1
|
Swierk L. Novel rebreathing adaptation extends dive time in a semi-aquatic lizard. Biol Lett 2024; 20:20240371. [PMID: 39288814 PMCID: PMC11407854 DOI: 10.1098/rsbl.2024.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Bubble use evolved in many small invertebrates to enable underwater respiration, but, until recently, there has been no evidence that vertebrate animals use bubbles in a similar manner. Only one group of vertebrates, semi-aquatic Anolis lizards, may be an exception: these lizards dive underwater when threatened and, while underwater, rebreathe a bubble of air over their nostrils. Although it seems that rebreathing should be adaptive, possibly functioning to extend the time that lizards remain in underwater refugia, this has not been empirically tested. Here, I demonstrate that rebreathing serves to extend dive time in a semi-aquatic anole, Anolis aquaticus. I prevented the formation of normal rebreathing bubbles by applying a commercial emollient on the skin surface where bubbles form to assess the impact of bubbles on rebreathing cycles, gular pumps, and dive times. Lizards that were allowed to rebreathe normally remained underwater an average of 32% longer than those with impaired rebreathing, suggesting a functional role of rebreathing in underwater respiration. Unlike rebreathing, gular pumping was unaffected by treatment and may warrant further research regarding its role in supplementing underwater respiration. This study provides evidence that vertebrates can use bubbles to respire underwater and raises questions about adaptive mechanisms and potential bio-inspired applications.
Collapse
Affiliation(s)
- Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY13902, USA
- Amazon Conservatory for Tropical Studies, Iquitos, Loreto16001, Peru
| |
Collapse
|
2
|
Ponstein J, MacDougall MJ, Fröbisch J. A comprehensive phylogeny and revised taxonomy of Diadectomorpha with a discussion on the origin of tetrapod herbivory. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231566. [PMID: 39036512 PMCID: PMC11257076 DOI: 10.1098/rsos.231566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024]
Abstract
Among terrestrial tetrapods, the origin of herbivory marked a key evolutionary event that allowed for the evolution of modern terrestrial ecosystems. A 100 Ma gap separates the oldest terrestrial tetrapods and the first undisputed herbivorous tetrapods. While four clades of early tetrapod herbivores are undisputed amniotes, the phylogenetic position of Diadectomorpha with respect to Amniota has long been controversial. Given that the origin of herbivory coincides with the oldest amniotes, and obligate herbivory is unknown within amphibians, this suggests that a key adaptation necessary to evolve obligate herbivory is unique to amniotes. Historically, phylogenetic analyses have found Diadectomorpha as the sister-group to amniotes, but recent analyses recover Diadectomorpha as sister-group to Synapsida, within Amniota. We tested whether diadectomorphs are amniotes by updating the most recent character-taxon matrix. Specifically, we added new characters from the lower jaw and added diadectomorph taxa, resulting in a dataset of 341 characters and 61 operational taxonomic units. We updated the description of five diadectomorph jaws using microcomputed tomography data. Our majority-rule consensus places Diadectomorpha as sister-group to Synapsida; other methods do not recover this relationship. We revise diadectomorph taxonomy, erecting a new species from the early Permian Bromacker locality, Germany, and a new genus to accommodate 'Diadectes' sanmiguelensis.
Collapse
Affiliation(s)
- Jasper Ponstein
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Museum für Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany
- Oertijdmuseum, Bosscheweg 80, 5283 WB Boxtel, The Netherlands
| | | | - Jörg Fröbisch
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Museum für Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
3
|
Burchardt LS, van de Sande Y, Kehy M, Gamba M, Ravignani A, Pouw W. A toolkit for the dynamic study of air sacs in siamang and other elastic circular structures. PLoS Comput Biol 2024; 20:e1012222. [PMID: 38913743 PMCID: PMC11226135 DOI: 10.1371/journal.pcbi.1012222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/05/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Biological structures are defined by rigid elements, such as bones, and elastic elements, like muscles and membranes. Computer vision advances have enabled automatic tracking of moving animal skeletal poses. Such developments provide insights into complex time-varying dynamics of biological motion. Conversely, the elastic soft-tissues of organisms, like the nose of elephant seals, or the buccal sac of frogs, are poorly studied and no computer vision methods have been proposed. This leaves major gaps in different areas of biology. In primatology, most critically, the function of air sacs is widely debated; many open questions on the role of air sacs in the evolution of animal communication, including human speech, remain unanswered. To support the dynamic study of soft-tissue structures, we present a toolkit for the automated tracking of semi-circular elastic structures in biological video data. The toolkit contains unsupervised computer vision tools (using Hough transform) and supervised deep learning (by adapting DeepLabCut) methodology to track inflation of laryngeal air sacs or other biological spherical objects (e.g., gular cavities). Confirming the value of elastic kinematic analysis, we show that air sac inflation correlates with acoustic markers that likely inform about body size. Finally, we present a pre-processed audiovisual-kinematic dataset of 7+ hours of closeup audiovisual recordings of siamang (Symphalangus syndactylus) singing. This toolkit (https://github.com/WimPouw/AirSacTracker) aims to revitalize the study of non-skeletal morphological structures across multiple species.
Collapse
Affiliation(s)
- Lara S. Burchardt
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
- Leibniz-Zentrum Allgemeine Sprachwissenschaft, Berlin, Germany
| | - Yana van de Sande
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Mounia Kehy
- Equipe de Neuro-Ethologie Sensorielle, Université Jean Monnet, France
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Wim Pouw
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
Motani R, Gold DA, Carlson SJ, Vermeij GJ. Amniote metabolism and the evolution of endothermy. Nature 2023; 621:E1-E3. [PMID: 37674001 DOI: 10.1038/s41586-023-06411-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/06/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
| | - Sandra J Carlson
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
| | - Geerat J Vermeij
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA.
| |
Collapse
|
5
|
Pouw W, Fuchs S. Origins Of Vocal-Entangled Gesture. Neurosci Biobehav Rev 2022; 141:104836. [PMID: 36031008 DOI: 10.1016/j.neubiorev.2022.104836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/13/2023]
Abstract
Gestures during speaking are typically understood in a representational framework: they represent absent or distal states of affairs by means of pointing, resemblance, or symbolic replacement. However, humans also gesture along with the rhythm of speaking, which is amenable to a non-representational perspective. Such a perspective centers on the phenomenon of vocal-entangled gestures and builds on evidence showing that when an upper limb with a certain mass decelerates/accelerates sufficiently, it yields impulses on the body that cascade in various ways into the respiratory-vocal system. It entails a physical entanglement between body motions, respiration, and vocal activities. It is shown that vocal-entangled gestures are realized in infant vocal-motor babbling before any representational use of gesture develops. Similarly, an overview is given of vocal-entangled processes in non-human animals. They can frequently be found in rats, bats, birds, and a range of other species that developed even earlier in the phylogenetic tree. Thus, the origins of human gesture lie in biomechanics, emerging early in ontogeny and running deep in phylogeny.
Collapse
Affiliation(s)
- Wim Pouw
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Susanne Fuchs
- Leibniz Center General Linguistics, Berlin, Germany.
| |
Collapse
|
6
|
Newham E, Gill PG, Corfe IJ. New tools suggest a middle Jurassic origin for mammalian endothermy: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time. Bioessays 2022; 44:e2100060. [PMID: 35170781 DOI: 10.1002/bies.202100060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022]
Abstract
We suggest that mammalian endothermy was established amongst Middle Jurassic crown mammals, through reviewing state-of-the-art fossil and living mammal studies. This is considerably later than the prevailing paradigm, and has important ramifications for the causes, pattern, and pace of physiological evolution amongst synapsids. Most hypotheses argue that selection for either enhanced aerobic activity, or thermoregulation was the primary driver for synapsid physiological evolution, based on a range of fossil characters that have been linked to endothermy. We argue that, rather than either alternative being the primary selective force for the entirety of endothermic evolution, these characters evolved quite independently through time, and across the mammal family tree, principally as a response to shifting environmental pressures and ecological opportunities. Our interpretations can be tested using closely linked proxies for both factors, derived from study of fossils of a range of Jurassic and Cretaceous mammaliaforms and early mammals.
