1
|
Abdelhalim A, Yilmaz O, Elshaikh Berair M, Torres T. Topical delgocitinib for the treatment of chronic hand eczema. J DERMATOL TREAT 2025; 36:2479126. [PMID: 40096745 DOI: 10.1080/09546634.2025.2479126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Chronic hand eczema (CHE) is a prevalent dermatological condition characterized by significant morbidity and impaired quality of life. Delgocitinib, a pan-JAK inhibitor, has emerged as a promising topical treatment for CHE, targeting key cytokine-mediated inflammatory pathways involved in the disease. Delgocitinib 20 mg/g (2%) cream was approved by the European Medicines Agency (EMA) in 2024 for moderate-to-severe CHE, and its U.S. Food and Drug Administration (FDA) review is currently in progress. MATERIALS AND METHODS PubMed, Medline and ClinicalTrials.gov were searched up to January 21, 2025, using specific search terms related to delgocitinib and chronic hand eczema. RESULTS AND CONCLUSIONS Clinical trials have demonstrated its effectiveness in improving disease severity, including eczema signs and symptoms such as pain and itching, and enhancing patient-reported outcomes compared to vehicle. Topical delgocitinib has shown a favorable safety profile, with most adverse events being mild and unrelated to treatment. Serious adverse events were rare, and treatment discontinuation due to adverse events was minimal. This narrative review synthesizes current evidence on topical delgocitinib's clinical utility and safety in CHE, positioning it as a valuable therapeutic option. Further comparative studies are needed to evaluate its efficacy against oral JAK inhibitors and other topical immunosuppressants, providing insight into optimizing treatment strategies for this chronic condition.
Collapse
Affiliation(s)
- Asaad Abdelhalim
- Allergy and Clinical Immunology Department, King Khalid Hospital, Hafar Al Batin, Saudi Arabia
| | - Orhan Yilmaz
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
2
|
Chen J, Wang J, Yang W, Zhao L, Su J. Activity Regulation and Conformation Response of Janus Kinase 3 Mediated by Phosphorylation: Exploration from Correlation Network Analysis and Markov Model. J Chem Inf Model 2025. [PMID: 40199555 DOI: 10.1021/acs.jcim.5c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The activity of the enzyme JAK3 is modulated by tyrosine phosphorylation, yet the underlying molecular details remain not fully understood. In this study, we employed a GaMD trajectory-based Markov model and correlation network analysis (CNA) to investigate the impact of single phosphorylation (SP) at Y980 (pY980) and double phosphorylation (DP) at Y980/Y981 (pY980/pY981) on the conformational dynamics of JAK3 bound by inhibitors IZA and MI1. The Markov model analysis indicated that both SP and DP result in fewer conformational states and significantly influence the conformational dynamics of the P-loop, αC-helix, and loop1-loop3, while maintaining the hinge region's high rigidity. The CNA findings revealed that phosphorylation alters the communication network among different structural regions of JAK3, providing a rational explanation for how phosphorylation affects the conformational dynamics of the distant P-loop and loop1-loop3. Moreover, the conformational changes mediated by SP and DP further affect the interactions between the inhibitors and the hot spots (L828, V836, E903, Y904, L905, and L956) of JAK3. This work offers valuable theoretical insights into the molecular mechanisms that regulate JAK3 activity.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Jing Su
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
3
|
Lin X, Li X, Zhai Z, Zhang M. JAK-STAT pathway, type I/II cytokines, and new potential therapeutic strategy for autoimmune bullous diseases: update on pemphigus vulgaris and bullous pemphigoid. Front Immunol 2025; 16:1563286. [PMID: 40264772 PMCID: PMC12011800 DOI: 10.3389/fimmu.2025.1563286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Autoimmune Bullous Diseases (AIBDs), characterized by the formation of blisters due to autoantibodies targeting structural proteins, pose significant therapeutic challenges. Current treatments, often involving glucocorticoids or traditional immunosuppressants, are limited by their non-specificity and side effects. Cytokines play a pivotal role in AIBDs pathogenesis by driving inflammation and immune responses. The JAK-STAT pathway is central to the biological effects of various type I and II cytokines, making it an attractive therapeutic target. Preliminary reports suggest that JAK inhibitors may be a promising approach in PV and BP, but further clinical validation is required. In AIBDs, particularly bullous pemphigoid (BP) and pemphigus vulgaris (PV), JAK inhibitors have shown promise in modulating pathogenic cytokine signaling. However, the safety and selectivity of JAK inhibitors remain critical considerations, with the potential for adverse effects and the need for tailored treatment strategies. This review explores the role of cytokines and the JAK-STAT pathway in BP and PV, evaluating the therapeutic potential and challenges associated with JAK inhibitors in managing these complex disorders.
Collapse
Affiliation(s)
| | | | - Zhifang Zhai
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Mingwang Zhang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Kaunitz JD. Sometimes Small Is Beautiful: Discovery of the Janus Kinases (JAK) and Signal Transducer and Activator of Transcription (STAT) Pathways and the Initial Development of JAK Inhibitors for IBD Treatment. Dig Dis Sci 2025; 70:890-898. [PMID: 39827247 PMCID: PMC11919997 DOI: 10.1007/s10620-024-08791-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
The Janus kinase/signal transducer and activator of transfection (JAK/STAT) system is comprised of multiple cell surface receptors, receptor tyrosine kinases, and signal transducers that are key components of numerous systems involved in malignancy, inflammation, immune surveillance and development, cellular proliferation, metabolism, differentiation, apoptosis, and hematologic disorders, all of which when disrupted can produce severe disease. Nevertheless, small molecule inhibitors of the four known JAKs, termed JAKinibs, have found therapeutic indications for a broad category of diseases. In this perspective, I will summarize the development of JAK inhibitors, whose origins were in antiquity, with particular attention to their use in treating patients with inflammatory bowel disease (IBD). This perspective is accompanied by a companion publication addressing how JAKinibs have forever altered the landscape of IBD therapy.
Collapse
Affiliation(s)
- Jonathan D Kaunitz
- Medical Service, Greater Los Angeles VAMC and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90073, USA.
| |
Collapse
|
5
|
Hoffmann M, Vaz T, Chhatrala S, Hennighausen L. Data-driven projections of candidate enhancer-activating SNPs in immune regulation. BMC Genomics 2025; 26:197. [PMID: 40011812 DOI: 10.1186/s12864-025-11374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Millions of single nucleotide polymorphisms (SNPs) have been identified in humans, but the functionality of almost all SNPs remains unclear. While current research focuses primarily on SNPs altering one amino acid to another one, the majority of SNPs are located in intergenic spaces. Some of these SNPs can be found in candidate cis-regulatory elements (CREs) such as promoters and enhancers, potentially destroying or creating DNA-binding motifs for transcription factors (TFs) and, hence, deregulating the expression of nearby genes. These aspects are understudied due to the sheer number of SNPs and TF binding motifs, making it challenging to identify SNPs that yield phenotypic changes or altered gene expression. RESULTS We developed a data-driven computational protocol to prioritize high-potential SNPs informed from former knowledge for experimental validation. We evaluated the protocol by investigating SNPs in CREs in the Janus kinase (JAK) - Signal Transducer and Activator of Transcription (-STAT) signaling pathway, which is activated by a plethora of cytokines and crucial in controlling immune responses and has been implicated in diseases like cancer, autoimmune disorders, and responses to viral infections. The protocol involves scanning the entire human genome (hg38) to pinpoint DNA sequences that deviate by only one nucleotide from the canonical binding sites (TTCnnnGAA) for STAT TFs. We narrowed down from an initial pool of 3,301,512 SNPs across 17,039,967 nearly complete STAT motifs and identified six potential gain-of-function SNPs in regions likely to influence regulation within the JAK-STAT pathway. This selection was guided by publicly available open chromatin and gene expression data and further refined by filtering for proximity to immune response genes and conservation between the mouse and human genomes. CONCLUSION Our findings highlight the value of combining genomic, epigenomic, and cross-species conservation data to effectively narrow down millions of SNPs to a smaller number with a high potential to induce interferon regulation of nearby genes. These SNPs can finally be reviewed manually, laying the groundwork for a more focused and efficient exploration of regulatory SNPs in an experimental setting.
