1
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Aptekmann A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. mBio 2024:e0274824. [PMID: 39422509 DOI: 10.1128/mbio.02748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Candida auris, a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30%-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase is essential for efficient skin colonization, intradermal persistence as well as systemic virulence. RNA-seq analysis of wild-type parental and hog1Δ mutant strains revealed marked downregulation of genes involved in processes such as cell adhesion, cell wall rearrangement, and pathogenesis in hog1Δ mutant compared to the wild-type parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell wall architecture, as the hog1Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo. Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. IMPORTANCE Candida auris is a World Health Organization fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention. C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris. Therefore, understanding C. auris skin colonization mechanisms is critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay the foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
Affiliation(s)
- Raju Shivarathri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Manju Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Abhishek Datta
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Diprasom Das
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Adela Karuli
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ariel Aptekmann
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sabrina Jenull
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Shankar Thangamani
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
2
|
Hernández-Hernández G, Vera-Salazar LA, Gutiérrez-Escobedo G, Gómez-Hernández N, Leiva-Peláez O, De Las Peñas A, Castaño I. Abf1 negatively regulates the expression of EPA1 and affects adhesion in Candida glabrata. J Med Microbiol 2024; 73. [PMID: 39360930 DOI: 10.1099/jmm.0.001905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Introduction. Adherence is a major virulence trait in Candida glabrata that, in many strains, depends on the EPA (epithelial adhesin) genes, which confer the ability to adhere to epithelial and endothelial cells of the host. The EPA genes are generally found at subtelomeric regions, which makes them subject to subtelomeric silencing. In C. glabrata, subtelomeric silencing depends on different protein complexes, such as silent information regulator and yKu complexes, and other proteins, such as Repressor/activator protein 1 (Rap1) and Abf1. At the EPA1 locus, which encodes the main adhesin Epa1, we previously found at least two cis-acting elements, the protosilencer Sil2126 and the negative element, that contribute to the propagation of silencing from the telomere to the subtelomeric region.Hypothesis. Abf1 binds to the regulatory regions of EPA1 and other regions at the telomere E-R, thereby negatively regulating EPA1 transcription.Aim. To determine whether Abf1 and Rap1 silencing proteins bind to previously identified cis-acting elements on the right telomere of chromosome E (E-R subtelomeric region), resulting in negative regulation of EPA1 transcription and infer Abf1 and Rap1 recognition sites in C. glabrata.Methodology. We used chromatin immunoprecipitation (ChIP) followed by quantitative PCR to determine the binding sites for Abf1 and Rap1 in the intergenic regions between EPA1 and EPA2 and HYR1 and EPA1, and mutants were used to determine the silencing level of the EPA1 promoter region.Results. We found that Abf1 predominantly binds to the EPA1 promoter region, leading to negative regulation of EPA1 expression. Furthermore, the mutant abf1-43, which lacks the last 43 amino acids at its C-terminal end and is defective for subtelomeric silencing, exhibits hyperadherence to epithelial cells in vitro compared to the parental strain, suggesting that EPA1 is derepressed. We also determined the motif-binding sequences for Abf1 and Rap1 in C. glabrata using data from the ChIP assays.Conclusion. Together these data indicate that Abf1 negatively regulates EPA1 expression, leading to decreased adhesion of C. glabrata to epithelial cells.
Collapse
Affiliation(s)
- Grecia Hernández-Hernández
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Laura A Vera-Salazar
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Nicolás Gómez-Hernández
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Osney Leiva-Peláez
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Irene Castaño
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| |
Collapse
|
3
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Angel SO, Vanagas L, Alonso AM. Mechanisms of adaptation and evolution in Toxoplasma gondii. Mol Biochem Parasitol 2024; 258:111615. [PMID: 38354788 DOI: 10.1016/j.molbiopara.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Toxoplasma has high host flexibility, infecting all nucleated cells of mammals and birds. This implies that during its infective process the parasite must constantly adapt to different environmental situations, which in turn leads to modifications in its metabolism, regulation of gene transcription, translation of mRNAs and stage specific factors. There are conserved pathways that support these adaptations, which we aim to elucidate in this review. We begin by exploring the widespread epigenetic mechanisms and transcription regulators, continue with the supportive role of Heat Shock Proteins (Hsp), the translation regulation, stress granules, and finish with the emergence of contingency genes in highly variable genomic domains, such as subtelomeres. Within epigenetics, the discovery of a new histone variant of the H2B family (H2B.Z), contributing to T. gondii virulence and differentiation, but also gene expression regulation and its association with the metabolic state of the parasite, is highlighted. Associated with the regulation of gene expression are transcription factors (TFs). An overview of the main findings on TF and development is presented. We also emphasize the role of Hsp90 and Tgj1 in T. gondii metabolic fitness and the regulation of protein translation. Translation regulation is also highlighted as a mechanism for adaptation to conditions encountered by the parasite as well as stress granules containing mRNA and proteins generated in the extracellular tachyzoite. Another important aspect in evolution and adaptability are the subtelomeres because of their high variability and gene duplication rate. Toxoplasma possess multigene families of membrane proteins and contingency genes that are associated with different metabolic stresses. Among them parasite differentiation and environmental stresses stand out, including those that lead tachyzoite to bradyzoite conversion. Finally, we are interested in positioning protozoa as valuable evolution models, focusing on research related to the Extended Evolutionary Synthesis, based on models recently generated, such as extracellular adaptation and ex vivo cyst recrudescence.
