1
|
Velázquez-Marrero C, Custer EE, Marrero H, Ortiz-Miranda S, Lemos JR. Voltage-induced Ca 2+ release by ryanodine receptors causes neuropeptide secretion from nerve terminals. J Neuroendocrinol 2020; 32:e12840. [PMID: 32227430 DOI: 10.1111/jne.12840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
Depolarisation-secretion coupling is assumed to be dependent only on extracellular calcium ([Ca2+ ]o ). Ryanodine receptor (RyR)-sensitive stores in hypothalamic neurohypophysial system (HNS) terminals produce sparks of intracellular calcium ([Ca2+ ]i ) that are voltage-dependent. We hypothesised that voltage-elicited increases in intraterminal calcium are crucial for neuropeptide secretion from presynaptic terminals, whether from influx through voltage-gated calcium channels and/or from such voltage-sensitive ryanodine-mediated calcium stores. Increases in [Ca2+ ]i upon depolarisation in the presence of voltage-gated calcium channel blockers, or in the absence of [Ca2+ ]o , still give rise to neuropeptide secretion from HNS terminals. Even in 0 [Ca2+ ]o , there was nonetheless an increase in capacitance suggesting exocytosis upon depolarisation. This was blocked by antagonist concentrations of ryanodine, as was peptide secretion elicited by high K+ in 0 [Ca2+ ]o . Furthermore, such depolarisations lead to increases in [Ca2+ ]i . Pre-incubation with BAPTA-AM resulted in > 50% inhibition of peptide secretion elicited by high K+ in 0 [Ca2+ ]o . Nifedipine but not nicardipine inhibited both the high K+ response for neuropeptide secretion and intraterminal calcium, suggesting the involvement of CaV1.1 type channels as sensors in voltage-induced calcium release. Importantly, RyR antagonists also modulate neuropeptide release under normal physiological conditions. In conclusion, our results indicate that depolarisation-induced neuropeptide secretion is present in the absence of external calcium, and calcium release from ryanodine-sensitive internal stores is a significant physiological contributor to neuropeptide secretion from HNS terminals.
Collapse
Affiliation(s)
| | - Edward E Custer
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - Héctor Marrero
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Sonia Ortiz-Miranda
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| | - José R Lemos
- Departments of Microbiology and Physiological Systems, Neurobiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
2
|
Caldwell ST, Cairns AG, Olson M, Chalmers S, Sandison M, Mullen W, McCarron JG, Hartley RC. Synthesis of an azido-tagged low affinity ratiometric calcium sensor. Tetrahedron 2015; 71:9571-9578. [PMID: 26709317 PMCID: PMC4660056 DOI: 10.1016/j.tet.2015.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in high localised concentrations of Ca2+ ions are fundamental to cell signalling. The synthesis of a dual excitation, ratiometric calcium ion sensor with a Kd of 90 μM, is described. It is tagged with an azido group for bioconjugation, and absorbs in the blue/green and emits in the red region of the visible spectrum with a large Stokes shift. The binding modulating nitro group is introduced to the BAPTA core prior to construction of a benzofuran-2-yl carboxaldehyde by an allylation–oxidation–cyclisation sequence, which is followed by condensation with an azido-tagged thiohydantoin. The thiohydantoin unit has to be protected with an acetoxymethyl (AM) caging group to allow CuAAC click reaction and incorporation of the KDEL peptide endoplasmic reticulum (ER) retention sequence.
Collapse
Affiliation(s)
- Stuart T Caldwell
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew G Cairns
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Marnie Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mairi Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Type 1 ryanodine receptor knock-in mutation causing central core disease of skeletal muscle also displays a neuronal phenotype. Proc Natl Acad Sci U S A 2011; 109:610-5. [PMID: 22203976 DOI: 10.1073/pnas.1115111108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is expressed widely in the brain, with high levels in the cerebellum, hippocampus, and hypothalamus. We have shown that L-type Ca(2+) channels in terminals of hypothalamic magnocellular neurons are coupled to RyRs, as they are in skeletal muscle, allowing voltage-induced Ca(2+) release (VICaR) from internal Ca(2+) stores without Ca(2+) influx. Here we demonstrate that RyR1 plays a role in VICaR in nerve terminals. Furthermore, in heterozygotes from the Ryr1(I4895T/WT) (IT/+) mouse line, carrying a knock-in mutation corresponding to one that causes a severe form of human central core disease, VICaR is absent, demonstrating that type 1 RyR mediates VICaR and that these mice have a neuronal phenotype. The absence of VICaR was shown in two ways: first, depolarization in the absence of Ca(2+) influx elicited Ca(2+)syntillas (scintilla, spark, in a nerve terminal, a SYNaptic structure) in WT, but not in mutant terminals; second, in the presence of extracellular Ca(2+), IT/+ terminals showed a twofold decrease in global Ca(2+) transients, with no change in plasmalemmal Ca(2+) current. From these studies we draw two conclusions: (i) RyR1 plays a role in VICaR in hypothalamic nerve terminals; and (ii) a neuronal alteration accompanies the myopathy in IT/+ mice, and, possibly in humans carrying the corresponding RyR1 mutation.
Collapse
|
4
|
Hanna K, Ibrahim M, Leggett RE, Levin RM. The Effect of Calcium on the Response of Rabbit Urinar Bladder Muscle and Mucosa to Hydrogen Peroxide. UROLOGICAL SCIENCE 2010. [DOI: 10.1016/s1879-5226(10)60039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
ORTIZ-MIRANDA SONIAI, DAYANITHI GOVINDAN, VELÁZQUEZ-MARRERO CRISTINA, CUSTER EDWARDE, TREISTMAN STEVENN, LEMOS JOSÉR. Differential modulation of N-type calcium channels by micro-opioid receptors in oxytocinergic versus vasopressinergic neurohypophysial terminals. J Cell Physiol 2010; 225:276-88. [PMID: 20509142 PMCID: PMC4060829 DOI: 10.1002/jcp.22263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Opioids modulate the electrical activity of magnocellular neurons (MCN) and inhibit neuropeptide release at their terminals in the neurohypophysis. We have previously shown that micro-opioid receptor (MOR) activation induces a stronger inhibition of oxytocin (OT) than vasopressin (AVP) release from isolated MCN terminals. This higher sensitivity of OT release is due, at least in part, to the selective targeting of R-type calcium channels. We now describe the underlying basis for AVP's weaker inhibition by MOR activation and provide a more complete explanation of the complicated effects on neuropeptide release. We found that N-type calcium channels in AVP terminals are differentially modulated by MOR; enhanced at lower concentrations but increasingly inhibited at higher concentrations of agonists. On the other hand, N-type calcium channels in OT terminals were always inhibited. The response pattern in co-labeled terminals was analogous to that observed in AVP-containing terminals. Changes in intracellular calcium concentration and neuropeptide release corroborated these results as they showed a similar pattern of enhancement and inhibition in AVP terminals contrasting with solely inhibitory responses in OT terminals to MOR agonists. We established that fast translocation of Ca(2+) channels to the plasma membrane was not mediating current increments and thus, changes in channel kinetic properties are most likely involved. Finally, we reveal a distinct Ca-channel beta-subunit expression between each type of nerve endings that could explain some of the differences in responses to MOR activation. These results help advance our understanding of the complex modulatory mechanisms utilized by MORs in regulating presynaptic neuropeptide release.
Collapse
Affiliation(s)
- SONIA I. ORTIZ-MIRANDA
- Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - CRISTINA VELÁZQUEZ-MARRERO
- Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts
| | - EDWARD E. CUSTER
- Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts
| | - STEVEN N. TREISTMAN
- Brudnick Neuropsychiatric Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - JOSÉ R. LEMOS
- Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
6
|
Bao R, Lifshitz LM, Tuft RA, Bellvé K, Fogarty KE, ZhuGe R. A close association of RyRs with highly dense clusters of Ca2+-activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle. ACTA ACUST UNITED AC 2008; 132:145-60. [PMID: 18591421 PMCID: PMC2442178 DOI: 10.1085/jgp.200709933] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ca2+ sparks are highly localized, transient releases of Ca2+ from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca2+ sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca2+-activated K+ channels, and also gate Ca2+-activated Cl− (Cl(Ca)) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca2+ sparks is well understood, little information is available on how Ca2+ sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl(Ca) channels in spark sites in airway myocytes from mouse. Ca2+ sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca2+ current underlying a Ca2+ spark (ICa(spark)), with an appropriate correction for endogenous fixed Ca2+ buffer, which was characterized by flash photolysis of NPEGTA. We found that ICa(spark) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca2+ sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the ICa(spark) by less than 3 ms, and its rising phase matches the duration of the ICa(spark). We further determined that Cl(Ca) channels on average are exposed to a [Ca2+] of 2.4 μM or greater during Ca2+ sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca2+] produced by a reaction-diffusion simulation with measured ICa(spark). Finally we estimated that the number of Cl(Ca) channels localized in Ca2+ spark sites could account for all the Cl(Ca) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl(Ca) channels in Ca2+ spark sites localize near to each other, and, moreover, Cl(Ca) channels concentrate in an area with a radius of ∼600 nm, where their density reaches as high as 300 channels/μm2. This model reveals that Cl(Ca) channels are tightly controlled by Ca2+ sparks via local Ca2+ signaling.
Collapse
Affiliation(s)
- Rongfeng Bao
- Biomedical Imaging Group and Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
7
|
Bradley KN, Craig JW, Muir TC, McCarron JG. The sarcoplasmic reticulum and sarcolemma together form a passive Ca2+ trap in colonic smooth muscle. Cell Calcium 2004; 36:29-41. [PMID: 15126054 DOI: 10.1016/j.ceca.2003.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 11/20/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
In smooth muscle, active Ca(2+) uptake into regions of sarcoplasmic reticulum (SR) which are closely apposed to the sarcolemma has been proposed to substantially limit the increase in the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) following Ca(2+) influx, i.e. the 'superficial buffer barrier hypothesis'. The present study has re-examined this proposal. The results suggest that the SR close to the sarcolemma acts as a passive barrier to Ca(2+) influx limiting [Ca(2+)](c) changes; for this, SR Ca(2+) pump activity is not required. In single voltage-clamped colonic myocytes, sustained opening of the ryanodine receptor (RyR) (and depletion of the SR) using ryanodine increased the amplitude of depolarisation-evoked Ca(2+) transients and accelerated the rate of [Ca(2+)](c) decline following depolarisation. These results could be explained by a reduction in the Ca(2+) buffer power of the cytosol taking place when RyR are opened (i.e. the SR is 'leaky'). Indeed, determination of the Ca(2+) buffer power confirmed it was reduced by approximately 40%. Inhibition of the SR Ca(2+) pump (with thapsigargin) also depleted the SR of Ca(2+) but did not reduce the Ca(2+) buffer power or increase depolarisation-evoked Ca(2+) transients and slowed (rather than accelerated) Ca(2+) removal. However, thapsigargin prevented the ryanodine-induced increase in [Ca(2+)](c) decline following depolarisation. Together, these results suggest that when the SR was rendered 'leaky' (a) more of the Ca(2+) entering the cell reached the bulk cytoplasm and (b) Ca(2+) was removed more quickly at the end of cell activation. Under physiological circumstances in the absence of blocking drugs, it is proposed that the SR limits the [Ca(2+)](c) increase following influx without the need for active Ca(2+) uptake. The SR and sarcolemma may form a passive physical barrier to Ca(2+) influx, a Ca(2+) trap, which limits the [Ca(2+)](c) rise occurring during depolarisation by about 50% and from which the ion only slowly escapes into the main part of the cytoplasm.
