1
|
Aalam J, Ahmad Shah SN, Parveen R. An extensive review on infectious disease diagnosis using machine learning techniques and next generation sequencing: State-of-the-art and perspectives. Comput Biol Med 2025; 189:109962. [PMID: 40054170 DOI: 10.1016/j.compbiomed.2025.109962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Infectious diseases, including tuberculosis (TB), HIV/AIDS, and emerging pathogens like COVID-19 pose severe global health challenges due to their rapid spread and significant morbidity and mortality rates. Next-generation sequencing (NGS) and machine learning (ML) have emerged as transformative technologies for enhancing disease diagnosis and management. OBJECTIVE This review aims to explore integrating ML techniques with NGS for diagnosing infectious diseases, highlighting their effectiveness and identifying existing challenges. METHODS A comprehensive literature review spanning the past decade was conducted using reputable databases, including IEEE Xplore, PubMed, Scopus, SpringerLink, and Science Direct. Research papers, articles, and conference proceedings meeting stringent quality criteria were analysed to assess the performance of ML algorithms applied to NGS and metagenomic NGS (mNGS) data. RESULTS The findings reveal that ML algorithms, such as deep neural networks (DNNs), support vector machines (SVM), and K-nearest neighbours (KNN), achieve high accuracy rates, often exceeding 95 %, in diagnosing infectious diseases. Deep learning methods excel in genomic and metagenomic data analysis, while traditional algorithms like Gaussian mixture models (GMM) also demonstrate robust classification capabilities. Challenges include reliance on single data types and difficulty distinguishing closely related pathogens. CONCLUSION The integration of ML and NGS significantly advances infectious disease diagnosis, offering rapid and precise detection capabilities. Addressing current limitations can further enhance the effectiveness of these technologies, ultimately improving global public health outcomes.
Collapse
Affiliation(s)
- Javed Aalam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| | | | - Rafat Parveen
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Joshi S, Romanens P, Winssinger N. Sequencing of d/l-DNA and XNA by Templated-Synthesis. J Am Chem Soc 2025; 147:6288-6296. [PMID: 39930695 PMCID: PMC11848921 DOI: 10.1021/jacs.5c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Progress in oligonucleotide sequencing has transformed modern biology and medicine. Here we report a fast and efficient enzyme-free primer extension of PNA with reversible chain termination and its application to DNA and XNA sequencing. The approach leverages activated 4-mer PNAs that react in a templated ligation reaction at μM concentrations within minutes. We demonstrate that the fidelity of this enzyme-free primer extension benefits from reactions performed with a mixture of activated PNAs where every 4-mer has its self-complementary 4-mer. The reactions can be performed using the whole repertoire of 4-mers (256 permutations) in a parallelized manner. Using a primer in combination with its -1, -2, and -3 deletion allows for sequencing by MALDI analysis, using the increment in mass for each nucleobase assignment. Given the enzyme-free nature of this sequencing and the achiral nature of PNA, we further demonstrate that the technology can be used to sequence d- or l-DNA as well as LNA and PNA (XNA).
Collapse
Affiliation(s)
- Saurabh Joshi
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Romanens
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Ferreira MR, Carratto TMT, Frontanilla TS, Bonadio RS, Jain M, de Oliveira SF, Castelli EC, Mendes-Junior CT. Advances in forensic genetics: Exploring the potential of long read sequencing. Forensic Sci Int Genet 2025; 74:103156. [PMID: 39427416 DOI: 10.1016/j.fsigen.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Thássia Mayra Telles Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamara Soledad Frontanilla
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Raphael Severino Bonadio
- Depto Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | | | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil; Pathology Department, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
4
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
5
|
Li K, Lu X, Liao J, Chen H, Lin W, Zhao Y, Tang D, Li C, Tian Z, Zhu Z, Jiang H, Sun J, Zhang H, Yang C. DNA-DISK: Automated end-to-end data storage via enzymatic single-nucleotide DNA synthesis and sequencing on digital microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2410164121. [PMID: 39145927 PMCID: PMC11348301 DOI: 10.1073/pnas.2410164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024] Open
Abstract
In the age of information explosion, the exponential growth of digital data far exceeds the capacity of current mainstream storage media. DNA is emerging as a promising alternative due to its higher storage density, longer retention time, and lower power consumption. To date, commercially mature DNA synthesis and sequencing technologies allow for writing and reading of information on DNA with customization and convenience at the research level. However, under the disconnected and nonspecialized mode, DNA data storage encounters practical challenges, including susceptibility to errors, long storage latency, resource-intensive requirements, and elevated information security risks. Herein, we introduce a platform named DNA-DISK that seamlessly streamlined DNA synthesis, storage, and sequencing on digital microfluidics coupled with a tabletop device for automated end-to-end information storage. The single-nucleotide enzymatic DNA synthesis with biocapping strategy is utilized, offering an ecofriendly and cost-effective approach for data writing. A DNA encapsulation using thermo-responsive agarose is developed for on-chip solidification, not only eliminating data clutter but also preventing DNA degradation. Pyrosequencing is employed for in situ and accurate data reading. As a proof of concept, DNA-DISK successfully stored and retrieved a musical sheet file (228 bits) with lower write-to-read latency (4.4 min of latency per bit) as well as superior automation compared to other platforms, demonstrating its potential to evolve into a DNA Hard Disk Drive in the future.
Collapse
Affiliation(s)
- Kunjie Li
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Xiaoyun Lu
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Jiaqi Liao
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Heng Chen
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Wei Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Yuhan Zhao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Dongbao Tang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Congyu Li
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhenyang Tian
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Zhi Zhu
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin300308, China
| | - Jun Sun
- Zhonghe Gene Technology Co., Ltd., Tianjin300308, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| | - Chaoyong Yang
- Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Discipline Intelligent Instrument & Equipment, Xiamen University, Xiamen361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen361005, China
| |
Collapse
|
6
|
Liu S, Obert C, Yu YP, Zhao J, Ren BG, Liu JJ, Wiseman K, Krajacich BJ, Wang W, Metcalfe K, Smith M, Ben-Yehezkel T, Luo JH. Utility analyses of AVITI sequencing chemistry. BMC Genomics 2024; 25:778. [PMID: 39127634 DOI: 10.1186/s12864-024-10686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND DNA sequencing is a critical tool in modern biology. Over the last two decades, it has been revolutionized by the advent of massively parallel sequencing, leading to significant advances in the genome and transcriptome sequencing of various organisms. Nevertheless, challenges with accuracy, lack of competitive options and prohibitive costs associated with high throughput parallel short-read sequencing persist. RESULTS Here, we conduct a comparative analysis using matched DNA and RNA short-reads assays between Element Biosciences' AVITI and Illumina's NextSeq 550 chemistries. Similar comparisons were evaluated for synthetic long-read sequencing for RNA and targeted single-cell transcripts between the AVITI and Illumina's NovaSeq 6000. For both DNA and RNA short-read applications, the study found that the AVITI produced significantly higher per sequence quality scores. For PCR-free DNA libraries, we observed an average 89.7% lower experimentally determined error rate when using the AVITI chemistry, compared to the NextSeq 550. For short-read RNA quantification, AVITI platform had an average of 32.5% lower error rate than that for NextSeq 550. With regards to synthetic long-read mRNA and targeted synthetic long read single cell mRNA sequencing, both platforms' respective chemistries performed comparably in quantification of genes and isoforms. The AVITI displayed a marginally lower error rate for long reads, with fewer chemistry-specific errors and a higher mutation detection rate. CONCLUSION These results point to the potential of the AVITI platform as a competitive candidate in high-throughput short read sequencing analyses when juxtaposed with the Illumina NextSeq 550.
