1
|
Hu M, Santin JM. Transformation to ischaemia tolerance of frog brain function corresponds to dynamic changes in mRNA co-expression across metabolic pathways. Proc Biol Sci 2022; 289:20221131. [PMID: 35892220 PMCID: PMC9326273 DOI: 10.1098/rspb.2022.1131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural activity is costly and requires continuous ATP from aerobic metabolism. Brainstem motor function of American bullfrogs normally collapses after minutes of ischaemia, but following hibernation, it becomes ischaemia-tolerant, generating output for up to 2 h without oxygen or glucose delivery. Transforming the brainstem to function during ischaemia involves a switch to anaerobic glycolysis and brain glycogen. We hypothesized that improving neural performance during ischaemia involves a transcriptional program for glycogen and glucose metabolism. Here we measured mRNA copy number of genes along the path from glycogen metabolism to lactate production using real-time quantitative PCR. The expression of individual genes did not reflect enhanced glucose metabolism. However, the number of co-expressed gene pairs increased early into hibernation, and by the end, most genes involved in glycogen metabolism, glucose transport and glycolysis exhibited striking linear co-expression. By contrast, co-expression of genes in the Krebs cycle and electron transport chain decreased throughout hibernation. Our results uncover reorganization of the metabolic transcriptional network associated with a shift to ischaemia tolerance in brain function. We conclude that modifying gene co-expression may be a critical step in synchronizing storage and use of glucose to achieve ischaemia tolerance in active neural circuits.
Collapse
Affiliation(s)
- Min Hu
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Joseph M. Santin
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
2
|
Vu TD, Iwasaki Y, Oshima K, Chiu MT, Nikaido M, Okada N. A unique neurogenomic state emerges after aggressive confrontations in males of the fish Betta splendens. Gene 2021; 784:145601. [PMID: 33766705 DOI: 10.1016/j.gene.2021.145601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Territorial defense involves frequent aggressive confrontations with competitors, but little is known about how brain-transcriptomic profiles change between individuals competing for territory establishment. Our previous study elucidated that when two fish Betta splendens males interact, transcriptomes across their brains synchronize in a way that reflects a mutual assessment process between them at the gene expression level. Here we aim to evaluate how the brain-transcriptomic profiles of opponents change immediately after shifting their social status (i.e., the winner/loser has emerged) and 30 min after this shift. We showed that changes in the expression of certain genes are unique to different fighting stages and the expression patterns of certain genes are transiently or persistently changed across all fighting stages. These brain transcriptomic responses are in accordance with behavioral changes across the fight. Strikingly, the specificity of the brain-transcriptomic synchronization of a pair during fighting was gradually lost after fighting ceased, leading to the emergence of a basal neurogenomic state in which the changes in gene expression were reduced to minimum and consistent across all individuals. This state shares common characteristics with the hibernation state that animals adopt to minimize their metabolic rates to save energy. Interestingly, expression changes for genes related to metabolism, autism spectrum disorder, and long-term memory still differentiated losers from winners. Together, the fighting system using male B. splendens provides a promising platform for investigating neurogenomic states of aggression in vertebrates.
Collapse
Affiliation(s)
- Trieu-Duc Vu
- School of Pharmacy, Kitasato University, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan; Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yuki Iwasaki
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | - Ming-Tzu Chiu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Norihiro Okada
- School of Pharmacy, Kitasato University, Tokyo, Japan; Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| |
Collapse
|
3
|
Meemongkolkiat T, Allison J, Seebacher F, Lim J, Chanchao C, Oldroyd BP. Thermal adaptation in the honeybee ( Apis mellifera) via changes to the structure of malate dehydrogenase. ACTA ACUST UNITED AC 2020; 223:jeb.228239. [PMID: 32680901 DOI: 10.1242/jeb.228239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/14/2020] [Indexed: 11/20/2022]
Abstract
In honeybees there are three alleles of cytosolic malate dehydrogenase gene: F, M and S. Allele frequencies are correlated with environmental temperature, suggesting that the alleles have temperature-dependent fitness benefits. We determined the enzyme activity of each allele across a range of temperatures in vitro The F and S alleles have higher activity and are less sensitive to high temperatures than the M allele, which loses activity after incubation at temperatures found in the thorax of foraging bees in hot climates. Next, we predicted the protein structure of each allele and used molecular dynamics simulations to investigate their molecular flexibility. The M allozyme is more flexible than the S and F allozymes at 50°C, suggesting a plausible explanation for its loss of activity at high temperatures, and has the greatest structural flexibility at 15°C, suggesting that it can retain some enzyme activity at cooler temperatures. MM bees recovered from 2 h of cold narcosis significantly better than all other genotypes. Combined, these results explain clinal variation in malate dehydrogenase allele frequencies in the honeybee at the molecular level.
Collapse
Affiliation(s)
- Thitipan Meemongkolkiat
- Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jane Allison
- Digital Life Institute and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Frank Seebacher
- Heyden Laurence Building, The University of Sydney, Sydney, NSW 2006, Australia
| | - Julianne Lim
- Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chanpen Chanchao
- Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P Oldroyd
- Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Ogutu C, Cherono S, Ntini C, Mollah MD, Zhao L, Belal MA, Han Y. Evolutionary rate variation among genes involved in galactomannan biosynthesis in Coffea canephora. Ecol Evol 2020; 10:2559-2569. [PMID: 32185001 PMCID: PMC7069334 DOI: 10.1002/ece3.6084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/03/2022] Open
Abstract
The endosperm cell walls of mature coffee seeds accumulate large amounts of mannan storage polysaccharides, which serve as nutrient reserve for embryo and contribute to beverage quality. Our study investigated the evolutionary patterns of key galactomannan (GM) biosynthesis genes using d N/d S ratio, synteny, and phylogenetic analysis and detected heterogeneity in rate of evolution among gene copies. Selection ratio index revealed evidence of positive selection in the branch editing gene Coffea canephora alpha (α) galactosidase (Cc-alpha Gal) at Cc11_g15950 copy (ω = 1.12), whereas strong purifying selection on deleterious mutations was observed in the Coffea canephora uridine diphosphate (UDP)-glucose 4'-epimerase (Cc-UG4E) and Coffea canephora mannose-1P guanylytransferase (Cc-MGT) genes controlling the crucial nucleotide carbon sugar building blocks flux in the pathway. Relatively low sequence diversity and strong syntenic linkages were detected in all GM pathway genes except in Cc-alpha Gal, which suggests a correlation between selection pressure and nucleotide diversity or synteny analysis. In addition, phylogenetic analysis revealed independent evolution or expansion of GM pathway genes in different plant species, with no obvious inferable clustering patterns according to either gene family or congruent with evolutionary plants lineages tested due to high dynamic nature and specific biochemical cell wall modification requirements. Altogether, our study shows a significant high rate of evolutionary variation among GM pathway genes in the diploid C. canephora and demonstrates the inherent variation in evolution of gene copies and their potential role in understanding selection rates in a homogenously connected metabolic pathway.
Collapse
Affiliation(s)
- Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| | - Sylvia Cherono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Charmaine Ntini
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mohammad Dulal Mollah
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mohammad A. Belal
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| |
Collapse
|
6
|
Chen J, Swofford R, Johnson J, Cummings BB, Rogel N, Lindblad-Toh K, Haerty W, Palma FD, Regev A. A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res 2018; 29:53-63. [PMID: 30552105 PMCID: PMC6314168 DOI: 10.1101/gr.237636.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023]
Abstract
The evolutionary history of a gene helps predict its function and relationship to phenotypic traits. Although sequence conservation is commonly used to decipher gene function and assess medical relevance, methods for functional inference from comparative expression data are lacking. Here, we use RNA-seq across seven tissues from 17 mammalian species to show that expression evolution across mammals is accurately modeled by the Ornstein–Uhlenbeck process, a commonly proposed model of continuous trait evolution. We apply this model to identify expression pathways under neutral, stabilizing, and directional selection. We further demonstrate novel applications of this model to quantify the extent of stabilizing selection on a gene's expression, parameterize the distribution of each gene's optimal expression level, and detect deleterious expression levels in expression data from individual patients. Our work provides a statistical framework for interpreting expression data across species and in disease.
