Janusz Miśkiewicz
- Institute of Theoretical Physics, University of Wrocław, Wrocław, Poland
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zenon Trela
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Zbigniew Burdach
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Wanda Balińska-Miśkiewicz
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
27
|
Lee JW. Electrostatically localized proton bioenergetics: better understanding membrane potential. Heliyon 2019; 5:e01961. [PMID: 31367684 PMCID: PMC6646885 DOI: 10.1016/j.heliyon.2019.e01961] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 11/03/2022] Open
Abstract
In Mitchell's chemiosmotic theory, membrane potential Δ ψ was given as the electric potential difference across the membrane. However, its physical origin for membrane potential Δ ψ was not well explained. Using the Lee proton electrostatic localization model with a newly formulated equation for protonic motive force (pmf) that takes electrostatically localized protons into account, membrane potential has now been better understood as the voltage difference contributed by the localized surface charge density ( [ H L + ] + ∑ i = 1 n [ M L i + ] ) at the liquid-membrane interface as in an electrostatically localized protons/cations-membrane-anions capacitor. That is, the origin of membrane potential Δ ψ is now better understood as the electrostatic formation of the localized surface charge density that is the sum of the electrostatically localized proton concentration [ H L + ] and the localized non-proton cations density ∑ i = 1 n [ M L i + ] at the liquid membrane interface. The total localized surface charge density equals to the ideal localized proton population density [ H L + ] 0 before the cation-proton exchange process; since the cation-proton exchange process does not change the total localized charges density, neither does it change to the membrane potential Δ ψ . The localized proton concentration [ H L + ] represents the dominant component, which accounts about 78% of the total localized surface charge density at the cation-proton exchange equilibrium state in animal mitochondria. Liquid water as a protonic conductor may play a significant role in the biological activities of membrane potential formation and utilization.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
28
|
Jaślan D, Dreyer I, Lu J, O'Malley R, Dindas J, Marten I, Hedrich R. Voltage-dependent gating of SV channel TPC1 confers vacuole excitability. Nat Commun 2019; 10:2659. [PMID: 31201323 PMCID: PMC6572840 DOI: 10.1038/s41467-019-10599-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/16/2019] [Indexed: 01/11/2023] Open
Abstract
In contrast to the plasma membrane, the vacuole membrane has not yet been associated with electrical excitation of plants. Here, we show that mesophyll vacuoles from Arabidopsis sense and control the membrane potential essentially via the K+-permeable TPC1 and TPK channels. Electrical stimuli elicit transient depolarization of the vacuole membrane that can last for seconds. Electrical excitability is suppressed by increased vacuolar Ca2+ levels. In comparison to wild type, vacuoles from the fou2 mutant, harboring TPC1 channels insensitive to luminal Ca2+, can be excited fully by even weak electrical stimuli. The TPC1-loss-of-function mutant tpc1-2 does not respond to electrical stimulation at all, and the loss of TPK1/TPK3-mediated K+ transport affects the duration of TPC1-dependent membrane depolarization. In combination with mathematical modeling, these results show that the vacuolar K+-conducting TPC1 and TPK1/TPK3 channels act in concert to provide for Ca2+- and voltage-induced electrical excitability to the central organelle of plant cells.
Collapse
Affiliation(s)
- Dawid Jaślan
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, 3460000, Chile.