Collapse
Affiliation(s)
- Sergio O Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| | - Andres M Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Sahu MS, Purushotham R, Kaur R. The Hog1 MAPK substrate governs Candida glabrata-epithelial cell adhesion via the histone H2A variant. PLoS Genet 2024; 20:e1011281. [PMID: 38743788 PMCID: PMC11125552 DOI: 10.1371/journal.pgen.1011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/24/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
CgHog1, terminal kinase of the high-osmolarity glycerol signalling pathway, orchestrates cellular response to multiple external stimuli including surplus-environmental iron in the human fungal pathogen Candida glabrata (Cg). However, CgHog1 substrates remain unidentified. Here, we show that CgHog1 adversely affects Cg adherence to host stomach and kidney epithelial cells in vitro, but promotes Cg survival in the iron-rich gastrointestinal tract niche. Further, CgHog1 interactome and in vitro phosphorylation analysis revealed CgSub2 (putative RNA helicase) to be a CgHog1 substrate, with CgSub2 also governing iron homeostasis and host adhesion. CgSub2 positively regulated EPA1 (encodes a major adhesin) expression and host adherence via its interactor CgHtz1 (histone H2A variant). Notably, both CgHog1 and surplus environmental iron had a negative impact on CgSub2-CgHtz1 interaction, with CgHTZ1 or CgSUB2 deletion reversing the elevated adherence of Cghog1Δ to epithelial cells. Finally, the surplus-extracellular iron led to CgHog1 activation, increased CgSub2 phosphorylation, elevated CgSub2-CgHta (canonical histone H2A) interaction, and EPA1 transcriptional activation, thereby underscoring the iron-responsive, CgHog1-induced exchange of histone partners of CgSub2. Altogether, our work mechanistically defines how CgHog1 couples Epa1 adhesin expression with iron abundance, and point towards specific chromatin composition modification programs that probably aid fungal pathogens align their adherence to iron-rich (gut) and iron-poor (blood) host niches.
Collapse
Affiliation(s)
- Mahima Sagar Sahu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rajaram Purushotham
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
6
|
Kumar K, Pareek A, Kaur R. SWI/SNF complex-mediated chromatin remodeling in Candida glabrata promotes immune evasion. iScience 2024; 27:109607. [PMID: 38632999 PMCID: PMC11022050 DOI: 10.1016/j.isci.2024.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Immune evasion is critical for fungal virulence. However, how the human opportunistic pathogen Candida glabrata (Cg) accomplishes this is unknown. Here, we present the first genome-wide nucleosome map of the macrophage-internalized Cg consisting of ∼12,000 dynamic and 70,000 total nucleosomes. We demonstrate that CgSnf2 (SWI/SNF chromatin remodeling complex-ATPase subunit)-mediated chromatin reorganization in macrophage-internalized Cg upregulates and downregulates the immunosuppressive seven-gene mannosyltransferase-cluster (CgMT-C) and immunostimulatory cell surface adhesin-encoding EPA1 gene, respectively. Consistently, EPA1 overexpression and CgMT-C deletion elevated IL-1β (pro-inflammatory cytokine) production and diminished Cg proliferation in macrophages. Further, Cgsnf2Δ had higher Epa1 surface expression, and evoked increased IL-1β secretion, and was killed in macrophages. Akt-, p38-, NF-κB- or NLRP3 inflammasome-inhibition partially reversed increased IL-1β secretion in Cgsnf2Δ-infected macrophages. Importantly, macrophages responded to multiple Candida pathogens via NF-κB-dependent IL-1β production, underscoring NF-κB signaling's role in fungal diseases. Altogether, our findings directly link the nucleosome positioning-based chromatin remodeling to fungal immunomodulatory molecule expression.