Collapse
Affiliation(s)
- Karen N Bradley
- Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | |
Collapse
|
8
|
Zhuge R, Fogarty KE, Baker SP, McCarron JG, Tuft RA, Lifshitz LM, Walsh JV. Ca(2+) spark sites in smooth muscle cells are numerous and differ in number of ryanodine receptors, large-conductance K(+) channels, and coupling ratio between them. Am J Physiol Cell Physiol 2004; 287:C1577-88. [PMID: 15306542 DOI: 10.1152/ajpcell.00153.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) sparks are highly localized Ca(2+) transients caused by Ca(2+) release from sarcoplasmic reticulum through ryanodine receptors (RyR). In smooth muscle, Ca(2+) sparks activate nearby large-conductance, Ca(2+)-sensitive K(+) (BK) channels to generate spontaneous transient outward currents (STOC). The properties of individual sites that give rise to Ca(2+) sparks have not been examined systematically. We have characterized individual sites in amphibian gastric smooth muscle cells with simultaneous high-speed imaging of Ca(2+) sparks using wide-field digital microscopy and patch-clamp recording of STOC in whole cell mode. We used a signal mass approach to measure the total Ca(2+) released at a site and to estimate the Ca(2+) current flowing through RyR [I(Ca(spark))]. The variance between spark sites was significantly greater than the intrasite variance for the following parameters: Ca(2+) signal mass, I(Ca(spark)), STOC amplitude, and 5-ms isochronic STOC amplitude. Sites that failed to generate STOC did so consistently, while those at the remaining sites generated STOC without failure, allowing the sites to be divided into STOC-generating and STOC-less sites. We also determined the average number of spark sites, which was 42/cell at a minimum and more likely on the order of at least 400/cell. We conclude that 1) spark sites differ in the number of RyR, BK channels, and coupling ratio of RyR-BK channels, and 2) there are numerous Ca(2+) spark-generating sites in smooth muscle cells. The implications of these findings for the organization of the spark microdomain are explored.
Collapse
Affiliation(s)
- Ronghua Zhuge
- Department of Physiology, University of Massachusetts Medical Center, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
De Crescenzo V, ZhuGe R, Velázquez-Marrero C, Lifshitz LM, Custer E, Carmichael J, Lai FA, Tuft RA, Fogarty KE, Lemos JR, Walsh JV. Ca2+ syntillas, miniature Ca2+ release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca2+ influx. J Neurosci 2004; 24:1226-35. [PMID: 14762141 PMCID: PMC6793580 DOI: 10.1523/jneurosci.4286-03.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Revised: 12/09/2003] [Accepted: 12/11/2003] [Indexed: 11/21/2022] Open
Abstract
Localized, brief Ca2+ transients (Ca2+ syntillas) caused by release from intracellular stores were found in isolated nerve terminals from magnocellular hypothalamic neurons and examined quantitatively using a signal mass approach to Ca2+ imaging. Ca2+ syntillas (scintilla, L., spark, from a synaptic structure, a nerve terminal) are caused by release of approximately 250,000 Ca ions on average by a Ca2+ flux lasting on the order of tens of milliseconds and occur spontaneously at a membrane potential of -80 mV. Syntillas are unaffected by removal of extracellular Ca2+, are mediated by ryanodine receptors (RyRs) and are increased in frequency, in the absence of extracellular Ca2+, by physiological levels of depolarization. This represents the first direct demonstration of mobilization of Ca2+ from intracellular stores in neurons by depolarization without Ca2+ influx. The regulation of syntillas by depolarization provides a new link between neuronal activity and cytosolic [Ca2+] in nerve terminals.
Collapse
Affiliation(s)
- Valérie De Crescenzo
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bazzazi H, Kargacin ME, Kargacin GJ. Ca2+ regulation in the near-membrane microenvironment in smooth muscle cells. Biophys J 2003; 85:1754-65. [PMID: 12944290 PMCID: PMC1303349 DOI: 10.1016/s0006-3495(03)74605-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The microenvironment between the plasma membrane and the near-membrane sarcoplasmic reticulum (SR) may play an important role in Ca(2+) regulation in smooth muscle cells. We used a three-dimensional mathematical model of Ca(2+) diffusion and regulation and experimental measurements of SR Ca(2+) uptake and the distribution of the SR in isolated smooth muscle cells to predict the extent that the near-membrane SR could load Ca(2+) after the opening of single plasma membrane Ca(2+) channels. We also modeled the effect of SR uptake on 1), single-channel Ca(2+) transients in the near-membrane space; 2), the association of Ca(2+) with Ca(2+) buffers in this space; and 3), the amount of Ca(2+) reaching the central cytoplasm of the cell. Our results indicate that, although single-channel Ca(2+) transients could increase SR Ca(2+) to a certain extent, SR Ca(2+) uptake is not rapid enough to greatly affect the magnitude of these transients or their spread to the central cytoplasm unless the Ca(2+) uptake rate of the peripheral SR is an order-of-magnitude higher than the mean rate derived from our experiments. Immunofluorescence imaging, however, did not reveal obvious differences in the density of SR Ca(2+) pumps or phospholamban between the peripheral and central SR in smooth muscle cells.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
11
|
Abstract
The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
Collapse
Affiliation(s)
- Darrell E Goll
- Muscle Biology Group, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
12
|
Kargacin GJ. Responses of Ca2+-binding proteins to localized, transient changes in intracellular [Ca2+]. J Theor Biol 2003; 221:245-58. [PMID: 12628231 DOI: 10.1006/jtbi.2003.3187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In smooth muscle cells, various transient, localized [Ca(2+)] changes have been observed that are thought to regulate cell function without necessarily inducing contraction. Although a great deal of effort has been put into detecting these transients and elucidating the mechanisms involved in their generation, the extent to which these transient Ca(2+) signals interact with intracellular Ca(2+)-binding molecules remains relatively unknown. To understand how the spatial and temporal characteristics of an intracellular Ca(2+) signal influence its interaction with Ca(2+)-binding proteins, mathematical models of Ca(2+) diffusion and regulation in smooth muscle cells were used to study Ca(2+) binding to prototypical proteins with one or two Ca(2+)-binding sites. Simulations with the models: (1) demonstrate the extent to which the rate constants for Ca(2+)-binding to proteins and the spatial and temporal characteristics of different Ca(2+) transients influence the magnitude and time course of the responses of these proteins to the transients; (2) predict significant differences in the responses of proteins with one or two Ca(2+)-binding sites to individual Ca(2+) transients and to trains of transients; (3) demonstrate how the kinetic characteristics determine the fidelity with which the responses of Ca(2+)-sensitive molecules reflect the magnitude and time course of transient Ca(2+) signals. Overall, this work demonstrates the clear need for complete information about the kinetics of Ca(2+) binding for determining how well Ca(2+)-binding molecules respond to different types of Ca(2+) signals. These results have important implications when considering the possible modulation of Ca(2+)- and Ca(2+)/calmodulin-dependent proteins by localized intracellular Ca(2+) transients in smooth muscle cells and, more generally, in other cell types.
Collapse
Affiliation(s)
- Gary J Kargacin
- Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
13
|
Zhuge R, Fogarty KE, Tuft RA, Walsh JV. Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca(2+) concentration on the order of 10 microM during a Ca(2+) spark. J Gen Physiol 2002; 120:15-27. [PMID: 12084772 PMCID: PMC2311396 DOI: 10.1085/jgp.20028571] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ca(2+) sparks are small, localized cytosolic Ca(2+) transients due to Ca(2+) release from sarcoplasmic reticulum through ryanodine receptors. In smooth muscle, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, thus generating spontaneous transient outward currents (STOCs). The purpose of the present study is to determine experimentally the level of Ca(2+) to which the BK channels are exposed during a spark. Using tight seal, whole-cell recording, we have analyzed the voltage-dependence of the STOC conductance (g((STOC))), and compared it to the voltage-dependence of BK channel activation in excised patches in the presence of different [Ca(2+)]s. The Ca(2+) sparks did not change in amplitude over the range of potentials of interest. In contrast, the magnitude of g((STOC)) remained roughly constant from 20 to -40 mV and then declined steeply at more negative potentials. From this and the voltage dependence of BK channel activation, we conclude that the BK channels underlying STOCs are exposed to a mean [Ca(2+)] on the order of 10 microM during a Ca(2+) spark. The membrane area over which a concentration > or =10 microM is reached has an estimated radius of 150-300 nm, corresponding to an area which is a fraction of one square micron. Moreover, given the constraints imposed by the estimated channel density and the Ca(2+) current during a spark, the BK channels do not appear to be uniformly distributed over the membrane but instead are found at higher density at the spark site.
Collapse
Affiliation(s)
- Ronghua Zhuge
- Biomedical Imaging Group, Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
14
|
Wingard CJ, Nowocin JM, Murphy RA. Cross-bridge regulation by Ca(2+)-dependent phosphorylation in amphibian smooth muscle. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1769-77. [PMID: 11705760 DOI: 10.1152/ajpregu.2001.281.6.r1769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A covalent regulatory mechanism involving Ca(2+)-dependent cross-bridge phosphorylation determines both the number of cycling cross bridges and cycling kinetics in mammalian smooth muscle. Our objective was to determine whether a similar regulatory mechanism governed smooth muscle contraction from a poikilothermic amphibian in a test of the hypothesis that myosin regulatory light chain (MRLC) phosphorylation could modulate shortening velocity. We measured MRLC phosphorylation of Rana catesbiana urinary bladder strips at 25 degrees C in tonic contractions in response to K+ depolarization, field stimulation, or carbachol stimulation. The force-length relationship was characterized by a steep ascending limb and a shallow descending limb. There was a rapid rise in unloaded shortening velocity early in a contraction, which then fell and was maintained at low rates while high force was maintained. In support of the hypothesis, we found a positive correlation of the level of myosin phosphorylation and an estimate of tissue shortening velocity. These results suggest that MRLC phosphorylation in amphibian smooth muscle modulates both the number of attached cross bridges (force) and the cross-bridge cycling kinetics (shortening velocity) as in mammalian smooth muscle.
Collapse
Affiliation(s)
- C J Wingard
- Department of Physiology, Medical College of Georgia, 1120 15th St., Augusta, GA 30912-3000, USA.
| | | | | |
Collapse
|
15
|
Abstract
The concentration of cytoplasmic Ca(2+) regulates the contractile state of smooth muscle cells and tissues. Elevations in global cytoplasmic Ca(2+) resulting in contraction are accomplished by Ca(2+) entry and release from intracellular stores. Pathways for Ca(2+) entry include dihydropyridine-sensitive and -insensitive Ca(2+) channels and receptor and store-operated nonselective channels permeable to Ca(2+). Intracellular release from the sarcoplasmic reticulum (SR) is accomplished by ryanodine and inositol trisphosphate receptors. The impact of Ca(2+) entry and release on cytoplasmic concentration is modulated by Ca(2+) reuptake into the SR, uptake into mitochondria, and extrusion into the extracellular solution. Highly localized Ca(2+) transients (i.e., sparks and puffs) regulate ionic conductances in the plasma membrane, which can provide feedback to cell excitability and affect Ca(2+) entry. This short review describes the major transport mechanisms and compartments that are utilized for Ca(2+) handling in smooth muscles.