Collapse
Affiliation(s)
- Jenny Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Division of Health Science and Technology, MIT, Cambridge, Massachusetts 02139, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Beryl B Cummings
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Noga Rogel
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden
| | | | - Federica di Palma
- Earlham Institute, Norwich NR4 7UZ, United Kingdom.,Department of Biological and Medical Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Biology and Koch Institute, MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
7
|
Adaptation Without Boundaries: Population Genomics in Marine Systems. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Baris TZ, Wagner DN, Dayan DI, Du X, Blier PU, Pichaud N, Oleksiak MF, Crawford DL. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genet 2017; 13:e1006517. [PMID: 28362806 PMCID: PMC5375140 DOI: 10.1371/journal.pgen.1006517] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
Collapse
Affiliation(s)
- Tara Z. Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
- * E-mail:
| | - Dominique N. Wagner
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - David I. Dayan
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Xiao Du
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Pierre U. Blier
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Nicolas Pichaud
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Marjorie F. Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Douglas L. Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| |
Collapse
|
9
|
McKenzie JL, Dhillon RS, Schulte PM. Steep, coincident, and concordant clines in mitochondrial and nuclear-encoded genes in a hybrid zone between subspecies of Atlantic killifish, Fundulus heteroclitus. Ecol Evol 2016; 6:5771-87. [PMID: 27547353 PMCID: PMC4983590 DOI: 10.1002/ece3.2324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/15/2023] Open
Abstract
Steep genetic clines resulting from recent secondary contact between previously isolated taxa can either gradually erode over time or be stabilized by factors such as ecological selection or selection against hybrids. We used patterns of variation in 30 nuclear and two mitochondrial SNPs to examine the factors that could be involved in stabilizing clines across a hybrid zone between two subspecies of the Atlantic killifish, Fundulus heteroclitus. Increased heterozygote deficit and cytonuclear disequilibrium in populations near the center of the mtDNA cline suggest that some form of reproductive isolation such as assortative mating or selection against hybrids may be acting in this hybrid zone. However, only a small number of loci exhibited these signatures, suggesting locus-specific, rather than genomewide, factors. Fourteen of the 32 loci surveyed had cline widths inconsistent with neutral expectations, with two SNPs in the mitochondrial genome exhibiting the steepest clines. Seven of the 12 putatively non-neutral nuclear clines were for SNPs in genes related to oxidative metabolism. Among these putatively non-neutral nuclear clines, SNPs in two nuclear-encoded mitochondrial genes (SLC25A3 and HDDC2), as well as SNPs in the myoglobin, 40S ribosomal protein S17, and actin-binding LIM protein genes, had clines that were coincident and concordant with the mitochondrial clines. When hybrid index was calculated using this subset of loci, the frequency distribution of hybrid indices for a population located at the mtDNA cline center was non-unimodal, suggesting selection against advanced-generation hybrids, possibly due to effects on processes involved in oxidative metabolism.
Collapse
Affiliation(s)
- Jessica L. McKenzie
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Aquaculture and Environmental ResearchFisheries and Oceans CanadaWest VancouverBritish ColumbiaCanada
| | - Rashpal S. Dhillon
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Present address: Department of Biomolecular ChemistryEpigenetics ThemeWisconsin Institute for DiscoveryUniversity of WisconsinMadisonWisconsin
| | - Patricia M. Schulte
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
10
|
Baris TZ, Blier PU, Pichaud N, Crawford DL, Oleksiak MF. Gene by environmental interactions affecting oxidative phosphorylation and thermal sensitivity. Am J Physiol Regul Integr Comp Physiol 2016; 311:R157-65. [PMID: 27225945 DOI: 10.1152/ajpregu.00008.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only metabolic pathway with proteins encoded by both nuclear and mitochondrial genomes. In studies examining mitonuclear interactions among distant populations within a species or across species, the interactions between these two genomes can affect metabolism, growth, and fitness, depending on the environment. However, there is little data on whether these interactions impact natural populations within a single species. In an admixed Fundulus heteroclitus population with northern and southern mitochondrial haplotypes, there are significant differences in allele frequencies associated with mitochondrial haplotype. In this study, we investigate how mitochondrial haplotype and any associated nuclear differences affect six OxPhos parameters within a population. The data demonstrate significant OxPhos functional differences between the two mitochondrial genotypes. These differences are most apparent when individuals are acclimated to high temperatures with the southern mitochondrial genotype having a large acute response and the northern mitochondrial genotype having little, if any acute response. Furthermore, acute temperature effects and the relative contribution of Complex I and II depend on acclimation temperature: when individuals are acclimated to 12°C, the relative contribution of Complex I increases with higher acute temperatures, whereas at 28°C acclimation, the relative contribution of Complex I is unaffected by acute temperature change. These data demonstrate a complex gene by environmental interaction affecting the OxPhos pathway.
Collapse
Affiliation(s)
- Tara Z Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Pierre U Blier
- Department de Biologie, Université du Québec à Rimouski, Rimouski, Quebec, Canada; and
| | - Nicolas Pichaud
- Department de Biologie, Université du Québec à Rimouski, Rimouski, Quebec, Canada; and Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Douglas L Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida;
| | - Marjorie F Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| |
Collapse
|
11
|
Baris TZ, Crawford DL, Oleksiak MF. Acclimation and acute temperature effects on population differences in oxidative phosphorylation. Am J Physiol Regul Integr Comp Physiol 2015; 310:R185-96. [PMID: 26582639 DOI: 10.1152/ajpregu.00421.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 11/22/2022]
Abstract
Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range.
Collapse
Affiliation(s)
- Tara Z Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Douglas L Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Marjorie F Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| |
Collapse
|
12
|
Dayan DI, Crawford DL, Oleksiak MF. Phenotypic plasticity in gene expression contributes to divergence of locally adapted populations ofFundulus heteroclitus. Mol Ecol 2015; 24:3345-59. [DOI: 10.1111/mec.13188] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 01/08/2023]
Affiliation(s)
- David I. Dayan
- Marine Biology and Fisheries; Rosenstiel School of Marine and Atmospheric Sciences; University of Miami; 4600 Rickenbacker Causeway Miami FL 33149 USA
| | - Douglas L. Crawford
- Marine Biology and Fisheries; Rosenstiel School of Marine and Atmospheric Sciences; University of Miami; 4600 Rickenbacker Causeway Miami FL 33149 USA
| | - Marjorie F. Oleksiak
- Marine Biology and Fisheries; Rosenstiel School of Marine and Atmospheric Sciences; University of Miami; 4600 Rickenbacker Causeway Miami FL 33149 USA
| |
Collapse
|
13
|
Smith RW, Cash P, Hogg DW, Buck LT. Proteomic changes in the brain of the western painted turtle (Chrysemys picta bellii) during exposure to anoxia. Proteomics 2015; 15:1587-97. [PMID: 25583675 DOI: 10.1002/pmic.201300229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
During anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca(2+). In terms of neural protection programed cell death 6 interacting protein (PDCD6IP; a protein associated with apoptosis), dihydropyrimidinase-like protein, t-complex protein, and guanine nucleotide protein G(o) subunit alpha (Go alpha; proteins associated with neural degradation and impaired cognitive function) also declined. A decline in actin, gelsolin, and PDCD6IP, together with an increase in tubulin, also provided evidence for the induction of a neurological repair response. Although these proteomic alterations show some similarities with the crucian carp (another anoxia-tolerant species), there are species-specific responses, which supports the theory of no single strategy for anoxia tolerance. These findings also suggest the anoxic turtle brain could be an etiological model for investigating mammalian hypoxic damage and clinical neurological disorders.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
14
|
|
15
|
Rezende EL, Diniz-Filho JAF. Phylogenetic analyses: comparing species to infer adaptations and physiological mechanisms. Compr Physiol 2013; 2:639-74. [PMID: 23728983 DOI: 10.1002/cphy.c100079] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Comparisons among species have been a standard tool in animal physiology to understand how organisms function and adapt to their surrounding environment. During the last two decades, conceptual and methodological advances from different fields, including evolutionary biology and systematics, have revolutionized the way comparative analyses are performed, resulting in the advent of modern phylogenetic statistical methods. This development stems from the realization that conventional analytical methods assume that observations are statistically independent, which is not the case for comparative data because species often resemble each other due to shared ancestry. By taking evolutionary history explicitly into consideration, phylogenetic statistical methods can account for the confounding effects of shared ancestry in interspecific comparisons, improving the reliability of standard approaches such as regressions or correlations in comparative analyses. Importantly, these methods have also enabled researchers to address entirely new evolutionary questions, such as the historical sequence of events that resulted in current patterns of form and function, which can only be studied with a phylogenetic perspective. Here, we provide an overview of phylogenetic approaches and their importance for studying the evolution of physiological processes and mechanisms. We discuss the conceptual framework underlying these methods, and explain when and how phylogenetic information should be employed. We then outline the difficulties and limitations inherent to comparative approaches and discuss potential problems researchers may encounter when designing a comparative study. These issues are illustrated with examples from the literature in which the incorporation of phylogenetic information has been useful, or even crucial, for inferences on how species evolve and adapt to their surrounding environment.