| | - Jinping Lu
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Ronan O'Malley
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.,DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Julian Dindas
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.,Department of Plant and Microbial Biology, University of Zürich, 8008, Zürich, Switzerland
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany. .,Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
29
|
Identification of Inhibitory Ca 2+ Binding Sites in the Upper Vestibule of the Yeast Vacuolar TRP Channel. iScience 2018; 11:1-12. [PMID: 30572205 PMCID: PMC6299153 DOI: 10.1016/j.isci.2018.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 01/28/2023] Open
Abstract
By vacuolar patch-clamp and Ca2+ imaging experiments, we show that the yeast vacuolar transient receptor potential (TRPY) channel 1 is activated by cytosolic Ca2+ and inhibited by Ca2+ from the vacuolar lumen. The channel is cooperatively affected by vacuolar Ca2+ (Hill coefficient, 1.5), suggesting that it may accommodate a Ca2+ receptor that can bind two calcium ions. Alanine scanning of six negatively charged amino acid residues in the transmembrane S5 and S6 linker, facing the vacuolar lumen, revealed that two aspartate residues, 401 and 405, are essential for current inhibition and direct binding of 45Ca2+. Expressed in HEK-293 cells, a significant fraction of TRPY1, present in the plasma membrane, retained its Ca2+ sensitivity. Based on these data and on homology with TRPV channels, we conclude that D401 and D405 are key residues within the vacuolar vestibule of the TRPY1 pore that decrease cation access or permeation after Ca2+ binding. The yeast vacuolar TRPY1 channel is inhibited by vacuolar Ca2+ Aspartate residues D401A and D405A are essential for Ca2+-mediated inhibition Aspartate residues D401 and D405 are essential for direct Ca2+ binding Ca2+ binding to D401 and D405 within vacuolar pore vestibule mediates inhibition
Collapse
|
30
|
Burdach Z, Siemieniuk A, Trela Z, Kurtyka R, Karcz W. Role of auxin (IAA) in the regulation of slow vacuolar (SV) channels and the volume of red beet taproot vacuoles. BMC PLANT BIOLOGY 2018; 18:102. [PMID: 29866031 PMCID: PMC5987474 DOI: 10.1186/s12870-018-1321-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/24/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Auxin (IAA) is a central player in plant cell growth. In contrast to the well-established function of the plasma membrane in plant cell expansion, little is known about the role of the vacuolar membrane (tonoplast) in this process. RESULTS It was found that under symmetrical 100 mM K+ and 100 μM cytoplasmic Ca2+ the macroscopic currents showed a typical slow activation and a strong outward rectification of the steady-state currents. The addition of IAA at a final concentration of 1 μM to the bath medium stimulated the SV currents, whereas at 0.1 and 10 μM slight inhibition of SV currents was observed. The time constant, τ, decreased in the presence of this hormone. When single channels were analyzed, an increase in their activity was recorded with IAA compared to the control. The single-channel recordings that were obtained in the presence of IAA showed that auxin increased the amplitude of the single-channel currents. Interestingly, the addition of IAA to the bath medium with the same composition as the one that was used in the patch-clamp experiments showed that auxin decreased the volume of the vacuoles. CONCLUSIONS It is suggested that the SV channels and the volume of red beet taproot vacuoles are modulated by auxin (IAA).
Collapse
Affiliation(s)
- Zbigniew Burdach
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Agnieszka Siemieniuk
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Zenon Trela
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Renata Kurtyka
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
31
|
Hedrich R, Mueller TD, Becker D, Marten I. Structure and Function of TPC1 Vacuole SV Channel Gains Shape. MOLECULAR PLANT 2018; 11:764-775. [PMID: 29614320 DOI: 10.1016/j.molp.2018.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Plants and animals in endosomes operate TPC1/SV-type cation channels. All plants harbor at least one TPC1 gene. Although the encoded SV channel was firstly discovered in the plant vacuole membrane two decades ago, its biological function has remained enigmatic. Recently, the structure of a plant TPC1/SV channel protein was determined. Insights into the 3D topology has now guided site-directed mutation approaches, enabling structure-function analyses of TPC1/SV channels to shed new light on earlier findings. Fou2 plants carrying a hyperactive mutant form of TPC1 develop wounding stress phenotypes. Recent studies with fou2 and mutants that lack functional TPC1 have revealed atypical features in local and long-distance stress signaling, providing new access to the previously mysterious biology of this vacuolar cation channel type in planta.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| | - Thomas D Mueller
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| |
Collapse
|
32
|
Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc 2017; 12:1639-1658. [PMID: 28726848 DOI: 10.1038/nprot.2017.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
According to proteomics analyses, more than 70 different ion channels and transporters are harbored in membranes of intracellular compartments such as endosomes and lysosomes. Malfunctioning of these channels has been implicated in human diseases such as lysosomal storage disorders, neurodegenerative diseases and metabolic pathologies, as well as in the progression of certain infectious diseases. As a consequence, these channels have engendered very high interest as future drug targets. Detailed electrophysiological characterization of intracellular ion channels is lacking, mainly because standard methods to analyze plasma membrane ion channels, such as the patch-clamp technique, are not readily applicable to intracellular organelles. Here we present a protocol detailing how to implement a manual patch-clamp technique for endolysosomal compartments. In contrast to the alternatively used planar endolysosomal patch-clamp technique, this method is a visually controlled, direct patch-clamp technique similar to conventional patch-clamping. The protocol assumes basic knowledge and experience with patch-clamp methods. Implementation of the method requires up to 1 week, and material preparation takes ∼2-4 d. An individual experiment (i.e., measurement of channel currents across the endolysosomal membrane), including control experiments, can be completed within 1 h. This excludes the time for endolysosome enlargement, which takes between 1 and 48 h, depending on the approach and cell type used. Data analysis requires an additional hour.