Collapse
Affiliation(s)
- Markus Hoffmann
- Section of Genetics and Physiology, Digestive and Kidney Diseases, National Institute of Diabetes, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tiago Vaz
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shreeti Chhatrala
- Section of Genetics and Physiology, Digestive and Kidney Diseases, National Institute of Diabetes, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., 20007, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Digestive and Kidney Diseases, National Institute of Diabetes, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Samra S, Bergerson JRE, Freeman AF, Turvey SE. JAK-STAT signaling pathway, immunodeficiency, inflammation, immune dysregulation, and inborn errors of immunity. J Allergy Clin Immunol 2025; 155:357-367. [PMID: 39369964 DOI: 10.1016/j.jaci.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling cascade is an evolutionarily conserved signal transduction pathway that regulates many vital cellular processes, including immune function and hematopoiesis. Human genetic variants that disrupt JAK-STAT signaling are being found to cause a rapidly increasing number of diseases, including both germline-encoded inborn errors of immunity (IEI) and acquired somatic variants, causing a so-called phenocopy of the IEI. Multiple genetic mechanisms are responsible for this growing group of JAK-STAT diseases including loss-of-function, gain-of-function, and dominant negative effects. In this review, we discuss the clinical presentation and pathogenesis of all currently described JAK-STAT defects, as well as provide an overview of the guiding principles to consider in diagnosing and treating these conditions.
Collapse
Affiliation(s)
- Simran Samra
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
7
|
Arango-Franco CA, Ogishi M, Unger S, Delmonte OM, Orrego JC, Yatim A, Velasquez-Lopera MM, Zea-Vera AF, Bohlen J, Chbihi M, Fayand A, Sánchez JP, Rojas J, Seeleuthner Y, Le Voyer T, Philippot Q, Payne KJ, Gervais A, Erazo-Borrás LV, Correa-Londoño LA, Cederholm A, Gallón-Duque A, Goncalves P, Doisne JM, Horev L, Charmeteau-de Muylder B, Álvarez JÁ, Arboleda DM, Pérez-Zapata L, Vásquez-Echeverri E, Moncada-Vélez M, López JA, Caicedo Y, Palterer B, Patiño PJ, Montoya CJ, Chaldebas M, Zhang P, Nguyen T, Ma CS, Jeljeli M, Alzate JF, Cabarcas F, Khan T, Rinchai D, Prétet JL, Boisson B, Marr N, Ibrahim R, Molho-Pessach V, Boisson-Dupuis S, Kiritsi D, Barata JT, Landegren N, Neven B, Abel L, Lisco A, Béziat V, Jouanguy E, Bustamante J, Di Santo JP, Tangye SG, Notarangelo LD, Cheynier R, Natsuga K, Arias AA, Franco JL, Warnatz K, Casanova JL, Puel A. IL-7-dependent and -independent lineages of IL-7R-dependent human T cells. J Clin Invest 2024; 134:e180251. [PMID: 39352394 PMCID: PMC11444196 DOI: 10.1172/jci180251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Infants with biallelic IL7R loss-of-function variants have severe combined immune deficiency (SCID) characterized by the absence of autologous T lymphocytes, but normal counts of circulating B and NK cells (T-B+NK+ SCID). We report 6 adults (aged 22 to 59 years) from 4 kindreds and 3 ancestries (Colombian, Israeli Arab, Japanese) carrying homozygous IL7 loss-of-function variants resulting in combined immunodeficiency (CID). Deep immunophenotyping revealed relatively normal counts and/or proportions of myeloid, B, NK, and innate lymphoid cells. By contrast, the patients had profound T cell lymphopenia, with low proportions of innate-like adaptive mucosal-associated invariant T and invariant NK T cells. They also had low blood counts of T cell receptor (TCR) excision circles, recent thymic emigrant T cells and naive CD4+ T cells, and low overall TCR repertoire diversity, collectively indicating impaired thymic output. The proportions of effector memory CD4+ and CD8+ T cells were high, indicating IL-7-independent homeostatic T cell proliferation in the periphery. Intriguingly, the proportions of other T cell subsets, including TCRγδ+ T cells and some TCRαβ+ T cell subsets (including Th1, Tfh, and Treg) were little affected. Peripheral CD4+ T cells displayed poor proliferation, but normal cytokine production upon stimulation with mitogens in vitro. Thus, inherited IL-7 deficiency impairs T cell development less severely and in a more subset-specific manner than IL-7R deficiency. These findings suggest that another IL-7R-binding cytokine, possibly thymic stromal lymphopoietin, governs an IL-7-independent pathway of human T cell development.
Collapse
Affiliation(s)
- Carlos A Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology and
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Julio César Orrego
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Margarita M Velasquez-Lopera
- Sección de Dermatología, Facultad de Medicina, Universidad de Antioquia, Centro de Investigaciones Dermatológicas (CIDERM), Medellín, Antioquia, Colombia
| | - Andrés F Zea-Vera
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Clinical Immunology Clinic, Hospital Universitario del Valle, Cali, Colombia
- Microbiology Department, Universidad del Valle, Cali, Colombia
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Marwa Chbihi
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fayand
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Juan Pablo Sánchez
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Microbiology School, University of Antioquia UdeA, Medellín, Colombia
| | - Julian Rojas
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Microbiology School, University of Antioquia UdeA, Medellín, Colombia
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Kathryn J Payne
- Department of Rheumatology and Clinical Immunology and
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Lucia V Erazo-Borrás
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Luis A Correa-Londoño
- Sección de Dermatología, Facultad de Medicina, Universidad de Antioquia, Centro de Investigaciones Dermatológicas (CIDERM), Medellín, Antioquia, Colombia
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Gallón-Duque
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Pedro Goncalves
- Innate Immunity Unit, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Liran Horev
- Faculty of Medicine, Hebrew University of Jerusalem, Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
- Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | | | - Jesús Á Álvarez
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Diana M Arboleda
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Lizet Pérez-Zapata
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Estefanía Vásquez-Echeverri
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Marcela Moncada-Vélez
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Juan A López
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- Microbiology School, University of Antioquia UdeA, Medellín, Colombia
| | | | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Pablo J Patiño
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Carlos J Montoya
- School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Matthieu Chaldebas
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Peng Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, Paris, France
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Felipe Cabarcas
- Centro Nacional de Secuenciación Genómica CNSG, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jean-Luc Prétet
- Université de Franche-Comté, CNRS, Chrono-environnement & CHU Besançon, Centre National de Référence Papillomavirus, F-25000 Besançon, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ruba Ibrahim
- Faculty of Medicine, Hebrew University of Jerusalem, Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
| | - Vered Molho-Pessach
- Faculty of Medicine, Hebrew University of Jerusalem, Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Dimitra Kiritsi
- Department of Dermatology, University Medical Center of Freiburg, Freiburg, Germany
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Bénédicte Neven
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rémi Cheynier
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate of Medicine, Hokkaido University, Sapporo, Japan
| | - Andrés A Arias
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Microbiology School, University of Antioquia UdeA, Medellín, Colombia
| | - José Luis Franco
- Inborn Errors of Immunity Group, (Primary Immunodeficiencies), School of Medicine, University of Antioquia UdeA, Medellín, Colombia
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology and
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| |
Collapse
|
8
|
Virtanen A, Spinelli FR, Telliez JB, O'Shea JJ, Silvennoinen O, Gadina M. JAK inhibitor selectivity: new opportunities, better drugs? Nat Rev Rheumatol 2024; 20:649-665. [PMID: 39251770 DOI: 10.1038/s41584-024-01153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Cytokines function as communication tools of the immune system, serving critical functions in many biological responses and shaping the immune response. When cytokine production or their biological activity goes awry, the homeostatic balance of the immune response is altered, leading to the development of several pathologies such as autoimmune and inflammatory disorders. Cytokines bind to specific receptors on cells, triggering the activation of intracellular enzymes known as Janus kinases (JAKs). The JAK family comprises four members, JAK1, JAK2, JAK3 and tyrosine kinase 2, which are critical for intracellular cytokine signalling. Since the mid-2010s multiple JAK inhibitors have been approved for inflammatory and haematological indications. Currently, approved JAK inhibitors have demonstrated clinical efficacy; however, improved selectivity for specific JAKs is likely to enhance safety profiles, and different strategies have been used to accomplish enhanced JAK selectivity. In this update, we discuss the background of JAK inhibitors, current approved indications and adverse effects, along with new developments in this field. We address the issue of JAK selectivity and its relevance in terms of efficacy, and describe new modalities of JAK targeting, as well as new aspects of JAK inhibitor action.