Collapse
Affiliation(s)
- Kundan Kumar
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Aditi Pareek
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
7
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585572. [PMID: 38562863 PMCID: PMC10983919 DOI: 10.1101/2024.03.18.585572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris , a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase (MAPK) is essential for efficient skin colonization, intradermal persistence, as well as systemic virulence. RNA-seq analysis of wildtype parental and hog1 Δ mutant strains revealed marked down-regulation of genes involved in processes such as cell adhesion, cell-wall rearrangement, and pathogenesis in hog1 Δ mutant compared to the wildtype parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell-wall architecture, as the hog1 Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo . Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. Importance Candida auris is a World Health Organization (WHO) fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention (CDC). C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris . Therefore, understanding C. auris skin colonization mechanisms are critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
|
8
|
Askari F, Kaur R. Protocol for determination of phosphatidylinositol 3-phosphate levels and localization in Candida glabrata by confocal microscopy. STAR Protoc 2024; 5:102759. [PMID: 38088931 PMCID: PMC10757287 DOI: 10.1016/j.xpro.2023.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 01/02/2024] Open
Abstract
Phosphatidylinositol 3-phosphate (PI3P) levels govern membrane trafficking in Candida glabrata. Here, we present a confocal imaging-based protocol for PI3P localization analysis using the GFP-FYVE (found in Fab1, YOTB, Vac1, and EEA1) fusion protein. We describe steps for cloning the FYVE domain into the GFP-containing vector backbone, transforming FYVE-GFP into C. glabrata, and preparing slides with FYVE-GFP-expressing C. glabrata cells. We then detail procedures for acquiring and analyzing images and quantifying signal data. This protocol is adaptable to subcellular localization analysis of other low-abundant lipid and protein molecules. For complete details on the use and execution of this protocol, please refer to Askari et al. (2023).1.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India.
| |
Collapse
|
9
|
Ndlovu E, Malpartida L, Sultana T, Dahms TES, Dague E. Host Cell Geometry and Cytoskeletal Organization Governs Candida-Host Cell Interactions at the Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888912 DOI: 10.1021/acsami.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Candida is one of the most common opportunistic fungal pathogens in humans. Its adhesion to the host cell is required in parasitic states and is important for pathogenesis. Many studies have shown that there is an increased risk of developing candidiasis when normal tissue barriers are weakened or when immune defenses are compromised, for example, during cancer treatment that induces immunosuppression. The mechanical properties of malignant cells, such as adhesiveness and viscoelasticity, which contribute to cellular invasion and migration are different from those of noncancerous cells. To understand host invasion and its relationship with host cell health, we probed the interaction of Candida spp. with cancerous and noncancerous human cell lines using atomic force microscopy in the single-cell force spectroscopy mode. There was significant adhesion between Candida and human cells, with more adhesion to cancerous versus noncancerous cell lines. This increase in adhesion is related to the mechanobiological properties of cancer cells, which have a disorganized cytoskeleton and lower rigidity. Altered geometry and cytoskeletal disruption of the human cells impacted adhesion parameters, underscoring the role of cytoskeletal organization in Candida-human cell adhesion and implicating the manipulation of cell properties as a potential future therapeutic strategy.
Collapse
Affiliation(s)
- Easter Ndlovu
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Lucas Malpartida
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Etienne Dague
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| |
Collapse
|
10
|
Quiroga-Vargas E, Loyola-Cruz MÁ, Rojas-Bernabé A, Moreno-Eutimio MA, Pastelin-Palacios R, Cruz-Cruz C, Durán-Manuel EM, Calzada-Mendoza C, Castro-Escarpulli G, Hernández-Hernández G, Cureño-Díaz MA, Fernández-Sánchez V, Bello-López JM. Typing of Candida spp. from Colonized COVID-19 Patients Reveal Virulent Genetic Backgrounds and Clonal Dispersion. Pathogens 2023; 12:1206. [PMID: 37887722 PMCID: PMC10610241 DOI: 10.3390/pathogens12101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Advances in the knowledge of the pathogenesis of SARS-CoV-2 allowed the survival of COVID-19 patients in intensive care units. However, due to the clinical characteristics of severe patients, they resulted in the appearance of colonization events. Therefore, we speculate that strains of Candida spp. isolated from COVID-19 patients have virulent genetic and phenotypic backgrounds involved in clinical worsening of patients. The aim of this work was to virutype Candida spp. strains isolated from colonized COVID-19 patients, analyze their genomic diversity, and establish clonal dispersion in care areas. The virulent potential of Candida spp. strains isolated from colonized COVID-19 patients was determined through adhesion tests and the search for genes involved with adherence and invasion. Clonal association was done by analysis of intergenic spacer regions. Six species of Candida were involved as colonizing pathogens in COVID-19 patients. The genotype analysis revealed the presence of adherent and invasive backgrounds. The distribution of clones was identified in the COVID-19 care areas, where C. albicans was the predominant species. Evidence shows that Candida spp. have the necessary genetic tools to be able colonize the lungs, and could be a possible causal agent of coinfections in COVID-19 patients. The detection of dispersion of opportunistic pathogens can be unnoticed by classical epidemiology. Epidemiological surveillance against opportunistic fungal pathogens in COVID-19 patients is an immediate need, since the findings presented demonstrate the potential virulence of Candida spp.