Collapse
Affiliation(s)
- Elis Newham
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.,Department of Palaeontology, Institute for Geosciences, University of Bonn, Bonn, Germany
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Bristol, UK.,Earth Sciences Department, Natural History Museum, London, UK
| | - Ian J Corfe
- Jernvall Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Geological Survey of Finland, Espoo, Finland
| |
Collapse
|
7
|
Knaus PL, van Heteren AH, Lungmus JK, Sander PM. High Blood Flow Into the Femur Indicates Elevated Aerobic Capacity in Synapsids Since the Synapsida-Sauropsida Split. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.751238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Varanids are the only non-avian sauropsids that are known to approach the warm-blooded mammals in stamina. Furthermore, a much higher maximum metabolic rate (MMR) gives endotherms (including birds) higher stamina than crocodiles, turtles, and non-varanid lepidosaurs. This has led researchers to hypothesize that mammalian endothermy evolved as a second step after the acquisition of elevated MMR in non-mammalian therapsids from a plesiomorphic state of low metabolic rates. In recent amniotes, MMR correlates with the index of blood flow into the femur (Qi), which is calculated from femoral length and the cross-sectional area of the nutrient foramen. Thus, Qi may serve as an indicator of MMR range in extinct animals. Using the Qi proxy and phylogenetic eigenvector maps, here we show that elevated MMRs evolved near the base of Synapsida. Non-mammalian synapsids, including caseids, edaphosaurids, sphenacodontids, dicynodonts, gorgonopsids, and non-mammalian cynodonts, show Qi values in the range of recent endotherms and varanids, suggesting that raised MMRs either evolved in synapsids shortly after the Synapsida-Sauropsida split in the Mississippian or that the low MMR of lepidosaurs and turtles is apomorphic, as has been postulated for crocodiles.
Collapse
|
8
|
Gaos AR, Johnson CE, McLeish DB, King CS, Senko JF. Interactions Among Hawaiian Hawksbills Suggest Prevalence of Social Behaviors in Marine Turtles. CHELONIAN CONSERVATION AND BIOLOGY 2021. [DOI: 10.2744/ccb-1481.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexander R. Gaos
- NOAA Fisheries, Pacific Islands Fisheries Science Center, Marine Turtle Biology and Assessment Program, 1845 Wasp Boulevard, Building 176, Honolulu, Hawai‘i 96818 USA []
| | - Corinne E. Johnson
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona 85287 USA []
| | - Don B. McLeish
- Independent Naturalist, 62 Haku Hale Place, Lahaina, Hawai‘i 96761 USA [
| | - Cheryl S. King
- Hawaiian Hawksbill Conservation, 24 Laumakani Loop, Kihei, Hawai‘i 96753 USA []
| | - Jesse F. Senko
- School for the Future of Innovation in Society, Arizona State University, 1120 South Cady Mall, Tempe, Arizona 85287 USA []
| |
Collapse
|
9
|
Campos SM, Belkasim SS. Chemical Communication in Lizards and a Potential Role for Vasotocin in Modulating Social Interactions. Integr Comp Biol 2021; 61:205-220. [PMID: 33940600 DOI: 10.1093/icb/icab044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lizards use chemical communication to mediate many reproductive, competitive, and social behaviors, but the neuroendocrine mechanisms underlying chemical communication in lizards are not well understood and understudied. By implementing a neuroendocrine approach to the study of chemical communication in reptiles, we can address a major gap in our knowledge of the evolutionary mechanisms shaping chemical communication in vertebrates. The neuropeptide arginine vasotocin (AVT) and its mammalian homolog vasopressin are responsible for a broad spectrum of diversity in competitive and reproductive strategies in many vertebrates, mediating social behavior through the chemosensory modality. In this review, we posit that, though limited, the available data on AVT-mediated chemical communication in lizards reveal intriguing patterns that suggest AVT plays a more prominent role in lizard chemosensory behavior than previously appreciated. We argue that these results warrant more research into the mechanisms used by AVT to modify the performance of chemosensory behavior and responses to conspecific chemical signals. We first provide a broad overview of the known social functions of chemical signals in lizards, the glandular sources of chemical signal production in lizards (e.g., epidermal secretory glands), and the chemosensory detection methods and mechanisms used by lizards. Then, we review the locations of vasotocinergic populations and neuronal projections in lizard brains, as well as sites of peripheral receptors for AVT in lizards. Finally, we end with a case study in green anoles (Anolis carolinensis), discussing findings from recently published work on the impact of AVT in adult males on chemosensory communication during social interactions, adding new data from a similar study in which we tested the impact of AVT on chemosensory behavior of adult females. We offer concluding remarks on addressing several fundamental questions regarding the role of AVT in chemosensory communication and social behavior in lizards.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| | - Selma S Belkasim
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
10
|
Radermacher VJ, Fernandez V, Schachner ER, Butler RJ, Bordy EM, Naylor Hudgins M, de Klerk WJ, Chapelle KE, Choiniere JN. A new Heterodontosaurus specimen elucidates the unique ventilatory macroevolution of ornithischian dinosaurs. eLife 2021; 10:66036. [PMID: 34225841 PMCID: PMC8260226 DOI: 10.7554/elife.66036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 01/21/2023] Open
Abstract
Ornithischian dinosaurs were ecologically prominent herbivores of the Mesozoic Era that achieved a global distribution by the onset of the Cretaceous. The ornithischian body plan is aberrant relative to other ornithodiran clades, and crucial details of their early evolution remain obscure. We present a new, fully articulated skeleton of the early branching ornithischian Heterodontosaurus tucki. Phase-contrast enhanced synchrotron data of this new specimen reveal a suite of novel postcranial features unknown in any other ornithischian, with implications for the early evolution of the group. These features include a large, anteriorly projecting sternum; bizarre, paddle-shaped sternal ribs; and a full gastral basket – the first recovered in Ornithischia. These unusual anatomical traits provide key information on the evolution of the ornithischian body plan and suggest functional shifts in the ventilatory apparatus occurred close to the base of the clade. We complement these anatomical data with a quantitative analysis of ornithischian pelvic architecture, which allows us to make a specific, stepwise hypothesis for their ventilatory evolution. The fossilised skeletons of long extinct dinosaurs are more than just stones. By comparing these remains to their living relatives such as birds and crocodiles, palaeontologists can reveal how dinosaurs grew, moved, ate and socialised. Previous research indicates that dinosaurs were likely warm-blooded and also more active than modern reptiles. This means they would have required breathing mechanisms capable of supplying enough oxygen to allow these elevated activity levels. So far, much of our insight into dinosaur breathing biology has been biased towards dinosaur species more closely related to modern birds, such as Tyrannosaurus rex, as well as the long-necked sauropods. The group of herbivorous dinosaurs known as ornithischians, which include animals with head ornamentation, spikes and heavy body armour, like that found in Triceratops and Stegosaurus, have often been overlooked. As a result, there are still significant gaps in ornithischian biology, especially in understanding how they breathed. Radermacher et al. used high-powered X-rays to study a new specimen of the most primitive ornithischian dinosaur, Heterodontosaurus tucki, and discovered that this South African dinosaur has bones researchers did not know existed in this species. These include bones that are part of the breathing system of extant reptiles and birds, including toothpick-shaped bones called gastralia, paired sternal bones and sternal ribs shaped like tennis rackets. Together, these new pieces of anatomy form a complicated chest skeleton with a large range of motion that would have allowed the body to expand during breathing cycles. But this increased motion of the chest was only possible in more primitive ornithischians. More advanced species lost much of the anatomy that made this motion possible. Radermacher et al. show that while the chest was simpler in advanced species, their pelvis was more specialised and likely played a role in breathing as it does in modern crocodiles. This new discovery could inform the work of biologists who study the respiratory diversity of both living and extinct species. Differences in breathing strategies might be one of the underlying reasons that some lineages of animals go extinct. It could explain why some species do better than others under stressful conditions, like when the climate is warmer or has less oxygen.