Collapse
Affiliation(s)
- Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- High Throughput Genome Center, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| | - Caroline Obert
- Element Biosciences Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA, 92121, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- High Throughput Genome Center, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Junhua Zhao
- Element Biosciences Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA, 92121, USA
| | - Bao-Guo Ren
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- High Throughput Genome Center, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Jia-Jun Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- High Throughput Genome Center, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Kelly Wiseman
- Element Biosciences Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA, 92121, USA
| | - Benjamin J Krajacich
- Element Biosciences Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA, 92121, USA
| | - Wenjia Wang
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, USA
| | - Kyle Metcalfe
- Element Biosciences Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA, 92121, USA
| | - Mat Smith
- Element Biosciences Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA, 92121, USA
| | - Tuval Ben-Yehezkel
- Element Biosciences Inc, 10055 Barnes Canyon Road, Suite 100, San Diego, CA, 92121, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- High Throughput Genome Center, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| |
Collapse
|
7
|
Pu D, Chen H, Fu W, Cui Y, Shu K. Combining E-ice-COLD-PCR and Pyrosequencing with Di-Base Addition (PDBA) Enables Sensitive Detection of Low-Abundance Mutations. Appl Biochem Biotechnol 2024; 196:4049-4066. [PMID: 37864708 DOI: 10.1007/s12010-023-04718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/23/2023]
Abstract
Detecting low-abundance mutations is of particular interest in the fields of biology and medical science. However, most currently available molecular assays have limited sensitivity for the detection of low-abundance mutations. Here, we established a platform for detecting low-level DNA mutations with high sensitivity and accuracy by combining enhanced-ice-COLD-PCR (E-ice-COLD-PCR) and pyrosequencing with di-base addition (PDBA). The PDBA assay was performed by selectively adding one di-base (AG, CT, AC, GT, AT, or GC) instead of one base (A, T, C, or G) into the reaction at a time during sequencing primer extension and thus enabling to increase the sequencing intensity. A specific E-ice-COLD-PCR/PDBA assay was developed for the detection of the most frequent BRAF V600E mutation to verify the feasibility of our method. E-ice-COLD-PCR/PDBA assay permitted the reliable detection of down to 0.007% of mutant alleles in a wild-type background. Furthermore, it required only a small amount of starting material (20 pg) to sensitively detect and identify low-abundance mutations, thus increasing the screening capabilities in limited DNA material. The E-ice-COLD-PCR/PDBA assay was applied in the current study to clinical formalin-fixed paraffin-embedded (FFPE) and plasma samples, and it enabled the detection of BRAF V600E mutations in samples that appeared as a wild type using PCR/conventional pyrosequencing (CP) and E-ice-COLD-PCR/CP. E-ice-COLD-PCR/PDBA assay is a rapid, cost-effective, and highly sensitive method that could improve the detection of low-abundance mutations in routine clinical use.
Collapse
Affiliation(s)
- Dan Pu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Huimin Chen
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| |
Collapse
|
8
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
9
|
Zappe K, Cichna-Markl M. Temperature-Wise Calibration Increases the Accuracy of DNA Methylation Levels Determined by High-Resolution Melting (HRM). Int J Mol Sci 2024; 25:5082. [PMID: 38791122 PMCID: PMC11121480 DOI: 10.3390/ijms25105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
High-resolution melting (HRM) is a cost-efficient tool for targeted DNA methylation analysis. HRM yields the average methylation status across all CpGs in PCR products. Moreover, it provides information on the methylation pattern, e.g., the occurrence of monoallelic methylation. HRM assays have to be calibrated by analyzing DNA methylation standards of known methylation status and mixtures thereof. In general, DNA methylation levels determined by the classical calibration approach, including the whole temperature range in between normalization intervals, are in good agreement with the mean of the DNA methylation status of individual CpGs determined by pyrosequencing (PSQ), the gold standard of targeted DNA methylation analysis. However, the classical calibration approach leads to highly inaccurate results for samples with heterogeneous DNA methylation since they result in more complex melt curves, differing in their shape compared to those of DNA standards and mixtures thereof. Here, we present a novel calibration approach, i.e., temperature-wise calibration. By temperature-wise calibration, methylation profiles over temperature are obtained, which help in finding the optimal calibration range and thus increase the accuracy of HRM data, particularly for heterogeneous DNA methylation. For explaining the principle and demonstrating the potential of the novel calibration approach, we selected the promoter and two enhancers of MGMT, a gene encoding the repair protein MGMT.
Collapse
Affiliation(s)
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
10
|
Grunert M, Dorn C, Dopazo A, Sánchez-Cabo F, Vázquez J, Rickert-Sperling S, Lara-Pezzi E. Technologies to Study Genetics and Molecular Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:435-458. [PMID: 38884724 DOI: 10.1007/978-3-031-44087-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jésus Vázquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Enrique Lara-Pezzi
- Myocardial Homeostasis and Cardiac Injury Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
11
|
Rodriguez R, Krishnan Y. The chemistry of next-generation sequencing. Nat Biotechnol 2023; 41:1709-1715. [PMID: 37845570 PMCID: PMC10999191 DOI: 10.1038/s41587-023-01986-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The first large genome fully sequenced by next-generation sequencing (NGS) was that of a bacteriophage using sequencing by synthesis (SBS) as a paradigm. SBS in NGS is underpinned by 'reversible-terminator chemistry'. To grow from proof of concept to being both affordable and practical, SBS needed to overcome a series of challenges, each of which required the invention of new chemistries. These included the design and synthesis of unnatural deoxynucleotide triphosphates (dNTPs), engineering a suitable polymerase, a new surface chemistry and an ingenious molecular solution to neutralize copying errors inherent to all polymerases. In this historical Perspective, we discuss how NGS was developed from Sanger sequencing, highlighting the chemistry behind this technology, which has impacted biology in unprecedented ways.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| | - Yamuna Krishnan
- Department of Chemistry, the University of Chicago, Chicago, IL, USA.
- The Neuroscience Institute, the University of Chicago, Chicago, IL, USA.
- Institute of Biophysical Dynamics, the University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Uhlen M, Quake SR. Sequential sequencing by synthesis and the next-generation sequencing revolution. Trends Biotechnol 2023; 41:1565-1572. [PMID: 37482467 DOI: 10.1016/j.tibtech.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
The impact of next-generation sequencing (NGS) cannot be overestimated. The technology has transformed the field of life science, contributing to a dramatic expansion in our understanding of human health and disease and our understanding of biology and ecology. The vast majority of the major NGS systems today are based on the concept of 'sequencing by synthesis' (SBS) with sequential detection of nucleotide incorporation using an engineered DNA polymerase. Based on this strategy, various alternative platforms have been developed, including the use of either native nucleotides or reversible terminators and different strategies for the attachment of DNA to a solid support. In this review, some of the key concepts leading to this remarkable development are discussed.
Collapse
Affiliation(s)
- Mathias Uhlen
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, California, USA, Stanford, CA, USA
| |
Collapse
|
13
|
Gudem M, Kowalewski M. Cavity-Modified Chemiluminescent Reaction of Dioxetane. J Phys Chem A 2023; 127:9483-9494. [PMID: 37845803 PMCID: PMC10658626 DOI: 10.1021/acs.jpca.3c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Chemiluminescence is a thermally activated chemical process that emits a photon of light by forming a fraction of products in the electronic excited state. A well-known example of this spectacular phenomenon is the emission of light in the firefly beetle, where the formation of a four-membered cyclic peroxide compound and subsequent dissociation produce a light-emitting product. The smallest cyclic peroxide, dioxetane, also exhibits chemiluminescence but with a low quantum yield as compared to that of firefly dioxetane. Employing the strong light-matter coupling has recently been found to be an alternative strategy to modify the chemical reactivity. In the presence of an optical cavity, the molecular degrees of freedom greatly mix with the cavity mode to form hybrid cavity-matter states called polaritons. These newly generated hybrid light-matter states manipulate the potential energy surfaces and significantly change the reaction dynamics. Here, we theoretically investigate the effects of a strong light-matter interaction on the chemiluminescent reaction of dioxetane using the extended Jaynes-Cummings model. The cavity couplings corresponding to the electronic and vibrational degrees of freedom have been included in the interaction Hamiltonian. We explore how the cavity alters the ground- and excited-state path energy barriers and reaction rates. Our results demonstrate that the formation of excited-state products in the dioxetane decomposition process can be either accelerated or suppressed, depending on the molecular orientation with respect to the cavity polarization.
Collapse
Affiliation(s)
- Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| |
Collapse
|
14
|
Su X, Stadler RV, Xu F, Wu J. Malaria Genomics, Vaccine Development, and Microbiome. Pathogens 2023; 12:1061. [PMID: 37624021 PMCID: PMC10459703 DOI: 10.3390/pathogens12081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (R.V.S.); (F.X.); (J.W.)
| | | | | | | |
Collapse
|
15
|
Karim JA, Lambert NA, Pioszak AA. Time- and cost-efficient bacterial expression and purification of potato apyrase. Protein Expr Purif 2023; 203:106215. [PMID: 36535546 PMCID: PMC9807108 DOI: 10.1016/j.pep.2022.106215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Apyrase from potato (Solanum tuberosum) is a divalent metal ion-dependent enzyme that catalyzes the hydrolysis of nucleoside di- and tri-phosphates with broad substrate specificity. The enzyme is widely used to manipulate nucleotide levels such as in the G protein-coupled receptor (GPCR) field where it is used to deplete guanine nucleotides to stabilize nucleotide-free ternary agonist-GPCR-G protein complexes. Potato apyrase is available commercially as the native enzyme purified from potatoes or as a recombinant protein, but these are prohibitively expensive for some research applications. Here, we report a relatively simple method for the bacterial production of soluble, active potato apyrase. Apyrase has several disulfide bonds, so we co-expressed the enzyme bearing a C-terminal (His)6 tag with the E. coli disulfide isomerase DsbC at low temperature (18 °C) in the oxidizing cytoplasm of E. coli Origami B (DE3). This allowed low level production of soluble apyrase. A two-step purification procedure involving Ni-affinity followed by Cibacron Blue-affinity chromatography yielded highly purified apyrase at a level of ∼0.5 mg per L of bacterial culture. The purified enzyme was functional for ATP hydrolysis in an ATPase assay and for GTP/GDP hydrolysis in a GPCR-G protein coupling assay. This methodology enables the time- and cost-efficient production of recombinant apyrase for various research applications.