Collapse
Affiliation(s)
- Anniina Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Francesca Romana Spinelli
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza Universitá di Roma, Rome, Italy
| | | | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Fimlab laboratories, Tampere, Finland
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Liu C, Liu X, Xin H, Li X. A Mendelian randomization study on the causal effects of circulating cytokines on the risk of vitiligo. Front Med (Lausanne) 2024; 11:1375339. [PMID: 38695020 PMCID: PMC11061512 DOI: 10.3389/fmed.2024.1375339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 05/04/2024] Open
Abstract
Background Accumulating evidence reveals an association between circulating cytokine levels and vitiligo. However, the causal association between circulating cytokine levels and vitiligo remains unrevealed. Methods We performed a two-sample Mendelian randomization (MR) analysis using a genome-wide association study of the 41 cytokines dataset, which was conducted with 3 Finnish cohorts (n = 8,293). Vitiligo data were acquired from strictly defined vitiligo data collected by FinnGenbiobank analysis, which included 207,613 European ancestors (131 vitiligo patients, 207,482 controls). The inverse-variance weighted (IVW) method, weighted median (WME), simple model, weighted model, and MR-Egger were used to determine the changes in vitiligo pathogenic cytokine taxa, followed by sensitivity analysis, including horizontal pleiotropy analysis. The MR Steiger test evaluated the strength of a causal association, and the leave-one-out method was used to assess the reliability of the results. The possibility of reverse causality was also investigated using a reverse MR study. Results We observed that rising IL-4 levels generated an enhanced probability of vitiligo in IVW (OR 2.72, 95%CI 1.19-6.22, p = 0.018). According to the results of the MR analysis, there were causal links between IL-4 and vitiligo. Results were steady after sensitivity and heterogeneity analyses. Conclusion Our research reveals that a genetically determined increased level of circulating IL-4 may be linked to a higher risk of developing vitiligo. The development of innovative treatment approaches (such as tofacitinib or dupilumab) that focus on blocking IL-4 as a novel way of preventing and treating vitiligo is significantly impacted by our findings.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xingchen Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the PLA, Guilin, China
| |
Collapse
|
10
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
11
|
Zhao R, Hu Z, Zhang X, Huang S, Yu G, Wu Z, Yu W, Lu J, Ruan B. The oncogenic mechanisms of the Janus kinase-signal transducer and activator of transcription pathway in digestive tract tumors. Cell Commun Signal 2024; 22:68. [PMID: 38273295 PMCID: PMC10809652 DOI: 10.1186/s12964-023-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024] Open
Abstract
Digestive tract tumors are heterogeneous and involve the dysregulation of multiple signaling pathways. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway plays a notable role in the oncogenesis of digestive tract tumors. Typically activated by pro-inflammatory cytokines, it regulates important biological processes, such as cell growth, differentiation, apoptosis, immune responses, and inflammation. The aberrant activation of this pathway manifests in different forms, including mutations in JAKs, overexpression of cytokine receptors, and sustained STAT activation, and contributes to promoting the malignant characteristics of cancer cells, including uncontrolled proliferation, resistance to apoptosis, enhanced invasion and metastasis, angiogenesis, acquisition of stem-like properties, and drug resistance. Numerous studies have shown that aberrant activation of the JAK-STAT pathway is closely related to the development and progression of digestive tract tumors, contributing to tumor survival, angiogenesis, changes in the tumor microenvironment, and even immune escape processes. In addition, this signaling pathway also affects the sensitivity of digestive tract tumors to chemotherapy and targeted therapy. Therefore, it is crucial to comprehensively understand the oncogenic mechanisms underlying the JAK-STAT pathway in order to develop effective therapeutic strategies against digestive tract tumors. Currently, several JAK-STAT inhibitors are undergoing clinical and preclinical trials as potential treatments for various human diseases. However, further investigation is required to determine the role of this pathway, as well as the effectiveness and safety of its inhibitors, especially in the context of digestive tract tumors. In this review, we provide an overview of the structure, classic activation, and negative regulation of the JAK-STAT pathway. Furthermore, we discuss the pathogenic mechanisms of JAK-STAT signaling in different digestive tract tumors, with the aim of identifying potential novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ruihong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhangmin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Shujuan Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
12
|
Bonelli M, Kerschbaumer A, Kastrati K, Ghoreschi K, Gadina M, Heinz LX, Smolen JS, Aletaha D, O'Shea J, Laurence A. Selectivity, efficacy and safety of JAKinibs: new evidence for a still evolving story. Ann Rheum Dis 2024; 83:139-160. [PMID: 37923366 PMCID: PMC10850682 DOI: 10.1136/ard-2023-223850] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/18/2023] [Indexed: 11/07/2023]
Abstract
Fundamental insight gained over the last decades led to the discovery of cytokines as pivotal drivers of inflammatory diseases such as rheumatoid arthritis, psoriasis/psoriasis arthritis, inflammatory bowel diseases, atopic dermatitis and spondylarthritis. A deeper understanding of the pro-inflammatory and anti-inflammatory effects of various cytokines has prompted new cytokine-targeting therapies, which revolutionised the treatment options in the last years for patients with inflammatory disorders. Disease-associated immune responses typically involve a complex interplay of multiple cytokines. Therefore, blockade of one single cytokine does not necessarily lead to a persistent remission in all patients with inflammatory disorders and fostered new therapeutic strategies targeting intracellular pathways shared by multiple cytokines. By inhibiting JAK-STAT signalling pathways common to families of cytokines, JAK-inhibitors (JAKinibs) have created a new paradigm for the treatment of inflammatory diseases. Multiple agents have been approved for various disorders and more are being investigated for several new indications. Second-generation selective JAKinibs have been devised with the aim to achieve an increased selectivity and a possible reduced risk of side effects. In the current review, we will summarise the current body of evidence of pan versus selective JAKinibs and the most recent insights on new side effects and indications, including COVID-19.
Collapse
Affiliation(s)
- Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Kerschbaumer
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kastriot Kastrati
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Massimo Gadina
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Leonhard X Heinz
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - John O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- Translational Gastroenterology Unit, Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Jensen LT, Attfield KE, Feldmann M, Fugger L. Allosteric TYK2 inhibition: redefining autoimmune disease therapy beyond JAK1-3 inhibitors. EBioMedicine 2023; 97:104840. [PMID: 37863021 PMCID: PMC10589750 DOI: 10.1016/j.ebiom.2023.104840] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
JAK inhibitors impact multiple cytokine pathways simultaneously, enabling high efficacy in treating complex diseases such as cancers and immune-mediated disorders. However, their broad reach also poses safety concerns, which have fuelled a demand for increasingly selective JAK inhibitors. Deucravacitinib, a first-in-class allosteric TYK2 inhibitor, represents a remarkable advancement in the field. Rather than competing at kinase domain catalytic sites as classical JAK1-3 inhibitors, deucravacitinib targets the regulatory pseudokinase domain of TYK2. It strikingly mirrors the functional effect of an evolutionary conserved naturally occurring TYK2 variant, P1104A, known to protect against multiple autoimmune diseases yet provide sufficient TYK2-mediated cytokine signalling required to prevent immune deficiency. The unprecedentedly high functional selectivity and efficacy-safety profile of deucravacitinib, initially demonstrated in psoriasis, combined with genetic support, and promising outcomes in early SLE clinical trials make this inhibitor ripe for exploration in other autoimmune diseases for which better, safe, and efficacious treatments are urgently needed.