Collapse
|
33
|
Koselski M, Trebacz K, Dziubinska H. Vacuolar ion channels in the liverwort Marchantia polymorpha: influence of ion channel inhibitors. PLANTA 2017; 245:1049-1060. [PMID: 28197715 PMCID: PMC5391376 DOI: 10.1007/s00425-017-2661-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/07/2017] [Indexed: 05/04/2023]
Abstract
Potassium-permeable slow activating vacuolar channels (SV) and chloride-permeable channels in the vacuole of the liverwort Marchantia polymorpha were characterized in respect to calcium dependence, selectivity, and pharmacology. The patch-clamp method was used in the study of ion channel activity in the vacuoles from the liverwort Marchantia polymorpha. The whole-vacuole recordings allowed simultaneous observation of two types of currents-predominant slow activated currents recorded at positive voltages and fast activated currents recorded at negative voltages. Single-channel recordings carried out in the gradient of KCl indicated that slow activated currents were carried by potassium-permeable slowly activating vacuolar channels (SV) and fast activated currents-by chloride-permeable channels. Both types of the channels were dependent in an opposite way on calcium, since elimination of this ion from the cytoplasmic side caused inhibition of SV channels, but the open probability of chloride-permeable channels even increased. The dependence of the activity of both channels on different types of ion channel inhibitors was studied. SV channels exhibited different sensitivity to potassium channel inhibitors. These channels were insensitive to 3 mM Ba2+, but were blocked by 3 mM tetraethyl ammonium (TEA). Moreover, the activity of the channels was modified in a different way by calcium channel inhibitors. 200 µM Gd3+ was an effective blocker, but 50 µM ruthenium red evoked bursts of the channel activity resulting in an increase in the open probability. Different effectiveness of anion channel inhibitors was observed in chloride-permeable channels. After the application of 100 µM Zn2+, a decrease in the open probability was recorded but the channels were still active. 50 µM DIDS was more effective, as it completely blocked the channels.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Kazimierz Trebacz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Halina Dziubinska
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
34
|
Zhang H, Zhao FG, Tang RJ, Yu Y, Song J, Wang Y, Li L, Luan S. Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E2036-E2045. [PMID: 28202726 PMCID: PMC5347570 DOI: 10.1073/pnas.1616203114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The central vacuole in a plant cell occupies the majority of the cellular volume and plays a key role in turgor regulation. The vacuolar membrane (tonoplast) contains a large number of transporters that mediate fluxes of solutes and water, thereby adjusting cell turgor in response to developmental and environmental signals. We report that two tonoplast Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) transporters, DTX33 and DTX35, function as chloride channels essential for turgor regulation in Arabidopsis Ectopic expression of each transporter in Nicotiana benthamiana mesophyll cells elicited a large voltage-dependent inward chloride current across the tonoplast, showing that DTX33 and DTX35 each constitute a functional channel. Both channels are highly expressed in Arabidopsis tissues, including root hairs and guard cells that experience rapid turgor changes during root-hair elongation and stomatal movements. Disruption of these two genes, either in single or double mutants, resulted in shorter root hairs and smaller stomatal aperture, with double mutants showing more severe defects, suggesting that these two channels function additively to facilitate anion influx into the vacuole during cell expansion. In addition, dtx35 single mutant showed lower fertility as a result of a defect in pollen-tube growth. Indeed, patch-clamp recording of isolated vacuoles indicated that the inward chloride channel activity across the tonoplast was impaired in the double mutant. Because MATE proteins are widely known transporters of organic compounds, finding MATE members as chloride channels expands the functional definition of this large family of transporters.