Collapse
Affiliation(s)
- Jordan A Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
16
|
Pei XM, Yeung MHY, Wong ANN, Tsang HF, Yu ACS, Yim AKY, Wong SCC. Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells 2023; 12:493. [PMID: 36766834 PMCID: PMC9913990 DOI: 10.3390/cells12030493] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The outbreak of COVID-19 has positively impacted the NGS market recently. Targeted sequencing (TS) has become an important routine technique in both clinical and research settings, with advantages including high confidence and accuracy, a reasonable turnaround time, relatively low cost, and fewer data burdens with the level of bioinformatics or computational demand. Since there are no clear consensus guidelines on the wide range of next-generation sequencing (NGS) platforms and techniques, there is a vital need for researchers and clinicians to develop efficient approaches, especially for the molecular diagnosis of diseases in the emergency of the disease and the global pandemic outbreak of COVID-19. In this review, we aim to summarize different methods of TS, demonstrate parameters for TS assay designs, illustrate different TS panels, discuss their limitations, and present the challenges of TS concerning their clinical application for the molecular diagnosis of human diseases.
Collapse
Affiliation(s)
- Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Allen Chi Shing Yu
- Codex Genetics Limited, Unit 212, 2/F., Building 16W, No. 16 Science Park West Avenue, The Hong Kong Science Park, Hong Kong 852, China
| | - Aldrin Kay Yuen Yim
- Codex Genetics Limited, Unit 212, 2/F., Building 16W, No. 16 Science Park West Avenue, The Hong Kong Science Park, Hong Kong 852, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
17
|
Ghemrawi M, Tejero NF, Duncan G, McCord B. Pyrosequencing: Current forensic methodology and future applications-a review. Electrophoresis 2023; 44:298-312. [PMID: 36168852 DOI: 10.1002/elps.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
The recent development of small, single-amplicon-based benchtop systems for pyrosequencing has opened up a host of novel procedures for applications in forensic science. Pyrosequencing is a sequencing by synthesis technique, based on chemiluminescent inorganic pyrophosphate detection. This review explains the pyrosequencing workflow and illustrates the step-by-step chemistry, followed by a description of the assay design and factors to keep in mind for an exemplary assay. Existing and potential forensic applications are highlighted using this technology. Current applications include identifying species, identifying bodily fluids, and determining smoking status. We also review progress in potential applications for the future, including research on distinguishing monozygotic twins, detecting alcohol and drug abuse, and other phenotypic characteristics such as diet and body mass index. Overall, the versatility of the pyrosequencing technologies renders it a useful tool in forensic genomics.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Nicole Fernandez Tejero
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - George Duncan
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida, USA
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
18
|
Zhou Y, Lauschke VM. Challenges Related to the Use of Next-Generation Sequencing for the Optimization of Drug Therapy. Handb Exp Pharmacol 2023; 280:237-260. [PMID: 35792943 DOI: 10.1007/164_2022_596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last decade, next-generation sequencing (NGS) methods have become increasingly used in various areas of human genomics. In routine clinical care, their use is already implemented in oncology to profile the mutational landscape of a tumor, as well as in rare disease diagnostics. However, its utilization in pharmacogenomics is largely lacking behind. Recent population-scale genome data has revealed that human pharmacogenes carry a plethora of rare genetic variations that are not interrogated by conventional array-based profiling methods and it is estimated that these variants could explain around 30% of the genetically encoded functional pharmacogenetic variability.To interpret the impact of such variants on drug response a multitude of computational tools have been developed, but, while there have been major advancements, it remains to be shown whether their accuracy is sufficient to improve personalized pharmacogenetic recommendations in robust trials. In addition, conventional short-read sequencing methods face difficulties in the interrogation of complex pharmacogenes and high NGS test costs require stringent evaluations of cost-effectiveness to decide about reimbursement by national healthcare programs. Here, we illustrate current challenges and discuss future directions toward the clinical implementation of NGS to inform genotype-guided decision-making.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
19
|
Enespa, Chandra P. Tool and techniques study to plant microbiome current understanding and future needs: an overview. Commun Integr Biol 2022; 15:209-225. [PMID: 35967908 PMCID: PMC9367660 DOI: 10.1080/19420889.2022.2082736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microorganisms are present in the universe and they play role in beneficial and harmful to human life, society, and environments. Plant microbiome is a broad term in which microbes are present in the rhizo, phyllo, or endophytic region and play several beneficial and harmful roles with the plant. To know of these microorganisms, it is essential to be able to isolate purification and identify them quickly under laboratory conditions. So, to improve the microbial study, several tools and techniques such as microscopy, rRNA, or rDNA sequencing, fingerprinting, probing, clone libraries, chips, and metagenomics have been developed. The major benefits of these techniques are the identification of microbial community through direct analysis as well as it can apply in situ. Without tools and techniques, we cannot understand the roles of microbiomes. This review explains the tools and their roles in the understanding of microbiomes and their ecological diversity in environments.
Collapse
Affiliation(s)
- Enespa
- Department of Plant Pathology, School of Agriculture, SMPDC, University of Lucknow, Lucknow, India
| | - Prem Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, India
| |
Collapse
|
20
|
Davalos V, Esteller M. Cancer epigenetics in clinical practice. CA Cancer J Clin 2022. [PMID: 36512337 DOI: 10.3322/caac.21765] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer development is driven by the accumulation of alterations affecting the structure and function of the genome. Whereas genetic changes disrupt the DNA sequence, epigenetic alterations contribute to the acquisition of hallmark tumor capabilities by regulating gene expression programs that promote tumorigenesis. Shifts in DNA methylation and histone mark patterns, the two main epigenetic modifications, orchestrate tumor progression and metastasis. These cancer-specific events have been exploited as useful tools for diagnosis, monitoring, and treatment choice to aid clinical decision making. Moreover, the reversibility of epigenetic modifications, in contrast to the irreversibility of genetic changes, has made the epigenetic machinery an attractive target for drug development. This review summarizes the most advanced applications of epigenetic biomarkers and epigenetic drugs in the clinical setting, highlighting commercially available DNA methylation-based assays and epigenetic drugs already approved by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Veronica Davalos
- Josep Carreras Leukaemia Research Institute, Badalona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Zhu F, Feng F, Toimil-Molares ME, Trautmann C, Wang L, Zhou J, Cheng J, Li H. Triazol-Methanaminium-Pillar[5]arene-Functionalized Single Nanochannel for Quantitative Analysis of Pyrophosphate in Water. Anal Chem 2022; 94:14889-14897. [PMID: 36269622 DOI: 10.1021/acs.analchem.2c02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inorganic pyrophosphate (PPi) is an important biological functional anion and plays crucial roles in life science, environmental science, medicine, and chemical process. Quantification of PPi in water has far-reaching significance for life exploration, disease diagnosis, and water pollution control. The label-free quantitative detection of PPi anions with a nanofluidic sensing device based on a conical single nanochannel is demonstrated. The channel surface is functionalized with a synthetic PPi receptor, triazol-methanaminium-functionalized pillar[5]arene (TAMAP5), using carbodiimide coupling chemistry. Due to the specific binding between TAMAP5 and PPi, the functionalized nanochannel can discriminate PPi from other inorganic anions with high selectivity through ionic current recording, even in the presence of various interfering anions. The current response exhibits a linear correlation with PPi concentration in the range from 1 × 10-7 to 1 × 10-4 M with a limit of detection of 6.8 × 10-7 M. A spike-and-recovery analysis of PPi in East Lake water samples indicates that the proposed nanofluidic sensor has the ability to quantitate micromolar concentrations of PPi in environmental water samples.