Collapse
Affiliation(s)
- Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Kathrine E Attfield
- Nuffield Department of Clinical Neurosciences, Oxford Centre for Neuroinflammation, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Feldmann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute for Rheumatology, Botnar Research Institute, University of Oxford, Oxford OX3 7LD, UK
| | - Lars Fugger
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark; Nuffield Department of Clinical Neurosciences, Oxford Centre for Neuroinflammation, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
14
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
15
|
Peng XP, Al-Ddafari MS, Caballero-Oteyza A, El Mezouar C, Mrovecova P, Dib SE, Massen Z, Smahi MCE, Faiza A, Hassaïne RT, Lefranc G, Aribi M, Grimbacher B. Next generation sequencing (NGS)-based approach to diagnosing Algerian patients with suspected inborn errors of immunity (IEIs). Clin Immunol 2023; 256:109758. [PMID: 37678716 DOI: 10.1016/j.clim.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
The advent of next-generation sequencing (NGS) technologies has greatly expanded our understanding of both the clinical spectra and genetic landscape of inborn errors of immunity (IEIs). Endogamous populations may be enriched for unique, ancestry-specific disease-causing variants, a consideration that significantly impacts molecular testing and analysis strategies. Herein, we report on the application of a 2-step NGS-based testing approach beginning with targeted gene panels (TGPs) tailored to specific IEI subtypes and reflexing to whole exome sequencing (WES) if negative for Northwest Algerian patients with suspected IEIs. Our overall diagnostic yield of 57% is comparable to others broadly applying short-read NGS to IEI detection, but data from our localized cohort show some similarities and differences from NGS studies performed on larger regional IEI cohorts. This suggests the importance of tailoring diagnostic strategies to local demographics and needs, but also highlights ongoing concerns inherent to the application of genomics for clinical IEI diagnostics.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Andres Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| | - Chahrazed El Mezouar
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Pavla Mrovecova
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Saad Eddin Dib
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Zoheir Massen
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Specialized Mother-Child Hospital of Tlemcen, Department of Neonatology, Faculty of Medicine, University of Tlemcen, Algeria
| | - Alddafari Faiza
- Department of Internal Medicine, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Tlemcen, Algeria
| | | | - Gérard Lefranc
- Institute of Human Genetics, UMR 9002 CNRS-University of Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
16
|
Bagri NK, Chew C, Ramanan AV. Scope of JAK Inhibitors in Children: Recent Evidence and Way Forward. Paediatr Drugs 2023; 25:635-647. [PMID: 37775678 DOI: 10.1007/s40272-023-00594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Over the last decade, there has been an increase in the use of targeted therapy using small molecules such as Janus kinase (JAK) inhibitors. Since the introduction of ruxolitinib, the first non-selective JAK inhibitor approved for use in myelofibrosis, many other JAK inhibitors have been tried in a wide spectrum of immune-mediated disorders. Although various trials have shown the promising efficacy of JAK inhibitors in immune-mediated inflammatory disorders (IMIDs), there is a growing concern over the major cardiovascular events and malignancies associated with the use of these molecules in older adults, particularly those over 65 years of age. In this review, we aim to discuss the immunology of the JAK-STAT pathway, the scope of use of JAK inhibitors, and their safety in paediatric practice. Here, we discuss high-quality evidence favouring the use of JAK inhibitors in children with juvenile idiopathic arthritis (JIA) who are refractory to one or more conventional/biological disease-modifying drugs, demonstrated in two randomised controlled trials (RCTs). In addition to JIA, there are reports favouring the role of JAK inhibitors in other IMIDs such as systemic-onset JIA and interferonopathies. Thus far, the existing literature suggests an acceptable safety profile for JAK inhibitors in children. With the expanding scope of JAK inhibitors in a wide range of IMIDs in children, there is a significant need for long-term close vigilance for any potential harm.
Collapse
Affiliation(s)
- Narendra Kumar Bagri
- Division of Pediatric Rheumatology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Christine Chew
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - A V Ramanan
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, UK.
- Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
17
|
Leonard WJ, Lin JX. Strategies to therapeutically modulate cytokine action. Nat Rev Drug Discov 2023; 22:827-854. [PMID: 37542128 DOI: 10.1038/s41573-023-00746-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 08/06/2023]
Abstract
Cytokines are secreted or membrane-presented molecules that mediate broad cellular functions, including development, differentiation, growth and survival. Accordingly, the regulation of cytokine activity is extraordinarily important both physiologically and pathologically. Cytokine and/or cytokine receptor engineering is being widely investigated to safely and effectively modulate cytokine activity for therapeutic benefit. IL-2 in particular has been extensively engineered, to create IL-2 variants that differentially exhibit activities on regulatory T cells to potentially treat autoimmune disease versus effector T cells to augment antitumour effects. Additionally, engineering approaches are being applied to many other cytokines such as IL-10, interferons and IL-1 family cytokines, given their immunosuppressive and/or antiviral and anticancer effects. In modulating the actions of cytokines, the strategies used have been broad, including altering affinities of cytokines for their receptors, prolonging cytokine half-lives in vivo and fine-tuning cytokine actions. The field is rapidly expanding, with extensive efforts to create improved therapeutics for a range of diseases.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Nakase H. Understanding the efficacy of individual Janus kinase inhibitors in the treatment of ulcerative colitis for future positioning in inflammatory bowel disease treatment. Immunol Med 2023; 46:121-130. [PMID: 37036140 DOI: 10.1080/25785826.2023.2195522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/19/2023] [Indexed: 04/11/2023] Open
Abstract
Recent studies have gradually elucidated the pathogenesis of inflammatory bowel disease; thus, the Janus kinase (JAK)-signal transducers and activators of transcription pathway are strongly involved in the pathophysiology of inflammatory bowel disease. Generally, Janus kinase inhibitors are being used for the treatment of rheumatoid arthritis and other immunological diseases, with the therapeutic promising effects. Currently, in Japan, three Janus kinase inhibitors, namely tofacitinib, filgotinib, and upadacitinib, are available for the treatment of patients with active ulcerative colitis. Therefore, evaluating the efficacy and safety of each JAK inhibitor is essential for determining the role of JAK inhibitors in future therapeutic strategies for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
19
|
Yamaoka K, Oku K. JAK inhibitors in rheumatology. Immunol Med 2023; 46:143-152. [PMID: 36744577 DOI: 10.1080/25785826.2023.2172808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Janus kinase inhibitors (JAKis) are a group of drugs with a different mechanism of action from biologics and are most rapidly uptaken in the rheumatology field. JAK is a protein kinase activated in the cytoplasm by multiple cytokines and hormones involved in inflammatory pathology. The expression of JAK has been observed in various diseases, indicating the utility of JAK inhibitors in a wide variety of immune-mediated inflammatory diseases. Clinical trials are underway for a number of different rheumatic diseases based on the therapeutic efficacy of JAKis, which is comparable to that of biologics. This article will review the current status of JAKis for rheumatic diseases in terms of efficacy and safety and extend to future clinical applications for rare diseases.
Collapse
Affiliation(s)
- Kunihiro Yamaoka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kenji Oku
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
20
|
Abstract
The Janus kinases (JAKs) are key components of the JAK-STAT signaling pathway and are involved in myriad physiological processes. Though they are the molecular targets of many FDA-approved drugs, these drugs manifest adverse effects due in part to their inhibition of the requisite JAK kinase activity. However, the JAKs uniquely possess an integrated pseudokinase domain (JH2) that regulates the adjacent kinase domain (JH1). The therapeutic targeting of JH2 domains has been less thoroughly explored and may present an avenue to modulate the JAKs without the adverse effects associated with targeting the adjacent JH1 domain. The potential of this strategy was recently demonstrated with the FDA approval of the TYK2 JH2 ligand deucravacitinib for treating plaque psoriasis. In this light, the structure and targetability of the JAK pseudokinases are discussed, in conjunction with the state of development of ligands that bind to these domains.
Collapse
Affiliation(s)
- Sean P Henry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
21
|
Wang X, Zhu L, Ying S, Liao X, Zheng J, Liu Z, Gao J, Niu M, Xu X, Zhou Z, Xu H, Wu J. Increased RNA editing sites revealed as potential novel biomarkers for diagnosis in primary Sjögren's syndrome. J Autoimmun 2023; 138:103035. [PMID: 37216868 DOI: 10.1016/j.jaut.2023.103035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Transcriptome-wide aberrant RNA editing has been shown to contribute to autoimmune diseases, but its extent and significance in primary Sjögren's syndrome (pSS) are currently poorly understood. METHODS We systematically characterized the global pattern and clinical relevance of RNA editing in pSS by performing large-scale RNA sequencing of minor salivary gland tissues obtained from 439 pSS patients and 130 non-pSS or healthy controls. FINDINGS Compared with controls, pSS patients displayed increased global RNA-editing levels, which were significantly correlated and clinically relevant to various immune features in pSS. The elevated editing levels were likely explained by significantly increased expression of adenosine deaminase acting on RNA 1 (ADAR1) p150 in pSS, which was associated with disease features. In addition, genome-wide differential RNA editing (DRE) analysis between pSS and non-pSS showed that most (249/284) DRE sites were hyper-edited in pSS, especially the top 10 DRE sites dominated by hyper-edited sites and assigned to nine unique genes involved in the inflammatory response or immune system. Interestingly, among all DRE sites, six RNA editing sites were only detected in pSS and resided in three unique genes (NLRC5, IKZF3 and JAK3). Furthermore, these six specific DRE sites with significant clinical relevance in pSS showed a strong capacity to distinguish between pSS and non-pSS, reflecting powerful diagnostic efficacy and accuracy. CONCLUSION These findings reveal the potential role of RNA editing in contributing to the risk of pSS and further highlight the important prognostic value and diagnostic potential of RNA editing in pSS.