Collapse
Affiliation(s)
- Haiwen Zhang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fu-Geng Zhao
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing 210093, China;
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Yuexuan Yu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan Wang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Technology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| |
Collapse
|
35
|
Cang C, Aranda K, Seo YJ, Gasnier B, Ren D. TMEM175 Is an Organelle K(+) Channel Regulating Lysosomal Function. Cell 2015; 162:1101-12. [PMID: 26317472 DOI: 10.1016/j.cell.2015.08.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 12/15/2022]
Abstract
Potassium is the most abundant ion to face both plasma and organelle membranes. Extensive research over the past seven decades has characterized how K(+) permeates the plasma membrane to control fundamental processes such as secretion, neuronal communication, and heartbeat. However, how K(+) permeates organelles such as lysosomes and endosomes is unknown. Here, we directly recorded organelle K(+) conductance and discovered a major K(+)-selective channel KEL on endosomes and lysosomes. KEL is formed by TMEM175, a protein with unknown function. Unlike any of the ∼80 plasma membrane K(+) channels, TMEM175 has two repeats of 6-transmembrane-spanning segments and has no GYG K(+) channel sequence signature-containing, pore-forming P loop. Lysosomes lacking TMEM175 exhibit no K(+) conductance, have a markedly depolarized ΔΨ and little sensitivity to changes in [K(+)], and have compromised luminal pH stability and abnormal fusion with autophagosomes during autophagy. Thus, TMEM175 comprises a K(+) channel that underlies the molecular mechanism of lysosomal K(+) permeability.
Collapse
Affiliation(s)
- Chunlei Cang
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Young-jun Seo
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | - Bruno Gasnier
- Paris Descartes University, Sorbonne Paris Cité, Neurophotonics Laboratory, Centre National de la Recherche Scientifique UMR8250, 45 rue des Saints Pères, 75006 Paris, France
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Liu J, Yang L, Luan M, Wang Y, Zhang C, Zhang B, Shi J, Zhao FG, Lan W, Luan S. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:E6571-8. [PMID: 26554016 PMCID: PMC4664319 DOI: 10.1073/pnas.1514598112] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO4(2-), NO3(-), Cl(-), and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis.
Collapse
Affiliation(s)
- Jinlong Liu
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lei Yang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Mingda Luan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuan Wang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chi Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bin Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jisen Shi
- Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Fu-Geng Zhao
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China;
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China;
| | - Sheng Luan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
37
|
Wang Y, Dindas J, Rienmüller F, Krebs M, Waadt R, Schumacher K, Wu WH, Hedrich R, Roelfsema MRG. Cytosolic Ca(2+) Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells. MOLECULAR PLANT 2015; 8:1665-74. [PMID: 26232520 DOI: 10.1016/j.molp.2015.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/16/2015] [Accepted: 07/21/2015] [Indexed: 05/23/2023]
Abstract
Plant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion transport at the vacuolar membrane. We therefore established an experimental approach to study vacuolar ion transport in intact Arabidopsis root cells, with multi-barreled microelectrodes. The subcellular position of electrodes was detected by imaging current-injected fluorescent dyes. Comparison of measurements with electrodes in the cytosol and vacuole revealed an average vacuolar membrane potential of -31 mV. Voltage clamp recordings of single vacuoles resolved the activity of voltage-independent and slowly deactivating channels. In bulging root hairs that express the Ca(2+) sensor R-GECO1, rapid elevation of the cytosolic Ca(2+) concentration was observed, after impalement with microelectrodes, or injection of the Ca(2+) chelator BAPTA. Elevation of the cytosolic Ca(2+) level stimulated the activity of voltage-independent channels in the vacuolar membrane. Likewise, the vacuolar ion conductance was enhanced during a sudden increase of the cytosolic Ca(2+) level in cells injected with fluorescent Ca(2+) indicator FURA-2. These data thus show that cytosolic Ca(2+) signals can rapidly activate vacuolar ion channels, which may prevent rupture of the vacuolar membrane, when facing mechanical forces.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Julian Dindas
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Florian Rienmüller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies, Developmental Biology of Plants, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Rainer Waadt
- Centre for Organismal Studies, Developmental Biology of Plants, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Developmental Biology of Plants, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; College of Science, King Saud University (KSU), Riyadh, Saudi Arabia