Collapse
Affiliation(s)
- Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Pharmacology, School of Basic Medical Science, Hubei University of Medicine, Shiyan 442000, Hubei, P. R. China
| | - Fudan Feng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany.,Technische Universitat Darmstadt, Darmstadt 64287, Germany
| | - Li Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| |
Collapse
|
22
|
He Q, Hu O, Chen M, Liang Z, Liang L, Chen Z. A novel and cost-efficient allele-specific PCR method for multiple SNP genotyping in a single run. Anal Chim Acta 2022; 1229:340366. [PMID: 36156224 DOI: 10.1016/j.aca.2022.340366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Cost-effective methods for DNA genotyping were needed because single nucleotide polymorphisms (SNPs) were essential biomarkers associated with many diseases. Allele-specific PCR (AS-PCR) has the advantages of mature instruments and high sensitivity. But conventional AS-PCR needs to multiply the number of reactions or primers for multiple targets, which complicates the operation and increases the cost. Herein, we proposed a novel AS-PCR method for multiple SNP genotyping in a single run. Wild-type allele-specific primer (WT primer) was designed for each target gene. The sample and WT primers only needed to undergo multiplexed AS-PCR once simultaneously. After AS-PCR, the concentration of remaining primers varied among the samples of each genotype combination, due to the different matching performance between template and WT primers. The remaining primers then triggered multiplexed molecular beacon-rolling circle amplification, and the molecular beacons labelled with different fluorescent dyes corresponded to different targets. The fluorescence ratios of the sample to the positive control were used as the genotyping indexes. This method was able to detect samples with concentrations as low as 10 fM. We successfully applied the method to the multiple genotyping of 23 hair root samples for ADH1B and ALDH2 genes, obtaining completely consistent results with sequencing. The reagent cost was 0.6 dollar for one sample, showing a good cost performance. This proposed approach had a great application prospect in simultaneously rapid and accurate genotyping of multi-SNPs, and provided a new method for personalized health management.
Collapse
Affiliation(s)
- Qidi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Meng Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhixian Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510006, People's Republic of China
| | - Lushan Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
23
|
Zoghi S, Masoudi MS, Taheri R. The Evolving Role of Next Generation Sequencing in Pediatric Neurosurgery: a Call for Action for Research, Clinical Practice, and Optimization of Care. World Neurosurg 2022; 168:232-242. [PMID: 36122859 DOI: 10.1016/j.wneu.2022.09.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
NGS (Next-Generation Sequencing) is one of the most promising technologies that have truly revolutionized many aspects of clinical practice in recent years. It has been and is increasingly applied in many disciplines of medicine; however, it appears that pediatric neurosurgery despite its great potential has not truly embraced this new technology and is hesitant to employ it in its routine practice and guidelines. In this review, we briefly summarized the developments that lead to the establishment of NGS technology, reviewed the current applications and potentials of NGS in the disorders treated by pediatric neurosurgeons, and lastly discuss the steps we need to take to better harness NGS in pediatric neurosurgery.
Collapse
Affiliation(s)
- Sina Zoghi
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Taheri
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Santiago-Frangos A, Nemudryi A, Nemudraia A, Wiegand T, Nichols JE, Krishna P, Scherffius AM, Zahl TR, Wilkinson RA, Wiedenheft B. CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics. Methods 2022; 205:1-10. [PMID: 35690249 PMCID: PMC9181078 DOI: 10.1016/j.ymeth.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/06/2022] [Accepted: 06/04/2022] [Indexed: 01/04/2023] Open
Abstract
Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.
Collapse
Affiliation(s)
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Joseph E Nichols
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Pushya Krishna
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Andrew M Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Trevor R Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
25
|
Hilt EE, Ferrieri P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes (Basel) 2022; 13:genes13091566. [PMID: 36140733 PMCID: PMC9498426 DOI: 10.3390/genes13091566] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have become increasingly available for use in the clinical microbiology diagnostic environment. There are three main applications of these technologies in the clinical microbiology laboratory: whole genome sequencing (WGS), targeted metagenomics sequencing and shotgun metagenomics sequencing. These applications are being utilized for initial identification of pathogenic organisms, the detection of antimicrobial resistance mechanisms and for epidemiologic tracking of organisms within and outside hospital systems. In this review, we analyze these three applications and provide a comprehensive summary of how these applications are currently being used in public health, basic research, and clinical microbiology laboratory environments. In the public health arena, WGS is being used to identify and epidemiologically track food borne outbreaks and disease surveillance. In clinical hospital systems, WGS is used to identify multi-drug-resistant nosocomial infections and track the transmission of these organisms. In addition, we examine how metagenomics sequencing approaches (targeted and shotgun) are being used to circumvent the traditional and biased microbiology culture methods to identify potential pathogens directly from specimens. We also expand on the important factors to consider when implementing these technologies, and what is possible for these technologies in infectious disease diagnosis in the next 5 years.
Collapse
|
26
|
Dong Y, Gao Y, Chai Y, Shou S. Use of Quantitative Metagenomics Next-Generation Sequencing to Confirm Fever of Unknown Origin and Infectious Disease. Front Microbiol 2022; 13:931058. [PMID: 35859749 PMCID: PMC9289621 DOI: 10.3389/fmicb.2022.931058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
A body temperature >38.3°C that lasts ≥3 weeks and lacks a clear diagnosis after 1 week of standard hospital examination and treatment is called "fever of unknown origin" (FUO). The main causes of FUO are infections, hematological diseases, autoimmune diseases, and other non-infectious inflammatory diseases. In recent years, quantitative metagenomics next-generation sequencing (Q-mNGS) has been used widely to detect pathogenic microorganisms, especially in the contribution of rare or new (e.g., severe acute respiratory syndrome-coronavirus-2) pathogens. This review addresses the undetermined cause of fever and its evaluation by Q-mNGS.
Collapse
Affiliation(s)
- Yuxin Dong
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
27
|
Feng L, Wu H, Yue H, Chu Y, Zhang J, Huang X, Pang S, Zhang L, Li Y, Wang W, Zou B, Zhou G. Multiplexed and Rapid AST for Escherichia coli Infection by Simultaneously Pyrosequencing Multiple Barcodes Each Specific to an Antibiotic Exposed to a Sample. Anal Chem 2022; 94:8633-8641. [PMID: 35675678 DOI: 10.1021/acs.analchem.2c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antimicrobial susceptibility testing (AST) is an effective way to guide antibiotic selection. However, conventional culture-based phenotypic AST is time-consuming. The key point to shorten the test is to quantify the small change in the bacterial number after the antibiotic exposure. To achieve rapid AST, we proposed a combination of multiplexed PCR with barcoded pyrosequencing to significantly shorten the time for antibiotic exposure. First, bacteria exposed to each antibiotic were labeled with a unique barcode. Then, the pool of the barcoded products was amplified by PCR with a universal primer pair. Finally, barcodes in the amplicons were individually and quantitatively decoded by pyrosequencing. As pyrosequencing is able to discriminate as low as 5% variation in target concentrations, as short as 7.5 min was enough for cultivation to detect the susceptibility of Escherichia coli to an antibiotic. The barcodes enable more than six kinds of drugs or six kinds of concentrations of a drug to be tested at a time. The susceptibility of 6 antibiotics to 43 E. coli-positive samples from 482 clinical urine samples showed a consistency of 99.3% for drug-resistant samples and of 95.7% for drug-sensitive samples in comparison with the conventional method. In addition, the minimum inhibitory concentration (MIC) of 29 E. coli samples was successfully measured. The proposed AST is dye free (pyrosequencing), multiplexed (six antibiotics), fast (a half-working day for reporting the results), and able to detect the MIC, thus having a great potential for clinical use in quick antibiotic selection.
Collapse
Affiliation(s)
- Liying Feng
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Huijie Yue
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Jieyu Zhang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Shuyun Pang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Likun Zhang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
28
|
Wei X, Ling X, Yang L, Zhang J, Cui M, He Z, Zhao X, Sun M. Analysis of Microbial Community Structure and Diversity in Burial Soil of Yangguanzhai Cemetery. Front Microbiol 2022; 13:845870. [PMID: 35711760 PMCID: PMC9197465 DOI: 10.3389/fmicb.2022.845870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
As one of the common physical remains in archaeological discoveries, human bones are important bases for studying the history of human development, which is of great significance for exploring the evolution law of ancient human, reconstructing ancient human society, and tracking the development of human civilization. However, in the process of human bone burial, in addition to being affected by physical and chemical factors, it will also be affected by microorganisms in the buried soil, resulting in a variety of diseases. According to the determination and analysis of the microbial community structure and diversity in the burial soil of Yangguanzhai Site in Gaoling District in Xi’an city, Shaanxi Province, this paper attempts to explore the influence of microorganisms in the burial environment on human bones, in order to provide scientific proof for the microbial prevention and control of bone relics in the archaeological excavation site. For the first time, Illumina NovaSeq high-throughput sequencing technology was used to analyze the microbial community structure in the burial soil. At the phylum level, there were 8 dominant bacteria species in the soil samples of tombs, which were Firmicutes, Actinobacteriota, Actinobacteria, Proteobacteria, Acidobacteriota, Methylomirabilota, Chloroflexi, Bacteroidota. At the genus level, there were 12 dominant species in the soil samples of tombs, including MIZ17, MND1, Gaiella, oc32, Kroppenstedtia, Halomonas, Bacteroides, Dongia, Faecalibacterium, Nocardioides, Pseudomonas, Pseudonocardia. The overall microorganisms in the soil of Yangguanzhai Cemetery were relatively well-distributed, and the microbial community structure near human bones is the most abundant and diverse. Therefore, it is necessary to take some measures to control microorganisms and protect human bones.