Collapse
Affiliation(s)
- Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lingxiao Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Senhong Ying
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Liao
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianxia Gao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Miaomiao Niu
- Ningbo Health Gene Technologies Co, Ningbo, China
| | - Xin Xu
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Zihao Zhou
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China; School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
22
|
Toth KA, Schmitt EG, Cooper MA. Deficiencies and Dysregulation of STAT Pathways That Drive Inborn Errors of Immunity: Lessons from Patients and Mouse Models of Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1463-1472. [PMID: 37126806 PMCID: PMC10151837 DOI: 10.4049/jimmunol.2200905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
23
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Mackie J, Ma CS, Tangye SG, Guerin A. The ups and downs of STAT3 function: too much, too little and human immune dysregulation. Clin Exp Immunol 2023; 212:107-116. [PMID: 36652220 PMCID: PMC10128169 DOI: 10.1093/cei/uxad007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023] Open
Abstract
The STAT3 story has almost 30 years of evolving history. First identified in 1994 as a pro-inflammatory transcription factor, Signal Transducer and Activator of Transcription 3 (STAT3) has continued to be revealed as a quintessential pleiotropic signalling module spanning fields including infectious diseases, autoimmunity, vaccine responses, metabolism, and malignancy. In 2007, germline heterozygous dominant-negative loss-of-function variants in STAT3 were discovered as the most common cause for a triad of eczematoid dermatitis with recurrent skin and pulmonary infections, first described in 1966. This finding established that STAT3 plays a critical non-redundant role in immunity against some pathogens, as well as in the connective tissue, dental and musculoskeletal systems. Several years later, in 2014, heterozygous activating gain of function germline STAT3 variants were found to be causal for cases of early-onset multiorgan autoimmunity, thereby underpinning the notion that STAT3 function needed to be regulated to maintain immune homeostasis. As we and others continue to interrogate biochemical and cellular perturbations due to inborn errors in STAT3, we will review our current understanding of STAT3 function, mechanisms of disease pathogenesis, and future directions in this dynamic field.
Collapse
Affiliation(s)
- Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
25
|
Benucci M, Bernardini P, Coccia C, De Luca R, Levani J, Economou A, Damiani A, Russo E, Amedei A, Guiducci S, Bartoloni E, Manfredi M, Grossi V, Infantino M, Perricone C. JAK inhibitors and autoimmune rheumatic diseases. Autoimmun Rev 2023; 22:103276. [PMID: 36649877 DOI: 10.1016/j.autrev.2023.103276] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The four Janus kinase (JAK) proteins and the seven Signal Transducers of Activated Transcription (STAT) mediate intracellular signal transduction downstream of cytokine receptors, which are involved in the pathology of allergic, autoimmune, and inflammatory diseases. The development of targeted small-molecule treatments with diverse selective inhibitory profiles, such as JAK inhibitors (JAKi), has supported an important change in the treatment of multiple disorders. Indeed, JAKi inhibit intracellular signalling controlled by numerous cytokines implicated in the disease process of rheumatoid arthritis and several other inflammatory and immune diseases. Therefore, JAKi have the capacity to target multiple pathways of those diseases. Other autoimmune diseases treated with JAKi include systemic sclerosis, systemic lupus erythematosus, dermatomyositis, primary Sjogren's syndrome, and vasculitis. In all of these cases, innate immunity stimulation activates adaptive immunity, resulting in the production of autoreactive T cells as well as the stimulation and differentiation of B cells. Mechanism-based treatments that target JAK-STAT pathways have the possibility of improving outcomes by reducing the consumption of glucocorticoids and/or non-specific immunosuppressive drugs in the management of systemic immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Maurizio Benucci
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, Florence, Italy
| | - Pamela Bernardini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Carmela Coccia
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Riccardo De Luca
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Juela Levani
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Alessio Economou
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Arianna Damiani
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Azienda USL-Toscana Centro, Florence, Italy
| | - Valentina Grossi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Azienda USL-Toscana Centro, Florence, Italy
| | - Maria Infantino
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Azienda USL-Toscana Centro, Florence, Italy
| | - Carlo Perricone
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
26
|
Grčević D, Sanjay A, Lorenzo J. Interactions of B-lymphocytes and bone cells in health and disease. Bone 2023; 168:116296. [PMID: 34942359 PMCID: PMC9936888 DOI: 10.1016/j.bone.2021.116296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/09/2023]
Abstract
Bone remodeling occurs through the interactions of three major cell lineages, osteoblasts, which mediate bone formation, osteocytes, which derive from osteoblasts, sense mechanical force and direct bone turnover, and osteoclasts, which mediate bone resorption. However, multiple additional cell types within the bone marrow, including macrophages, T lymphocytes and B lymphocytes influence the process. The bone marrow microenvironment, which is supported, in part, by bone cells, forms a nurturing network for B lymphopoiesis. In turn, developing B lymphocytes influence bone cells. Bone health during homeostasis depends on the normal interactions of bone cells with other lineages in the bone marrow. In disease state these interactions become pathologic and can cause abnormal function of bone cells and inadequate repair of bone after a fracture. This review summarizes what is known about the development of B lymphocytes and the interactions of B lymphocytes with bone cells in both health and disease.
Collapse
Affiliation(s)
- Danka Grčević
- Department of Physiology and Immunology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Archana Sanjay
- Department of Orthopaedics, UConn Health, Farmington, CT, USA.
| | - Joseph Lorenzo
- Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
27
|
Ge X, Ma S, Yan S, Wu Y, Chen C, Tang C, Zhan Y, Bian YC, Shen K, Feng S, Gao X, Zhong D, Zhang H, Miao LY, Diao XX. Mass balance study of [ 14C]SHR0302, a selective and potent JAK1 inhibitor in humans. Xenobiotica 2023; 53:69-83. [PMID: 36745485 DOI: 10.1080/00498254.2023.2176267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SHR0302, a selective JAK1 inhibitor developed by Jiangsu Hengrui Pharmaceutical Co., was intended for the treatment of rheumatoid arthritis. In this study, we evaluated the pharmacokinetics, mass balance, and metabolism of SHR0302 in six healthy Chinese male subjects after a single 8 mg (80 µCi) oral dose of [14C]SHR0302.SHR0302 was absorbed rapidly (Tmax = 0.505 h), and the average t1/2 of the SHR0302-related components in plasma was approximately 9.18 h. After an oral dose was administered, the average cumulative excretion of the radioactive components was 100.56% ± 1.51%, including 60.95% ± 11.62% in urine and 39.61% ± 10.52% in faeces.A total of 16 metabolites were identified. In plasma, the parent drug SHR0302 accounted for 90.42% of the total plasma radioactivity. In urine, SHR161279 was the main metabolite, accounting for 33.61% of the dose, whereas the parent drug SHR0302 only accounted for 5.1% of the dose. In faeces, the parent drug SHR0302 accounted for 23.73% of the dose, and SHR161279 was the significant metabolite, accounting for 5.67% of the dose. In conclusion, SHR0302-related radioactivity was mainly excreted through urine (60.95%) and secondarily through faeces (39.61%).The metabolic reaction of SHR0302 in the human body is mainly through mono-oxidation and glucuronidation. The main metabolic location of SHR0302 in the human body is the pyrrolopyrimidine ring.
Collapse
Affiliation(s)
- Xinyu Ge
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Ma
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Shu Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yali Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chong Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chongzhuang Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Cong Bian
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Kai Shen
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Sheng Feng
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Xuehu Gao
- Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hua Zhang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Li-Yan Miao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Xing-Xing Diao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Zalewski A, Szepietowski JC. Topical and systemic JAK inhibitors in hand eczema - a narrative review. Expert Rev Clin Immunol 2023; 19:365-373. [PMID: 36708316 DOI: 10.1080/1744666x.2023.2174526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Hand eczema is a chronic inflammatory skin disease characterized by significant prevalence and impact on patients' Quality of Life (QoL). Because of its complex and diverse clinical picture, HE management requires patient-specific treatment which may constitute a challenge. First described in the 1990s, Janus kinase inhibitors (JAK inhibitors) state a group of modern therapeuticals, which exhibit good bioavailability and are well tolerated by patients in both - topical and systemic - routes of administration. They are an immunomodulating small molecules, impacting JAKs' enzymatic activity. AREAS COVERED This review provides a summary of available data concerning JAK inhibitors' use in HE patients, regarding also clinical trials for the HE treatment. EXPERT OPINION Recent studies are introducing JAK inhibitors as an alternative for other topical and systemic therapies in HE patients. Treatment targeting specific immune pathways enables precise management and extends range of potential therapeutic options. Despite early promising results, future studies need to evaluate JAK inhibitors' safety, potential risks and benefits resulting from the treatment, as well as impact of the therapy on patients' QoL.