Collapse
Affiliation(s)
- K M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.
| |
Collapse
|
16
|
Zou H, Ugur M, Drummond RM, Singer JJ. Coupling of a P2Z-like purinoceptor to a fatty acid-activated K(+) channel in toad gastric smooth muscle cells. J Physiol 2001; 534:59-70. [PMID: 11432992 PMCID: PMC2278699 DOI: 10.1111/j.1469-7793.2001.00059.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Extracellular application of ATP generates two whole-cell currents in toad gastric smooth muscle cells: an immediate inward non-selective cation current (due to the activation of a P2X or P2Z-like receptor) and a slowly developing outward K(+) current. The inward non-selective cation current depends on the continuous presence of ATP while the outward K(+) current can last for minutes after ATP application ceases. 2. In cell-attached patches, application of ATP to the extra-patch membrane can activate K(+) channels in the patch indicating that a diffusible cellular messenger may be involved. The characteristics of these K(+) channels are similar to those of a previously described fatty acid-activated K(+) channel that is also a stretch-activated channel. 3. This whole-cell K(+) current can be induced by ATP in the absence of extracellular Ca(2+) (with EGTA present to chelate trace amounts). However, the current generated in the presence of extracellular Ca(2+) is considerably larger. 4. The pharmacological profiles for the activation of the non-selective cation current and the K(+) current are similar, suggesting that the same P2Z-like receptor could be mediating both responses. This type of plasma membrane receptor/channel-channel coupling by a process that does not appear to involve Ca(2+) flow through the receptor/channel or a subsequent membrane potential change may be representative of a new class of signalling mechanisms.
Collapse
Affiliation(s)
- H Zou
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
17
|
Lemmens R, Larsson O, Berggren PO, Islam MS. Ca2+-induced Ca2+ release from the endoplasmic reticulum amplifies the Ca2+ signal mediated by activation of voltage-gated L-type Ca2+ channels in pancreatic beta-cells. J Biol Chem 2001; 276:9971-7. [PMID: 11139580 DOI: 10.1074/jbc.m009463200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulus-secretion coupling in pancreatic beta-cells involves membrane depolarization and Ca(2+) entry through voltage-gated L-type Ca(2+) channels, which is one determinant of increases in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). We investigated how the endoplasmic reticulum (ER)-associated Ca(2+) apparatus further modifies this Ca(2+) signal. When fura-2-loaded mouse beta-cells were depolarized by KCl in the presence of 3 mm glucose, [Ca(2+)](i) increased to a peak in two phases. The second phase of the [Ca(2+)](i) increase was abolished when ER Ca(2+) stores were depleted by thapsigargin. The steady-state [Ca(2+)](i) measured at 300 s of depolarization was higher in control cells compared with cells in which the ER Ca(2+) pools were depleted. The amount of Ca(2+) presented to the cytoplasm during depolarization as estimated from the integral of the increment in [Ca(2+)](i) over time (integralDelta[Ca(2+)](i).dt) was approximately 30% higher compared with that in the Ca(2+) pool-depleted cells. neo-thapsigargin, an inactive analog, did not affect [Ca(2+)](i) response. Using Sr(2+) in the extracellular medium and exploiting the differences in the fluorescence properties of Ca(2+)- and Sr(2+)-bound fluo-3, we found that the incoming Sr(2+) triggered Ca(2+) release from the ER. Depolarization-induced [Ca(2+)](i) response was not altered by, an inhibitor of phosphatidylinositol-specific phospholipase C, suggesting that stimulation of the enzyme by Ca(2+) is not essential for amplification of Ca(2+) signaling. [Ca(2+)](i) response was enhanced when cells were depolarized in the presence of 3 mm glucose, forskolin, and caffeine, suggesting involvement of ryanodine receptors in the amplification process. Pretreatment with ryanodine (100 microm) diminished the second phase of the depolarization-induced increase in [Ca(2+)](i). We conclude that Ca(2+) entry through L-type voltage-gated Ca(2+) channels triggers Ca(2+) release from the ER and that such a process amplifies depolarization-induced Ca(2+) signaling in beta-cells.
Collapse
Affiliation(s)
- R Lemmens
- Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Endocrine and Diabetes Unit, Karolinska Institutet, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
Gurney AM, Drummond RM, Fay FS. Calcium signalling in sarcoplasmic reticulum, cytoplasm and mitochondria during activation of rabbit aorta myocytes. Cell Calcium 2000; 27:339-51. [PMID: 11013464 DOI: 10.1054/ceca.2000.0124] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study investigated the relationship between cytoplasmic, mitochondrial, and sarcoplasmic reticulum (SR) [Ca(2+)] in rabbit aorta smooth muscle cells, following cell activation. Smooth muscle cells were loaded with the Ca(2+)-sensitive fluorescent indicator Mag-Fura-2-AM, and then either permeabilized by exposure to saponin, or dialyzed with a patch pipette in the whole-cell configuration to remove cytoplasmic indicator. When the intracellular solution contained millimolar EGTA or BAPTA, activation of SR Ca(2+)release through IP(3)or ryanodine receptors induced a decrease in the [Ca(2+)] reported by Mag-Fura-2. However, when EGTA was present at < or =100 microM, the same stimuli caused an increase in the [Ca(2+)] reported by Mag-Fura-2. The increase in [Ca(2+)] caused by phenylephrine or caffeine was delayed, and prolonged, with respect to the cytoplasmic Ca(2+)transient. Evidence is presented that this Mag-Fura-2 signal reflected a rise in mitochondrial [Ca(2+)]. Agents that inhibit mitochondrial function, such as FCCP or cyanide in combination with oligomycin B, converted the increase in organelle Mag-Fura-2 fluorescence to a decrease, while also prolonging the cytoplasmic Ca(2+)transient. There was considerable similarity between the localization of Mag-Fura-2 fluorescence and the mitochondria-selective indicator tetramethylrhodamine ethyl ester. Thus, we propose that there is close functional integration between the SR and mitochondria in aorta smooth muscle cells, with mitochondria taking up Ca(2+)from the cytoplasm following cell activation.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Signaling
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- Dialysis
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Fluorescence
- Fluorescent Dyes/metabolism
- Fura-2/analogs & derivatives
- Fura-2/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Intracellular Membranes/metabolism
- Male
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Phenylephrine/pharmacology
- Rabbits
- Saponins/metabolism
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/metabolism
Collapse
Affiliation(s)
- A M Gurney
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Sciences, Glasgow, UK
| | | | | |
Collapse
|
19
|
Properties of the apamin-sensitive component of Ca2+-dependent K+ current in smooth muscle cells of the guinea pigtaenia coli. NEUROPHYSIOLOGY+ 2000. [DOI: 10.1007/bf02515170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Burdyga TV, Wray S. The effect of cyclopiazonic acid on excitation-contraction coupling in guinea-pig ureteric smooth muscle: role of the sarcoplasmic reticulum. J Physiol 1999; 517 ( Pt 3):855-65. [PMID: 10358124 PMCID: PMC2269382 DOI: 10.1111/j.1469-7793.1999.0855s.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. We have investigated the effect of cyclopiazonic acid (CPA), an inhibitor of the sarcoplasmic reticulum (SR) Ca2+-ATPase on excitation-contraction (EC) coupling in guinea-pig ureter, by measuring membrane currents, action potentials, intracellular [Ca2+] and force. 2. CPA (20 micrometers) significantly enhanced the amplitude and duration of phasic contractions of ureteric smooth muscle associated with action potentials. This was accompanied by an increase in the duration of the intracellular Ca2+ transient in intact tissue and single cells but not their amplitude. However, CPA also slowed the rate of rise, and fall, of the force 1|1|Phiand1Phi Ca2+ transients. 3. Membrane potential recordings showed that CPA produced a small depolarization and a large increase in the duration of the plateau phase of the action potential. 4. Patch-clamp studies showed marked inhibition of outward potassium current in the presence of CPA and an inhibition of spontaneous transient outward currents (STOCs). CPA had no effect on inward Ca2+ current. 5. These data suggest that the SR plays a major role in modulating the excitability of the ureter, particularly via curtailing the action potential duration. This in turn will shorten the Ca2+ transient and decrease force. This negative action on developed force predominates over any small role it may play in initiating force in the guinea-pig ureter.
Collapse
Affiliation(s)
- T V Burdyga
- The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK
| | | |
Collapse
|
21
|
Snitsarev VA, Taylor CW. Overshooting cytosolic Ca2+ signals evoked by capacitative Ca2+ entry result from delayed stimulation of a plasma membrane Ca2+ pump. Cell Calcium 1999; 25:409-17. [PMID: 10579052 DOI: 10.1054/ceca.1999.0041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of capacitative Ca2+ entry on cytosolic free Ca2+ concentration ([Ca2+]c) was examined in calf pulmonary artery endothelial cells treated with thapsigargin. Restoration of extracellular Ca2+ evoked an overshoot in [Ca2+]c: the initial rate of Ca2+ influx was 12.4 +/- 0.5 nM/s as [Ca2+]c rose monoexponentially (time constant, tau = 36 +/- 2 s) to a peak (322 +/- 16 nM) before declining to 109 +/- 14 nM after 2000 s. Rates of Ca2+ removal from the cytosol were measured throughout the overshoot by recording the monoexponential decrease in [Ca2+]c after rapid removal of extracellular Ca2+. The time constant for recovery (tau rec decreased from 54 +/- 4 s when Ca2+ was removed after 10 s to its limiting value of 8.8 +/- 1.0 s when it was removed after 2000 s. The time dependence of the changes in tau rec indicate that an increase in [Ca2+]c is followed by a delayed (tau = 408 s) stimulation of Ca2+ removal, which fully reverses (tau approximately 185 s) after Ca2+ entry ceases. Numerical simulation indicated that the changes in Ca2+ removal were largely responsible for the overshooting pattern of [Ca2+]c. Because prolonged (30 min) Ca2+ entry did not increase the total 45Ca2+ content of the cells, an increased rate of Ca2+ extrusion across the plasma membrane most likely mediates the Ca2+ removal, and since it persists in the absence of extracellular Na+, it probably results from stimulation of a plasma membrane Ca2+ pump. We conclude that delayed stimulation of a plasma membrane Ca2+ pump by capacitative Ca2+ entry may protect cells from excessive increases in [Ca2+]c and contribute to oscillatory changes in [Ca2+]c.