Collapse
Affiliation(s)
- Xiaoyang Wei
- School of Cultural Heritage, Northwest University, Xi'an, China
| | - Xue Ling
- School of Cultural Heritage, Northwest University, Xi'an, China
| | - Liping Yang
- Shaanxi Academy of Archaeology, Xi'an, China
| | - Jun Zhang
- School of Life Sciences, Northwest University, Xi'an, China
| | - Menghe Cui
- Shaanxi Academy of Archaeology, Xi'an, China
| | - Zhang He
- Shaanxi Academy of Archaeology, Xi'an, China
| | - Xichen Zhao
- Shaanxi Academy of Archaeology, Xi'an, China
| | - Manli Sun
- School of Cultural Heritage, Northwest University, Xi'an, China
| |
Collapse
|
29
|
Altermann E, Tegetmeyer HE, Chanyi RM. The evolution of bacterial genome assemblies - where do we need to go next? MICROBIOME RESEARCH REPORTS 2022; 1:15. [PMID: 38046358 PMCID: PMC10688829 DOI: 10.20517/mrr.2022.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 12/05/2023]
Abstract
Genome sequencing has fundamentally changed our ability to decipher and understand the genetic blueprint of life and how it changes over time in response to environmental and evolutionary pressures. The pace of sequencing is still increasing in response to advances in technologies, paving the way from sequenced genes to genomes to metagenomes to metagenome-assembled genomes (MAGs). Our ability to interrogate increasingly complex microbial communities through metagenomes and MAGs is opening up a tantalizing future where we may be able to delve deeper into the mechanisms and genetic responses emerging over time. In the near future, we will be able to detect MAG assembly variations within strains originating from diverging sub-populations, and one of the emerging challenges will be to capture these variations in a biologically relevant way. Here, we present a brief overview of sequencing technologies and the current state of metagenome assemblies to suggest the need to develop new data formats that can capture the genetic variations within strains and communities, which previously remained invisible due to sequencing technology limitations.
Collapse
Affiliation(s)
- Eric Altermann
- AgResearch Ltd., Private Bag 11008, Palmerston North 4410, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- Massey University, School of Veterinary Science, Palmerston North 4100, New Zealand
| | - Halina E. Tegetmeyer
- AgResearch Ltd., Private Bag 11008, Palmerston North 4410, New Zealand
- Center for Biotechnology, Bielefeld University, Universitaetsstrasse 27, Bielefeld 33615, Germany
| | - Ryan M. Chanyi
- AgResearch Ltd., Private Bag 11008, Palmerston North 4410, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
30
|
Tierling S, Jürgens-Wemheuer WM, Leismann A, Becker-Kettern J, Scherer M, Wrede A, Breuskin D, Urbschat S, Sippl C, Oertel J, Schulz-Schaeffer WJ, Walter J. Bisulfite profiling of the MGMT promoter and comparison with routine testing in glioblastoma diagnostics. Clin Epigenetics 2022; 14:26. [PMID: 35180887 PMCID: PMC8857788 DOI: 10.1186/s13148-022-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. Results To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350–1354, 2000. 10.1056/NEJM200011093431901) and Felsberg et al. (Clin Cancer Res 15(21):6683–6693, 2009. 10.1158/1078-0432.CCR-08-2801) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. Conclusion Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01244-4.
Collapse
Affiliation(s)
- Sascha Tierling
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.
| | | | - Alea Leismann
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| | - Julia Becker-Kettern
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - Michael Scherer
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.,Department of Bioinformatics and Genomics, Centre for Genomic Regulation, Barcelona, Spain
| | - Arne Wrede
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - David Breuskin
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Steffi Urbschat
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Christoph Sippl
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Joachim Oertel
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | | | - Jörn Walter
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| |
Collapse
|
31
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Park JW, Park IH, Kim JM, Noh JH, Kim KA, Park JY. Rapid detection of FMO3 single nucleotide polymorphisms using a pyrosequencing method. Mol Med Rep 2021; 25:48. [PMID: 34913068 PMCID: PMC8674696 DOI: 10.3892/mmr.2021.12564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/11/2021] [Indexed: 02/02/2023] Open
Abstract
The present study aimed to develop a reliable pyrosequencing method to detect four single nucleotide polymorphisms (SNPs) of the flavin‑containing monooxygenase 3 (FMO3) gene and to compare the ethnic differences in their allelic frequencies. The pyrosequencing method was used to detect four FMO3 SNPs, namely, c.855C>T (N285N, rs909530), c.441C>T (S147S, rs1800822), c.923A>G (E308G, rs2266780) and c.472G>A (E158K, rs2266782). The allelic frequencies of these SNPs in 122 unrelated Korean subjects were as follows: i) 44.7% for c.855C>T; ii) 23.4% for c.441C>T; iii) 23.0% for c.923A>G; and iv) 27.1% for c.472G>A. Linkage disequilibrium (LD) analysis revealed that the SNPs c.923A>G and c.472G>A exhibited a strong LD (D'=0.8289, r2=0.5332). In conclusion, the pyrosequencing method developed in this study was successfully applied to detect the c.855C>T, c.441C>T, c.923A>G and c.472G>A SNPs of FMO3.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - In-Hwan Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Jong-Min Kim
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Ji Hyeon Noh
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| |
Collapse
|
33
|
Mohammadi MM, Bavi O. DNA sequencing: an overview of solid-state and biological nanopore-based methods. Biophys Rev 2021; 14:99-110. [PMID: 34840616 PMCID: PMC8609259 DOI: 10.1007/s12551-021-00857-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022] Open
Abstract
The field of sequencing is a topic of significant interest since its emergence and has become increasingly important over time. Impressive achievements have been obtained in this field, especially in relations to DNA and RNA sequencing. Since the first achievements by Sanger and colleagues in the 1950s, many sequencing techniques have been developed, while others have disappeared. DNA sequencing has undergone three generations of major evolution. Each generation has its own specifications that are mentioned briefly. Among these generations, nanopore sequencing has its own exciting characteristics that have been given more attention here. Among pioneer technologies being used by the third-generation techniques, nanopores, either biological or solid-state, have been experimentally or theoretically extensively studied. All sequencing technologies have their own advantages and disadvantages, so nanopores are not free from this general rule. It is also generally pointed out what research has been done to overcome the obstacles. In this review, biological and solid-state nanopores are elaborated on, and applications of them are also discussed briefly.
Collapse
Affiliation(s)
- Mohammad M Mohammadi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, 71557-13876 Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, 71557-13876 Iran
| |
Collapse
|
34
|
Zappe K, Pirker C, Miedl H, Schreiber M, Heffeter P, Pfeiler G, Hacker S, Haslik W, Spiegl-Kreinecker S, Cichna-Markl M. Discrimination between 34 of 36 Possible Combinations of Three C>T SNP Genotypes in the MGMT Promoter by High Resolution Melting Analysis Coupled with Pyrosequencing Using A Single Primer Set. Int J Mol Sci 2021; 22:ijms222212527. [PMID: 34830407 PMCID: PMC8621402 DOI: 10.3390/ijms222212527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Due to its cost-efficiency, high resolution melting (HRM) analysis plays an important role in genotyping of candidate single nucleotide polymorphisms (SNPs). Studies indicate that HRM analysis is not only suitable for genotyping individual SNPs, but also allows genotyping of multiple SNPs in one and the same amplicon, although with limited discrimination power. By targeting the three C>T SNPs rs527559815, rs547832288, and rs16906252, located in the promoter of the O6-methylguanine-DNA methyltransferase (MGMT) gene within a distance of 45 bp, we investigated whether the discrimination power can be increased by coupling HRM analysis with pyrosequencing (PSQ). After optimizing polymerase chain reaction (PCR) conditions, PCR products subjected to HRM analysis could directly be used for PSQ. By analyzing oligodeoxynucleotide controls, representing the 36 theoretically possible variant combinations for diploid human cells (8 triple-homozygous, 12 double-homozygous, 12 double-heterozygous and 4 triple-heterozygous combinations), 34 out of the 36 variant combinations could be genotyped unambiguously by combined analysis of HRM and PSQ data, compared to 22 variant combinations by HRM analysis and 16 variant combinations by PSQ. Our approach was successfully applied to genotype stable cell lines of different origin, primary human tumor cell lines from glioma patients, and breast tissue samples.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.P.); (P.H.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (H.M.); (M.S.)
| | - Heidi Miedl
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (H.M.); (M.S.)