Collapse
Affiliation(s)
- Viktor J Radermacher
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, United States
| | - Vincent Fernandez
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,European Synchrotron Radiation Facility, Grenoble, France.,Natural History Museum, Imaging and Analysis Centre, London, United Kingdom
| | - Emma R Schachner
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, United States
| | - Richard J Butler
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Emese M Bordy
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | | | - William J de Klerk
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Earth Sciences, Albany Museum, Grahamstown, South Africa
| | - Kimberley Ej Chapelle
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Division of Paleontology, American Museum of Natural History, New York, United States
| | - Jonah N Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Cieri RL, Dick TJM, Clemente CJ. Monitoring muscle over three orders of magnitude: Widespread positive allometry among locomotor and body support musculature in the pectoral girdle of varanid lizards (Varanidae). J Anat 2020; 237:1114-1135. [PMID: 32710503 DOI: 10.1111/joa.13273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
There is a functional trade-off in the design of skeletal muscle. Muscle strength depends on the number of muscle fibers in parallel, while shortening velocity and operational distance depend on fascicle length, leading to a trade-off between the maximum force a muscle can produce and its ability to change length and contract rapidly. This trade-off becomes even more pronounced as animals increase in size because muscle strength scales with area (length2 ) while body mass scales with volume (length3 ). In order to understand this muscle trade-off and how animals deal with the biomechanical consequences of size, we investigated muscle properties in the pectoral girdle of varanid lizards. Varanids are an ideal group to study the scaling of muscle properties because they retain similar body proportions and posture across five orders of magnitude in body mass and are highly active, terrestrially adapted reptiles. We measured muscle mass, physiological cross-sectional area, fascicle length, proximal and distal tendon lengths, and proximal and distal moment arms for 27 pectoral girdle muscles in 13 individuals across 8 species ranging from 64 g to 40 kg. Standard and phylogenetically informed reduced major axis regression was used to investigate how muscle architecture properties scale with body size. Allometric growth was widespread for muscle mass (scaling exponent >1), physiological cross-sectional area (scaling exponent >0.66), but not tendon length (scaling exponent >0.33). Positive allometry for muscle mass was universal among muscles responsible for translating the trunk forward and flexing the elbow, and nearly universal among humeral protractors and wrist flexors. Positive allometry for PCSA was also common among trunk translators and humeral protractors, though less so than muscle mass. Positive scaling for fascicle length was not widespread, but common among humeral protractors. A higher proportion of pectoral girdle muscles scaled with positive allometry than our previous work showed for the pelvic girdle, suggesting that the center of mass may move cranially with body size in varanids, or that the pectoral girdle may assume a more dominant role in locomotion in larger species. Scaling exponents for physiological cross-sectional area among muscles primarily associated with propulsion or with a dual role were generally higher than those associated primarily with support against gravity, suggesting that locomotor demands have at least an equal influence on muscle architecture as body support. Overall, these results suggest that larger varanids compensate for the increased biomechanical demands of locomotion and body support at higher body sizes by developing larger pectoral muscles with higher physiological cross-sectional areas. The isometric scaling rates for fascicle length among locomotion-oriented pectoral girdle muscles suggest that larger varanids may be forced to use shorter stride lengths, but this problem may be circumvented by increases in limb excursion afforded by the sliding coracosternal joint.
Collapse
Affiliation(s)
- Robert L Cieri
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Taylor J M Dick
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
12
|
Cieri RL, Hatch ST, Capano JG, Brainerd EL. Locomotor rib kinematics in two species of lizards and a new hypothesis for the evolution of aspiration breathing in amniotes. Sci Rep 2020; 10:7739. [PMID: 32398656 PMCID: PMC7217971 DOI: 10.1038/s41598-020-64140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
Most lizards walk and run with a sprawling gait in which the limbs are partly advanced by lateral undulation of the axial skeleton. Ribs and vertebrae are integral to this locomotor mode, but 3D motion of the axial skeleton has not been reported for lizard locomotion. Here, we use XROMM to quantify the relative motions of the vertebrae and ribs during slow treadmill locomotion in three savannah monitor lizards (Varanus exanthematicus) and three Argentine black and white tegus (Salvator merianae). To isolate locomotion, we selected strides with no concurrent lung ventilation. Rib rotations can be decomposed into bucket-handle rotation around a dorsoventral axis, pump-handle rotation around a mediolateral axis, and caliper rotations around a craniocaudal axis. During locomotion, every rib measured in both species rotated substantially around its costovertebral joint (8-17 degrees, summed across bucket, pump and caliper rotations). In all individuals from both species, the middle ribs rotated cranially through bucket and pump-handle motion during the propulsive phase of the ipsilateral forelimb. Axial kinematics during swing phase of the ipsilateral forelimb were mirror images of the propulsive phase. Although further work is needed to establish what causes these rib motions, active contraction of the hypaxial musculature may be at least partly responsible. Unilateral locomotor rib movements are remarkably similar to the bilateral pattern used for lung ventilation, suggesting a new hypothesis that rib motion during locomotion may have been an exaptation for the evolution of costal aspiration breathing in stem amniotes.
Collapse
Affiliation(s)
- Robert L Cieri
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Samuel T Hatch
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02906, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02906, USA
| |
Collapse
|
13
|
Vedurmudi AP, Young BA, van Hemmen JL. Active tympanic tuning facilitates sound localization in animals with internally coupled ears. Hear Res 2020; 387:107861. [PMID: 31911335 DOI: 10.1016/j.heares.2019.107861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
Earlier studies have reported that numerous vertebrate taxa have skeletal muscle(s) attaching directly, or indirectly, onto the tympanic membrane. The present study links these prior studies by quantitatively modeling the influence of skeletal muscle contraction on tympanic tension, tympanic dampening, and, ultimately, the fundamental frequency. In this way, the efficacy of these tympanic muscles to dynamically alter the sensory response of the vertebrate ear is quantified. Changing the tension modifies the eardrum's fundamental frequency, a key notion in understanding hearing through internally coupled ears (ICE) as used by the majority of terrestrial vertebrates. Tympanic tension can also be modulated by altering the pressure acting on the deep (medial) surface of the tympanum. Herein we use the monitor lizard Varanus as an example to demonstrate how active modulation of the pharyngeal volume permits tuning of an ICE auditory system. The present contribution offers a behaviorally and biologically realistic perspective on the ICE system, by demonstrating how an organism can dynamically alter its morphology to tune the auditory response. Through quantification of the relationships between tympanic surface tension, damping, membrane fundamental frequency, and auditory cavity volume, it can be shown that an ICE system affords a biologically relevant range of tuning.