Collapse
Affiliation(s)
- Enrico L Rezende
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
16
|
Marden JH. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection. Mol Ecol 2013; 22:5743-64. [PMID: 24106889 DOI: 10.1111/mec.12534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 01/01/2023]
Abstract
Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes.
Collapse
Affiliation(s)
- James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
17
|
Tang X, Xin Y, Wang H, Li W, Zhang Y, Liang S, He J, Wang N, Ma M, Chen Q. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world. PLoS One 2013; 8:e71976. [PMID: 23951275 PMCID: PMC3737200 DOI: 10.1371/journal.pone.0071976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae), which inhabits high altitudes (4500 m) and Phrynocephalusprzewalskii (Lacertilia: Agamidae), which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH) activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD) and the HOAD/citrate synthase (CS) ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.
Collapse
Affiliation(s)
- Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ying Xin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Weixin Li
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Shiwei Liang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Jianzheng He
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ningbo Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ming Ma
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
- * E-mail:
| |
Collapse
|
18
|
Loftus SJ, Crawford DL. Interindividual variation in Complex I activity in Fundulus heteroclitus along a steep thermocline. Physiol Biochem Zool 2012; 86:82-91. [PMID: 23303323 DOI: 10.1086/668850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first enzyme in the oxidative phosphorylation pathway is Complex I (EC 1.6.5.3). Complex I is a large heteromeric enzyme complex with 45 protein subunits that translocates H(+) ions across the mitochondrial inner membrane. Among northern and southern populations of the teleost fish Fundulus heteroclitus, Complex I subunits have fixed amino acid substitutions. Additionally, there are differences in oxidative phosphorylation activity among populations of F. heteroclitus. To investigate whether these differences are related to Complex I, enzyme activity was measured in 121 individuals from five populations of F. heteroclitus and its sister species Fundulus grandis acclimated to a constant 20°C temperature. Within each population, Complex I activity is highly variable among individuals of F. heteroclitus (coefficient of variation percentage among individuals has a mean of 90% in the five F. heteroclitus populations), and the mean Complex I activity among populations is significantly different at the latitudinal extremes of the range. Importantly, Complex I activity is more similar between F. heteroclitus from the southernmost population and its sister species F. grandis than to the northern populations of F. heteroclitus, suggesting important evolutionary differences. Unexpectedly, the activity is nearly fourfold higher in southern populations than northern populations. Mitochondrial density appears to compensate partially for decreased activity in northern individuals; activity per wet weight is only twofold higher in southern populations. We suggest that some of the variation in Complex I activity is genetically based and thus is being influenced by directional selection. However, this conclusion presents a conundrum: there should not be so much variation in Complex I activity within a population if this variation is biologically important.
Collapse
Affiliation(s)
- Samuel J Loftus
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | | |
Collapse
|
19
|
Mandic M, Speers-Roesch B, Richards JG. Hypoxia tolerance in sculpins is associated with high anaerobic enzyme activity in brain but not in liver or muscle. Physiol Biochem Zool 2012; 86:92-105. [PMID: 23303324 DOI: 10.1086/667938] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We assessed hypoxia tolerance in 11 species of fish from the superfamily Cottoidea (commonly called sculpins) that are known to differ in their critical O(2) tensions (P(crit)) and examined whether hypoxia tolerance correlated with larger substrate stores and higher maximal activity of enzymes associated with anaerobic adenosine triphosphate production (especially glycolysis). Among the sculpins studied, there was large variation in time to loss of equilibrium (LOE(50)) at 6.4 ± 0.1 torr, with values ranging between 25 and 538 min, and the variation in LOE(50) was correlated with P(crit). Our measures of time to LOE(50) and P(crit) were regressed against maximal enzyme activities of lactate dehydrogenase (LDH), pyruvate kinase (PK), creatine phosphokinase (CPK), and citrate synthase (CS) as well as the concentrations of glycogen, glucose, and creatine phosphate in the brain, liver, and white muscle. In the brain, there was a phylogenetically independent relationship between P(crit) and tissue LDH, PK, CPK, and CS activities expressed relative to tissue mass. Hypoxia-tolerant sculpins (those with low P(crit) values) had higher levels of brain LDH, PK, CPK, and CS than did hypoxia-sensitive sculpins. Similarly, LOE(50) regressed against brain LDH, PK, and CPK activities expressed relative to tissue mass, with the more hypoxia-tolerant species (i.e., those with higher LOE(50)) having higher enzyme activities. However, when the phylogenetic relationship among our sculpins was taken into account, only the relationship between hypoxia tolerance and LDH activity remained significant. When enzyme activities were expressed relative to total soluble protein in the tissue, the only relationships that remained were between brain LDH activity and P(crit) and LOE(50). In liver and white muscle, there were no relationships between the measures of hypoxia tolerance and enzyme activity or metabolite content. Overall, our analysis suggests that hypoxia-tolerant sculpins maintain higher maximal activities of some of the enzymes involved in anaerobic metabolism in the brain, and this may be an adaptation to hypoxia.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | |
Collapse
|
20
|
Seebacher F, Franklin CE. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philos Trans R Soc Lond B Biol Sci 2012; 367:1607-14. [PMID: 22566670 DOI: 10.1098/rstb.2012.0036] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
21
|
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol 2012; 2:2151-202. [DOI: 10.1002/cphy.c110055] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Everett MV, Antal CE, Crawford DL. The effect of short-term hypoxic exposure on metabolic gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2012; 317:9-23. [PMID: 22021243 PMCID: PMC3237964 DOI: 10.1002/jez.717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/04/2011] [Accepted: 08/24/2011] [Indexed: 11/09/2022]
Abstract
The long-term effect of hypoxia is to decrease both the production and use of ATP and thus decrease the reliance on mitochondrial oxidative energy production. Yet, recent studies include more immediate affects of hypoxia on gene expression and these data suggest the maintenance of mitochondrial function. To better understand the short-term physiological response to hypoxia, we quantified metabolic mRNA expression in the heart ventricles and livers of the teleost fish Fundulus grandis exposed to partial oxygen pressure of 2.8 kPa (-13.5% air saturation).Twenty-eight individuals from a single population were exposed to hypoxia for 0, 4, 8, 12, 24, 48, and 96 hr. Liver and cardiac tissues were sampled from the same individuals at 0-48 hr. At 96 hr, only cardiac tissue was assayed. Gene expression was significantly different (ANOVA, P < 0.05) for 17 of 226 metabolic genes (7.5%) in cardiac tissue and for 20 of 256 (7.8%) metabolic genes in hepatic tissue. For the two tissues examined in this study, the maximum response occurred at different times. For cardiac tissue, using Dunnett's post hoc test, most of these significant differences occurred at 96 hr of exposure. For liver, all but one significant difference occurred at 4 hr. Surprisingly, too many (relative to random expectations) of the genes with significant increase in mRNA are involved in the oxidative phosphorylation pathway: 44% of the significant genes at 96 hr in the heart and 33% of the significant genes at 4 hr in the liver are involved in the oxidative phosphorylation pathway. These data indicate that there are tissue-specific differences in the timing of the response to hypoxia, yet both cardiac and hepatic tissues have increases in mRNA that code for enzyme in the oxidative phosphorylation pathway. If these changes in mRNA produce a similar change in protein, then these data suggest that the initial response to hypoxia involves an increase in the oxidative pathway potentially as a mechanism to maintain ATP production.