Collapse
|
22
|
Bolton TB, Prestwich SA, Zholos AV, Gordienko DV. Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol 1999; 61:85-115. [PMID: 10099683 DOI: 10.1146/annurev.physiol.61.1.85] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The main contributors to increases in [Ca2+]i and tension are the entry of Ca2+ through voltage-dependent channels opened by depolarization or during action potential (AP) or slow-wave discharge, and Ca2+ release from store sites in the cell by the action of IP3 or by Ca(2+)-induced Ca(2+)-release (CICR). The entry of Ca2+ during an AP triggers CICR from up to 20 or more subplasmalemmal store sites (seen as hot spots, using fluorescent indicators); Ca2+ waves then spread from these hot spots, which results in a rise in [Ca2+]i throughout the cell. Spontaneous transient releases of store Ca2+, previously detected as spontaneous transient outward currents (STOCs), are seen as sparks when fluorescent indicators are used. Sparks occur at certain preferred locations--frequent discharge sites (FDSs)--and these and hot spots may represent aggregations of sarcoplasmic reticulum scattered throughout the cytoplasm. Activation of receptors for excitatory signal molecules generally depolarizes the cell while it increases the production of IP3 (causing calcium store release) and diacylglycerols (which activate protein kinases). Activation of receptors for inhibitory signal molecules increases the activity of protein kinases through increases in cAMP or cGMP and often hyperpolarizes the cell. Other receptors link to tyrosine kinases, which trigger signal cascades interacting with trimeric G-protein systems.
Collapse
Affiliation(s)
- T B Bolton
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, London, United Kingdom.
| | | | | | | |
Collapse
|
23
|
McCarron JG, Muir TC. Mitochondrial regulation of the cytosolic Ca2+ concentration and the InsP3-sensitive Ca2+ store in guinea-pig colonic smooth muscle. J Physiol 1999; 516 ( Pt 1):149-61. [PMID: 10066930 PMCID: PMC2269201 DOI: 10.1111/j.1469-7793.1999.149aa.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1998] [Accepted: 12/23/1998] [Indexed: 11/28/2022] Open
Abstract
1. Mitochondrial regulation of the cytosolic Ca2+ concentration ([Ca2+]c) in guinea-pig single colonic myocytes has been examined, using whole-cell recording, flash photolysis of caged InsP3 and microfluorimetry. 2. Depolarization increased [Ca2+]c and triggered contraction. Resting [Ca2+]c was virtually restored some 4 s after the end of depolarization, a time when the muscle had shortened to 50 % of its fully relaxed length. The muscle then slowly relaxed (t = 17 s). 3. The decline in the Ca2+ transient was monophasic but often undershot or overshot resting levels, depending on resting [Ca2+]c. The extent of the overshoot or undershoot increased with increasing peak [Ca2+]c. 4. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP; 5 microM), which dissipates the mitochondrial proton electrochemical gradient and therefore prevents mitochondrial Ca2+ accumulation, slowed Ca2+ removal at high ( > 300 nM) but not at lower [Ca2+]c and abolished [Ca2+]c overshoots. Oligomycin B (5 microM), which prevents mitchondrial ATP production, affected neither the rate of decline nor the magnitude of the overshoot. 5. During depolarization, the global rhod-2 signal (which represents the mitochondrial matrix Ca2+ concentration, [Ca2+]m) rose slowly in a CCCP-sensitive manner during and for about 3 s after depolarization had ended. [Ca2+]m then slowly decreased over tens of seconds. 6. Inhibition of sarcoplasmic reticulum Ca2+ uptake with thapsigargin (100 nM) reduced the undershoot and increased the overshoot. 7. Flash photolysis of caged InsP3 (20 microM) evoked reproducible increases in [Ca2+]c. CCCP (5 microM) reduced the magnitude of the [Ca2+]c transients evoked by flash photolysis of caged InsP3. Oligomycin B (5 microM) did not reduce the inhibition of the InsP3-induced Ca2+ transient by CCCP thus minimizing the possibility that CCCP lowered ATP levels by reversing the mitochondrial ATP synthase and so reducing SR Ca2+ refilling. 8. While CCCP reduced the magnitude of the InsP3-evoked Ca2+ signal, the internal Ca2+ store content, as assessed by the magnitude of ionomycin-evoked Ca2+ release, did not decrease significantly. 9. [Ca2+]c decline in smooth muscle, following depolarization, may involve mitochondrial Ca2+ uptake. Following InsP3-evoked Ca2+ release, mitochondrial uptake of Ca2+ may regulate the local [Ca2+]c near the InsP3 receptor so maintaining the sensitivity of the InsP3 receptor to release Ca2+ from the SR.
Collapse
Affiliation(s)
- J G McCarron
- Institute of Biomedical and Life Sciences, Neuroscience and Biomedical Systems, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
24
|
Kotlikoff MI, Herrera G, Nelson MT. Calcium permeant ion channels in smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:147-99. [PMID: 10087909 DOI: 10.1007/3-540-64753-8_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- M I Kotlikoff
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
25
|
ZhuGe R, Tuft RA, Fogarty KE, Bellve K, Fay FS, Walsh JV. The influence of sarcoplasmic reticulum Ca2+ concentration on Ca2+ sparks and spontaneous transient outward currents in single smooth muscle cells. J Gen Physiol 1999; 113:215-28. [PMID: 9925820 PMCID: PMC2223361 DOI: 10.1085/jgp.113.2.215] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1998] [Accepted: 11/12/1998] [Indexed: 12/23/2022] Open
Abstract
Localized, transient elevations in cytosolic Ca2+, known as Ca2+ sparks, caused by Ca2+ release from sarcoplasmic reticulum, are thought to trigger the opening of large conductance Ca2+-activated potassium channels in the plasma membrane resulting in spontaneous transient outward currents (STOCs) in smooth muscle cells. But the precise relationships between Ca2+ concentration within the sarcoplasmic reticulum and a Ca2+ spark and that between a Ca2+ spark and a STOC are not well defined or fully understood. To address these problems, we have employed two approaches using single patch-clamped smooth muscle cells freshly dissociated from toad stomach: a high speed, wide-field imaging system to simultaneously record Ca2+ sparks and STOCs, and a method to simultaneously measure free global Ca2+ concentration in the sarcoplasmic reticulum ([Ca2+]SR) and in the cytosol ([Ca2+]CYTO) along with STOCs. At a holding potential of 0 mV, cells displayed Ca2+ sparks and STOCs. Ca2+ sparks were associated with STOCs; the onset of the sparks coincided with the upstroke of STOCs, and both had approximately the same decay time. The mean increase in [Ca2+]CYTO at the time and location of the spark peak was approximately 100 nM above a resting concentration of approximately 100 nM. The frequency and amplitude of spontaneous Ca2+ sparks recorded at -80 mV were unchanged for a period of 10 min after removal of extracellular Ca2+ (nominally Ca2+-free solution with 50 microM EGTA), indicating that Ca2+ influx is not necessary for Ca2+sparks. A brief pulse of caffeine (20 mM) elicited a rapid decrease in [Ca2+]SR in association with a surge in [Ca2+]CYTO and a fusion of STOCs, followed by a fast restoration of [Ca2+]CYTO and a gradual recovery of [Ca2+]SR and STOCs. The return of global [Ca2+]CYTO to rest was an order of magnitude faster than the refilling of the sarcoplasmic reticulum with Ca2+. After the global [Ca2+]CYTO was fully restored, recovery of STOC frequency and amplitude were correlated with the level of [Ca2+]SR, even though the time for refilling varied greatly. STOC frequency did not recover substantially until the [Ca2+]SR was restored to 60% or more of resting levels. At [Ca2+]SR levels above 80% of rest, there was a steep relationship between [Ca2+]SR and STOC frequency. In contrast, the relationship between [Ca2+]SR and STOC amplitude was linear. The relationship between [Ca2+]SR and the frequency and amplitude was the same for Ca2+ sparks as it was for STOCs. The results of this study suggest that the regulation of [Ca2+]SR might provide one mechanism whereby agents could govern Ca2+ sparks and STOCs. The relationship between Ca2+ sparks and STOCs also implies a close association between a sarcoplasmic reticulum Ca2+ release site and the Ca2+-activated potassium channels responsible for a STOC.
Collapse
Affiliation(s)
- R ZhuGe
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
26
|
Driska SP, Laudadio RE, Wolfson MR, Shaffer TH. A method for isolating adult and neonatal airway smooth muscle cells and measuring shortening velocity. J Appl Physiol (1985) 1999; 86:427-35. [PMID: 9887157 DOI: 10.1152/jappl.1999.86.1.427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methods are described for isolating smooth muscle cells from the tracheae of adult and neonatal sheep and measuring the single-cell shortening velocity. Isolated cells were elongated, Ca2+ tolerant, and contracted rapidly and substantially when exposed to cholinergic agonists, KCl, serotonin, or caffeine. Adult cells were longer and wider than preterm cells. Mean cell length in 1.6 mM CaCl2 was 194 +/- 57 (SD) microm (n = 66) for adult cells and 93 +/- 32 microm (n = 20) for preterm cells (P < 0.05). Mean cell width at the widest point of the adult cells was 8.2 +/- 1.8 microm (n = 66) and 5.2 +/- 1.5 microm (n = 20) for preterm cells (P < 0.05). Cells were loaded into a perfusion dish maintained at 35 degreesC and exposed to agonists, and contractions were videotaped. Cell lengths were measured from 30 video frames and plotted as a function of time. Nonlinear fitting of cell length to an exponential model gave shortening velocities faster than most of those reported for airway smooth muscle tissues. For a sample of 10 adult and 10 preterm cells stimulated with 100 microM carbachol, mean (+/- SD) shortening velocity of the preterm cells was not different from that of the adult cells (0.64 +/- 0.30 vs. 0.54 +/- 0.27 s-1, respectively), but preterm cells shortened more than adult cells (68 +/- 12 vs. 55 +/- 11% of starting length, respectively; P < 0.05). The preparative and analytic methods described here are widely applicable to other smooth muscles and will allow contraction to be studied quantitatively at the single-cell level.
Collapse
Affiliation(s)
- S P Driska
- Physiology Department, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | |
Collapse
|
27
|
Shmigol AV, Eisner DA, Wray S. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J Physiol 1998; 511 ( Pt 3):803-11. [PMID: 9714861 PMCID: PMC2231157 DOI: 10.1111/j.1469-7793.1998.803bg.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/1997] [Accepted: 06/02/1998] [Indexed: 11/30/2022] Open
Abstract
1. The intracellular calcium concentration ([Ca2+]i) was measured at 35 degrees C using the fluorescent indicator indo-1 in patch-clamped, single uterine myocytes from pregnant rats to investigate the relationship between depolarization, Ca2+ current (ICa) and [Ca2+]i. 2. Membrane depolarization activated ICa and produced a [Ca2+]i transient. The rapid increase in [Ca2+]i occurred at the same time as the inward ICa. Both ICa and the increase in [Ca2+]i were abolished by nifedipine (10 microM). 3. When the membrane potential was held at -80 mV the threshold depolarization for an increase in [Ca2+]i was about -55 to -50 mV. As the magnitude of the depolarization was increased to about 0 mV there was an increase in the size of both ICa and the increase in [Ca2+]i. As the magnitude of the depolarization was further increased both ICa and the [Ca2+]i increase declined. 4. When the depolarizing pulses were applied at 3 Hz to mimic normal action potentials then the individual [Ca2+]i transients did not fully relax and a tetanic rise of [Ca2+]i was observed. Under these conditions, there was not a simple relationship between the magnitude of the Ca2+ response and Ca2+ entry. When pairs of depolarizing pulses were applied, the increase in [Ca2+]i produced by the second pulse was larger (in relation to the magnitude of the L-type Ca2+ current) than that produced by the first pulse. This facilitation was abolished by both ryanodine and cyclopiazonic acid suggesting a role for release from intracellular stores. 5. We conclude that the L-type Ca2+ current is the major source of Ca2+ ions entering the cell to produce the [Ca2+]i transient on depolarization. The magnitude of the increase in [Ca2+]i may, however, be amplified by Ca2+-induced Ca2+ release.