Collapse
Affiliation(s)
- Anupam P Vedurmudi
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Technische Universität München, 85748, Garching bei München, Germany.
| | - Bruce A Young
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| | - J Leo van Hemmen
- Physik Department, Technische Universität München, 85747, Garching bei München, Germany.
| |
Collapse
|
14
|
Cieri RL, Farmer C. Computational Fluid Dynamics Reveals a Unique Net Unidirectional Pattern of Pulmonary Airflow in the Savannah Monitor Lizard (
Varanus exanthematicus
). Anat Rec (Hoboken) 2019; 303:1768-1791. [DOI: 10.1002/ar.24293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Robert L. Cieri
- School of Biological Sciences University of Utah Salt Lake City Utah
| | - C.G. Farmer
- School of Biological Sciences University of Utah Salt Lake City Utah
| |
Collapse
|
15
|
Wang T, Joyce W, Hicks JW. Similitude in the cardiorespiratory responses to exercise across vertebrates. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Montandon SA, Fofonjka A, Milinkovitch MC. Elastic instability during branchial ectoderm development causes folding of the Chlamydosaurus erectile frill. eLife 2019; 8:44455. [PMID: 31234965 PMCID: PMC6592688 DOI: 10.7554/elife.44455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Abstract
We study the morphogenesis and evolutionary origin of the spectacular erectile ruff of the frilled dragon (Chlamydosaurus kingii). Our comparative developmental analyses of multiple species suggest that the ancestor of Episquamata reptiles developed a neck fold from the hyoid branchial arch by preventing it to fully fuse with posterior arches. We also show that the Chlamydosaurus embryonic neck fold dramatically enlarges and its anterior surface wrinkles, establishing three convex ridges on each lobe of the frill. We suggest that this robust folding pattern is not due to localised increased growth at the positions of the ridges, but emerges from an elastic instability during homogeneous growth of the frill skin frustrated by its attachment to adjacent tissues. Our physical analog experiments and 3D computational simulations, using realistic embryonic tissue growth, thickness and stiffness values, recapitulate the transition from two to three ridges observed during embryonic development of the dragon’s frill. In Jurassic Park, while the computer programmer Dennis Nedry attempts to smuggle dinosaur embryos off the island, he gets attacked and killed by a mid-sized dinosaur that erects a frightening neck frill. This fictional dinosaur is clearly inspired from a real animal known as the ‘frilled dragon’, that lives today in northern Australia and southern New Guinea. These lizards, also known as Chlamydosaurus kingii, have a large disc of skin that sits around their head and neck. This frill is usually folded back against the body, but can spread in a spectacular fashion to scare off predators and competitors. Folding of the left and right side of the frill occurs at three pre-formed ridges. But, it remains unclear which ancestral structure evolved to become the dragon’s frill, and how the ridges in the frill form during development. Now, Montandon, Fofonjka, and Milinkovitch show that the dragon’s frill, as well as the bone and cartilage that support it, develop from a part of the embryo known as the branchial arches. These are a series of bands of tissue in the embryo that evolved to become the gill supports in fish, and that now give rise to multiple structures in the ear and neck of land vertebrates. In most species, the second branchial arch will eventually fuse with the arches behind it. But in the frilled dragon, this arch instead continues to expand, leading to the formation of the dragon’s spectacular frill. As the frill develops, the front side of the skin forms three successive folds, which make up the pre-formed ridges. Studying the formation of these ridges revealed that they do not emerge from increased growth at the folding sites, but from physical forces – whereby the growth of the frill is constrained by its attachment to the neck. This causes the top layer to buckle, creating the folds of the frill. Montandon, Fofonjka, and Milinkovitch then simulated this mechanism of growth in a computer model and found it could recapitulate how folds develop in the frill of real lizard embryos. These results provide further evidence that physical processes, as well as genetic programs, can shape tissues and organs during an embryo’s development. Furthermore, changes in how the branchial arches develop between lizard species highlights how evolution is able to ‘recycle’ old structures into new shapes with different roles.
Collapse
Affiliation(s)
- Sophie A Montandon
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Anamarija Fofonjka
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.,SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.,SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
17
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Capano JG, Moritz S, Cieri RL, Reveret L, Brainerd EL. Rib Motions Don't Completely Hinge on Joint Design: Costal Joint Anatomy and Ventilatory Kinematics in a Teiid Lizard, Salvator merianae. Integr Org Biol 2019; 1:oby004. [PMID: 33791512 PMCID: PMC7780499 DOI: 10.1093/iob/oby004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rib rotations contribute to lung ventilation in most extant amniotes. These rotations are typically described as bucket-handle rotation about a dorsoventral axis, caliper rotation about a craniocaudal axis, and pump-handle rotation about a mediolateral axis. A synapomorphy for Lepidosauria is single-headed costovertebral articulations derived from the ancestral double-headed articulations of most amniotes. With a single articular surface, the costovertebral joints of squamates have the potential to rotate with three degrees-of-freedom (DOFs), but considerable variation exists in joint shape. We compared the costovertebral morphology of the Argentine black and white tegu, Salvator merianae, with the green iguana, Iguana iguana, and found that the costovertebral articulations of I. iguana were hemispherical, while those of S. merianae were dorsoventrally elongated and hemiellipsoidal. We predicted that the elongate joints in S. merianae would permit bucket-handle rotations while restricting caliper and pump-handle rotations, relative to the rounded joints of I. iguana. We used X-ray reconstruction of moving morphology to quantify rib rotations during breathing in S. merianae for comparison with prior work in I. iguana. Consistent with our hypothesis, we found less caliper motion in S. merianae than in I. iguana, but unexpectedly found similar pump-handle magnitudes in each species. The dorsoventrally elongate costovertebral morphology of S. merianae may provide passive rib support to reduce the conflict between locomotion and ventilation. Moreover, the observation of multiple DOFs during rib rotations in both species suggests that permissive costovertebral morphology may be more related to the biological roles of ribs outside of ventilation and help explain the evolution of this trait.
Collapse
Affiliation(s)
- J G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - S Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - R L Cieri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - L Reveret
- Inria Grenoble Rhone Alpes, 655 Avenue de l'Europe, 38330 Montbonnot-Saint-Martin, France
| | - E L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| |
Collapse
|
19
|
Baier DB, Garrity BM, Moritz S, Carney RM. Alligator mississippiensis sternal and shoulder girdle mobility increase stride length during high walks. ACTA ACUST UNITED AC 2018; 221:jeb.186791. [PMID: 30266782 DOI: 10.1242/jeb.186791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023]
Abstract
Crocodilians have played a significant role in evolutionary studies of archosaurs. Given that several major shifts in forelimb function occur within Archosauria, forelimb morphologies of living crocodilians are of particular importance in assessing locomotor evolutionary scenarios. A previous X-ray investigation of walking alligators revealed substantial movement of the shoulder girdle, but as the sternal cartilages do not show up in X-ray, the source of the mobility could not be conclusively determined. Scapulocoracoid movement was interpreted to indicate independent sliding of each coracoid at the sternocoracoid joint; however, rotations of the sternum could also produce similar displacement of the scapulocoracoids. Here, we present new data employing marker-based XROMM (X-ray reconstruction of moving morphology), wherein simultaneous biplanar X-ray video and surgically implanted radio-opaque markers permit precise measurement of the vertebral axis, sternum and coracoid in walking alligators. We found that movements of the sternum and sternocoracoid joint both contribute to shoulder girdle mobility and stride length, and that the sternocoracoid contribution was less than previously estimated. On average, the joint contributions to stride length (measured with reference to a point on the distal radius, thus excluding wrist motion) are as follows: thoracic vertebral rotation 6.2±3.7%, sternal rotation 11.1±2.5%, sternocoracoid joint 10.1±5.2%, glenohumeral joint 40.1±7.8% and elbow 31.1±4.2%. To our knowledge, this is the first evidence of sternal movement relative to the vertebral column (presumably via rib joints) contributing to stride length in tetrapods.
Collapse
Affiliation(s)
- David B Baier
- Providence College, Department of Biology, Providence, RI 02918, USA
| | - Brigid M Garrity
- Boston University, School of Graduate Medical Science and School of Public Health, Boston, MA 02118, USA
| | - Sabine Moritz
- Brown University, Ecology and Evolutionary Biology, Providence, RI 02912, USA
| | - Ryan M Carney
- University of South Florida, Department of Integrative Biology, Tampa, FL 33620, USA
| |
Collapse
|
20
|
Cieri RL, Moritz S, Capano JG, Brainerd EL. Breathing with floating ribs: XROMM analysis of lung ventilation in savannah monitor lizards. ACTA ACUST UNITED AC 2018; 221:jeb.189449. [PMID: 30257921 DOI: 10.1242/jeb.189449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
Abstract
The structures and functions of the vertebrate lung and trunk are linked through the act of ventilation, but the connections between these structures and functions are poorly understood. We used X-ray reconstruction of moving morphology (XROMM) to measure rib kinematics during lung ventilation in three savannah monitor lizards (Varanus exanthematicus). All of the dorsal ribs, including the floating ribs, contributed to ventilation; the magnitude and kinematic pattern showed no detectable cranial-to-caudal gradient. The true ribs acted as two rigid bodies connected by flexible cartilage, with the vertebral rib and ventromedial shaft of each sternal rib remaining rigid and the cartilage between them forming a flexible intracostal joint. Rib rotations can be decomposed into bucket handle rotation around a dorsoventral axis, pump handle rotation around a mediolateral axis and caliper motion around a craniocaudal axis. Dorsal rib motion was dominated by roughly equal contributions of bucket and pump rotation in two individuals and by bucket rotation in the third individual. The recruitment of floating ribs during ventilation in monitor lizards is strikingly different from the situation in iguanas, where only the first few true ribs contribute to breathing. This difference may be related to the design of the pulmonary system and life history traits in these two species. Motion of the floating ribs may maximize ventilation of the caudally and ventrolaterally positioned compliant saccular chambers in the lungs of varanids, while restriction of ventilation to a few true ribs may maximize crypsis in iguanas.