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
38
|
Trela Z, Burdach Z, Siemieniuk A, Przestalski S, Karcz W. Effect of Trimethyltin Chloride on Slow Vacuolar (SV) Channels in Vacuoles from Red Beet (Beta vulgaris L.) Taproots. PLoS One 2015; 10:e0136346. [PMID: 26317868 PMCID: PMC4552677 DOI: 10.1371/journal.pone.0136346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/01/2015] [Indexed: 12/21/2022] Open
Abstract
In the present study, patch-clamp techniques have been used to investigate the effect of trimethyltin chloride (Met3SnCl) on the slow vacuolar (SV) channels in vacuoles from red beet (Beta vulgaris L.) taproots. Activity of SV channels has been measured in whole-vacuole and cytosolic side-out patch configurations. It was found that addition of trimethyltin chloride to the bath solution suppressed, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant, τ, increased significantly in the presence of the organotin. When single channel activity was analyzed, only little channel activity could be recorded at 100 μM Met3SnCl. Trimethyltin chloride added to the bath medium significantly decreased (by ca. threefold at 100 μM Met3SnCl and at 100 mV voltage, as compared to the control medium) the open probability of single channels. Single channel recordings obtained in the presence and absence of trimethyltin chloride showed that the organotin only slightly (by <10%) decreased the unitary conductance of single channels. It was also found that Met3SnCl significantly diminished the number of SV channel openings, whereas it did not change the opening times of the channels. Taking into account the above and the fact that under the here applied experimental conditions (pH = 7.5) Met3SnCl is a non-dissociated (more lipophilic) compound, we suggest that the suppression of SV currents observed in the presence of the organotin results probably from its hydrophobic properties allowing this compound to translocate near the selectivity filter of the channel.
Collapse
Affiliation(s)
- Zenon Trela
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, PL-50-375, Wrocław, Poland
| | - Zbigniew Burdach
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40-032, Katowice, Poland
| | - Agnieszka Siemieniuk
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40-032, Katowice, Poland
| | - Stanisław Przestalski
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, PL-50-375, Wrocław, Poland
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40-032, Katowice, Poland
- * E-mail:
| |
Collapse
|
39
|
Koselski M, Dziubinska H, Seta-Koselska A, Trebacz K. A nitrate-permeable ion channel in the tonoplast of the moss Physcomitrella patens. PLANTA 2015; 241:1207-19. [PMID: 25638644 PMCID: PMC4412613 DOI: 10.1007/s00425-015-2250-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/19/2015] [Indexed: 05/12/2023]
Abstract
In this work, for the first time the activity of nitrate-permeable channels in the tonoplast of the moss Physcomitrella patens was recorded. The channels allowed nitrate flow in one direction-from the cytoplasm to the vacuole. Selectivity of nitrate over chloride of the channels was proved. The activity of the channels was dependent on cytoplasmic calcium, magnesium, and pH. A patch-clamp study carried out on the vacuolar membrane of the moss Physcomitrella patens has revealed that inhibition of cation-selective channels leads to disclosure of channels permeable to NO3 (-). These channels were inwardly rectifying and allowed anions to flow from the cytoplasm to the vacuole. After a decrease in the cytoplasmic NO3 (-) concentration, the current density recorded in the whole-vacuole configuration and amplitude of the currents flowing through single channels were reduced. Application of the NO3 (-) gradient caused a shift in the reversal potential (Erev) towards ENO3-, indicating NO3 (-) permeability. Research of the selectivity of the channels to Cl(-) and NO3 (-) was also done; it indicated that Cl(-) is less permeable than NO3 (-) (PNO3/PCl = 3.08). Measurements with different concentrations of cytoplasmic Ca(2+) and Mg(2+) revealed that the channel was activated by different concentrations of these ions-100 µM Ca(2+) and 10 mM Mg(2+). Calcium dependence of the channels was also modulated by a redox agent-DTT (dithiothreitol), which added on the cytoplasmic side, caused a reduction in the threshold of channel activation with cytoplasmic Ca(2+). The NO3 (-) permeable channel was also pH dependent. A decrease in the cytoplasmic pH reduced the open probability of the channel; in turn, an increase in the vacuolar pH did not decrease ion channel activity but lowered its conductance.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland,
| | | | | | | |
Collapse
|
40
|
Ruas M, Davis LC, Chen CC, Morgan AJ, Chuang KT, Walseth TF, Grimm C, Garnham C, Powell T, Platt N, Platt FM, Biel M, Wahl-Schott C, Parrington J, Galione A. Expression of Ca²⁺-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells. EMBO J 2015; 34:1743-58. [PMID: 25872774 PMCID: PMC4516428 DOI: 10.15252/embj.201490009] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/11/2015] [Indexed: 01/26/2023] Open
Abstract
The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling.