Collapse
Affiliation(s)
- A V Shmigol
- Department of Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
28
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
29
|
Wu C, Fry CH. The effects of extracellular and intracellular pH on intracellular Ca2+ regulation in guinea-pig detrusor smooth muscle. J Physiol 1998; 508 ( Pt 1):131-43. [PMID: 9490828 PMCID: PMC2230873 DOI: 10.1111/j.1469-7793.1998.131br.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1997] [Accepted: 12/05/1997] [Indexed: 02/06/2023] Open
Abstract
1. Intracellular pH (pHi) and intracellular [Ca2+] ([Ca2+]i) were measured during changes to superfusate PCO2 and/or [NaHCO3]. Changes to superfusate PCO2 produced sustained changes to pHi and [Ca2+]i, while changes to [NaHCO3] altered only extracellular pH (pHo). 2. Carbachol or caffeine induced a transient rise of [Ca2+]i due to Ca2+ release from an intracellular store. This Ca2+ transient was reduced by extracellular acidosis, but increased by intracellular acidosis. Alkalosis in either compartment produced opposite effects to acidosis. Changes to the Ca2+ transient mirrored those to phasic tension previously reported in this preparation. 3. A raised superfusate [K+] also induced a Ca2+ transient, due to transmembrane influx of Ca2+. This transient was depressed by extracellular acidosis, but unaffected by changes to pHi. The L-type Ca2+ current was similarly affected by changes to pHo, but not by alteration of pHi. 4. The results suggest that extracellular acidosis depresses the Ca2+ transient by reducing transmembrane influx through the L-type Ca2+ channel. The increase in the carbachol- and caffeine-induced Ca2+ transients by intracellular acidosis is due to enhancement of Ca2+ uptake into intracellular stores as a result of a raised resting [Ca2+]i.
Collapse
Affiliation(s)
- C Wu
- Institute of Urology & Nephrology, University College London, 67 Riding House Street, London W1P 7PN, UK
| | | |
Collapse
|
30
|
Gordienko DV, Bolton TB, Cannell MB. Variability in spontaneous subcellular calcium release in guinea-pig ileum smooth muscle cells. J Physiol 1998; 507 ( Pt 3):707-20. [PMID: 9508832 PMCID: PMC2230821 DOI: 10.1111/j.1469-7793.1998.707bs.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Spontaneous, localized transient increases in [Ca2+]i ('Ca2+ sparks') were observed in about 40 % of fluo-3-loaded myocytes examined using laser scanning confocal microscopy. Ca2+ sparks persisted after application of Cd2+ (200 microM), but were abolished by ryanodine (30 microM) or thapsigargin (0.1 microM), suggesting that they arise from the spontaneous activation of ryanodine receptors (RyR) in the sarcoplasmic reticulum (SR). 2. Ca2+ sparks occurred much more frequently at certain sites (or 'frequent discharge sites', FDSs) within any confocal plane of the cell and line-scan imaging revealed a wide variation in their spatial size, amplitude and time course. Some spontaneous local transients were very similar to 'Ca2+ sparks' observed in heart, i.e. lasting approximately 200 ms with a peak fluorescence ratio of 1.75 +/- 0.23 (mean +/- s.d., n = 33). Other events were faster and smaller, lasting only approximately 40 ms with a peak normalized fluorescence of 1.36 +/- 0.09 (mean +/- s.d., n = 28). 3. Spontaneous Ca2+ waves with a wide range of propagation velocities (between 30 and 260 micron s-1) were also observed. In about 60 % of records (n = 33), Ca2+ sparks could be detected at the sites of wave initiation. Waves of elevated [Ca2+]i propagated with non-constant velocity and in some cases terminated. These observations could be explained by heterogeneity in the distribution of subcellular release sites as well as variability in the contribution of each release site to the wave. 4. Spontaneous [Ca2+]i transients in single dispersed visceral smooth muscle cells have a wide spectrum of behaviour that is likely to be the result of spatio-temporal recruitment of smaller local events, probably via a calcium-induced calcium release (CICR) mechanism. The spatial non-uniformity of SR and RyR distribution within the cell may account for the existence of 'frequent discharge sites' firing the majority of the smooth muscle Ca2+ sparks and the wide variation in the Ca2+ wave propagation velocities observed.
Collapse
Affiliation(s)
- D V Gordienko
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
31
|
McGeown JG, McCarron JG, Drummond RM, Fay FS. Calcium-calmodulin-dependent mechanisms accelerate calcium decay in gastric myocytes from Bufo marinus. J Physiol 1998; 506 ( Pt 1):95-107. [PMID: 9481675 PMCID: PMC2230711 DOI: 10.1111/j.1469-7793.1998.095bx.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. [Ca2+] was recorded in voltage-clamped gastric myocytes from Bufo marinus. Repolarization to -110 mV following a 300 ms depolarization to +10 mV led to triphasic [Ca2+]i decay, with a fast-slow-fast pattern. After a conditioning train of repetitive depolarizations the duration of the second, slow phase of decay was shortened, while the rate of decay during the third, faster phase was increased by 34 +/- 6% (mean +/- S.E.M., n = 21) when compared with unconditioned transients. 2. [Ca2+]i decay was biphasic in cells injected with the calmodulin-binding peptide RS20, with a prolonged period of fast decay followed by a slow phase. There was no subsequent increase in decay rate during individual transients and no acceleration of decay following the conditioning train (n = 8). Decline of [Ca2+]i in cells injected with the control peptide NRS20 was triphasic and the decay rate during the third phase was increased by 50 +/- 19% in conditioned transients (n = 6). 3. Cell injection with CK3AA, a pseudo-substrate inhibitor of calmodulin-dependent protein kinase II, prevented the increase in the final rate of decay following the conditioning train (n = 6). In cells injected with an inactive peptide similar to CK3AA, however, there was a 45 +/- 17% increase after the train (n = 5). 4. Inhibition of Ca2+ uptake by the sarcoplasmic reticulum with cyclopiazonic acid or thapsigargin did not prevent acceleration of decay. 5. These results demonstrate that [Ca2+]i decay is accelerated by Ca(2+)-calmodulin and calmodulin-dependent protein kinase II. This does not depend on Ca2+ uptake by the sarcoplasmic reticulum but may reflect upregulation of mitochondrial Ca2+ removal.
Collapse
Affiliation(s)
- J G McGeown
- School of Biomedical Science, Queen's University of Belfast, UK.
| | | | | | | |
Collapse
|
32
|
Kim SJ, Ahn SC, Kim JK, Kim YC, So I, Kim KW. Changes in intracellular Ca2+ concentration induced by L-type Ca2+ channel current in guinea pig gastric myocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1947-56. [PMID: 9435500 DOI: 10.1152/ajpcell.1997.273.6.c1947] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated the relationship between voltage-operated Ca2+ channel current and the corresponding intracellular Ca2+ concentration ([Ca2+]i) change (Ca2+ transient) in guinea pig gastric myocytes. Fluorescence microspectroscopy was combined with conventional whole cell patch-clamp technique, and fura 2 (80 microM) was added to CsCl-rich pipette solution. Step depolarization to 0 mV induced inward Ca2+ current (ICa) and concomitantly raised [Ca2+]i. Both responses were suppressed by nicardipine, an L-type Ca2+ channel blocker, and the voltage dependence of Ca2+ transient was similar to the current-voltage relation of ICa. When pulse duration was increased by up to 900 ms, peak Ca2+ transient increased and reached a steady state when stimulation was for longer. The calculated fast Ca2+ buffering capacity (B value), determined as the ratio of the time integral of ICa divided by the amplitude of Ca2+ transient, was not significantly increased after depletion of Ca2+ stores by the cyclic application of caffeine (10 mM) in the presence of ryanodine (4 microM). The addition of cyclopiazonic acid (CPA, 10 microM), a sarco(endo)plasmic reticulum Ca(2+)-ATPase inhibitor, decreased B value by approximately 20% in a reversible manner. When KCl pipette solution was used, Ca(2+)-activated K+ current [IK(Ca)] was also recorded during step depolarization. CPA sensitively suppressed the initial peak and oscillations of IK(Ca) with irregular effects on Ca2+ transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightly coupled to ICa during depolarization, and global [Ca2+]i is not significantly affected by Ca(2+)-induced Ca2+ release from sarcoplasmic reticulum during depolarization.
Collapse
Affiliation(s)
- S J Kim
- Department of Physiology and Biophysics, Seoul National University College of Medicine, Korea
| | | | | | | | | | | |
Collapse
|
33
|
Sims SM, Jiao Y, Preiksaitis HG. Regulation of intracellular calcium in human esophageal smooth muscles. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1679-89. [PMID: 9374655 DOI: 10.1152/ajpcell.1997.273.5.c1679] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have investigated sources of Ca2+ contributing to excitation of human esophageal smooth muscle, using fura 2 to study cytosolic free Ca2+ concentration ([Ca2+]i) in dispersed cells and contraction of intact muscles. Acetylcholine (ACh) caused an initial peak rise of [Ca2+]i followed by a plateau accompanied by reversible contraction. Removal of extracellular Ca2+ or addition of dihydropyridine Ca2+ channel blockers reduced the plateau phase but did not prevent contraction. Caffeine also caused elevation of [Ca2+]i and blocked responses to ACh. Undershoots of [Ca2+]i were apparent after ACh or caffeine. Blockade of the sarcoplasmic reticular Ca(2+)-ATPase by cyclopiazonic acid (CPA) reduced the ACh-evoked increase of [Ca2+]i and abolished the undershoot, indicating involvement of Ca2+ stores. When contraction was studied in intact muscles, removal of Ca2+ or addition of nifedipine reduced, but did not abolish, carbachol (CCh)-induced contraction. Elevation of extracellular K+ caused contraction that was inhibited by nifedipine, although CCh still elicited contraction. CPA caused contraction and suppressed the CCh-induced contraction, whereas ryanodine reduced CCh-induced contraction. Our studies provide evidence that muscarinic excitation of human esophagus involves both release of Ca2+ from intracellular stores and influx of Ca2+.