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Schreiber
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (H.M.); (M.S.)
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.P.); (P.H.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (H.M.); (M.S.)
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, Division of Gynecology and Gynecological Oncology, Medical University of Vienna, 1090 Vienna, Austria; (G.P.); (W.H.)
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Plastic, Reconstructive and Aesthetic Surgery, Landesklinikum Wiener Neustadt, 2700 Wiener Neustadt, Austria
| | - Werner Haslik
- Department of Obstetrics and Gynecology, Division of Gynecology and Gynecological Oncology, Medical University of Vienna, 1090 Vienna, Austria; (G.P.); (W.H.)
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Medical Faculty, Kepler University Hospital GmbH, Johannes Kepler University Linz, 4040 Linz, Austria;
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
35
|
Iqbal F, Shabbir MI. Genetic analysis with pyrosequencing using loop pipetting and a light dependent resistor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5035-5047. [PMID: 34647115 DOI: 10.1039/d1ay01123e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA sequencing is among the most important techniques in biology to decipher the key genetic players of health and disease. The existing laboratory instruments for DNA sequencing are well established and reliable. However, these instruments are still out of reach of most laboratories in the world due to very high equipment and running costs and require trained personnel to keep them running. These instruments are also large and bulky making them unsuitable for analysis in remote settings away from laboratories. Here we describe a proof-of-concept of a DNA sequencing device LoopSeeq using a simple approach to address the said problems without minimizing the quality of results. The device was designed to perform pyrosequencing by iterative addition of dNTPs by contact dispensing through a loop pipette (loopette) and detection of chemiluminiscence with the cheapest sensor in the market, a light dependent resistor (LDR). Two small geared motors drive the moving parts in a controlled and coordinated manner with the help of a motor driver circuit, an Arduino Nano microcontroller and two small neodymium magnets. The real-time light intensity data from the LDR were transferred to a laptop computer for further analysis. Pyrosequencing was optimized using 55 nt self-primed oligo. In order to demonstrate the DNA sequencing ability with real samples, molecular genetic analysis was performed for a previously identified novel mutation from our lab in exon4 of the OCA2 gene. LoopSeeq successfully identified the homozygous normal (c.408-409_AA), homozygous mutant (c.408-409_delAA) and heterozygous carrier (c.408-409_AA/delAA) alleles in three individuals of a family affected with oculocutaneous albinism (OCA). Further, this can be implemented for molecular diagnostic applications for bacterial, viral or other pathogen detection and genotyping among different subtypes following some reports described earlier. A few drawbacks in the current implementation including the evaporation of liquid reagents, possible loopette contamination, etc. associated with use for longer times are also described along with suggestions to rectify these problems in future designs. With the described capabilities, the LoopSeeq device can be implemented in routine labs as well as in several real-world situations where conventional DNA sequencing instruments are unfeasible, for example, diagnostic testing at remote settings or at the point-of-care.
Collapse
Affiliation(s)
- Faisal Iqbal
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Sector H-10, Islamabad, Pakistan.
| | - Muhammad Imran Shabbir
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Sector H-10, Islamabad, Pakistan.
| |
Collapse
|
36
|
Hu B, Zhao JY, Nie Y, Qin XY, Zhang KD, Xing JM, Wu XL. Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms 2021; 9:microorganisms9102054. [PMID: 34683375 PMCID: PMC8539444 DOI: 10.3390/microorganisms9102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR) techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how exogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated crude oil at 37 °C was operated with the addition of two locally isolated hydrocarbon-degrading bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH, surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole and active microbial community compositions were determined. It was found that both A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemulsification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp. on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial communities became very simple, in which the Dietzia genus was predominant. Our study provides useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that this strategy could be operated by using the locally available hydrocarbon-degrading microbes in mesophilic conditions with different salinity degrees.
Collapse
Affiliation(s)
- Bing Hu
- Group of Biochemical Engineering, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102401, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology of China, Beijing 102401, China
| | - Jie-Yu Zhao
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Correspondence: (Y.N.); (X.-L.W.)
| | - Xiao-Yu Qin
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Kai-Duan Zhang
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Jian-Min Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Institute of Ecology, Peking University, Beijing 100871, China
- Correspondence: (Y.N.); (X.-L.W.)
| |
Collapse
|
37
|
Hugenholtz P, Chuvochina M, Oren A, Parks DH, Soo RM. Prokaryotic taxonomy and nomenclature in the age of big sequence data. THE ISME JOURNAL 2021; 15:1879-1892. [PMID: 33824426 PMCID: PMC8245423 DOI: 10.1038/s41396-021-00941-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/01/2023]
Abstract
The classification of life forms into a hierarchical system (taxonomy) and the application of names to this hierarchy (nomenclature) is at a turning point in microbiology. The unprecedented availability of genome sequences means that a taxonomy can be built upon a comprehensive evolutionary framework, a longstanding goal of taxonomists. However, there is resistance to adopting a single framework to preserve taxonomic freedom, and ever increasing numbers of genomes derived from uncultured prokaryotes threaten to overwhelm current nomenclatural practices, which are based on characterised isolates. The challenge ahead then is to reach a consensus on the taxonomic framework and to adapt and scale the existing nomenclatural code, or create a new code, to systematically incorporate uncultured taxa into the chosen framework.
Collapse
Affiliation(s)
- Philip Hugenholtz
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Maria Chuvochina
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Aharon Oren
- grid.9619.70000 0004 1937 0538Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Donovan H. Parks
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Rochelle M. Soo
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
38
|
Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, Oyewunmi OD, Camargo C, Nikpour B, Armanfard N, Sagan SM, Jahanshahi-Anbuhi S. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin Microbiol Rev 2021; 34:e00228-20. [PMID: 33980687 PMCID: PMC8142517 DOI: 10.1128/cmr.00228-20] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of confirmed cases and deaths worldwide. Efficient diagnostic tools are in high demand, as rapid and large-scale testing plays a pivotal role in patient management and decelerating disease spread. This paper reviews current technologies used to detect SARS-CoV-2 in clinical laboratories as well as advances made for molecular, antigen-based, and immunological point-of-care testing, including recent developments in sensor and biosensor devices. The importance of the timing and type of specimen collection is discussed, along with factors such as disease prevalence, setting, and methods. Details of the mechanisms of action of the various methodologies are presented, along with their application span and known performance characteristics. Diagnostic imaging techniques and biomarkers are also covered, with an emphasis on their use for assessing COVID-19 or monitoring disease severity or complications. While the SARS-CoV-2 literature is rapidly evolving, this review highlights topics of interest that have occurred during the pandemic and the lessons learned throughout. Exploring a broad armamentarium of techniques for detecting SARS-CoV-2 will ensure continued diagnostic support for clinicians, public health, and infection prevention and control for this pandemic and provide advice for future pandemic preparedness.
Collapse
Affiliation(s)
- Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
- Department of Mechanical, Industrial, and Aerospace Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Jason J LeBlanc
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Oyejide Damilola Oyewunmi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Carolina Camargo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Bahareh Nikpour
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
| | - Narges Armanfard
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
- Mila-Quebec AI Institute, Montréal, Québec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
39
|
Schwender K, Fleckhaus J, Schneider PM, Vennemann M. DNA-Methylierungsanalyse – Neues Verfahren der forensischen Altersschätzung. Rechtsmedizin (Berl) 2021. [DOI: 10.1007/s00194-021-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
An Optimized Preparation Method for Long ssDNA Donors to Facilitate Quick Knock-In Mouse Generation. Cells 2021; 10:cells10051076. [PMID: 33946570 PMCID: PMC8147208 DOI: 10.3390/cells10051076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 01/11/2023] Open
Abstract
Fluorescent reporter mouse lines and Cre/Flp recombinase driver lines play essential roles in investigating various molecular functions in vivo. Now that applications of the CRISPR/Cas9 genome-editing system to mouse fertilized eggs have drastically accelerated these knock-in mouse generations, the next need is to establish easier, quicker, and cheaper methods for knock-in donor preparation. Here, we reverify and optimize the phospho-PCR method to obtain highly pure long single-stranded DNAs (ssDNAs) suitable for knock-in mouse generation via genome editing. The sophisticated sequential use of two exonucleases, in which double-stranded DNAs (dsDNAs) amplified by a pair of 5′-phosphorylated primer and normal primer are digested by Lambda exonuclease to yield ssDNA and the following Exonuclease III treatment degrades the remaining dsDNAs, enables much easier long ssDNA productions without laborious gel extraction steps. By microinjecting these donor DNAs along with CRISPR/Cas9 components into mouse zygotes, we have effectively generated fluorescent reporter lines and recombinase drivers. To further broaden the applicability, we have prepared long ssDNA donors in higher concentrations and electroporated them into mouse eggs to successfully obtain knock-in embryos. This classical yet improved method, which is regaining attention on the progress of CRISPR/Cas9 development, shall be the first choice for long donor DNA preparation, and the resulting knock-in lines could accelerate life science research.