Collapse
Affiliation(s)
- Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sabine Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
21
|
Abstract
Because the musculoskeletal anatomy of the trunk is the framework for the behaviors of locomotion, ventilation, and body support in lepidosaurs, comparative study of trunk anatomy in this group is critical for unraveling the selective pressures leading to extant diversity in axial form and function among vertebrates. This work uses gross dissection and computed tomography to describe the muscular and skeletal anatomy of the trunk of varanid lizards (Varanidae, Anguimorpha). Gross muscle dissections were conducted to investigate the axial muscular anatomy of Varanus exanthematicus, Varanus giganteus, Varanus rosenbergi, and Varanus panoptes. Computed tomography scans of these and additional varanid lizards from the Varanus and Odatria subgenera were conducted to investigate rib and vertebral number and gross morphology. The number of vertebrae differs between species, with 27-35 presacral and 47-137 postsacral vertebrae. Although the number of floating and abdominal ribs in varanids is variable, most species examined have three to four cervical ribs and three true ribs. Attachment and insertion points of the epaxial and hypaxial musculature are detailed. The body wall has four main hypaxial layers, from superficial to deep: oliquus externus, intercostalis externi, intercostalis internii, and transversus. Varanids differ from other investigated lepidosaurs in having supracostalis dorsus brevis (epaxial) and levator costae (hypaxial), which independently connect each rib to the vertebral column. Although more basic muscle descriptions of the body wall in reptiles are needed, comparisons with the condition in the green iguana (Iguana iguana) can be made.
Collapse
Affiliation(s)
- Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Li Z, Zhou Z, Clarke JA. Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs. PLoS One 2018; 13:e0198078. [PMID: 29924798 PMCID: PMC6010247 DOI: 10.1371/journal.pone.0198078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
The tongue, with fleshy, muscular, and bony components, is an innovation of the earliest land-dwelling vertebrates with key functions in both feeding and respiration. Here, we bring together evidence from preserved hyoid elements from dinosaurs and outgroup archosaurs, including pterosaurs, with enhanced contrast x-ray computed tomography data from extant taxa. Midline ossification is a key component of the origin of an avian hyoid. The elaboration of the avian tongue includes the evolution of multiple novel midline hyoid bones and a larynx suspended caudal to these midline elements. While variable in dentition and skull shape, most bird-line archosaurs show a simple hyoid structure. Bony, or well-mineralized, hyoid structures in dinosaurs show limited modification in response to dietary shifts and across significant changes in body-size. In Dinosauria, at least one such narrow, midline element is variably mineralized in some basal paravian theropods. Only in derived ornithischians, pterosaurs and birds is further significant hyoid elaboration recorded. Furthermore, only in the latter two taxa does the bony tongue structure include elongation of paired hyobranchial elements that have been associated in functional studies with hyolingual mobility. Pterosaurs and enantiornithine birds achieve similar elongation and inferred mobility via elongation of ceratobranchial elements while within ornithurine birds, including living Aves, ossified and separate paired epibranchial elements (caudal to the ceratobranchials) confer an increase in hyobranchial length. The mobile tongues seen in living birds may be present in other flighted archosaurs showing a similar elongation. Shifts from hypercarnivory to more diverse feeding ecologies and diets, with the evolution of novel locomotor strategies like flight, may explain the evolution of more complex tongue function.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Julia A. Clarke
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
23
|
Biophysical heterogeneity in the tympanic membrane of the Asian water monitor lizard, Varanus salvator. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0396-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Lambertz M, Shelton CD, Spindler F, Perry SF. A caseian point for the evolution of a diaphragm homologue among the earliest synapsids. Ann N Y Acad Sci 2016; 1385:3-20. [PMID: 27859325 DOI: 10.1111/nyas.13264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 08/07/2016] [Accepted: 09/01/2016] [Indexed: 01/14/2023]
Abstract
The origin of the diaphragm remains a poorly understood yet crucial step in the evolution of terrestrial vertebrates, as this unique structure serves as the main respiratory motor for mammals. Here, we analyze the paleobiology and the respiratory apparatus of one of the oldest lineages of mammal-like reptiles: the Caseidae. Combining quantitative bone histology and functional morphological and physiological modeling approaches, we deduce a scenario in which an auxiliary ventilatory structure was present in these early synapsids. Crucial to this hypothesis are indications that at least the phylogenetically advanced caseids might not have been primarily terrestrial but rather were bound to a predominantly aquatic life. Such a lifestyle would have resulted in severe constraints on their ventilatory system, which consequently would have had to cope with diving-related problems. Our modeling of breathing parameters revealed that these caseids were capable of only limited costal breathing and, if aquatic, must have employed some auxiliary ventilatory mechanism to quickly meet their oxygen demand upon surfacing. Given caseids' phylogenetic position at the base of Synapsida and under this aquatic scenario, it would be most parsimonious to assume that a homologue of the mammalian diaphragm had already evolved about 50 Ma earlier than previously assumed.
Collapse
Affiliation(s)
- Markus Lambertz
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Sektion Herpetologie, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Christen D Shelton
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Palaeobiology Research Group, Department of Biological Sciences, University of Cape Town, Rhodes Gift, South Africa
| | - Frederik Spindler
- Institut für Geologie, Technische Universität Bergakademie Freiberg, Freiberg, Germany.,Dinosaurier-Park Altmühltal, Denkendorf, Germany
| | - Steven F Perry
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
25
|
Young BA. Anatomical influences on internally coupled ears in reptiles. BIOLOGICAL CYBERNETICS 2016; 110:255-261. [PMID: 27699482 DOI: 10.1007/s00422-016-0699-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/17/2016] [Indexed: 05/22/2023]
Abstract
Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.