Collapse
Affiliation(s)
- S M Sims
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
34
|
Kargacin ME, Kargacin GJ. Predicted changes in concentrations of free and bound ATP and ADP during intracellular Ca2+ signaling. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1416-26. [PMID: 9357788 DOI: 10.1152/ajpcell.1997.273.4.c1416] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High Ca2+ concentrations can develop near Ca2+ sources during intracellular signaling and might lead to localized regulation of Ca2+-dependent processes. By shifting the amount of Ca2+ and other cations associated with ATP, local high Ca2+ concentrations might also alter the substrate available for membrane-associated and cytoplasmic enzymes. To study this, simultaneous equations were solved over a range of Ca2+ and Mg2+ concentrations to determine the general effects of Ca2+ on the concentrations of free and Ca2+- and Mg2+-bound forms of ATP. To obtain a more specific picture of the changes that might occur in smooth muscle cells, mathematical models of Ca2+ diffusion and regulation were used to predict the magnitude and time course of near-membrane Ca2+ transients and their effects on the free and bound forms of ATP near the membrane. The results of this work indicate that changes in free Ca2+ concentration over the range of 50 nM-100 microM would result in significant changes in free ATP concentration, MgATP concentration, and the CaATP-to-MgATP concentration ratio.
Collapse
Affiliation(s)
- M E Kargacin
- Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
35
|
McCarron JG, McGeown JG, Walsh JV, Fay FS. Modulation of high- and low-voltage-activated calcium currents in smooth muscle by calcium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C883-92. [PMID: 9316409 DOI: 10.1152/ajpcell.1997.273.3.c883] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ca2+ currents (ICa) and cytoplasmic Ca2+ concentration ([Ca2+]c) were measured in isolated gastric myocytes from Bufo marinus using whole cell voltage clamp and fura 2, respectively. After a conditioning train of depolarizing pulses, high-voltage-activated ICa (test potential of +10 mV) was increased, returning to control values after approximately 85 s. This enhancement was [Ca2+]c dependent, with a maximal increase at approximately 600 nM [Ca2+]c. During the conditioning train, ICa measured at 70 ms, which provides a measure of high-voltage-activated current, initially decreased with each successive pulse to a minimum of 56 +/- 5% of the first pulse in the train. Thereafter, the 70-ms current showed considerable recovery. Blockade of calmodulin activity with a peptide (RS20) or calmidazolium did not affect the early inhibition but did abolish current recovery. A peptide inhibitor of calmodulin-dependent protein kinase II (CK3AA) had similar effects. Substraction of currents measured in the presence and absence of RS20 revealed a 2-s delay between the start of the train and the onset of current enhancement. It was also observed that low-voltage-activated current (test potential of -17 mV) was reduced to 76 +/- 7% of control 5 s after the conditioning train; this inhibition recovered to 92 +/- 4% after 35 s and was not dependent on [Ca2+]c elevation.
Collapse
Affiliation(s)
- J G McCarron
- Department of Biomedical Imaging, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | |
Collapse
|
36
|
Cseresnyés Z, Bustamante AI, Klein MG, Schneider MF. Release-activated Ca2+ transport in neurons of frog sympathetic ganglia. Neuron 1997; 19:403-19. [PMID: 9292729 DOI: 10.1016/s0896-6273(00)80949-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Frog sympathetic ganglion neurons exhibit a novel Ca2+ uptake mechanism, release-activated calcium transport or RACT, which is manifest in both cytosolic and store [Ca2+] signals as greatly accelerated Ca2+ uptake after Ca2+ release from internal stores. RACT is activated by Ca2+ release but not by Ca2+ entry and serves to selectively refill Ca2+ stores after release. RACT lowers cytosolic [Ca2+] with a rate constant about 1.6 times that of the SERCA pump with empty ER. RACT is thapsigargin-insensitive, was eliminated by ryanodine, but was not affected by blocking mitochondrial or plasma membrane Ca2+ transport. A Ca2+ flux model with RACT in the ER membrane reproduced the cytosolic and store [Ca2+] responses to all stimuli.
Collapse
Affiliation(s)
- Z Cseresnyés
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | |
Collapse
|
37
|
Madge L, Marshall IC, Taylor CW. Delayed autoregulation of the Ca2+ signals resulting from capacitative Ca2+ entry in bovine pulmonary artery endothelial cells. J Physiol 1997; 498 ( Pt 2):351-69. [PMID: 9032684 PMCID: PMC1159206 DOI: 10.1113/jphysiol.1997.sp021863] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. In calf pulmonary artery endothelial (CPAE) cells loaded with fura-2, the effects of ATP on Ca2+ entry were mediated entirely by the ability of P2U purinoceptors to stimulate InsP3 formation, empty intracellular Ca2+ stores and thereby activate capacitative Ca2+ entry. 2. Restoration of extracellular Ca2+ to cells with empty intracellular stores evoked transient increases in cytosolic [Ca2+] ([Ca2+]i) which then declined to an elevated plateau. These overshoots in [Ca2+]i were not a consequence of store refilling nor of desensitization of the capacitative pathway. Similar responses were recorded from cells in which Ca2+ uptake into mitochondria had been inhibited by microinjection of Ruthenium Red. The amplitudes of the capacitative Ca2+ signals decreased at lower extracellular [Ca2+], but [Ca2+]i invariably overshot before slowly declining to an elevated plateau. Even modest increases in [Ca2+]i therefore caused a delayed attenuation of the Ca2+ signal evoked by capacitative Ca2+ entry. 3. Modest pre-elevation of [Ca2+]i inhibited the ability of subsequent capacitative Ca2+ entry to further increase [Ca2+]i. The onset of the inhibition was slow (half-time (t1/2), approximately 100 s) and more tightly correlated with the preceding peak [Ca2+]i than with the [Ca2+]i immediately preceding Ca2+ entry. Recovery was also slow and complete only after [Ca2+]i had returned to its basal level for 320 +/- 3 s. 4. In thapsigargin-treated cells loaded with mag-fura-2, the peak [Ca2+]i that followed restoration of extracellular Ca2+ was accompanied by an abrupt approximately 2.5-fold decrease in the rate of Mn2+ entry, which then continued indefinitely at the reduced rate, demonstrating a rapid partial inactivation of the capacitative pathway. 5. The half-time for Ca2+ removal from the cytosol was significantly slower during the rising (t 1/2 = 22 +/- 2.5 s) than during the falling (t 1/2 = 7.1 +/- 0.7 s) phase of the Ca2+ overshoot evoked by addition of extracellular Ca2+ to thapsigargin-treated cells. 6. We conclude that an increase in [Ca2+]i rapidly inhibits the capacitative pathway and more slowly activates mechanisms that remove Ca2+ from the cytosol. Reversal of either or both of these regulatory mechanisms can occur only a considerable time after [Ca2+]i has been completely restored to its resting level. These mechanisms are likely to protect cells from excessive increases in [Ca2+]i and contribute to oscillatory changes in [Ca2+]i.
Collapse
Affiliation(s)
- L Madge
- Department of Pharmacology, University of Cambridge, UK
| | | | | |
Collapse
|
38
|
Ugur M, Drummond RM, Zou H, Sheng P, Singer JJ, Walsh JV. An ATP-gated cation channel with some P2Z-like characteristics in gastric smooth muscle cells of toad. J Physiol 1997; 498 ( Pt 2):427-42. [PMID: 9032690 PMCID: PMC1159212 DOI: 10.1113/jphysiol.1997.sp021869] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Whole-cell and single-channel currents elicited by extracellular ATP were studied in freshly dissociated smooth muscle cells from the stomach of the toad Bufo marinus using standard patch clamp and microfluorimetric techniques. 2. This ATP-gated cation channel shares a number of pharmacological and functional properties with native rat myometrium receptors, certain native P2Z purinoceptors and the recently cloned P2X7 purinoceptor. But, unlike the last two, the ATP-gated channel does not mediate the formation of large non-specific pores. Thus, it may represent a novel member of the P2X or P2Z class. 3. Extracellular application of ATP (> or = 150 microM) elicited an inward whole-cell current at negative holding potentials that was inwardly rectifying and showed no sign of desensitization. Na+, Cs+ and, to a lesser degree, the organic cation choline served as charge carriers, but Cl- did not. Ratiometric fura-2 measurements indicated that the current is carried in part by Ca2+. The EC50 for ATP was 700 microM in solutions with a low divalent cation concentration. 4. ATP (> or = 100 microM) at the extracellular surface of cell-attached or excised patches elicited inwardly rectifying single-channel currents with a 22 pS conductance. Cl- did not serve as a charge carrier but both Na+ and Cs+ did, as did choline to a lesser extent. The mean open time of the channel was quite long, with a range in hundreds of milliseconds at a holding potential of -70 mV. 5. Mg2+ and Ca2+ decreased the magnitude of the ATP-induced whole-cell currents. Mg2+ decreased both the amplitude and the activity of ATP-activated single-channel currents. 6. ADP, UTP, P1, P5-di-adenosine pentaphosphate (AP5A), adenosine and alpha, beta-methylene ATP (alpha, beta-Me-ATP) did not induce significant whole-cell current. ATP-gamma-S and 2-methylthio ATP (2-Me-S-ATP) were significantly less effective than ATP in inducing whole-cell currents, whereas benzoylbenzoyl ATP (BzATP) was more effective. BzATP, alpha, beta-Me-ATP, ATP-gamma-S and 2-Me-S-ATP induced single-channel currents, but a higher concentration of alpha, beta-Me-ATP was required. 7. BzATP did not induce the formation of large non-specific pores, as assayed using mag-fura-2 as a high molecular mass probe.
Collapse
Affiliation(s)
- M Ugur
- Department of Physiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | |
Collapse
|
39
|
McGeown JG, Drummond RM, McCarron JG, Fay FS. The temporal profile of calcium transients in voltage clamped gastric myocytes from Bufo marinus. J Physiol 1996; 497 ( Pt 2):321-36. [PMID: 8961178 PMCID: PMC1160987 DOI: 10.1113/jphysiol.1996.sp021771] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Decay in intracellular calcium concentration ([Ca2+]i) was recorded following step depolarizations in voltage clamped gastric myocytes from Bufo marinus. 2. Depolarizations (300 ms) to +10 mV were followed by three phases of [Ca2+]i decay with repolarization to both -110 and -50 mV. The decline was initially rapid (mean fractional decay rate = 81 +/- 11%s-1 at -110 mV), then slowed (decay rate = 14 +/- 2%s-1) and finally accelerated again (decay rate = 24 +/- 3%s-1; n = 19). 3. The initial phase of rapid decay became shorter as the length of the depolarizing pulse increased but was unaffected by changes in pulse voltage. 4. The delayed acceleration in [Ca2+]i decay was no longer seen when the duration of the depolarizing pulses was reduced to 100 ms, but was clearly evident following 500 ms pulses. This phase was abolished when the depolarizing voltage was altered to minimize the rise in [Ca2+]i. 5. Ryanodine and caffeine had no effect on the temporal profile of [Ca2+]i decay. 6. Removal of extracellular Na+ decreased the decay rate during all three phases at -110 mV, but this effect was particularly marked for the initial rapid phase of decay, the rate of which was reduced by 75%. A delayed increase in decay rate was still seen. 7. Inhibition of mitochondrial Ca2+ uptake with cyanide, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone or Ruthenium Red had no effect on the initial rate of [Ca2+]i decay but blocked the delayed acceleration. 8. These results are discussed in terms of a model in which rapid influx of Ca2+ produces a high subsarcolemmal [Ca2+], favouring rapid Ca2+ removal by near-membrane mechanisms, particularly Na(+)-Ca2+ exchange. Mitochondrial Ca2+ removal produces a delayed increase in [Ca2+]i decay if the global [Ca2+]i is raised high enough for long enough.