Collapse
Affiliation(s)
- Adam Zalewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| |
Collapse
|
29
|
Jain NK, Tailang M, Jain HK, Chandrasekaran B, Sahoo BM, Subramanian A, Thangavel N, Aldahish A, Chidambaram K, Alagusundaram M, Kumar S, Selvam P. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Front Pharmacol 2023; 14:1135145. [PMID: 37021053 PMCID: PMC10067607 DOI: 10.3389/fphar.2023.1135145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia, Madhya Pradesh, India
| | - Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, India
| | - Anandhalakshmi Subramanian
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Alagusundaram
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Santosh Kumar
- School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Palani Selvam
- School of Medicine, College of Medicine and Health Sciences, Jijiga University, Jijiga, Ethiopia
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| |
Collapse
|
30
|
De Novo Somatic Mosaicism of CYBB Caused by Intronic LINE-1 Element Insertion Resulting in Chronic Granulomatous Disease. J Clin Immunol 2023; 43:88-100. [PMID: 35997928 DOI: 10.1007/s10875-022-01347-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
Chronic granulomatosis disease (CGD) is a rare inborn error of immunity, characterized by phagocytic respiratory outbreak dysfunction. Mutations causing CGD occur in CYBB on the X chromosome and in the autosomal genes CYBA, NCF1, NCF2, NCF4, RAC2, and CYBC1. Nevertheless, some patients are clinically diagnosed with CGD, due to abnormal respiratory outbursts, while the pathogenic gene mutation is unidentified. Here, we report a patient with CGD who first presented with Bacillus Calmette-Guérin disease and had recurrent pneumonia. He was diagnosed with CGD by nitro blue tetrazolium and respiratory burst tests. Detailed assessment of neutrophil activity revealed that patient neutrophils were almost entirely nonfunctional. Sanger sequencing detected a 6-kb insertion of a LINE-1 transposable element in the third intron of CYBB, leading to abnormal splicing and pseudoexon insertion, as well as introduction of a premature termination codon, resulting in predicted protein truncation. Clonal analysis demonstrated that the patient had somatic mosaicism, and the phagocytes were almost all variant CYBB, while the mosaicism rate of PBMC was about 65%. Finally, deep RNA sequencing and gp91phox expression analysis confirmed the pathogenicity of the mutation. In conclusion, we demonstrate that insertion of a LINE-1 transposon in a CYBB intron was responsible for CGD in our patient. Intron LINE-1 transposon element insertion should be examined in CGD patients without any known disease-causing gene mutation, in addition to identification of new genes.
Collapse
|
31
|
Sadeghalvad M, Rezaei N. Immunodeficiencies. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Matza Porges S, Shamriz O. Genetics of Immune Dysregulation and Cancer Predisposition: Two Sides of the Same Coin. Clin Exp Immunol 2022; 210:114-127. [PMID: 36165533 PMCID: PMC9750831 DOI: 10.1093/cei/uxac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023] Open
Abstract
Approximately 10% of cancers have a hereditary predisposition. However, no genetic diagnosis is available in 60%-80% of familial cancers. In some of these families, immune dysregulation-mediated disease is frequent. The immune system plays a critical role in identifying and eliminating tumors; thus, dysregulation of the immune system can increase the risk of developing cancer. This review focuses on some of the genes involved in immune dysregulation the promote the risk for cancer. Genetic counseling for patients with cancer currently focuses on known genes that raise the risk of cancer. In missing hereditary familial cases, the history family of immune dysregulation should be recorded, and genes related to the immune system should be analyzed in relevant families. On the other hand, patients with immune disorders diagnosed with a pathogenic mutation in an immune regulatory gene may have an increased risk of cancer. Therefore, those patients need to be under surveillance for cancer. Gene panel and exome sequencing are currently standard methods for genetic diagnosis, providing an excellent opportunity to jointly test cancer and immune genes.
Collapse
Affiliation(s)
- Sigal Matza Porges
- Department of Human Genetics, Institute for Medical Research, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
34
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
35
|
Zebrafish Model of Severe Combined Immunodeficiency (SCID) Due to JAK3 Mutation. Biomolecules 2022; 12:biom12101521. [PMID: 36291730 PMCID: PMC9599616 DOI: 10.3390/biom12101521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
JAK3 is principally activated by members of the interleukin-2 receptor family and plays an essential role in lymphoid development, with inactivating JAK3 mutations causing autosomal-recessive severe combined immunodeficiency (SCID). This study aimed to generate an equivalent zebrafish model of SCID and to characterize the model across the life-course. Genome editing of zebrafish jak3 created mutants similar to those observed in human SCID. Homozygous jak3 mutants showed reduced embryonic T lymphopoiesis that continued through the larval stage and into adulthood, with B cell maturation and adult NK cells also reduced and neutrophils impacted. Mutant fish were susceptible to lymphoid leukemia. This model has many of the hallmarks of human SCID resulting from inactivating JAK3 mutations and will be useful for a variety of pre-clinical applications.
Collapse
|
36
|
The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022; 185:3857-3876. [PMID: 36240739 PMCID: PMC9815833 DOI: 10.1016/j.cell.2022.09.023] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.
Collapse
|
37
|
Differential expression and methylation patterns of NFATC1, NADSYN1 and JAK3 gene in equine chondrocytes expanded in monolayer culture. Res Vet Sci 2022; 152:48-52. [PMID: 35917593 DOI: 10.1016/j.rvsc.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Ex vivo expansion of chondrocytes in monolayer (ML) culture for therapeutic purposes is burdened with difficulties related to the loss of cartilaginous phenotype. Epigenetic mechanisms responsible for regulation of gene expression are believed to underlie chondrocyte dedifferentiation. We have inspected the relevance of DNA methylation alterations for passage-related differential expression of NFATC1 gene involved in hard connective tissue turnover and development, NADSYN1 influencing redox metabolism, and JAK3 - an important driver of inflammation. We have assessed relative amount of transcript abundance and performed DNA bisulfite sequencing of upstream located elements. It seems that anabolic-like effects of chondrogenic differentiation were observed in form of NFATC1 and NADSYN1 upregulation in chondrocytes at the earlier stages of passaging whereas JAK3 upregulation at the 11th passage was the sign of chondrocytes dedifferentiation. Summarizing the inversely correlated DNA methylation and expression patterns in NFATC1 and JAK3 locus might be relevant for cellular dedifferentiation during chondrocyte expansion in monolayer. Obtained results are supportive for further studies on the role of encoded proteins in regenerative biology of articular cartilage using in vitro expanded chondrocytes.
Collapse
|
38
|
Huang J, Zhou C, Deng J, Zhou J. JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. Biochem Pharmacol 2022; 202:115162. [PMID: 35787993 PMCID: PMC9250821 DOI: 10.1016/j.bcp.2022.115162] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic continues to spread globally. The rapid dispersion of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 drives an urgent need for effective treatments, especially for patients who develop severe pneumonia. The excessive and uncontrolled release of pro-inflammatory cytokines has proved to be an essential factor in the rapidity of disease progression, and some cytokines are significantly associated with adverse outcomes. Most of the upregulated cytokines signal through the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. Therefore, blocking the exaggerated release of cytokines, including IL-2, IL-6, TNF-α, and IFNα/β/γ, by inhibiting JAK/STAT signaling will, presumably, offer favorable pharmacodynamics and present an attractive prospect. JAK inhibitors (JAKi) can also inhibit members of the numb-associated kinase (NAK) family, including AP2-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), which regulate the angiotensin-converting enzyme 2 (ACE-2) transmembrane protein and are involved in host viral endocytosis. According to the data released from current clinical trials, JAKi treatment can effectively control the dysregulated cytokine storm and improve clinical outcomes regarding mortality, ICU admission, and discharge. There are still some concerns surrounding thromboembolic events, opportunistic infection such as herpes zoster virus reactivation, and repression of the host's type-I IFN-dependent immune repair for both viral and bacterial infection. However, the current JAKi clinical trials of COVID-19 raised no new safety concerns except a slightly increased risk of herpes virus infection. In the updated WHO guideline, Baricitinb is strongly recommended as an alternative to IL-6 receptor blockers, particularly in combination with corticosteroids, in patients with severe or critical COVID-19. Future studies will explore the application of JAKi to COVID-19 treatment in greater detail, such as the optimal timing and course of JAKi treatment, individualized medication strategies based on pharmacogenomics, and the effect of combined medications.