Collapse
Affiliation(s)
- Meredith V. Everett
- Marine Biology and Fisheries□Rosenstiel School of Marine and Atmospheric Science University of Miami 4600 Rickenbacker Causeway Miami, FL 33149-1098 USA
| | - Corina E. Antal
- Marine Biology and Fisheries□Rosenstiel School of Marine and Atmospheric Science University of Miami 4600 Rickenbacker Causeway Miami, FL 33149-1098 USA
| | - Douglas L. Crawford
- Marine Biology and Fisheries□Rosenstiel School of Marine and Atmospheric Science University of Miami 4600 Rickenbacker Causeway Miami, FL 33149-1098 USA
| |
Collapse
|
23
|
Skandalis DA, Roy C, Darveau CA. Behavioural, morphological, and metabolic maturation of newly emerged adult workers of the bumblebee, Bombus impatiens. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:704-711. [PMID: 21335010 DOI: 10.1016/j.jinsphys.2011.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 05/30/2023]
Abstract
Newly emerged adult holometabolous insects must still complete considerable morphological, metabolic, and neural maturation. Despite this, adults have frequently been documented to fly prior to finishing maturation and attaining peak physiological capacity. In some species, flight is limited by the unfurling of the wing, while in other species it may be limited by biochemical capacity. We charted maturation trajectories of adult bumblebee workers (Bombus impatiens) for both morphological and flight muscle metabolic capacities, and compared these to the first age at flight. Workers began regular flights as soon as two days after emergence. The unfurling of the wings was completed well before first flights and before any other studied factor, suggesting this did not initially limit flight. Wing beat frequencies, measured as a struggling response to grasping the hindlegs, were about 90% mature by two days old, and did not significantly change after three days. Conversely, by the initiation of flight, the mean enzyme maturation was only 63% completed relative to adult enzyme capacity, though specific enzyme profiles ranged from 42% to 73%. Maximum ADP-stimulated mitochondrial respiratory activity on pyruvate and proline matured along a similar time frame to glycolytic capacity, reaching its maximum three days after emergence. Bumblebees, as other adult insects, thus begin flights prior to fully maturing.
Collapse
Affiliation(s)
- Dimitri A Skandalis
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N6N5, Canada
| | | | | |
Collapse
|
24
|
Wang S, Spor A, Nidelet T, Montalent P, Dillmann C, de Vienne D, Sicard D. Switch between life history strategies due to changes in glycolytic enzyme gene dosage in Saccharomyces cerevisiae. Appl Environ Microbiol 2011; 77:452-9. [PMID: 21075872 PMCID: PMC3020566 DOI: 10.1128/aem.00808-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/26/2010] [Indexed: 12/24/2022] Open
Abstract
Adaptation is the process whereby a population or species becomes better fitted to its habitat through modifications of various life history traits which can be positively or negatively correlated. The molecular factors underlying these covariations remain to be elucidated. Using Saccharomyces cerevisiae as a model system, we have investigated the effects on life history traits of varying the dosage of genes involved in the transformation of resources into energy. Changing gene dosage for each of three glycolytic enzyme genes (hexokinase 2, phosphoglucose isomerase, and fructose-1,6-bisphosphate aldolase) resulted in variation in enzyme activities, glucose consumption rate, and life history traits (growth rate, carrying capacity, and cell size). However, the range of effects depended on which enzyme was expressed differently. Most interestingly, these changes revealed a genetic trade-off between carrying capacity and cell size, supporting the discovery of two extreme life history strategies already described in yeast populations: the "ants," which have lower glycolytic gene dosage, take up glucose slowly, and have a small cell size but reach a high carrying capacity, and the "grasshoppers," which have higher glycolytic gene dosage, consume glucose more rapidly, and allocate it to a larger cell size but reach a lower carrying capacity. These results demonstrate antagonist pleiotropy for glycolytic genes and show that altered dosage of a single gene drives a switch between two life history strategies in yeast.
Collapse
Affiliation(s)
- Shaoxiao Wang
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, Université Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Aymé Spor
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, Université Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Thibault Nidelet
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, Université Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Pierre Montalent
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, Université Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Christine Dillmann
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, Université Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Dominique de Vienne
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, Université Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | - Delphine Sicard
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, Université Paris-Sud, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France, INRA, UMR 0320/UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
25
|
Rees BB, Andacht T, Skripnikova E, Crawford DL. Population proteomics: quantitative variation within and among populations in cardiac protein expression. Mol Biol Evol 2010; 28:1271-9. [PMID: 21109588 DOI: 10.1093/molbev/msq314] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Population analysis of gene expression is typically achieved by quantifying levels of mRNA; however, gene expression is also a function of protein translation and turnover. Therefore, a complete understanding of population variation in gene expression requires quantitative knowledge of protein expression within and among natural populations. We used two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) to quantitatively compare expression of heart ventricle proteins among 18 individuals in three populations of the teleost fish Fundulus. Among populations, expressions between orthologous proteins and mRNAs were generally positively correlated. Additionally, similar to the pattern of cardiac mRNA expression for the same populations, we found considerable variation in protein expression both within and among populations: Of 408 protein features in 2D gels, 34% are significantly different (P < 0.01) among individuals within a population, 9% differ between populations, and 12% have a pattern of expression that suggests they have evolved by natural selection. Although similar to mRNA expression, the frequency of significant differences among populations is larger for proteins. Similar to mRNA expressions, expressions of most proteins are correlated to the expressions of many other proteins. However, the correlations among proteins are more extensive than the correlation for similar RNAs. These correlations suggest a greater coordinate regulation of protein than mRNA expression. The larger frequency of significant differences among populations and the greater frequency of correlated expression among proteins versus among RNAs suggest that the molecular mechanisms affecting protein expression enhance the differences among populations, and these regulatory steps could be a source of variation for adaptation.
Collapse
Affiliation(s)
- Bernard B Rees
- Department of Biological Sciences, University of New Orleans, LA, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Natural populations v. inbred stocks provide a much richer resource for identifying the effects of nucleotide substitutions because natural populations have greater polymorphism. Additionally, natural populations offer an advantage over most common research organisms because they are subject to natural selection, and analyses of these adaptations can be used to identify biologically important changes. Among fishes, these analyses are enhanced by having a wide diversity of species (>28 000 species, more than any other group of vertebrates) living in a huge range of environments (from below freezing to > 46 degrees C, in fresh water to salinities >40 ppt.). Moreover, fishes exhibit many different life-history and reproductive strategies and have many different phenotypes and social structures. Although fishes provide numerous advantages over other vertebrate models, there is still a dearth of available genomic tools for fishes. Fishes make up approximately half of all known vertebrate species, yet <0.2% of fish species have significant genomic resources. Nonetheless, genomic approaches with fishes have provided some of the first measures of individual variation in gene expression and insights into environmental and ecological adaptations. Thus, genomic approaches with natural fish populations have the potential to revolutionize fundamental studies of diverse fish species that offer myriad ecological and evolutionary questions.