Collapse
|
41
|
Baykov AA, Anashkin VA, Malinen AM. Good-Practice Non-Radioactive Assays of Inorganic Pyrophosphatase Activities. Molecules 2021; 26:molecules26082356. [PMID: 33919593 PMCID: PMC8073611 DOI: 10.3390/molecules26082356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/19/2023] Open
Abstract
Inorganic pyrophosphatase (PPase) is a ubiquitous enzyme that converts pyrophosphate (PPi) to phosphate and, in this way, controls numerous biosynthetic reactions that produce PPi as a byproduct. PPase activity is generally assayed by measuring the product of the hydrolysis reaction, phosphate. This reaction is reversible, allowing PPi synthesis measurements and making PPase an excellent model enzyme for the study of phosphoanhydride bond formation. Here we summarize our long-time experience in measuring PPase activity and overview three types of the assay that are found most useful for (a) low-substrate continuous monitoring of PPi hydrolysis, (b) continuous and fixed-time measurements of PPi synthesis, and (c) high-throughput procedure for screening purposes. The assays are based on the color reactions between phosphomolybdic acid and triphenylmethane dyes or use a coupled ATP sulfurylase/luciferase enzyme assay. We also provide procedures to estimate initial velocity from the product formation curve and calculate the assay medium’s composition, whose components are involved in multiple equilibria.
Collapse
Affiliation(s)
- Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia;
- Correspondence: (A.A.B.); (A.M.M.)
| | - Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia;
| | - Anssi M. Malinen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
- Correspondence: (A.A.B.); (A.M.M.)
| |
Collapse
|
42
|
Sangannavar PA, Kumar JS, Subrahmanyam G, Kutala S. Genomics and omics tools to assess complex microbial communities in silkworms: A paradigm shift towards translational research. J Microbiol Methods 2021. [DOI: 10.1016/bs.mim.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Hu S, Zhan W, Wang J, Xie J, Zhou W, Yang X, Zeng Y, Hu T, Duan L, Chen K, Du L, Yin A, Luo M. Establishment and application of a novel method based on single nucleotide polymorphism analysis for detecting β-globin gene cluster deletions. Sci Rep 2020; 10:18298. [PMID: 33106596 PMCID: PMC7588424 DOI: 10.1038/s41598-020-75507-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 12/03/2022] Open
Abstract
β-Globin gene mutations reduce or terminate the production of beta globin chains, of which approximately 10% are large deletions within the β-globin gene cluster. Because gene deletion leads to loss of heterozygosity at single nucleotide polymorphism (SNP), a novel method for detecting β-globin gene cluster deletions based on SNP heterozygosity analysis was established in this study. The location range of SNPs was selected according to the breakpoint of β-globin gene cluster deletions. SNPs were screened using bioinformatics analysis and population sequencing data. A novel method which enables genotyping of multiplex SNPs based on tetra-primer ARMS-PCR was designed and optimized. Forty clinical samples were tested in parallel by this method and MLPA to verify the performance of this method for detecting β-globin gene cluster deletion. Six informative SNPs were obtained, achieving heterozygote coverage of 93.3% in normal individuals. Genotyping of six SNPs were successfully integrated into two multiplex tetra-primer ARMS-PCR reactions. The sensitivity, specificity, positive predictive value and negative predictive value of the method for detecting β-globin gene cluster deletion were 100%, 96.30%, 92.86%, and 100%, respectively. This is a simple, cost-effective and novel method for detecting β-globin gene cluster deletions, which may be suitable for use in combination with MLPA for thalassemia molecular testing.
Collapse
Affiliation(s)
- Siqi Hu
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetics Center, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wenli Zhan
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jicheng Wang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jia Xie
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China
| | - Weiping Zhou
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiaohan Yang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yukun Zeng
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Tingting Hu
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Lei Duan
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China
| | - Keyi Chen
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Li Du
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Aihua Yin
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Mingyong Luo
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, 521-523 Xingnan Avenue, Panyu District, Guangzhou, 511400, China. .,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, China.
| |
Collapse
|
44
|
Wang M, Noor S, Huan R, Liu C, Li J, Shi Q, Zhang YJ, Wu C, He H. Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ 2020; 8:e10060. [PMID: 33150062 PMCID: PMC7585373 DOI: 10.7717/peerj.10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Despite recent great advances in microbial culture, most microbes have not yet been cultured, and the impact of medium composition on the isolation of microbes from natural systems has not been elucidated. To optimize media for culturing marine microbes, microbial communities in three sediment samples were described using high-throughput sequencing (HTS) and culture-dependent techniques. HTS revealed communities dominated by Gammaproteobacteria, and culture-based methods revealed communities dominated by Actinobacteria. Among the total operational taxonomic units (OTUs) from the HTS dataset, 6% were recovered in the culture collection. Four potentially novel bacterial strains belonging to Oceaniovalibus, Psychrobacter and Salegentibacter were isolated. The combination of media cultured more taxa than any single medium. Nutrient-rich and single-carbon/nitrogen-source media supported the growth of relatively few taxa, and the quality of nitrogen strongly influenced the types of bacteria isolated.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Science, Central South University, Changsha, China
| | - Samina Noor
- School of Life Science, Central South University, Changsha, China
| | - Ran Huan
- School of Life Science, Central South University, Changsha, China
| | - Congling Liu
- School of Life Science, Central South University, Changsha, China
| | - JiaYi Li
- School of Life Science, Central South University, Changsha, China
| | - Qingxin Shi
- School of Life Science, Central South University, Changsha, China
| | | | - Cuiling Wu
- Changzhi Medical College, Changzhi, China
| | - Hailun He
- School of Life Science, Central South University, Changsha, China
| |
Collapse
|
45
|
Pajares MJ, Palanca-Ballester C, Urtasun R, Alemany-Cosme E, Lahoz A, Sandoval J. Methods for analysis of specific DNA methylation status. Methods 2020; 187:3-12. [PMID: 32640317 DOI: 10.1016/j.ymeth.2020.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Methylation of CpG dinucleotides plays a crucial role in the regulation of gene expression and therefore in the development of different pathologies. Aberrant methylation has been associated to the majority of the diseases, including cancer, neurodegenerative, cardiovascular and autoimmune disorders. Analysis of DNA methylation patterns is crucial to understand the underlying molecular mechanism of these diseases. Moreover, DNA methylation patterns could be used as biomarker for clinical management, such as diagnosis, prognosis and treatment response. Nowadays, a variety of high throughput methods for DNA methylation have been developed to analyze the methylation status of a high number of CpGs at once or even the whole genome. However, identification of specific methylation patterns at specific loci is essential for validation and also as a tool for diagnosis. In this review, we describe the most commonly used approaches to evaluate specific DNA methylation. There are three main groups of techniques that allow the identification of specific regions that are differentially methylated: bisulfite conversion-based methods, restriction enzyme-based approaches, and affinity enrichment-based assays. In the first group, specific restriction enzymes recognize and cleave unmethylated DNA, leaving methylated sequences intact. Bisulfite conversion methods are the most popular approach to distinguish methylated and unmethylated DNA. Unmethylated cytosines are deaminated to uracil by sodium bisulfite treatment, while the methyl cytosines remain unconverted. In the last group, proteins with methylation binding domains or antibodies against methyl cytosines are used to recognize methylated DNA. In this review, we provide the theoretical basis and the framework of each technique as well as the analysis of their strength and the weaknesses.
Collapse
Affiliation(s)
- María J Pajares
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; IDISNA Navarra's Health Research Institute, 31008 Pamplona, Spain
| | - Cora Palanca-Ballester
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 46026 Valencia, Spain
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Ester Alemany-Cosme
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 46026 Valencia, Spain
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 46026 Valencia, Spain.