Collapse
Affiliation(s)
- Jin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Chi Zhou
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 1095# Jiefang Ave., Wuhan 430030, People's Rep. of China
| | - Jinniu Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
39
|
Mortezavi M, Martin DA, Schulze-Koops H. After 25 years of drug development, do we know JAK? RMD Open 2022; 8:rmdopen-2022-002409. [PMID: 35831034 PMCID: PMC9280879 DOI: 10.1136/rmdopen-2022-002409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mahta Mortezavi
- Inflammation and Immunology, Pfizer Inc, New York, New York, USA
| | - David A Martin
- Inflammation and Immunology, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, University of Munich, Munich, Germany
| |
Collapse
|
40
|
Karati D, Mahadik KR, Trivedi P, Kumar D. The Emerging Role of Janus Kinase Inhibitors in the Treatment of Cancer. Curr Cancer Drug Targets 2022; 22:221-233. [PMID: 35232350 DOI: 10.2174/1568009622666220301105214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a leading cause of death worldwide. The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signalling pathway is activated abnormally, which promotes carcinogenesis. Several cytokines are important cancer drivers. These proteins bind to receptors and use the Janus kinase (JAK) and STAT pathways to communicate their responses. Cancer risks are linked to genetic differences in the JAK-STAT system. JAK inhibitors have shown to reduce STAT initiation, tissue propagation, and cell existence in preclinical investigations in solid tumour cell line models. JAK inhibitors, notably ruxolitinib, a, JAK1 or 2 blockers, make cell lines and mouse models more susceptible to radiotherapy, biological response modifier therapy, and oncolytic viral treatment. Numerous JAK antagonists have been or are now being evaluated in cancerous patients as monotherapy or by combining with other drugs in clinical studies. In preclinical investigations, certain JAK inhibitors showed promise anticancer effects; however, clinical trials explicitly evaluating their effectiveness against the JAK/STAT system in solid tumours have yet to be completed. JAK inhibition is a promising strategy to target the JAK/STAT system in solid tumours, and it deserves to be tested further in clinical studies. The function of directing Janus kinases (JAKs), an upstream accelerator of STATs, as a technique for lowering STAT activity in various malignant circumstances is summarized in this article, which will help scientists to generate more specific drug molecules in future.
Collapse
Affiliation(s)
- Dipanjan Karati
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be Unoiversity), Erandwane, Pune- 411038, Maharashtra, India
| | - Kakasaheb Ramoo Mahadik
- Centre of Innovation and Translational Research, Poona College of Pharmacy, Bharati Vidyapeeth, Pune 411038, India
| | - Piyush Trivedi
- Centre of Innovation and Translational Research, Poona College of Pharmacy, Bharati Vidyapeeth, Pune 411038, India
| | - Dileep Kumar
- Poona college of Pharmacy, Bharati Vidyapeeth (Deemed to be Unoiversity), Erandwane, Pune- 411038, Maharashtra, India
| |
Collapse
|
41
|
Garufi C, Maclean M, Gadina M, Spinelli FR. Affecting the effectors: JAK inhibitors modulation of immune cell numbers and functions in patients with rheumatoid arthritis. Expert Rev Clin Immunol 2022; 18:309-319. [PMID: 35168456 DOI: 10.1080/1744666x.2022.2042254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The Janus kinase family includes four members - JAK1, JAK2, JAK3, TYK2 that are selectively associated with type I and II cytokine receptors. Jak-inhibitors (Jakinibs) are a new class of drugs for treating inflammatory diseases. Five Jakinibs are currently available for Rheumatoid Arthritis (RA): tofacitinib, baricitinib, upadacitinib, filgotinib and peficitinib. Considering the role of cytokines and growth factors in immune cell survival and activation, the anti-proliferative and suppressive effects of Jakinibs on these cells are predictable. AREAS COVERED This review summarizes Jakinibs' effects of on immune populations in vitro and in vivo. In vitro, Jakinibs affected T and B lymphocytes, monocytes, neutrophils and dendritic cell proliferation. T helper, B cell differentiation and cytokine secretion was impaired. Accordingly, changes in the number of lymphocytes, natural killer (NK) cells and neutrophils have been reported during the randomized clinical trials with all the Jakinibs, reverting after drug withdrawal. EXPERT OPINION In vitro and in vivo studies showed that the numbers and the function of immune cells are influenced by Jakinibs. Nonetheless, their effects do not seem to represent a major safety issue as these changes do not correlate with the onset of serious infection despite the increased rates of herpes zoster reactivation.
Collapse
Affiliation(s)
- Cristina Garufi
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italia
| | - Mary Maclean
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italia
| |
Collapse
|
42
|
Muromoto R, Oritani K, Matsuda T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J Biol Chem 2022; 13:1-14. [PMID: 35126866 PMCID: PMC8790287 DOI: 10.4331/wjbc.v13.i1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Immune system is a complex network that clears pathogens, toxic substrates, and cancer cells. Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens. The innate immune system elicits an early-phase response to various stimuli, whereas the adaptive immune response is tailored to previously encountered antigens. During immune responses, B cells differentiate into antibody-secreting cells, while naïve T cells differentiate into functionally specific effector cells [T helper 1 (Th1), Th2, Th17, and regulatory T cells]. However, enhanced or prolonged immune responses can result in autoimmune disorders, which are characterized by lymphocyte-mediated immune responses against self-antigens. Signal transduction of cytokines, which regulate the inflammatory cascades, is dependent on the members of the Janus family of protein kinases. Tyrosine kinase 2 (Tyk2) is associated with receptor subunits of immune-related cytokines, such as type I interferon, interleukin (IL)-6, IL-10, IL-12, and IL-23. Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing. This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.
Collapse
Affiliation(s)
- Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
43
|
Avouac J. Janus Kinase Inhibitor Selectivity in Rheumatoid Arthritis: Where Do We Stand? Rheumatology (Oxford) 2022. [DOI: 10.17925/rmd.2022.1.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The selectivity of Janus kinase inhibitors (JAKis) is still a matter of debate, as no JAKi is specific for only one Janus kinase (JAK) isoform. Currently approved JAKis in rheumatoid arthritis (RA) all inhibit JAK1, which is an effective therapeutic target in RA. Although selective JAK1 inhibition seems not to decrease drug efficacy, JAKi selectivity may modify the safety profile of this class. Indeed, the balance of benefit and risk of inhibiting JAK2, JAK3 and tyrosine kinase 2 is not certain and should be carefully evaluated in the future.
Collapse
|
44
|
Daza-Cajigal V, Albuquerque AS, Young DF, Ciancanelli MJ, Moulding D, Angulo I, Jeanne-Julien V, Rosain J, Minskaia E, Casanova JL, Boisson-Dupuis S, Bustamante J, Randall RE, McHugh TD, Thrasher AJ, Burns SO. Partial human Janus kinase 1 deficiency predominantly impairs responses to interferon gamma and intracellular control of mycobacteria. Front Immunol 2022; 13:888427. [PMID: 36159783 PMCID: PMC9501714 DOI: 10.3389/fimmu.2022.888427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Janus kinase-1 (JAK1) tyrosine kinase mediates signaling from multiple cytokine receptors, including interferon alpha/beta and gamma (IFN-α/β and IFN-γ), which are important for viral and mycobacterial protection respectively. We previously reported autosomal recessive (AR) hypomorphic JAK1 mutations in a patient with recurrent atypical mycobacterial infections and relatively minor viral infections. This study tests the impact of partial JAK1 deficiency on cellular responses to IFNs and pathogen control. Methods We investigated the role of partial JAK1 deficiency using patient cells and cell models generated with lentiviral vectors expressing shRNA. Results Partial JAK1 deficiency impairs IFN-γ-dependent responses in multiple cell types including THP-1 macrophages, Epstein-Barr Virus (EBV)-transformed B cells and primary dermal fibroblasts. In THP-1 myeloid cells, partial JAK1 deficiency reduced phagosome acidification and apoptosis and resulted in defective control of mycobacterial infection with enhanced intracellular survival. Although both EBV-B cells and primary dermal fibroblasts with partial JAK1 deficiency demonstrate reduced IFN-α responses, control of viral infection was impaired only in patient EBV-B cells and surprisingly intact in patient primary dermal fibroblasts. Conclusion Our data suggests that partial JAK1 deficiency predominantly affects susceptibility to mycobacterial infection through impact on the IFN-γ responsive pathway in myeloid cells. Susceptibility to viral infections as a result of reduced IFN-α responses is variable depending on cell type. Description of additional patients with inherited JAK1 deficiency will further clarify the spectrum of bacterial and viral susceptibility in this condition. Our results have broader relevance for anticipating infectious complications from the increasing use of selective JAK1 inhibitors.