Collapse
Affiliation(s)
- M F Oleksiak
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA.
| |
Collapse
|
27
|
Everett MV, Crawford DL. Adaptation versus allometry: population and body mass effects on hypoxic metabolism in Fundulus grandis. Physiol Biochem Zool 2010; 83:182-90. [PMID: 19891563 DOI: 10.1086/648482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypoxia has significant effects on organisms, from metabolic reduction to death, and could be an important evolutionary force affecting the variation among populations within a species. To determine intraspecific variation in hypoxic metabolism and the effect of body mass, we examine rates of oxygen consumption (M(O2)) at seven oxygen concentrations among seven populations of Fundulus grandis that inhabit a mosaic of habitats with different frequencies and intensities of hypoxia. For M(O2), there is a significant interaction (P< 0.05) between body mass and oxygen concentrations: log(10) body mass: log(10) M(O2) slopes were steeper at intermediate oxygen partial pressures (Po(2)) than either normoxic or lowest Po(2) (ANCOVA, P<0.001). Additionally, the PO(2crit) (Po(2) where M(O2) can no longer be maintained) was a negative function of body mass (P < 0.04). At the lowest Po(2) (1.8 kPa), there was a significant difference in M(O2) among populations: one of the populations from environments more frequently stressed by hypoxia has greater M(O2) at the lowest oxygen concentrations. With few differences among populations, the most important effects were how body mass affected M(O2) at intermediate Po(2) and the negative relationship between body mass and PO(2crit). These findings suggest that an increase in body size is a useful strategy to minimize the effect of hypoxia.
Collapse
Affiliation(s)
- Meredith V Everett
- Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149-1098, USA.
| | | |
Collapse
|
28
|
Terblanche JS, Clusella-Trullas S, Deere JA, Van Vuuren BJ, Chown SL. Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate. Physiol Biochem Zool 2009; 82:495-503. [PMID: 19624273 DOI: 10.1086/605361] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract The evolution of metabolic rate-temperature (MR-T) reaction norms is of fundamental importance to physiological ecology. Metabolic cold adaptation (MCA) predicts that populations or species from cooler environments will have either a higher metabolic rate at a common temperature or steeper MR-T relationships, indicating greater sensitivity of respiratory metabolism to temperature. Support for MCA has been found in some insect species by comparing species or populations differing in latitude. However, the generality of these findings are contentious, with most studies either unable to account for phenotypic plasticity or the evolutionary relatedness of species or populations. Hence, the importance of MCA is vigorously debated from both evolutionary and ecological perspectives. Furthermore, few species, particularly from tropical environments, have been shown to differ in MR-T sensitivity along altitudinal temperature gradients. Here, using four populations of tsetse flies (Glossina pallidipes, Diptera: Glossinidae) from thermally distinct geographic regions, we test the hypothesis that there is evolved variation in MR-T relationships to cold climates. We found that a high-altitude equatorial population from a cool habitat has a steeper MR-T reaction norm. By contrast, other populations from warmer environments in East Africa do not differ with respect to their MR-T reaction norms. Squared-change parsimony analyses, based on the combined mitochondrial 16S rDNA ribosomal subunit and cytochrome c oxidase subunit I (COI), support the hypothesis of adaptive differentiation of MR-T reaction norms in the cool-climate population. Seasonal adjustments or laboratory-temperature-induced phenotypic plasticity changed the intercept of the reaction norm rather than the slope, and thus the observed intraspecific variation in slopes of MR-T reaction norms could not be accounted for by phenotypic plasticity. These results therefore suggest evolutionary adaptation of MR-T reaction norms to cool climates (<22 degrees C) in tsetse and provide novel support for MCA within an insect species.
Collapse
Affiliation(s)
- John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | | | |
Collapse
|
29
|
Dalziel AC, Rogers SM, Schulte PM. Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol Ecol 2009; 18:4997-5017. [PMID: 19912534 DOI: 10.1111/j.1365-294x.2009.04427.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accessibility of new genomic resources, high-throughput molecular technologies and analytical approaches such as genome scans have made finding genes contributing to fitness variation in natural populations an increasingly feasible task. Once candidate genes are identified, we argue that it is necessary to take a mechanistic approach and work up through the levels of biological organization to fully understand the impacts of genetic variation at these candidate genes. We demonstrate how this approach provides testable hypotheses about the causal links among levels of biological organization, and assists in designing relevant experiments to test the effects of genetic variation on phenotype, whole-organism performance capabilities and fitness. We review some of the research programs that have incorporated mechanistic approaches when examining naturally occurring genetic and phenotypic variation and use these examples to highlight the value of developing a comprehensive understanding of the relationship between genotype and fitness. We give suggestions to guide future research aimed at uncovering and understanding the genetic basis of adaptation and argue that further integration of mechanistic approaches will help molecular ecologists better understand the evolution of natural populations.
Collapse
Affiliation(s)
- Anne C Dalziel
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
30
|
Edmunds RC, van Herwerden L, Smith-Keune C, Jerry DR. Comparative characterization of a temperature responsive gene (lactate dehydrogenase-B, ldh-b) in two congeneric tropical fish, Lates calcarifer and Lates niloticus. Int J Biol Sci 2009; 5:558-69. [PMID: 19787021 PMCID: PMC2737716 DOI: 10.7150/ijbs.5.558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/26/2009] [Indexed: 11/05/2022] Open
Abstract
The characterization of candidate loci is a critical step in obtaining insight into adaptation and acclimation of organisms. In this study of two non-model tropical (to sub-tropical) congeneric perciformes (Lates calcarifer and Lates niloticus) we characterized both coding and non-coding regions of lactate dehydrogenase-B (ldh-b), a locus which exhibits temperature-adaptive differences among temperate and sub-tropical populations of the North American killifish Fundulus heteroclitus. Ldh-b was 5,004 and 3,527 bp in length in L. calcarifer and L. niloticus, respectively, with coding regions comprising 1,005 bp in both species. A high level of sequence homology existed between species for both coding and non-coding regions of ldh-b (> 97% homology), corresponding to a 98.5% amino acid sequence homology. All six known functional sites within the encoded protein sequence (LDH-B) were conserved between the two Lates species. Ten simple sequence repeat (SSR) motifs (mono-, di-, tri- and tetranucleotide) and thirty putative microRNA elements (miRNAs) were identified within introns 1, 2, 5 and 6 of both Lates species. Five single nucleotide polymorphisms (SNPs) were also identified within miRNA containing intron regions. Such SNPs are implicated in several complex human conditions and/or diseases (as demonstrated by extensive genome-wide association studies). This novel characterization serves as a platform to further examine how non-model species may respond to changes in their native temperatures, which are expected to increase by up to 6 degrees C over the next century.