Collapse
Affiliation(s)
- Bruce A Young
- Department of Anatomy, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| |
Collapse
|
26
|
Han D, Young BA. Anatomical Basis of Dynamic Modulation of Tympanic Tension in the Water Monitor Lizard, Varanus salvator. Anat Rec (Hoboken) 2016; 299:1270-80. [PMID: 27312415 DOI: 10.1002/ar.23382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/09/2016] [Accepted: 04/26/2016] [Indexed: 11/09/2022]
Abstract
Amphibious vertebrates, such as the water monitor (Varanus salvator), require anatomical and/or neural specializations to cope with pressure changes on the tympanic membrane when transiting between air and water. V. salvator has internally coupled ears which are distinguished by (patent) anatomical conduits through the skull linking the middle ear cavities on both sides of the head. We describe a small skeletal muscle in V. salvator which inserts onto the middle ear ossicle and the tympanic membrane. Laser doppler vibrometry demonstrates that contraction of this muscle both increases the vibrational velocity of the tympanic membrane and changes the waveform pattern of the tympanic displacement. The combined anatomical and functional results suggest that V. salvator is capable of actively modulating the tension of the tympanic membrane. Anat Rec, 299:1270-1280, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dawei Han
- Department of Anatomy, Kirksville College of Osteopathic Medicine/Missouri School of Dentistry and Oral Health, A.T. Still University, Kirksville, Missouri
| | - Bruce A Young
- Department of Anatomy, Kirksville College of Osteopathic Medicine/Missouri School of Dentistry and Oral Health, A.T. Still University, Kirksville, Missouri
| |
Collapse
|
27
|
Li Z, Clarke JA. New insight into the anatomy of the hyolingual apparatus of Alligator mississippiensis and implications for reconstructing feeding in extinct archosaurs. J Anat 2015; 227:45-61. [PMID: 26018316 DOI: 10.1111/joa.12320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 10/23/2022] Open
Abstract
Anatomical studies of the cranium of crocodilians motivated by an interest in its function in feeding largely focused on bite force, the jaw apparatus and associated muscles innervated by the trigeminal nerve. However, the ossified and cartilaginous elements of the hyoid and the associated hyolingual muscles, innervated by the facial, hypoglossal and glossopharyngeal nerves, received much less attention. Crocodilians are known to retain what are ancestrally the 'Rhythmic Hyobranchial Behaviors' such as buccal oscillation, but show diminished freedom and movement for the hyobranchial apparatus and the tongue in food transport and manipulation. Feeding among crocodilians, generally on larger prey items than other reptilian outgroups, involves passive transport of the food within the mouth. The tongue in extant crocodilians is firmly attached to the buccal floor and shows little movement during feeding. Here, we present a detailed anatomical description of the myology of the hyolingual apparatus of Alligator mississippiensis, utilizing contrast-enhanced micro-computed tomography and dissection. We construct the first three-dimensional (3D) description of hyolingual myology in Alligator mississippiensis and discuss the detailed implications of these data for our understanding of hyolingual muscle homology across Reptilia. These anatomical data and an evaluation of the fossil record of hyoid structures also shed light on the evolution of feeding in Reptilia. Simplification of the hyoid occurs early in the evolution of archosaurs. A hyoid with only one pair of ceratobranchials and a weakly ossified or cartilaginous midline basihyal is ancestral to Archosauriformes. The comparison with non-archosaurian reptilian outgroup demonstrates that loss of the second set of ceratobranchials as well as reduced ossification in basihyal occurred prior to the origin of crown-clade archosaurs, crocodilians and birds. Early modification in feeding ecology appears to characterize the early evolution of the clade. Hyoid simplification has been linked to ingestion of large prey items, and this shift in hyoid-related feeding ecology may occur in early archosauriform evolution. A second transformation in hyoid morphology occurs within the crocodilian stem lineage after the split from birds. In Crocodyliformes, deflections in the ceratobrachials become more pronounced. The morphology of the hyoid in Archosauriformes indicates that aspects of the hyolingual apparatus in extant crocodilians are derived, including a strong deflection near the midpoint of the ceratobranchials, and their condition should not be treated as ancestral for Archosauria.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
28
|
Mokso R, Schwyn DA, Walker SM, Doube M, Wicklein M, Müller T, Stampanoni M, Taylor GK, Krapp HG. Four-dimensional in vivo X-ray microscopy with projection-guided gating. Sci Rep 2015; 5:8727. [PMID: 25762080 PMCID: PMC4356984 DOI: 10.1038/srep08727] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Visualizing fast micrometer scale internal movements of small animals is a key challenge for functional anatomy, physiology and biomechanics. We combine phase contrast tomographic microscopy (down to 3.3 μm voxel size) with retrospective, projection-based gating (in the order of hundreds of microseconds) to improve the spatiotemporal resolution by an order of magnitude over previous studies. We demonstrate our method by visualizing 20 three-dimensional snapshots through the 150 Hz oscillations of the blowfly flight motor.
Collapse
Affiliation(s)
- Rajmund Mokso
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Daniel A Schwyn
- 1] Department of Bioengineering, Imperial College London, UK [2] Department of Zoology, University of Oxford, UK
| | | | - Michael Doube
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | | | | | - Marco Stampanoni
- 1] Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland [2] Institute for Biomedical Engineering, ETH and University of Zurich, Switzerland
| | | | - Holger G Krapp
- Department of Bioengineering, Imperial College London, UK
| |
Collapse
|
29
|
Dzal YA, Jenkin SEM, Lague SL, Reichert MN, York JM, Pamenter ME. Oxygen in demand: How oxygen has shaped vertebrate physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:4-26. [PMID: 25698654 DOI: 10.1016/j.cbpa.2014.10.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sabine L Lague
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michelle N Reichert
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julia M York
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
30
|
New insight into the evolution of the vertebrate respiratory system and the discovery of unidirectional airflow in iguana lungs. Proc Natl Acad Sci U S A 2014; 111:17218-23. [PMID: 25404314 DOI: 10.1073/pnas.1405088111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The generally accepted framework for the evolution of a key feature of the avian respiratory system, unidirectional airflow, is that it is an adaptation for efficiency of gas exchange and expanded aerobic capacities, and therefore it has historically been viewed as important to the ability of birds to fly and to maintain an endothermic metabolism. This pattern of flow has been presumed to arise from specific features of the respiratory system, such as an enclosed intrapulmonary bronchus and parabronchi. Here we show unidirectional airflow in the green iguana, a lizard with a strikingly different natural history from that of birds and lacking these anatomical features. This discovery indicates a paradigm shift is needed. The selective drivers of the trait, its date of origin, and the fundamental aerodynamic mechanisms by which unidirectional flow arises must be reassessed to be congruent with the natural history of this lineage. Unidirectional flow may serve functions other than expanded aerobic capacity; it may have been present in the ancestral diapsid; and it can occur in structurally simple lungs.
Collapse
|
31
|
Abstract
The evolution of the aspiration pump seen in tetrapod vertebrates from the buccal-pharyngeal force pump seen in air breathing fish and amphibians appears to have first involved the production of active expiration. Active inspiration arose later. This appears to have involved reconfiguration of a parafacial oscillator (now the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN)) to produce active expiration, followed by reconfiguration of a paravagal oscillator (now the preBötC) to produce active inspiration. In the ancestral breathing cycle, inspiration follows expiration, which is in turn followed by glottal closure and breath holding. When both rhythms are expressed, as they are in reptiles and birds, and mammals under conditions of elevated respiratory drive, the pFRG/RTN appears to initiate the respiratory cycle. We propose that the coordinated output of this system is a ventilation cycle characterized by four phases. In reptiles, these consist of active inspiration (I), glottal closure (E1), a pause (an apnea or breath hold) (E2), and an active expiration (E3) that initiates the next cycle. In mammals under resting conditions, active expiration (E3) is suppressed and inspiration (I) is followed by airway constriction and diaphragmatic braking (E1) (rather than glottal closure) and a short pause at end-expiration (E2). As respiratory drive increases in mammals, expiratory muscle activity appears. Frequently, it first appears immediately preceding inspiration (E3) just as it does in reptiles. It can also appear in E1, however, and it is not yet clear what mechanisms underlie when and where in the cycle it appears. This may reflect whether the active expiration is recruited to enhance tidal volume, increase breathing frequency, or both.