Collapse
Affiliation(s)
- Margarida Ruas
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Cheng-Chang Chen
- Center for Integrated Protein Science CIPS-M and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | | | - Kai-Ting Chuang
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Timothy F Walseth
- Pharmacology Department, University of Minnesota, Minneapolis, MN, USA
| | - Christian Grimm
- Center for Integrated Protein Science CIPS-M and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Clive Garnham
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Trevor Powell
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Martin Biel
- Center for Integrated Protein Science CIPS-M and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Christian Wahl-Schott
- Center for Integrated Protein Science CIPS-M and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:3134-9. [PMID: 25646412 DOI: 10.1073/pnas.1420944112] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Mg(2+) is essential for a myriad of cellular processes, high levels of Mg(2+) in the environment, such as those found in serpentine soils, become toxic to plants. In this study, we identified two calcineurin B-like (CBL) proteins, CBL2 and CBL3, as key regulators for plant growth under high-Mg conditions. The Arabidopsis mutant lacking both CBL2 and CBL3 displayed severe growth retardation in the presence of excess Mg(2+), implying elevated Mg(2+) toxicity in these plants. Unexpectedly, the cbl2 cbl3 mutant plants retained lower Mg content than wild-type plants under either normal or high-Mg conditions, suggesting that CBL2 and CBL3 may be required for vacuolar Mg(2+) sequestration. Indeed, patch-clamp analysis showed that the cbl2 cbl3 mutant exhibited reduced Mg(2+) influx into the vacuole. We further identified four CBL-interacting protein kinases (CIPKs), CIPK3, -9, -23, and -26, as functionally overlapping components downstream of CBL2/3 in the signaling pathway that facilitates Mg(2+) homeostasis. The cipk3 cipk9 cipk23 cipk26 quadruple mutant, like the cbl2 cbl3 double mutant, was hypersensitive to high-Mg conditions; furthermore, CIPK3/9/23/26 physically interacted with CBL2/3 at the vacuolar membrane. Our results thus provide evidence that CBL2/3 and CIPK3/9/23/26 constitute a multivalent interacting network that regulates the vacuolar sequestration of Mg(2+), thereby protecting plants from Mg(2+) toxicity.
Collapse
|
42
|
|
43
|
Wege S, De Angeli A, Droillard MJ, Kroniewicz L, Merlot S, Cornu D, Gambale F, Martinoia E, Barbier-Brygoo H, Thomine S, Leonhardt N, Filleur S. Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. Sci Signal 2014; 7:ra65. [PMID: 25005229 DOI: 10.1126/scisignal.2005140] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Eukaryotic anion/proton exchangers of the CLC (chloride channel) family mediate anion fluxes across intracellular membranes. The Arabidopsis thaliana anion/proton exchanger AtCLCa is involved in vacuolar accumulation of nitrate. We investigated the role of AtCLCa in leaf guard cells, a specialized plant epidermal cell that controls gas exchange and water loss through pores called stomata. We showed that AtCLCa not only fulfilled the expected role of accumulating anions in the vacuole during stomatal opening but also mediated anion release during stomatal closure in response to the stress hormone abscisic acid (ABA). We found that this dual role resulted from a phosphorylation-dependent change in the activity of AtCLCa. The protein kinase OST1 (also known as SnRK2.6) is a key signaling player and central regulator in guard cells in response to ABA. Phosphorylation of Thr(38) in the amino-terminal cytoplasmic domain of AtCLCa by OST1 increased the outward anion fluxes across the vacuolar membrane, which are essential for stomatal closure. We provide evidence that bidirectional activities of an intracellular CLC exchanger are physiologically relevant and that phosphorylation regulates the transport mode of this exchanger.