Collapse
Affiliation(s)
- Richard C Edmunds
- Molecular Evolution and Ecology Laboratory, School of Marine & Tropical Biology, James Cook University, Townsville QLD 4811, Australia.
| | | | | | | |
Collapse
|
31
|
Smith RW, Cash P, Ellefsen S, Nilsson GE. Proteomic changes in the crucian carp brain during exposure to anoxia. Proteomics 2009; 9:2217-29. [PMID: 19322784 DOI: 10.1002/pmic.200800662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
32
|
Fangue NA, Mandic M, Richards JG, Schulte PM. Swimming performance and energetics as a function of temperature in killifish Fundulus heteroclitus. Physiol Biochem Zool 2008; 81:389-401. [PMID: 18513151 DOI: 10.1086/589109] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Populations of the common killifish Fundulus heteroclitus are found along a latitudinal temperature gradient in habitats with high thermal variability. The objectives of this study were to assess the effects of temperature and population of origin on killifish swimming performance (assessed as critical swimming speed, U(crit)). Acclimated fish from northern and southern killifish populations demonstrated a wide zone (from 7 degrees to 33 degrees C) over which U(crit) showed little change with temperature, with performance declining significantly only at lower temperatures. Although we observed significant differences in swimming performance between a northern and a southern population of killifish in one experiment, with northern fish having an approximately 1.5-fold-greater U(crit) than southern fish across all acclimation temperatures, we were unable to replicate this finding in other populations or collection years, and performance was consistently high across all populations and at both low (7 degrees C) and high (23 degrees C) acclimation temperatures. The poor swimming performance of southern killifish from a single collection year was correlated with low muscle [glycogen] rather than with other indicators of fuel stores or body condition. Killifish acclimated to 18 degrees C and acutely challenged at temperatures of 5 degrees , 18 degrees , 25 degrees , or 34 degrees C showed modest thermal sensitivity of U(crit) between 18 degrees and 34 degrees C, with performance declining substantially at 5 degrees C. Thus, much of the zone of relative thermal insensitivity of swimming performance is intrinsic in this species rather than acquired as a result of acclimation. These data suggest that killifish are broadly tolerant of changing temperatures, whether acute or chronic, and demonstrate little evidence of local adaptation in endurance swimming performance in populations from different thermal habitats.
Collapse
Affiliation(s)
- Nann A Fangue
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Ferenc Müller
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe D-76021, Germany.
| |
Collapse
|
34
|
Duvernell DD, Lindmeier JB, Faust KE, Whitehead A. Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol Ecol 2008; 17:1344-60. [PMID: 18302693 DOI: 10.1111/j.1365-294x.2007.03648.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major goal of population genetics research is to identify the relative influences of historical and contemporary processes that serve to structure genetic variation. Most population genetic models assume that populations exist in a state of migration-drift equilibrium. However, in the past this assumption has rarely been verified, and is likely rarely achieved in natural populations. We assessed the equilibrium status at both local and regional scales of the Atlantic killifish, Fundulus heteroclitus. This species is a model organism for the study of adaptive clinal variation, but has also experienced a complicated history of range expansion and secondary contact following allopatric divergence, potentially obscuring the influence of contemporary evolutionary processes. Presumptively neutral genetic markers (microsatellites) demonstrated zones of secondary intergradation among coastal populations centred around northern New Jersey and the Chesapeake Bay region. Analysis of genetic variation indicated isolation by distance among some populations and provided supporting evidence that the Delaware Bay, but not the Chesapeake Bay, has acted as a barrier to dispersal among coastal populations. Bayesian estimates indicated large effective population sizes and low migration rates, and were in good agreement with empirically derived estimates of population and neighbourhood size from mark-recapture studies. These data indicate that populations are not in migration-drift equilibrium at a regional scale, and suggest that contributing factors include large population size combined with relatively low migration rates. These conditions should be considered when interpreting the evolutionary significance of the distribution of genetic variation among F. heteroclitus populations.
Collapse
Affiliation(s)
- David D Duvernell
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA.
| | | | | | | |
Collapse
|
35
|
Burnett KG, Bain LJ, Baldwin WS, Callard GV, Cohen S, Di Giulio RT, Evans DH, Gómez-Chiarri M, Hahn ME, Hoover CA, Karchner SI, Katoh F, MacLatchy DL, Marshall WS, Meyer JN, Nacci DE, Oleksiak MF, Rees BB, Singer TD, Stegeman JJ, Towle DW, Van Veld PA, Vogelbein WK, Whitehead A, Winn RN, Crawford DL. Fundulus as the premier teleost model in environmental biology: opportunities for new insights using genomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2007; 2:257-86. [PMID: 18071578 PMCID: PMC2128618 DOI: 10.1016/j.cbd.2007.09.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.
Collapse
Affiliation(s)
- Karen G. Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA
| | - Lisa J. Bain
- Clemson Institute of Environmental Toxicology, Clemson University; Pendleton, SC 29670, USA
| | - William S. Baldwin
- Clemson Institute of Environmental Toxicology, Clemson University; Pendleton, SC 29670, USA
| | | | - Sarah Cohen
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA 94120, USA
| | - Richard T. Di Giulio
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | - David H. Evans
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Fumi Katoh
- Department of Biology, St. Francis Xavier University, Antigonish, N.S. B2G 2W5, Canada
| | - Deborah L. MacLatchy
- Faculty of Science, Wilfred Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - William S. Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, N.S. B2G 2W5, Canada
| | - Joel N. Meyer
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | - Diane E. Nacci
- US Environmental Protection Agency Office of Research and Development, Narragansett, RI 02882, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Thomas D. Singer
- School of Optometry, University of Waterloo, Waterloo, ON, N2L 3G1, CANADA
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David W. Towle
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, Maine 04672, USA
| | - Peter A. Van Veld
- The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Wolfgang K. Vogelbein
- The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Andrew Whitehead
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Richard N. Winn
- Aquatic Biotechnology and Environmental Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
36
|
Osovitz CJ, Hofmann GE. Marine macrophysiology: Studying physiological variation across large spatial scales in marine systems. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:821-7. [PMID: 17368945 DOI: 10.1016/j.cbpa.2007.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 02/04/2007] [Indexed: 10/23/2022]
Abstract
A new approach toward understanding marine ecosystems has emerged through the integration of ecological physiology and macroecology. This multidisciplinary approach, titled here marine macrophysiology, facilitates unique insight into the foundation of macro-scale ecological patterns, such as biogeographic distributions, via examination of functional attributes of marine organisms across large spatial scales. For example, these broad-scale physiological inquiries confer the ability to directly assess the abundant-center hypothesis (aka Brown's principle) which proposes that species have decreased performance toward their range edges. By extension, the marine macrophysiological perspective also stands to clarify our understanding of more complex macro-scale phenomena such as biological invasions, the design of marine protected areas, and species' responses to global climate change. In this article, we review recent marine macrophysiology research and offer insights into future directions for this emerging field.
Collapse
Affiliation(s)
- Christopher J Osovitz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
37
|
Wang IN, Dykhuizen DE. VARIATION OF ENZYME ACTIVITIES AT A BRANCHED PATHWAY INVOLVED IN THE UTILIZATION OF GLUCONATE IN ESCHERICHIA COLI. Evolution 2007. [DOI: 10.1111/j.0014-3820.2001.tb00607.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Abstract
SUMMARY
Functional genomics research using Fundulus heteroclitus has focused on variation among individuals because of the evolutionary importance and value of Fundulus in explaining the human condition (why individual humans are different and are affected differently by stress,disease and drugs). Among different populations and species of Fundulus, there are evolutionarily adaptive differences in gene expression. This natural variation in gene expression seems to affect cardiac metabolism because up to 81% of the variation in glucose utilization observed in isolated heart ventricles is related to specific patterns of gene expression. The surprising result from this research is that among different groups of individuals, the expression of mRNA from different metabolic pathways explains substrate-specific metabolism. For example, variation in oxidative phosphorylation mRNAs explains glucose metabolism for one group of individuals but expression of glucose metabolism genes explains this metabolism in a different group of individuals. This variation among individuals has important implications for studies using inbred strains:conclusions based on one individual or one strain will not necessarily reflect a generalized conclusion for a population or species. Finally, there are surprisingly strong positive and negative correlations among metabolic genes,both within and between pathways. These data suggest that measures of mRNA expression are meaningful, yet there is a complexity in how gene expression is related to physiological processes.