Collapse
Affiliation(s)
- Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Unidirectional pulmonary airflow patterns in the savannah monitor lizard. Nature 2013; 506:367-70. [DOI: 10.1038/nature12871] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/06/2013] [Indexed: 11/09/2022]
|
33
|
Springs, steroids, and slingshots: the roles of enhancers and constraints in animal movement. J Comp Physiol B 2013; 183:583-95. [DOI: 10.1007/s00360-012-0734-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/27/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
|
34
|
Moritz S, Schilling N. Fiber-type composition in the perivertebral musculature of lizards: Implications for the evolution of the diapsid trunk muscles. J Morphol 2012; 274:294-306. [PMID: 23115131 DOI: 10.1002/jmor.20091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 11/12/2022]
Abstract
The perivertebral musculature of lizards is critical for the stabilization and the mobilization of the trunk during locomotion. Some trunk muscles are also involved in ventilation. This dual function of trunk muscles in locomotion and ventilation leads to a biomechanical conflict in many lizards and constrains their ability to breathe while running ("axial constraint") which likely is reflected by their high anaerobic scope. Furthermore, different foraging and predator-escape strategies were shown to correlate with the metabolic profile of locomotor muscles in lizards. Because knowledge of muscle's fiber-type composition may help to reveal a muscle's functional properties, we investigated the distribution pattern of muscle fiber types in the perivertebral musculature in two small lizard species with a generalized body shape and subjected to the axial constraint (Dipsosaurus dorsalis, Acanthodactylus maculatus) and one species that circumvents the axial constraint by means of gular pumping (Varanus exanthematicus). Additionally, these species differ in their predator-escape and foraging behaviors. Using refined enzyme-histochemical protocols, muscle fiber types were differentiated in serial cross-sections through the trunk, maintaining the anatomical relationships between the skeleton and the musculature. The fiber composition in Dipsosaurus and Acanthodactylus showed a highly glycolytic profile, consistent with their intermittent locomotor style and reliance on anaerobic metabolism during activity. Because early representatives of diapsids resemble these two species in several postcranial characters, we suggest that this glycolytic profile represents the plesiomorphic condition for diapsids. In Varanus, we found a high proportion of oxidative fibers in all muscles, which is in accordance with its high aerobic scope and capability of sustained locomotion.
Collapse
Affiliation(s)
- Sabine Moritz
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Erbertstr 1, 07743 Jena, Germany
| | | |
Collapse
|
35
|
Hopson JA. The Role of Foraging Mode in the Origin of Therapsids: Implications for the Origin of Mammalian Endothermy. ACTA ACUST UNITED AC 2012. [DOI: 10.3158/2158-5520-5.1.126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Burnell A, Collins S, Young BA. The postpulmonary septum of Varanus salvator and its implication for Mosasaurian ventilation and physiology. ACTA ACUST UNITED AC 2012. [DOI: 10.2113/gssgfbull.183.2.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
The postpulmonary septum (PPS) is a relatively thick sheet of connective tissue covering the inferior surface of the lungs in varanid lizards. The primary connection of the PPS is to the medial surface of the ribs; additional connections occur to the inferior midline of the dorsal vertebrae, the pericardium, and a direct (through loose connective tissue) link to the surface of the lung. The PPS effectively partitions the coelomic cavity into peritoneal and pleural cavities. Investigation demonstrates that the PPS is not capable of preventing displacement of the more caudal (peritoneal) viscera, which is displaced cranially during terrestrial locomotion; this cranial displacement could impinge on the tidal volume of the lungs. Kinematic analyses of terrestrial and aquatic locomotion in Varanus salvator document the different propulsive mechanics used during movement through these two media, and, most importantly, the marked reduction in lateral displacement of the trunk during swimming. These findings, when combined with previous studies of the cardiovascular and respiratory system of varanids performing terrestrial locomotion, suggest that mosasaurs had a versatile, effective respiratory system and were likely capable of both sustained swimming and prolonged submersion, such as during ambush foraging.
Collapse
Affiliation(s)
- Amy Burnell
- Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Sean Collins
- Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Bruce A. Young
- Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
37
|
Riede T, Tokuda IT, Farmer CG. Subglottal pressure and fundamental frequency control in contact calls of juvenile Alligator mississippiensis. ACTA ACUST UNITED AC 2011; 214:3082-95. [PMID: 21865521 PMCID: PMC3160820 DOI: 10.1242/jeb.051110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vocalization is rare among non-avian reptiles, with the exception of the crocodilians, the sister taxon of birds. Crocodilians have a complex vocal repertoire. Their vocal and respiratory system is not well understood but appears to consist of a combination of features that are also found in the extremely vocal avian and mammalian taxa. Anatomical studies suggest that the alligator larynx is able to abduct and adduct the vocal folds, but not to elongate or shorten them, and is therefore lacking a key regulator of frequency, yet alligators can modulate fundamental frequency remarkably well. We investigated the morphological and physiological features of sound production in alligators. Vocal fold length scales isometrically across a wide range of alligator body sizes. The relationship between fundamental frequency and subglottal pressure is significant in some individuals at some isolated points, such as call onset and position of maximum fundamental frequency. The relationship is not consistent over large segments of the call. Fundamental frequency can change faster than expected by pressure changes alone, suggesting an active motor pattern controls frequency and is intrinsic to the larynx. We utilized a two-mass vocal fold model to test whether abduction and adduction could generate this motor pattern. The fine-tuned interplay between subglottal pressure and glottal adduction can achieve frequency modulations much larger than those resulting from subglottal pressure variations alone and of similar magnitude, as observed in alligator calls. We conclude that the alligator larynx represents a sound source with only two control parameters (subglottal pressure and vocal fold adduction) in contrast to the mammalian larynx in which three parameters can be altered to modulate frequency (subglottal pressure, vocal fold adduction and length/tension).
Collapse
Affiliation(s)
- Tobias Riede
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
38
|
Schachner ER, Farmer C, McDonald AT, Dodson P. Evolution of the Dinosauriform Respiratory Apparatus: New Evidence from the Postcranial Axial Skeleton. Anat Rec (Hoboken) 2011; 294:1532-47. [DOI: 10.1002/ar.21439] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 03/25/2011] [Indexed: 11/07/2022]
|
39
|
Locomotor-respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency. Eur J Appl Physiol 2011; 112:929-40. [PMID: 21701846 DOI: 10.1007/s00421-011-2040-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred. Twelve male participants walked on a treadmill at a self-selected speed. Stride frequency was varied from -20 to +20% of preferred stride frequency (PSF) while respiratory airflow, gas exchange variables, and stride kinematics were recorded. Discrete relative phase and return map techniques were used to evaluate the strength, stability, and variability of both frequency and phase couplings. Analysis of [Formula: see text] during steady-state walking showed a U-shaped response (P = 0.002) with a minimum at PSF and PSF - 10%. Locomotor-respiratory frequency coupling strength was not greater (P = 0.375) at PSF than any other stride frequency condition. The dominant coupling across all conditions was 2:1 with greater occurrences at the lower stride frequencies. Variability in coupling was the greatest during PSF, indicating an exploration of coupling strategies to search for the coupling frequency strategy with the least oxygen consumption. Contrary to the belief that increased strength of frequency coupling would decrease oxygen consumption; these results conclude that it is the increased variability of frequency coupling that results in lower oxygen consumption.
Collapse
|
40
|
Schilling N. Evolution of the axial system in craniates: morphology and function of the perivertebral musculature. Front Zool 2011; 8:4. [PMID: 21306656 PMCID: PMC3041741 DOI: 10.1186/1742-9994-8-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/10/2011] [Indexed: 11/25/2022] Open
Abstract
The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body's center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system.
Collapse
Affiliation(s)
- Nadja Schilling
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Germany.