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 46026 Valencia, Spain; Epigenomics Core Facility, Health Research Institute la Fe, 46026 Valencia, Spain.
| |
Collapse
|
46
|
Ballard D, Winkler-Galicki J, Wesoły J. Massive parallel sequencing in forensics: advantages, issues, technicalities, and prospects. Int J Legal Med 2020; 134:1291-1303. [PMID: 32451905 PMCID: PMC7295846 DOI: 10.1007/s00414-020-02294-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
In the last decade, next-generation sequencing (NGS) technology, alternatively massive parallel sequencing (MPS), was applied to all fields of biological research. Its introduction to the field of forensics was slower, mainly due to lack of accredited sequencers, kits, and relatively higher sequencing error rates as compared with standardized Sanger sequencing. Currently, a majority of the problematic issues have been solved, which is proven by the body of reports in the literature. Here, we discuss the utility of NGS sequencing in forensics, emphasizing the advantages, issues, the technical aspects of the experiments, commercial solutions, and the potentially interesting applications of MPS.
Collapse
Affiliation(s)
- David Ballard
- King's Forensic Genetics, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, UK
| | - Jakub Winkler-Galicki
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz, University Poznan, 6 Uniwersytetu Poznanskiego Street, Poznan, Poland
| | - Joanna Wesoły
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz, University Poznan, 6 Uniwersytetu Poznanskiego Street, Poznan, Poland.
| |
Collapse
|
47
|
Mehdi A, Cheishvili D, Arakelian A, Bismar TA, Szyf M, Rabbani SA. DNA methylation signatures of Prostate Cancer in peripheral T-cells. BMC Cancer 2020; 20:588. [PMID: 32576165 PMCID: PMC7310561 DOI: 10.1186/s12885-020-07078-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
Background Prostate Cancer (PCa) is the second most common cancer in men where advancements have been made for early detection using imaging techniques, however these are limited by lesion size. Immune surveillance has emerged as an effective approach for early detection and to monitor disease progression. In recent studies, we have shown that host peripheral blood immune cells undergo changes in DNA methylation in liver and breast cancer. Methods In the current study, we examined the DNA methylation status of peripheral blood T cells of men with positive biopsy for PCa versus men with negative biopsy having benign prostate tissue, defined as controls. T cells DNA was isolated and subjected to Illumina Infinium methylation EPIC array and validated using Illumina amplicon sequencing and pyrosequencing platforms. Results Differential methylation of 449 CG sites between control and PCa T cell DNA showed a correlation with Gleason score (p < 0.05). Two hundred twenty-three differentially methylated CGs between control and PCa (∆ß +/− 10%, p < 0.05), were enriched in pathways involved in immune surveillance system. Three CGs which were found differentially methylated following DMP (Differentially methylated probes) analysis of ChAMP remained significant after BH (Benjamini-Hochberg) correction, of which, 2 CGs were validated. Predictive ability of combination of these 3 CGs (polygenic methylation score, PMS) to detect PCa had high sensitivity, specificity and overall accuracy. PMS also showed strong positive correlation with Gleason score and tumor volume of PCa patients. Conclusions Results from the current study provide for the first-time a potential role of DNA methylation changes in peripheral T cells in PCa. This non-invasive methodology may allow for early intervention and stratification of patients into different prognostic groups to reduce PCa associated morbidity from repeat invasive prostate biopsies and design therapeutic strategy to reduce PCa associated mortality.
Collapse
Affiliation(s)
- Ali Mehdi
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David Cheishvili
- HKG Epitherapeutics, Hong Kong, China.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Tarek A Bismar
- Departments of Pathology & Laboratory Medicine, Oncology, Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Moshe Szyf
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University, Montreal, Quebec, Canada. .,Department of Human Genetics, McGill University, Montreal, Quebec, Canada. .,McGill University Health Centre, 1001 Décarie Blvd. (Glen site), Room EM1.3232, Montréal, QC, H4A3J1, Canada.
| |
Collapse
|
48
|
Kachuei V, Talebi Bezmin Abadi A, Rahimi F, Forootan M. Colonization by Pseudomonas aeruginosa and Staphylococcus aureus of Antral Biopsy Specimens from Gastritis Patients Uninfected with Helicobacter Pylori. Infect Drug Resist 2020; 13:1411-1417. [PMID: 32494172 PMCID: PMC7231751 DOI: 10.2147/idr.s254967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/30/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Roles and incidence of some microorganisms that transiently or permanently colonize the human stomach are still unknown despite advances in gastroenterology. We aimed to examine the incidence of four microorganisms, Helicobacter pylori, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, in the antral biopsy specimens of patients with gastroduodenal conditions. Patients and Methods Patients (67 females, 33 males; mean age = 49.5 years) were initially examined and diagnosed by a gastroenterologist at the Mehrad Hospital, Tehran, Iran. We enrolled those who underwent the upper gastrointestinal endoscopy because of gastroduodenal conditions. Two antral biopsy samples were taken by endoscopy; the first sample was used for the “rapid urease test” to confirm H. pylori. The second was used for DNA extraction and PCR analyses with specific, corresponding primer sets to establish the presence of the four microorganisms. Our study was approved by the Ethics Committee at the Tarbiat Modares University, Tehran. Results Based on pathology and endoscopy findings, we divided the patients into three groups: 62 presented with gastritis, 18 with duodenal ulcer, and 20 gastric ulcer. The number of patients with P. aeruginosa but without H. pylori significantly differed from the number of those co-infected with both microorganisms (P = 0.03). Additionally, a similar significance was found between the incidence of S. aureus in patients without H. pylori and those with both infections (P = 0.04). Our results indicated that a significant number of patients with gastritis were colonized with P. aeruginosa or S. aureus without being co-infected with H. pylori (P < 0.001). Interestingly, the incidence of colonization by P. aeruginosa of patients without H. pylori (45/49, 91.8%) was higher than that by S. aureus (28/49, 57%). Conclusion The number of patients without H. pylori but with P. aeruginosa or with S. aureus infection significantly differed from that with both infections, respectively. Our study thus shows that patients without H. pylori infection are prone to be colonized by P. aeruginosa or S. aureus, indicating that targeted antibiotic regimens are necessary for clinically treating them.
Collapse
Affiliation(s)
- Vida Kachuei
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Talebi Bezmin Abadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farid Rahimi
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Mojgan Forootan
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Enzymatic Cleavage of 3'-Esterified Nucleotides Enables a Long, Continuous DNA Synthesis. Sci Rep 2020; 10:7515. [PMID: 32372056 PMCID: PMC7200780 DOI: 10.1038/s41598-020-64541-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The reversible dye-terminator (RDT)-based DNA sequencing-by-synthesis (SBS) chemistry has driven the advancement of the next-generation sequencing technologies for the past two decades. The RDT-based SBS chemistry relies on the DNA polymerase reaction to incorporate the RDT nucleotide (NT) for extracting DNA sequence information. The main drawback of this chemistry is the "DNA scar" issue since the removal of dye molecule from the RDT-NT after each sequencing reaction cycle leaves an extra chemical residue in the newly synthesized DNA. To circumvent this problem, we designed a novel class of reversible (2-aminoethoxy)-3-propionyl (Aep)-dNTPs by esterifying the 3'-hydroxyl group (3'-OH) of deoxyribonucleoside triphosphate (dNTP) and examined the NT-incorporation activities by A-family DNA polymerases. Using the large fragment of both Bacillus stearothermophilus (BF) and E. coli DNA polymerase I (KF) as model enzymes, we further showed that both proteins efficiently and faithfully incorporated the 3'-Aep-dNMP. Additionally, we analyzed the post-incorporation product of N + 1 primer and confirmed that the 3'-protecting group of 3'-Aep-dNMP was converted back to a normal 3'-OH after it was incorporated into the growing DNA chain by BF. By applying all four 3'-Aep-dNTPs and BF for an in vitro DNA synthesis reaction, we demonstrated that the enzyme-mediated deprotection of inserted 3'-Aep-dNMP permits a long, continuous, and scar-free DNA synthesis.
Collapse
|
50
|
Tharmalingam B, Mathivanan M, Mani KS, Kaminsky W, Raghunath A, Jothi M, Perumal E, Murugesapandian B. Selective detection of pyrophosphate anion by zinc ensemble of C3-symmetric triaminoguanidine-pyrrole conjugate and its biosensing applications. Anal Chim Acta 2020; 1103:192-201. [DOI: 10.1016/j.aca.2019.12.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023]
|