Collapse
Affiliation(s)
- Stefanie Wege
- CNRS-UPR 2355, Institut des Sciences du Végétal, Saclay Plant Sciences Labex, Bât. 22, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Alexis De Angeli
- CNRS-UPR 2355, Institut des Sciences du Végétal, Saclay Plant Sciences Labex, Bât. 22, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France. Istituto di Biofisica, C.N.R., Via De Marini 6, 16149 Genova, Italy. Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Marie-Jo Droillard
- CNRS-UPR 2355, Institut des Sciences du Végétal, Saclay Plant Sciences Labex, Bât. 22, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Laetitia Kroniewicz
- Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bât. 156, 13108 St Paul-lez-Durance, France
| | - Sylvain Merlot
- CNRS-UPR 2355, Institut des Sciences du Végétal, Saclay Plant Sciences Labex, Bât. 22, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - David Cornu
- CNRS-FRC5115, Centre de Recherche de Gif, Imagif, Bât. 21, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Franco Gambale
- Istituto di Biofisica, C.N.R., Via De Marini 6, 16149 Genova, Italy
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Hélène Barbier-Brygoo
- CNRS-UPR 2355, Institut des Sciences du Végétal, Saclay Plant Sciences Labex, Bât. 22, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Sébastien Thomine
- CNRS-UPR 2355, Institut des Sciences du Végétal, Saclay Plant Sciences Labex, Bât. 22, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bât. 156, 13108 St Paul-lez-Durance, France
| | - Sophie Filleur
- CNRS-UPR 2355, Institut des Sciences du Végétal, Saclay Plant Sciences Labex, Bât. 22, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France. Université Paris 7 Denis Diderot, U.F.R. Sciences du Vivant, 35 rue Hélène Brion, 75205 Paris Cedex 13, France.
| |
Collapse
|
44
|
Kollist H, Nuhkat M, Roelfsema MRG. Closing gaps: linking elements that control stomatal movement. THE NEW PHYTOLOGIST 2014; 203:44-62. [PMID: 24800691 DOI: 10.1111/nph.12832] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/27/2014] [Indexed: 05/18/2023]
Abstract
Stomata are an attractive experimental system in plant biology, because the responses of guard cells to environmental signals can be directly linked to changes in the aperture of stomatal pores. In this review, the mechanics of stomatal movement are discussed in relation to ion transport in guard cells. Emphasis is placed on the ion pumps, transporters, and channels in the plasma membrane, as well as in the vacuolar membrane. The biophysical properties of transport proteins for H(+), K(+), Ca(2+), and anions are discussed and related to their function in guard cells during stomatal movements. Guard cell signaling pathways for ABA, CO2, ozone, microbe-associated molecular patterns (MAMPs) and blue light are presented. Special attention is given to the regulation of the slow anion channel (SLAC) and SLAC homolog (SLAH)-type anion channels by the ABA signalosome. Over the last decade, several knowledge gaps in the regulation of ion transport in guard cells have been closed. The current state of knowledge is an excellent starting point for tackling important open questions concerning stress tolerance in plants.
Collapse
Affiliation(s)
- Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | | | | |
Collapse
|
45
|
The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol 2014; 10:463-9. [PMID: 24776928 DOI: 10.1038/nchembio.1522] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/27/2014] [Indexed: 11/09/2022]
Abstract
The physiological function and molecular regulation of plasma membrane potential have been extensively studied, but how intracellular organelles sense and control membrane potential is not well understood. Using whole-organelle patch clamp recording, we show that endosomes and lysosomes are electrically excitable organelles. In a subpopulation of endolysosomes, a brief electrical stimulus elicits a prolonged membrane potential depolarization spike. The organelles have a previously uncharacterized, depolarization-activated, noninactivating Na(+) channel (lysoNaV). The channel is formed by a two-repeat six-transmembrane-spanning (2×6TM) protein, TPC1, which represents the evolutionary transition between 6TM and 4×6TM voltage-gated channels. Luminal alkalization also opens lysoNaV by markedly shifting the channel's voltage dependence of activation toward hyperpolarization. Thus, TPC1 is a member of a new family of voltage-gated Na(+) channels that senses pH changes and confers electrical excitability to organelles.