| |
Collapse
|
41
|
Riede T, Goller F. Peripheral mechanisms for vocal production in birds - differences and similarities to human speech and singing. BRAIN AND LANGUAGE 2010; 115:69-80. [PMID: 20153887 PMCID: PMC2896990 DOI: 10.1016/j.bandl.2009.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 11/03/2009] [Indexed: 05/28/2023]
Abstract
Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently controlled sound sources, which reside in a uniquely avian vocal organ, the syrinx. However, the physical sound generation mechanism in the syrinx shows strong analogies to that in the human larynx, such that both can be characterized as myoelastic-aerodynamic sound sources. Similarities include active adduction and abduction, oscillating tissue masses which modulate flow rate through the organ and a layered structure of the oscillating tissue masses giving rise to complex viscoelastic properties. Differences in the functional morphology of the sound producing system between birds and humans require specific motor control patterns. The songbird vocal apparatus is adapted for high speed, suggesting that temporal patterns and fast modulation of sound features are important in acoustic communication. Rapid respiratory patterns determine the coarse temporal structure of song and maintain gas exchange even during very long songs. The respiratory system also contributes to the fine control of airflow. Muscular control of the vocal organ regulates airflow and acoustic features. The upper vocal tract of birds filters the sounds generated in the syrinx, and filter properties are actively adjusted. Nonlinear source-filter interactions may also play a role. The unique morphology and biomechanical system for sound production in birds presents an interesting model for exploring parallels in control mechanisms that give rise to highly convergent physical patterns of sound generation. More comparative work should provide a rich source for our understanding of the evolution of complex sound producing systems.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Biology and National Center for Voice and Speech, University of Utah, Salt Lake City, 84112, USA
| | | |
Collapse
|
42
|
Breathing and locomotion: Comparative anatomy, morphology and function. Respir Physiol Neurobiol 2010; 173 Suppl:S26-32. [DOI: 10.1016/j.resp.2010.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/20/2022]
|
43
|
Farmer C. The Provenance of Alveolar and Parabronchial Lungs: Insights from Paleoecology and the Discovery of Cardiogenic, Unidirectional Airflow in the American Alligator (Alligator mississippiensis). Physiol Biochem Zool 2010; 83:561-75. [DOI: 10.1086/605335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Perry SF, Similowski T, Klein W, Codd JR. The evolutionary origin of the mammalian diaphragm. Respir Physiol Neurobiol 2010; 171:1-16. [PMID: 20080210 DOI: 10.1016/j.resp.2010.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/18/2022]
Abstract
The comparatively low compliance of the mammalian lung results in an evolutionary dilemma: the origin and evolution of this bronchoalveolar lung into a high-performance gas-exchange organ results in a high work of breathing that cannot be achieved without the coupled evolution of a muscular diaphragm. However, despite over 400 years of research into respiratory biology, the origin of this exclusively mammalian structure remains elusive. Here we examine the basic structure of the body wall muscles in vertebrates and discuss the mechanics of costal breathing and functional significance of accessory breathing muscles in non-mammalian amniotes. We then critically examine the mammalian diaphragm and compare hypotheses on its ontogenetic and phylogenetic origin. A closer look at the structure and function across various mammalian groups reveals the evolutionary significance of collateral functions of the diaphragm as a visceral organizer and its role in producing high intra-abdominal pressure.
Collapse
|
45
|
Schachner ER, Lyson TR, Dodson P. Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology. Anat Rec (Hoboken) 2009; 292:1501-13. [PMID: 19711481 DOI: 10.1002/ar.20989] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent reports of region-specific vertebral pneumaticity in nonavian theropod dinosaurs have brought attention to the hypothesis that these animals possessed an avian-style respiratory system with flow-through ventilation. This study explores the thoracic rib and vertebral anatomy of Sinraptor, Allosaurus, Tyrannosaurus, and Deinonychus; four nonavian theropods that all show well-preserved thoracic vertebrae and ribs. Comparisons to the osteology and soft tissue anatomy of extant saurians provide new evidence supporting the hypothesis of flow-through ventilation in nonavian theropods. Analyses of diapophyseal and parapophyseal position and thoracic rib morphology suggest that most nonavian theropods possessed lungs that were deeply incised by the adjacent bicapitate thoracic ribs. This functionally constrains the lungs as rigid nonexpansive organs that were likely ventilated by accessory nonvascularized air sacs. The axial anatomy of this group also reveals that a crocodilian-like hepatic-piston lung would be functionally and biomechanically untenable. Taken together with the evidence that avian-like air sacs were present in basal theropods, these data lead us to conclude that an avian-style pulmonary system was likely a universal theropod trait.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
46
|
Pontzer H, Allen V, Hutchinson JR. Biomechanics of running indicates endothermy in bipedal dinosaurs. PLoS One 2009; 4:e7783. [PMID: 19911059 PMCID: PMC2772121 DOI: 10.1371/journal.pone.0007783] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/14/2009] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals. METHODOLOGY/PRINCIPAL FINDINGS Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary. CONCLUSIONS/SIGNIFICANCE Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced "avian" lung structure and high locomotor costs.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Anthropology, Washington University, St. Louis, Missouri, United States of America.
| | | | | |
Collapse
|
47
|
CLEMENTE CHRISTOFERJ, WITHERS PHILIPC, THOMPSON GRAHAMG. Metabolic rate and endurance capacity in Australian varanid lizards (Squamata: Varanidae: Varanus). Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01207.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Eme J, Owerkowicz T, Gwalthney J, Blank JM, Rourke BC, Hicks JW. Exhaustive exercise training enhances aerobic capacity in American alligator (Alligator mississippiensis). J Comp Physiol B 2009; 179:921-31. [PMID: 19533151 PMCID: PMC2768110 DOI: 10.1007/s00360-009-0374-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/20/2009] [Accepted: 05/25/2009] [Indexed: 11/28/2022]
Abstract
The oxygen transport system in mammals is extensively remodelled in response to repeated bouts of activity, but many reptiles appear to be ‘metabolically inflexible’ in response to exercise training. A recent report showed that estuarine crocodiles (Crocodylus porosus) increase their maximum metabolic rate in response to exhaustive treadmill training, and in the present study, we confirm this response in another crocodilian, American alligator (Alligator mississippiensis). We further specify the nature of the crocodilian training response by analysing effects of training on aerobic [citrate synthase (CS)] and anaerobic [lactate dehydrogenase (LDH)] enzyme activities in selected skeletal muscles, ventricular and skeletal muscle masses and haematocrit. Compared to sedentary control animals, alligators regularly trained for 15 months on a treadmill (run group) or in a flume (swim group) exhibited peak oxygen consumption rates higher by 27 and 16%, respectively. Run and swim exercise training significantly increased ventricular mass (~11%) and haematocrit (~11%), but not the mass of skeletal muscles. However, exercise training did not alter CS or LDH activities of skeletal muscles. Similar to mammals, alligators respond to exercise training by increasing convective oxygen transport mechanisms, specifically heart size (potentially greater stroke volume) and haematocrit (increased oxygen carrying-capacity of the blood). Unlike mammals, but similar to squamate reptiles, alligators do not also increase citrate synthase activity of the skeletal muscles in response to exercise.
Collapse
Affiliation(s)
- John Eme
- Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697-2525, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Claessens LPAM, O'Connor PM, Unwin DM. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism. PLoS One 2009; 4:e4497. [PMID: 19223979 PMCID: PMC2637988 DOI: 10.1371/journal.pone.0004497] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 12/30/2008] [Indexed: 11/30/2022] Open
Abstract
Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.
Collapse
|
50
|
Riede T, Suthers RA. Vocal tract motor patterns and resonance during constant frequency song: the white-throated sparrow. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 195:183-92. [PMID: 19082607 DOI: 10.1007/s00359-008-0397-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/23/2008] [Accepted: 11/23/2008] [Indexed: 11/29/2022]
Abstract
Bird song is a complex behavior that requires the coordination of several motor systems. Sound is produced in the syrinx and then modified by the upper vocal tract. Movements of the hyoid skeleton have been shown in the northern cardinal (Cardinalis cardinalis) to be extensively involved in forming an oropharyngeal-esophageal cavity (OEC), which contributes a major resonance to the vocal tract transfer function. Here we report that a similar relationship exists between the volume of the OEC and the fundamental frequency in the white-throated sparrow (Zonotrichia albicollis) whose song, unlike that of the cardinal, consists of a series of almost constant frequency notes. Cineradiography of singing sparrows shows that the oropharyngeal cavity and cranial end of the esophagus expand abruptly at the start of each note and maintain a relatively constant volume until the end of the note. Computation of the vocal tract transfer function suggests a major resonance of the OEC follows the fundamental frequency, making sound transmission more efficient. The presence of similar prominent song-related vocal tract motor patterns in two Oscine families suggests that the active control of the vocal tract resonance by varying the volume of the OEC may be widespread in songbirds.
Collapse
Affiliation(s)
- Tobias Riede
- National Center for Voice and Speech, 1101 13th Street, Denver, CO 80204, USA.
| | | |
Collapse
|