Collapse
Affiliation(s)
- Douglas L Crawford
- Rosenstiel School of Marine and Atmospheric Sciences, Marine Biology and Fisheries, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | |
Collapse
|
39
|
Schulte PM. Responses to environmental stressors in an estuarine fish: Interacting stressors and the impacts of local adaptation. J Therm Biol 2007. [DOI: 10.1016/j.jtherbio.2007.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Seebacher F, Davison W, Lowe CJ, Franklin CE. A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Biol Lett 2007; 1:151-4. [PMID: 17148152 PMCID: PMC1626235 DOI: 10.1098/rsbl.2004.0280] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Specialization to a particular environment is one of the main factors used to explain species distributions. Antarctic fishes are often cited as a classic example to illustrate the specialization process and are regarded as the archetypal stenotherms. Here we show that the Antarctic fish Pagothenia borchgrevinki has retained the capacity to compensate for chronic temperature change. By displaying astounding plasticity in cardiovascular response and metabolic control, the fishes maintained locomotory performance at elevated temperatures. Our falsification of the specialization paradigm indicates that the effect of climate change on species distribution and extinction may be overestimated by current models of global warming.
Collapse
Affiliation(s)
- Frank Seebacher
- Integrative Physiology, School of Biological Sciences, University of Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
41
|
Schippers MP, Dukas R, Smith RW, Wang J, Smolen K, McClelland GB. Lifetime performance in foraging honeybees: behaviour and physiology. ACTA ACUST UNITED AC 2006; 209:3828-36. [PMID: 16985199 DOI: 10.1242/jeb.02450] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Honeybees, Apis mellifera, gradually increase their rate of forage uptake as they gain foraging experience. This increase in foraging performance has been proposed to occur as a result of learning; however, factors affecting flight ability such as changes in physiological components of flight metabolism could also contribute to this pattern. Thus, the purpose of this study was to assess the contribution of physiological changes to the increase in honeybee foraging performance. We investigated aspects of honeybee flight muscle biochemistry throughout the adult life, from non-foraging hive bees, through young and mature foragers, to old foragers near the end of their lifespan. Two-dimensional gel proteomic analysis on honeybee thorax muscle revealed an increase in several proteins from hive bees to mature foragers including troponin T 10a, aldolase and superoxide dismutase. By contrast, the activities (V(max)) of enzymes involved in aerobic performance, phosphofructokinase, hexokinase, pyruvate kinase and cytochrome c oxidase, did not increase in the flight muscles of hive bees, young foragers, mature foragers and old foragers. However, citrate synthase activity was found to increase with foraging experience. Hence, our results suggest plasticity in both structural and metabolic components of flight muscles with foraging experience.
Collapse
Affiliation(s)
- M-P Schippers
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Heritable variation in regulatory or coding regions is the raw material for evolutionary processes. The advent of microarrays has recently promoted examination of the extent of variation in gene expression within and among taxa and examination of the evolutionary processes affecting variation. This review examines these issues. We find: (i) microarray-based measures of gene expression are precise given appropriate experimental design; (ii) there is large inter-individual variation, which is composed of a minor nongenetic component and a large heritable component; (iii) variation among populations and species appears to be affected primarily by neutral drift and stabilizing selection, and to a lesser degree by directional selection; and (iv) neutral evolutionary divergence in gene expression becomes nonlinear with greater divergence times due to functional constraint. Evolutionary analyses of gene expression reviewed here provide unique insights into partitioning of regulatory variation in nature. However, common limitations of these studies include the tendency to assume a linear relationship between expression divergence and species divergence, and failure to test explicit hypotheses that involve the ecological context of evolutionary divergence.
Collapse
Affiliation(s)
- Andrew Whitehead
- Louisiana State University, 202 Life Sciences Bldg. Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
43
|
Abstract
Variation among populations in gene expression should be related to the accumulation of random-neutral changes and evolution by natural selection. The following evolutionary analysis has general applicability to biological and medical science because it accounts for genetic relatedness and identifies patterns of expression variation that are affected by natural selection. To identify genes evolving by natural selection, we allocate the maximum among-population variation to genetic distance and then examine the remaining variation relative to a hypothesized important ecological parameter (temperature). These analyses measure the expression of metabolic genes in common-gardened populations of the fish Fundulus heteroclitus whose habitat is distributed along a steep thermal gradient. Although much of the variation in gene expression fits a null model of neutral drift, the variation in expression for 22% of the genes that regress with habitat temperature was far greater than could be accounted for by genetic distance alone. The most parsimonious explanation for among-population variation for these genes is evolution by natural selection. In addition, many metabolic genes have patterns of variation incongruent with neutral evolution: They have too much or too little variation. These patterns of biological variation in expression may reflect important physiological or ecological functions.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
44
|
Salvador A, Savageau MA. Evolution of enzymes in a series is driven by dissimilar functional demands. Proc Natl Acad Sci U S A 2006; 103:2226-31. [PMID: 16461898 PMCID: PMC1413729 DOI: 10.1073/pnas.0510776103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Indexed: 11/18/2022] Open
Abstract
That distinct enzyme activities in an unbranched metabolic pathway are evolutionarily tuned to a single functional requirement is a pervasive assumption. Here we test this assumption by examining the activities of two consecutively acting enzymes in human erythrocytes with an approach to quantitative evolutionary design that avoids the above-mentioned assumption. We previously found that avoidance of NADPH depletion during the pulses of oxidative load to which erythrocytes are normally exposed is the main functional requirement mediating selection for high glucose-6-phosphate dehydrogenase activity. In the present study, we find that, in contrast, the maintenance of oxidized glutathione at low concentrations is the main functional requirement mediating selection for high glutathione reductase activity. The results in this case show that, contrary to the assumption of a single functional requirement, natural selection for the normal activities of the distinct enzymes in the pathway is mediated by different requirements. On the other hand, the results agree with the more general principles that underlie our approach. Namely, that (i) the values of biochemical parameters evolve so as to fulfill the various performance requirements that are relevant to achieve high fitness, and (ii) these performance requirements can be inferred from quantitative systems theory considerations, informed by knowledge of specific aspects of the biochemistry, physiology, genetics, and ecology of the organism.
Collapse
Affiliation(s)
- Armindo Salvador
- *Department of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Science II, Ann Arbor, MI 48109-0620; and
- Chemistry Department, University of Coimbra, Largo Dom Dinis, 3004-535 Coimbra, Portugal
| | - Michael A. Savageau
- *Department of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Science II, Ann Arbor, MI 48109-0620; and
| |
Collapse
|
45
|
Vornanen M, Hassinen M, Koskinen H, Krasnov A. Steady-state effects of temperature acclimation on the transcriptome of the rainbow trout heart. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1177-84. [PMID: 15932967 DOI: 10.1152/ajpregu.00157.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cold-acclimated (CA) phenotype of trout heart was induced by 4-wk acclimation at 4°C and was characterized by 32.7% increase in relative heart mass and 49.8% increase in ventricular myocyte size compared with warm-acclimated (WA; 18°C) fish ( P < 0.001). Effect of temperature acclimation on transcriptome of the rainbow trout heart was examined using species-specific microarray chips containing 1,380 genes. After 4 wk of temperature acclimation, 8.8% (122) of the genes were differently expressed in CA and WA hearts, and most of them (82%) were upregulated in the cold ( P < 0.01). Transcripts of genes engaged in protein synthesis and intermediary metabolism were most strongly upregulated, whereas genes contributing to the connective tissue matrix were clearly repressed. Extensive upregulation of the genes coding for ribosomal proteins and translation elongation and initiation factors suggest that the protein synthesis machinery of the trout heart is enhanced in the cold and is an essential part of the compensatory mechanism causing and maintaining the hypertrophy of cardiac myocytes. The prominent depression of collagen genes may be indicative of a reduced contribution of extracellular matrix to the remodeling of the CA fish heart. Temperature-related changes in transcripts of metabolic enzymes suggest that at mRNA level, glycolytic energy production from carbohydrates is compensated in the heart of CA rainbow trout, while metabolic compensation is absent in mitochondria. In addition, the analysis revealed three candidate genes: muscle LIM protein, atrial natriuretic peptide B, and myosin light chain 2, which might be central for induction and maintenance of the hypertrophic phenotype of the CA trout heart. These findings indicate that extensive modification of gene expression is needed to maintain the temperature-specific phenotype of the fish heart.