Collapse
|
46
|
Klemens PAW, Patzke K, Trentmann O, Poschet G, Büttner M, Schulz A, Marten I, Hedrich R, Neuhaus HE. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. THE NEW PHYTOLOGIST 2014; 202:188-197. [PMID: 24329902 DOI: 10.1111/nph.12642] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/13/2013] [Indexed: 05/18/2023]
Abstract
Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants.
Collapse
Affiliation(s)
- Patrick A W Klemens
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany
| | - Kathrin Patzke
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany
| | - Oliver Trentmann
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Michael Büttner
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Alexander Schulz
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany
| |
Collapse
|
47
|
Jha A, Ahuja M, Patel S, Brailoiu E, Muallem S. Convergent regulation of the lysosomal two-pore channel-2 by Mg²⁺, NAADP, PI(3,5)P₂ and multiple protein kinases. EMBO J 2014; 33:501-11. [PMID: 24502975 DOI: 10.1002/embj.201387035] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lysosomal Ca(2+) homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca(2+) signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg(2+) and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg(2+) specifically inhibited TPC2 outward current, whereas lysosomal Mg(2+) partially inhibited both outward and inward currents in a lysosomal lumen pH-dependent manner. Under controlled Mg(2+), TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP-mediated Ca(2+) release in intact cells is regulated by Mg(2+), PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP-mediated Ca(2+) signaling and link this pathway to Mg(2+) homeostasis and MAP kinases, pointing to roles for lysosomal Ca(2+) in cell growth, inflammation and cancer.
Collapse
Affiliation(s)
- Archana Jha
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, NIDCR NIH, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
48
|
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AH, Di Sansebastiano GP, Koes R, Quattrocchio FM. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 2014; 6:32-43. [PMID: 24388746 DOI: 10.1016/j.celrep.2013.12.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/14/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022] Open
Abstract
The acidification of endomembrane compartments is essential for enzyme activities, sorting, trafficking, and trans-membrane transport of various compounds. Vacuoles are mildly acidic in most plant cells because of the action of V-ATPase and/or pyrophosphatase proton pumps but are hyperacidified in specific cells by mechanisms that remained unclear. Here, we show that the blue petal color of petunia ph mutants is due to a failure to hyperacidify vacuoles. We report that PH1 encodes a P3B-ATPase, hitherto known as Mg2(+) transporters in bacteria only, that resides in the vacuolar membrane (tonoplast). In vivo nuclear magnetic resonance and genetic data show that PH1 is required and, together with the tonoplast H(+) P3A-ATPase PH5, sufficient to hyperacidify vacuoles. PH1 has no H(+) transport activity on its own but can physically interact with PH5 and boost PH5 H(+) transport activity. Hence, the hyperacidification of vacuoles in petals, and possibly other tissues, relies on a heteromeric P-ATPase pump.
Collapse
Affiliation(s)
- Marianna Faraco
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Cornelis Spelt
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Mattijs Bliek
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Walter Verweij
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Atsushi Hoshino
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), 444-8585 Okazaki, Japan
| | - Luca Espen
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Bhakti Prinsi
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Rinse Jaarsma
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Eray Tarhan
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Albertus H de Boer
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | | | - Ronald Koes
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| | - Francesca M Quattrocchio
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
49
|
Characteristics of quercetin interactions with liposomal and vacuolar membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:254-65. [DOI: 10.1016/j.bbamem.2013.08.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/02/2013] [Accepted: 08/25/2013] [Indexed: 01/07/2023]
|
50
|
Dadacz-Narloch B, Kimura S, Kurusu T, Farmer EE, Becker D, Kuchitsu K, Hedrich R. On the cellular site of two-pore channel TPC1 action in the Poaceae. THE NEW PHYTOLOGIST 2013; 200:663-674. [PMID: 23845012 DOI: 10.1111/nph.12402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function.
Collapse
Affiliation(s)
- Beata Dadacz-Narloch
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Sachie Kimura
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|