Collapse
Affiliation(s)
- J G McGeown
- School of Biomedical Science, Queen's University of Belfast, UK
| | | | | | | |
Collapse
|
40
|
Etter EF, Minta A, Poenie M, Fay FS. Near-membrane [Ca2+] transients resolved using the Ca2+ indicator FFP18. Proc Natl Acad Sci U S A 1996; 93:5368-73. [PMID: 8643581 PMCID: PMC39252 DOI: 10.1073/pnas.93.11.5368] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
(Ca2+)-sensitive processes at cell membranes involved in contraction, secretion, and neurotransmitter release are activated in situ or in vitro by Ca2+ concentrations ([Ca2+]) 10-100 times higher than [Ca2+] measured during stimulation in intact cells. This paradox might be explained if the local [Ca2+] at the cell membrane is very different from that in the rest of the cell. Soluble Ca2+ indicators, which indicate spatially averaged cytoplasmic [Ca2+], cannot resolve these localized, near-membrane [Ca2+] signals. FFP18, the newest Ca2+ indicator designed to selectively monitor near-membrane [Ca2+], has a lower Ca2+ affinity and is more water soluble than previously used membrane-associating Ca2+ indicators. Images of the intracellular distribution of FFP18 show that >65% is located on or near the plasma membrane. [Ca2+] transients recorded using FFP18 during membrane depolarization-induced Ca2+ influx show that near-membrane [Ca2+] rises faster and reaches micromolar levels at early times when the cytoplasmic [Ca2+], recorded using fura-2, has risen to only a few hundred nanomolar. High-speed series of digital images of [Ca2+] show that near-membrane [Ca2+], reported by FFP18, rises within 20 msec, peaks at 50-100 msec, and then declines. [Ca2+] reported by fura-2 rose slowly and continuously throughout the time images were acquired. The existence of these large, rapid increases in [Ca2+] directly beneath the surface membrane may explain how numerous (Ca2+)-sensitive membrane processes are activated at times when bulk cytoplasmic [Ca2+] changes are too small to activate them.
Collapse
Affiliation(s)
- E F Etter
- Department of Physiology and Biomedical Imaging Group, University of Massachusetts Medical Center, Worcester, 01605, USA
| | | | | | | |
Collapse
|
41
|
Fleischmann BK, Wang YX, Pring M, Kotlikoff MI. Voltage-dependent calcium currents and cytosolic calcium in equine airway myocytes. J Physiol 1996; 492 ( Pt 2):347-58. [PMID: 9019534 PMCID: PMC1158832 DOI: 10.1113/jphysiol.1996.sp021313] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The relationship between voltage-dependent calcium channel current (I(Ca)) and cytosolic free calcium concentration ([Ca2+]i) was studied in fura-2 AM-loaded equine tracheal myocytes at 35 degrees C and 1.8 mM Ca2+ using the nystatin patch clamp method. The average cytosolic calcium buffering constant was 77 +/- 3 (n = 14), and the endogenous calcium buffering constant component is likely to be between 15 and 50. 2. I(Ca) did not evoke significant calcium-induced calcium release (CICR) since (i)[Ca2+]i scaled with the integrated I(Ca) over the full voltage range of evoked calcium currents, (ii) increases in [Ca2+]i associated with I(Ca) were consistent with cytoplasmic buffering of calcium ions entering through voltage-dependent calcium channels (VDCCs) only, (iii) there was a fixed instantaneous relationship between transmembrane calcium flux (J(Ca)) and the change in cytosolic free calcium concentration (delta [Ca2+]i) during I(Ca), (iv) caffeine (8 mM) triggered 8-fold higher calcium transients than I(Ca), and (v) I(Ca) evoked following release of intracellular calcium by caffeine resulted in an equivalent delta[Ca2+]i-J(Ca) relationship. 3. The time constant (T) for the decay in [Ca2+]i was 8.6 +/- 1.5 s (n = 8) for single steps and 8.6 +/- 1.1 s (n = 13) following multiple steps that increased [Ca2+]i to much higher levels. Following application of caffeine (8 mM), however, [Ca2+]i decay was enhanced (T = 2.0 +/- 0.2 s, n = 3). The rate of [Ca2+]i decay was not voltage dependent, was not decreased in the absence of extracellular Na+ ions, and no pump current was detected. 4. We conclude that under near physiological conditions, neither CICR nor Na(+)-Ca2+ exchange play a substantial role in the regulation of I(Ca)-induced increases in [Ca2+]i, and that, even following release of intracellular calcium by caffeine, Na(+)-Ca2+ exchange does not play an appreciable role in the removal of calcium ions from the cytosol.
Collapse
Affiliation(s)
- B K Fleischmann
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104-6046, USA
| | | | | | | |
Collapse
|
42
|
Wade GR, Barbera J, Sims SM. Cholinergic inhibition of Ca2+ current in guinea-pig gastric and tracheal smooth muscle cells. J Physiol 1996; 491 ( Pt 2):307-19. [PMID: 8866856 PMCID: PMC1158727 DOI: 10.1113/jphysiol.1996.sp021217] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Cholinergic regulation of L-type Ca2+ channels was investigated in freshly dissociated guinea-pig gastric and tracheal smooth muscle cells. Acetylcholine (ACh, 50 microM) decreased Ca2+ channel current (ICa) by 37 +/- 3% (mean +/- S.E.M., 46 cells). 2. ACh reduced ICa at all voltages, with no shift in the current-voltage relationship. Effects of ACh were rapid (within 5 s) and repeatable, with multiple applications reproducibly inhibiting ICa in the continued presence of extracellular Ca2+ and in the presence of protein kinase C inhibitors. 3. The involvement of Ca2+ stores in this inhibition was investigated using Ca(2+)-free solution or cyclopiazonic acid (CPA) to deplete the stores. ACh initially inhibited ICa in the Ca(2+)-free solution (Na+ as charge carrier, 53 +/- 4% decrease, 18 cells) with subsequent responses significantly attenuated (n = 9). CPA (1 microM) reduced, then abolished, the effects of ACh on ICa (n = 5). 4. When studied in cell-attached patches (Ba2+ as charge carrier), ACh reduced Ca2+ channel open probability in twenty-two of thirty-six cells, consistent with the involvement of a diffusible cytosolic messenger. 5. ACh also inhibited ICa in tracheal muscle cells (reduction of 38 +/- 6% in 1 mM Ca2+, 4 cells; 77 +/- 3% in Ca(2+)-free solution, 7 cells). Furthermore, in cells where ACh elicited oscillating Ca(2+)-activated Cl- current, oscillatory inhibition of ICa was also observed (3 cells). 6. In summary, ACh causes rapid and reversible inhibition of ICa in gastric and tracheal muscles. Ca2+ stores were required to initiate this effect, with the rapid onset and oscillatory inhibition consistent with Ca2+ inhibition of the channel. Suppression of ICa would reduce Ca2+ entry during cholinergic excitation.
Collapse
Affiliation(s)
- G R Wade
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
43
|
Watanabe Y, Suzuki A, Suzuki H, Itoh T. Effect of membrane hyperpolarization induced by a K+ channel opener on histamine-induced Ca2+ mobilization in rabbit arterial smooth muscle. Br J Pharmacol 1996; 117:1302-8. [PMID: 8882629 PMCID: PMC1909770 DOI: 10.1111/j.1476-5381.1996.tb16729.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The role of membrane hyperpolarization on agonist-induced contraction was investigated in intact and alpha-toxin-skinned smooth muscles of rabbit mesenteric artery by use of the ATP-sensitive K+ channel opener, (-)-(3S,4R)-4-(N-acetyl-N-hydroxyamino)-6-cyano-3,4-dihydro-2,2- dimethyl-2H-1-benzopyran-3-ol (Y-26763), and either histamine (Hist) or noradrenaline (NA). 2. Hist (3 microM) and NA (10 microM) both produced a phasic, followed by a tonic increase in intracellular Ca2+ concentration ([Ca2+]i) and force. Y-26763 (10 microM) potently inhibited the NA-induced phasic and tonic increase in [Ca2+]i and force. In contrast, Y-26763 attenuated the Hist-induced phasic increase in [Ca2+]i and force but had almost no effect on the tonic response. However, ryanodine-treatment of muscles in order to inhibit the function of intracellular Ca2+ storage sites altered the action of Y-26763 which now attenuated the Hist-induced tonic increase in [Ca2+]i and force in a concentration-dependent manner (at concentrations > 1 microM). Glibenclamide (10 microM) attenuated the inhibitory action of Y-26763. 3. Hist (3 microM) depolarized the smooth muscle cells to the same extent as NA (10 microM). In the absence of either agonist, Y-26763 (over 30 nM) hyperpolarized the membrane and glibenclamide inhibited this hyperpolarization. Y-26763 (10 microM) almost abolished the NA-induced membrane depolarization, but only slightly attenuated the Hist-induced membrane depolarization in which the delta (delta) value (the difference before and after application of Hist) was not modified by any concentration of Y-26763. In ryanodine-treated smooth muscle cells, Y-26763 hyperpolarized the membrane and potently inhibited the membrane depolarization induced by Hist. 4. In ryanodine-treated muscle, Y-26763 had no measurable effect on the Hist-induced [Ca2+]i-force relationship. Y-26763 also had no apparent effect on the myofilament Ca(2+)-sensitivity in the presence of Hist in alpha-toxin-skinned smooth muscles. 5. It is concluded that the membrane hyperpolarization induced by Y-26763 may not be enough to inhibit the Hist-activated Ca2+ influx. It is also suggested that Hist prevents the membrane hyperpolarization induced by Y-26763, activating an unknown mechanism which is thought to depend on the function of intracellular Ca2+ storage sites.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Pharmacology, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
44
|
Abstract
Recent evidence, from a variety of cell types, suggests that mitochondria play an important role in shaping the change in intracellular calcium concentration ([Ca2+]i) that occurs during physiological stimulation. In the present study, using a range of inhibitors of mitochondrial Ca2+ uptake, we have examined the contribution of mitochondria to Ca2+ removal from the cytosol of smooth muscle cells following stimulation. In voltage-clamped single smooth muscle cells, we found that following a 8-s train depolarizing pulses, the rate of Ca2+ extrusion from the cytosol was reduced by more than 50% by inhibitors of cytochrome oxidase or exposure of cells to the protonophore carbonyl cyanide P-trifluoromethoxy-phenylhydrazone. Using the potential-sensitive indicator-tetramethyl rhodamine ethyl ester, we confirmed that the effect of these agents was associated with depolarization of the mitochondrial membrane. Since, the primary function of the mitochondria is to provide the cell's ATP, it could be argued that it is the ATP supply to the ion pumps which is limiting the rate of Ca2+ removal. However, experiments carried out with the mitochondrial Ca2+ uniporter inhibitor ruthenium red produced similar results, while the ATP synthetase inhibitor oligomycin had no effect, suggesting that the effect was not due to ATP insufficiency. These results establish that mitochondria in smooth muscle cells play a significant role in removing Ca2+ from the cytosol following stimulation. The uptake of Ca2+ into mitochondria is proposed to stimulate mitochondrial ATP production, thereby providing a means for matching increased energy demand, following the cell's rise in [Ca2+]i, with increased cellular ATP production.