Collapse
Affiliation(s)
- Vanessa Daza-Cajigal
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom.,School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Immunology, Hospital Universitario Son Espases, Palma, Spain.,Research Unit, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Adriana S Albuquerque
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Dan F Young
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States
| | - Dale Moulding
- Molecular and Cellular Immunology Section, University College London Institute of Child Health, London, United Kingdom
| | - Ivan Angulo
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Valentine Jeanne-Julien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Ekaterina Minskaia
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY, United States
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Richard E Randall
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Timothy D McHugh
- Research Department of Infection, University College London Centre for Clinical Microbiology, London, United Kingdom
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, University College London Institute of Child Health, London, United Kingdom.,Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
45
|
Alexander M, Luo Y, Raimondi G, O’Shea JJ, Gadina M. Jakinibs of All Trades: Inhibiting Cytokine Signaling in Immune-Mediated Pathologies. Pharmaceuticals (Basel) 2021; 15:48. [PMID: 35056105 PMCID: PMC8779366 DOI: 10.3390/ph15010048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Over the last 25 years, inhibition of Janus kinases (JAKs) has been pursued as a modality for treating various immune and inflammatory disorders. While the clinical development of JAK inhibitors (jakinibs) began with the investigation of their use in allogeneic transplantation, their widest successful application came in autoimmune and allergic diseases. Multiple molecules have now been approved for diseases ranging from rheumatoid and juvenile arthritis to ulcerative colitis, atopic dermatitis, graft-versus-host-disease (GVHD) and other inflammatory pathologies in 80 countries around the world. Moreover, two jakinibs have also shown surprising efficacy in the treatment of hospitalized coronavirus disease-19 (COVID-19) patients, indicating additional roles for jakinibs in infectious diseases, cytokine storms and other hyperinflammatory syndromes. Jakinibs, as a class of pharmaceutics, continue to expand in clinical applications and with the development of more selective JAK-targeting and organ-selective delivery. Importantly, jakinib safety and pharmacokinetics have been investigated alongside clinical development, further cementing the potential benefits and limits of jakinib use. This review covers jakinibs that are approved or are under late phase investigation, focusing on clinical applications, pharmacokinetic and safety profiles, and future opportunities and challenges.
Collapse
Affiliation(s)
- Madison Alexander
- Translational Immunology Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 10 Center Drive, Building 10 Room 10C211, Bethesda, MD 20892, USA;
| | - Yiming Luo
- Vasculitis Translational Research Program, Systemic Autoimmunity Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Giorgio Raimondi
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, 720 Rutland Ave., Ross Research Building, Suite 755A, Baltimore, MD 21205, USA;
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 10 Center Drive, Building 10 Room 13C103C, Bethesda, MD 20892, USA;
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 10 Center Drive, Building 10 Room 10C211, Bethesda, MD 20892, USA;
| |
Collapse
|
46
|
Chen C, Lu D, Sun T, Zhang T. JAK3 inhibitors for the treatment of inflammatory and autoimmune diseases: a patent review (2016-present). Expert Opin Ther Pat 2021; 32:225-242. [PMID: 34949146 DOI: 10.1080/13543776.2022.2023129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Up to now, a total of eight Janus kinase (JAK) inhibitors have been approved for the treatment of autoimmune and myeloproliferative disease. The JAK family belongs to the non-receptor tyrosine kinase family, consisting of JAK1, JAK2, JAK3, and tyrosine kinase 2. Among these four subtypes, only JAK3 is mainly expressed in hematopoietic tissue cells and is exclusively associated with the cytokines shared in the common gamma chain receptor subunit. Due to its specific tissue distribution and functional characteristics that distinguish it from the other JAKs family subtypes, JAK3 is a promising target for the treatment of autoimmune disease. AREAS COVERED This study aimed to provide a comprehensive review of the available patent literature on JAK-family inhibitors published from 2016 to the present. In addition, an overview of the clinical activities of selective JAK3 inhibitors in recent years was provided. EXPERT OPINION To date, no selective JAK3 inhibitors have been approved for use in clinics. Over the last five years, an increasing number of studies on JAK3 inhibitors, particularly ritlecitinib by Pfizer, have demonstrated their promising therapeutic potential. In this review, recent studies reported that selective JAK3 inhibitors may offer valid, interesting, and promising therapeutic potential in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dianxiang Lu
- Research Center for High altitude Medicine, Key Laboratory of Ministry of Education for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
| | - Tao Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Liu C, Kieltyka J, Fleischmann R, Gadina M, O’Shea JJ. A Decade of JAK Inhibitors: What Have We Learned and What May Be the Future? Arthritis Rheumatol 2021; 73:2166-2178. [PMID: 34180156 PMCID: PMC8671145 DOI: 10.1002/art.41906] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
The discovery of cytokines and their role in immune and inflammatory disease led to the development of a plethora of targeted biologic therapies. Later, efforts to understand mechanisms of cytokine signal transduction led to the discovery of JAKs, which themselves were quickly identified as therapeutic targets. It has been a decade since the first JAK inhibitors (jakinibs) were approved, and there are now 9 jakinibs approved for the treatment of rheumatic, dermatologic, hematologic, and gastrointestinal indications, along with emergency authorization for COVID-19. In this review, we will summarize relevant discoveries that led to first-generation jakinibs and review their efficacy and safety as demonstrated in pivotal clinical studies. We will discuss the next generation of more selective jakinibs, along with agents that target kinase families beyond JAKs. Finally, we will reflect on both the opportunities and challenges ahead as we enter the second decade of the clinical use of jakinibs.
Collapse
Affiliation(s)
- Christine Liu
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline Kieltyka
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Roy Fleischmann
- Metroplex Clinical Research Center, University of Texas Southwestern Medical Center
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch. National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Luo Y, Alexander M, Gadina M, O'Shea JJ, Meylan F, Schwartz DM. JAK-STAT signaling in human disease: From genetic syndromes to clinical inhibition. J Allergy Clin Immunol 2021; 148:911-925. [PMID: 34625141 PMCID: PMC8514054 DOI: 10.1016/j.jaci.2021.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
Since its discovery, the Janus kinase-signal transduction and activation of transcription (JAK-STAT) pathway has become recognized as a central mediator of widespread and varied human physiological processes. The field of JAK-STAT biology, particularly its clinical relevance, continues to be shaped by 2 important advances. First, the increased use of genomic sequencing has led to the discovery of novel clinical syndromes caused by mutations in JAK and STAT genes. This has provided insights regarding the consequences of aberrant JAK-STAT signaling for immunity, lymphoproliferation, and malignancy. In addition, since the approval of ruxolitinib and tofacitinib, the therapeutic use of JAK inhibitors (jakinibs) has expanded to include a large spectrum of diseases. Efficacy and safety data from over a decade of clinical studies have provided additional mechanistic insights while improving the care of patients with inflammatory and neoplastic conditions. This review discusses major advances in the field, focusing on updates in genetic diseases and in studies of clinical jakinibs in human disease.
Collapse
Affiliation(s)
- Yiming Luo
- Vasculitis Translational Research Program, Systemic Autoimmunity Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Madison Alexander
- Translational Immunology Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Massimo Gadina
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Francoise Meylan
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
49
|
Janus kinase inhibitors for the therapy of atopic dermatitis. Allergol Select 2021; 5:293-304. [PMID: 34532638 PMCID: PMC8439108 DOI: 10.5414/alx02272e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
The JAK-STAT pathway is involved in the signaling of multiple cytokines driving cutaneous inflammation in atopic dermatitis (AD). Janus kinase (JAK) inhibitors target individual receptor-associated kinases, thereby preventing the mediation of inflammatory signals. Several JAK inhibitors with varying mechanism of action, potency, and safety represent potential therapeutic options for AD in both topical and systemic application. The JAK1/2 selective JAK inhibitor baricitinib was the first substance from this class of drugs approved by the EMA for the systemic oral treatment of AD. The clinical development program of the JAK1 selective inhibitors upadacitinib and abrocitinib is finalized with positive results for AD. The PAN-JAK inhibitor delgocitinib was the first substance being approved for the treatment of AD (in Japan). This review article covers the rising data on investigational and approved JAK inhibitors in the context of the treatment of AD.
Collapse
|
50
|
Tzeng HT, Chyuan IT, Lai JH. Targeting the JAK-STAT pathway in autoimmune diseases and cancers: A focus on molecular mechanisms and therapeutic potential. Biochem Pharmacol 2021; 193:114760. [PMID: 34492272 DOI: 10.1016/j.bcp.2021.114760] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023]
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is characterized by diverse immune regulatory systems involving cell proliferation, survival, and inflammation and immune tolerance. Aberrant JAK/STAT transduction activates proinflammatory cytokine signaling that jeopardize the immune balance and thus contributes to the development of autoimmune diseases and cancer progression. The success of several small-molecule JAK inhibitors in the treatment of rheumatologic diseases demonstrates that targeting the JAK/STAT pathway is efficient in suppressing inflammation and sheds light on their therapeutic potential in several autoimmune diseases and cancers. In this review, we discuss the signal transduction and molecular mechanism involving immune function through the JAK-STAT pathway, outline the role of this pathway in autoimmunity and oncoimmunology, and explain the preclinical and clinical trial evidence for the therapeutic potential of targeting the JAK-STAT signaling pathway. Issues regarding the safety and clinical efficacy of JAK inhibitors are reviewed. Ongoing studies are addressed with a focus on emerging indications for JAK inhibition and explanations of the novel mechanisms of JAK-STAT signaling blockade.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan; Department of Medical Research, Cathay General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|