Collapse
Affiliation(s)
- Matti Vornanen
- University of Joensuu, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland.
| | | | | | | |
Collapse
|
46
|
Abstract
Fish offer important advantages for defining the organism-environment interface and responses to natural or anthropogenic stressors. Genomic approaches using fish promise increased investigative power, and have already provided insights into the mechanisms that underlie short-term and long-term environmental adaptations. The range of fish species for which genomic resources are available is increasing, but will require significant further expansion for the optimal application of fish environmental genomics.
Collapse
Affiliation(s)
- Andrew R Cossins
- Andrew R. Cossins is at the Liverpool Microarray Facility and Centre for BioArray Innovation, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | | |
Collapse
|
47
|
Paschall JE, Oleksiak MF, VanWye JD, Roach JL, Whitehead JA, Wyckoff GJ, Kolell KJ, Crawford DL. FunnyBase: a systems level functional annotation of Fundulus ESTs for the analysis of gene expression. BMC Genomics 2004; 5:96. [PMID: 15610557 PMCID: PMC544896 DOI: 10.1186/1471-2164-5-96] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 12/20/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While studies of non-model organisms are critical for many research areas, such as evolution, development, and environmental biology, they present particular challenges for both experimental and computational genomic level research. Resources such as mass-produced microarrays and the computational tools linking these data to functional annotation at the system and pathway level are rarely available for non-model species. This type of "systems-level" analysis is critical to the understanding of patterns of gene expression that underlie biological processes. RESULTS We describe a bioinformatics pipeline known as FunnyBase that has been used to store, annotate, and analyze 40,363 expressed sequence tags (ESTs) from the heart and liver of the fish, Fundulus heteroclitus. Primary annotations based on sequence similarity are linked to networks of systematic annotation in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and can be queried and computationally utilized in downstream analyses. Steps are taken to ensure that the annotation is self-consistent and that the structure of GO is used to identify higher level functions that may not be annotated directly. An integrated framework for cDNA library production, sequencing, quality control, expression data generation, and systems-level analysis is presented and utilized. In a case study, a set of genes, that had statistically significant regression between gene expression levels and environmental temperature along the Atlantic Coast, shows a statistically significant (P < 0.001) enrichment in genes associated with amine metabolism. CONCLUSION The methods described have application for functional genomics studies, particularly among non-model organisms. The web interface for FunnyBase can be accessed at http://genomics.rsmas.miami.edu/funnybase/super_craw4/. Data and source code are available by request at jpaschall@bioinfobase.umkc.edu.
Collapse
Affiliation(s)
- Justin E Paschall
- Division of Molecular Biology and Biochemistry, 5100 Rockhill Rd., University of Missouri, Kansas City 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Oleksiak MF, Roach JL, Crawford DL. Natural variation in cardiac metabolism and gene expression in Fundulus heteroclitus. Nat Genet 2004; 37:67-72. [PMID: 15568023 PMCID: PMC1447534 DOI: 10.1038/ng1483] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 11/01/2004] [Indexed: 11/08/2022]
Abstract
Individual variation in gene expression is important for evolutionary adaptation and susceptibility to diseases and pathologies. In this study, we address the functional importance of this variation by comparing cardiac metabolism to patterns of mRNA expression using microarrays. There is extensive variation in both cardiac metabolism and the expression of metabolic genes among individuals of the teleost fish Fundulus heteroclitus from natural outbred populations raised in a common environment: metabolism differed among individuals by a factor of more than 2, and expression levels of 94% of genes were significantly different (P < 0.01) between individuals in a population. This unexpectedly high variation in metabolic gene expression explains much of the variation in metabolism, suggesting that it is biologically relevant. The patterns of gene expression that are most important in explaining cardiac metabolism differ between groups of individuals. Apparently, the variation in metabolism seems to be related to different patterns of gene expression in the different groups of individuals. The magnitude of differences in gene expression in these groups is not important; large changes in expression have no greater predictive value than small changes. These data suggest that variation in physiological performance is related to the subtle variation in gene expression and that this relationship differs among individuals.
Collapse
Affiliation(s)
- Marjorie F Oleksiak
- Department of Environmental & Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633, USA
| | | | | |
Collapse
|
49
|
Schulte PM. Changes in gene expression as biochemical adaptations to environmental change: a tribute to Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:519-29. [PMID: 15544973 DOI: 10.1016/j.cbpc.2004.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 05/21/2004] [Accepted: 06/05/2004] [Indexed: 10/26/2022]
Abstract
Changes in gene expression are likely to play a critical role in both acclimation and adaptation to a changing environment. There is a rapidly growing body of literature implicating quantitative changes in gene expression during acclimation to environmental change, but less is known about the role of qualitative changes in gene expression, such as switching between alternative isoforms. Alternative isoforms can arise via gene duplication, alternative splicing, or alternative promoter usage. Organisms that have undergone recent genome duplication events may make use of environment-specific isoforms coded by multiple genes, but their role in other organisms is less well known. However, recent data suggest that isoforms arising from alternative splicing may be an under-appreciated source of physiological variation. The role of changes in gene expression during evolutionary adaptation has received comparatively limited attention, but novel approaches to addressing the adaptive significance of changes in gene expression have been applied to a few cases of differences in gene expression among taxa. Recent advances in genomics, including microarray technology, knock-out and knock-down approaches, and the wealth of data coming from large-scale sequencing projects have provided (and will continue to provide at ever increasing rates) new insights into these classic questions in comparative biochemistry.
Collapse
Affiliation(s)
- Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
50
|
Lawrence DeKoning AB, Picard DJ, Bond SR, Schulte PM. Stress and interpopulation variation in glycolytic enzyme activity and expression in a teleost fish Fundulus heteroclitus. Physiol Biochem Zool 2004; 77:18-26. [PMID: 15057714 DOI: 10.1086/378914] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2003] [Indexed: 11/04/2022]
Abstract
Northern populations of Fundulus heteroclitus have twofold greater activity of lactate dehydrogenase-B (LDH-B) than southern populations, but exposure to stress increases LDH-B in southern populations, abolishing this difference. To test whether differences in the activity of other hepatic glycolytic enzymes between populations are sensitive to stress, we injected fish with a pharmacological dose of cortisol in coconut oil (400 microg g(-1)) or exposed them to handling stress and measured the activities of all the glycolytic enzymes. At rest, liver phosphofructokinase (PFK) and aldolase (ALD) activities were greater in southern fish, whereas LDH-B activity was greater in northern fish. No other glycolytic enzymes differed in activity between populations in control fish. Cortisol injection and handling stress decreased PFK and ALD and increased LDH activities in the southern but not the northern population, such that the populations no longer differed in the activity of any enzyme following treatment. Unlike Ldh-B mRNA, Pfk and Ald mRNA levels did not parallel enzyme activity, suggesting complex kinetics or regulation at multiple levels. Plasma cortisol did not differ between populations at rest but was significantly different between populations in treated fish. These data suggest that differences in liver enzyme activity may be related to differences in stress hormone physiology between populations.
Collapse
|