Collapse
Affiliation(s)
- R M Drummond
- Department of Physiology, University of Massachusetts Medical Center, Worcester MA 01605, USA
| | | |
Collapse
|
45
|
Kamei K, Nabata H, Kuriyama H, Watanabe Y, Itoh T. Effect of KC399, a newly synthesized K+ channel opener, on acetylcholine-induced electrical and mechanical activities in rabbit tracheal smooth muscle. Br J Pharmacol 1995; 115:1493-501. [PMID: 8564210 PMCID: PMC1908865 DOI: 10.1111/j.1476-5381.1995.tb16642.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Effects of KC399, an opener of ATP-sensitive K+ channels were investigated on membrane potential, isometric force and intracellular Ca2+ ([Ca2+]i) mobilization induced by acetylcholine (ACh) in smooth muscle from the rabbit trachea. 2. In these smooth muscle cells, ACh (0.1 and 1 microM) depolarized the membrane in a concentration-dependent manner, KC399 (1-100 nM) hyperpolarized the membrane whether in the presence or absence of ACh. When the concentration of ACh was increased, the absolute values of the membrane potential induced by the maximum concentration of KC399 were less negative. 3. ACh (0.1 to 10 microM) concentration-dependently produced a phasic, followed by a tonic increase in both [Ca2+]i and force. KC399 (above 3 nM) lowered the resting [Ca2+]i and attenuated the ACh-induced phasic and tonic increases in [Ca2+]i and force, in a concentration-dependent manner. The magnitude of the inhibition was greater for the ACh-induced tonic responses than for the phasic ones. Nicardipine (0.3 microM), a blocker of the L-type Ca2+ channel, attenuated the ACh-induced tonic, but not phasic, increases in [Ca2+]i and force. KC399 further attenuated the ACh-induced tonic responses in the presence of nicardipine. 4. In beta-escin-skinned strips, Ca2+ (0.3-10 microM) produced a contraction in a concentration-dependent manner. KC399 (0.1 microM) had no effect on the Ca(2+)-force relationship in the presence or absence of ATP with GTP. However, at a very high concentration (1 microM), this agent slightly shifted the relationship to the right and attenuated the maximum Ca(2+)-induced contraction. 5. We conclude that, in rabbit tracheal smooth muscle, the membrane hyperpolarization induced byKC399 attenuates the ACh-induced tonic increase in [Ca2+], through an inhibition of nicardipinesensitive and -insensitive Ca2+-influxes, thus causing an inhibition of the ACh-induced tonic contraction. The ACh-induced phasic increase in [Ca2+]i and force are also inhibited, but less effectively than the tonic ones, suggesting that the action of such K+ channel openers on agonist-induced responses may be slightly different in tracheal from vascular smooth muscle.
Collapse
Affiliation(s)
- K Kamei
- Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Co. Ltd., Shizuoka, Japan
| | | | | | | | | |
Collapse
|
46
|
Janssen LJ, Sims SM. Ca(2+)-dependent Cl- current in canine tracheal smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:C163-9. [PMID: 7543242 DOI: 10.1152/ajpcell.1995.269.1.c163] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Our goal was to investigate the role of Ca2+ entry in regulating Cl- current (ICl) in smooth muscle cells from canine trachealis. When studies were done using the perforated patch configuration, depolarization elicited a dihydropyridine-sensitive Ca2+ current (ICa), followed in many cells by a sustained current. This sustained current reversed direction close to the Cl- equilibrium potential, consistent with its representing ICl. The ICl was also apparent as slowly deactivating tail currents seen upon repolarization to negative potentials. The Cl- channel blocker niflumic acid abolished both the sustained and tail currents, without affecting ICa. Several observations indicated that the ICl was dependent on Ca2+ entry. ICl was increased in magnitude when Ca2+ influx was augmented [by prolonging the depolarization or using BAY K 8644 or acetylcholine (ACh)] and decreased in magnitude when Ca2+ influx was reduced (using nifedipine). Based on these findings, we conclude that depolarization causes Ca2+ entry, with resultant elevation of cytosolic free Ca2+ concentration leading to activation of ICl (ICl(Ca)). We investigated whether Ca(2+)-induced Ca2+ release from the sarcoplasmic reticulum was involved in activation of ICl(Ca), by depleting intracellular stores of Ca2+ using cyclopiazonic acid to block the sarcoplasmic Ca(2+)-adenosinetriphosphatase and repeated stimulation with ACh. In such Ca(2+)-depleted cells, depolarization-mediated Ca2+ entry continued to activate ICl(Ca), suggesting that Ca(2+)-induced Ca2+ release was not required for its activation. We conclude that Ca2+ entry can activate Cl- channels in tracheal smooth muscle. This represents a positive-feedback system, which would promote excitation and contraction of airway muscle.
Collapse
Affiliation(s)
- L J Janssen
- Department of Physiology, University of Western Ontario, London, Canada
| | | |
Collapse
|
47
|
Kumamoto T, Ueyama H, Watanabe S, Yoshioka K, Miike T, Goll DE, Ando M, Tsuda T. Immunohistochemical study of calpain and its endogenous inhibitor in the skeletal muscle of muscular dystrophy. Acta Neuropathol 1995; 89:399-403. [PMID: 7618437 DOI: 10.1007/bf00307642] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A calcium-dependent proteinase (calpain) has been suggested to play an important role in muscle degradation in Duchenne muscular dystrophy (DMD). In immunohistochemical studies, calpain and its endogenous inhibitor (calpastatin) were located exclusively in the cytoplasm in normal human muscles. The intensity of the staining was stronger in type 1 than in type 2 fibers. Quantitative immunohistochemical study showed an increase of calpain in biopsied muscles from the patients with DMD and Becker muscular dystrophy. Abnormal increases in calpain and calpastatin were demonstrated mainly in atrophic fibers, whereas necrotic fibers showed moderate or weak immunoreactions for the enzymes. Opaque fibers and hypertrophic fibers were negative. Not all dystrophin-deficient muscle fibers necessarily showed a strong reaction for calpain. We suggest that calpain may play an important role in muscle fiber degradation, especially in the early stage of muscle degradation in muscular dystrophy.
Collapse
Affiliation(s)
- T Kumamoto
- Third Department of Internal Medicine, Oita Medical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Goll DE, Thompson VF, Taylor RG, Zalewska T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 1995; 14:549-56. [PMID: 1365908 DOI: 10.1002/bies.950140810] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the Ca(2+)-dependent proteinase (calpain) system has been found in every vertebrate cell that has been examined for its presence and has been detected in Drosophila and parasites, the physiological function(s) of this system remains unclear. Calpain activity has been associated with cleavages that alter regulation of various enzyme activities, with remodeling or disassembly of the cell cytoskeleton, and with cleavages of hormone receptors. The mechanism regulating activity of the calpain system in vivo also is unknown. It has been proposed that binding of the calpains to phospholipid in a cell membrane lowers the Ca2+ concentration, [Ca2+], required for the calpains to autolyze, and that autolysis converts an inactive proenzyme into an active protease. Recent studies, however, show that the calpains bind to specific proteins and not to phospholipids, and that binding to cell membranes does not affect the [Ca2+] required for autolysis. It seems likely that calpain activity is regulated by binding of Ca2+ to specific sites on the calpain molecule, with binding to each site eliciting a response (proteolytic activity, calpastatin binding, etc.) specific for that site. Regulation must also involve an, as yet, undiscovered mechanism that increases the affinity of the Ca(2+)-binding sites for Ca2+.
Collapse
Affiliation(s)
- D E Goll
- Muscle Biology Group, University of Arizona, Tucson 85721
| | | | | | | |
Collapse
|
49
|
Fleischmann BK, Murray RK, Kotlikoff MI. Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc Natl Acad Sci U S A 1994; 91:11914-8. [PMID: 7527547 PMCID: PMC45346 DOI: 10.1073/pnas.91.25.11914] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Action potentials activate voltage-dependent calcium channels and attendant increases in cytosolic calcium concentration ([Ca2+]i) in many excitable cells. The role of these channels in the regulation of [Ca2+]i in nonspiking cells that do not depolarize to membrane potentials sufficient to activate a substantial fraction of the available current is less clear. Measurements of the peak activation and steady-state inactivation of L-type calcium currents have predicted the existence of a noninactivating current window over a voltage range where channel inactivation is incomplete. The degree to which such small currents might regulate [Ca2+]i, however, has not been established. Here we demonstrate a "calcium window" in nondialyzed, quiescent smooth muscle cells over a small voltage range near the resting membrane potential. Sustained depolarizations in this voltage range, but not to more positive potentials, resulted in sustained rises in calcium, despite the fact that macroscopic inward currents were < 2 pA. The calcium window corresponded well with the predicted window current determined under the same conditions; the peak of the calcium window occurred at -30 mV, with steady-state rises in [Ca2+]i in some cells at -50 mV. Steady-state rises in [Ca2+]i following depolarization were completely blocked by nisoldipine and were augmented and shifted to more negative potentials by BAY K8644. Voltage-dependent calcium channels thus regulate steady-state calcium levels in nonspiking cells over a voltage range where macroscopic currents are only barely detectable. This voltage range is bounded at negative potentials by calcium channel activation and at more positive potentials by channel inactivation.
Collapse
Affiliation(s)
- B K Fleischmann
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104-6046
| | | | | |
Collapse
|
50
|
Perry PB, O'Neill WC. Swelling-activated K+ fluxes in vascular endothelial cells: role of intracellular Ca2+. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C1535-42. [PMID: 7810594 DOI: 10.1152/ajpcell.1994.267.6.c1535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Swelling of bovine aortic endothelial cells activates Ca(2+)-dependent K+ channels. To determine the role of Ca2+ in this response, we examined the effect of cell swelling on intracellular Ca2+ concentration ([Ca2+]i), and the role of [Ca2+]i in swelling-activated K+ efflux. Basal [Ca2+]i, measured by fura 2 fluorescence, was 62 nM and increased by 36 nM in hypotonic medium (220 mosmol/l) compared with a 277 nM increase in response to extracellular ATP. In cells loaded with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA), the increases induced by swelling and by ATP were reduced to 13 and 20 nM, respectively. Exposure to hypotonic medium (220 mosmol/kg) or to the Ca2+ ionophore A-23187 stimulated a furosemide-insensitive 86Rb efflux consistent with activation of K+ channels. The swelling-activated efflux was inhibited 16% by 5 mM tetraethylammonium and 24% by 23 mM tetrabutylammonium, but not by 100 microM quinidine, a pattern similar to that previously observed for swelling-activated K+ channels in cell-attached patches. The effects of A-23187 and hypotonic swelling on 86Rb efflux were completely additive, suggesting Ca(2+)-independent activation by cell swelling. Removal of Ca2+ from the external medium or loading of cells with BAPTA to buffer intracellular Ca2+ blocked the activation of 86Rb efflux by A-23187, but not by hypotonic swelling. Hypertonic medium (440 mosmol/kg by the addition of sucrose) attenuated the increased 86Rb efflux in response to A-23187. We conclude that the activation of K+ efflux in swollen endothelial cells occurs independently of changes in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P B Perry
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|