Collapse
Affiliation(s)
- Edith Quiroga-Vargas
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Miguel Ángel Loyola-Cruz
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Araceli Rojas-Bernabé
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (M.A.M.-E.); (R.P.-P.)
| | - Rodolfo Pastelin-Palacios
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (M.A.M.-E.); (R.P.-P.)
| | - Clemente Cruz-Cruz
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Emilio Mariano Durán-Manuel
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Claudia Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico (C.C.-M.)
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Geovanni Hernández-Hernández
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | - Verónica Fernández-Sánchez
- Hospital Juárez de México, Mexico City 07760, Mexico (M.Á.L.-C.); (E.M.D.-M.); (M.A.C.-D.)
- Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
11
|
Badrane H, Cheng S, Dupont CL, Hao B, Driscoll E, Morder K, Liu G, Newbrough A, Fleres G, Kaul D, Espinoza JL, Clancy CJ, Nguyen MH. Genotypic diversity and unrecognized antifungal resistance among populations of Candida glabrata from positive blood cultures. Nat Commun 2023; 14:5918. [PMID: 37739935 PMCID: PMC10516878 DOI: 10.1038/s41467-023-41509-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
The longstanding model is that most bloodstream infections (BSIs) are caused by a single organism. We perform whole genome sequencing of five-to-ten strains from blood culture (BC) bottles in each of ten patients with Candida glabrata BSI. We demonstrate that BCs contain mixed populations of clonal but genetically diverse strains. Genetically distinct strains from two patients exhibit phenotypes that are potentially important during BSIs, including differences in susceptibility to antifungal agents and phagocytosis. In both patients, the clinical microbiology lab recovered a fluconazole-susceptible index strain, but we identify mixed fluconazole-susceptible and -resistant populations. Diversity in drug susceptibility is likely clinically relevant, as fluconazole-resistant strains were subsequently recovered by the clinical laboratory during persistent or relapsing infections. In one patient, unrecognized respiration-deficient small colony variants are fluconazole-resistant and significantly attenuated for virulence during murine candidiasis. Our data suggest a population-based model of C. glabrata genotypic and phenotypic diversity during BSIs.
Collapse
Affiliation(s)
| | | | | | - Binghua Hao
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Guojun Liu
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Drishti Kaul
- J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | | | - Cornelius J Clancy
- University of Pittsburgh, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | | |
Collapse
|
12
|
Abstract
Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India;
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kusum Jain
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India;
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
13
|
Pal K, Kundu S, Wang X. Macrophages form integrin-mediated adhesion rings to pinch off surface-bound objects for phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551462. [PMID: 37577702 PMCID: PMC10418108 DOI: 10.1101/2023.08.01.551462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Macrophages engulf micron-sized objects including pathogens and cell debris by phagocytosis, serving a fundamental role in immune defense and homeostasis 1, 2 . Although the internalization process of suspended particles has been thoroughly investigated 3, 4 , it is incompletely understood how macrophages internalize surface-bound objects by overcoming the surface binding. Here, we prepared a force-sensing platform which visualizes cell-substrate adhesive force by fluorescence. Macrophages are tested on this platform with micron-sized objects (E. coli, microbeads and silver nanorods) immobilized. By co-imaging integrin-transmitted forces and corresponding structural proteins, we discovered that macrophages consistently form integrin-mediated adhesion structures on the surface to encircle and pinch off surface-bound objects. We termed these structures phagocytic adhesion rings (PAR) and showed that integrin tensions in PARs are resulted from local actin polymerization, but not from myosin II. We further demonstrated that the intensity of integrin tensions in PARs is correlated with the object surface-bound strength, and the integrin ligand strength (dictating the upper limit of integrin tensions) determines the phagocytosis efficiency. Collectively, this study revealed a new phagocytosis mechanism that macrophages form PARs to provide physical anchorage for local F-actin polymerization that pushes and lifts off surface-bound objects during phagocytosis.
Collapse
|
14
|
The Candida glabrata Parent Strain Trap: How Phenotypic Diversity Affects Metabolic Fitness and Host Interactions. Microbiol Spectr 2023; 11:e0372422. [PMID: 36633405 PMCID: PMC9927409 DOI: 10.1128/spectrum.03724-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Reference strains improve reproducibility by standardizing observations and methodology, which has ultimately led to important insights into fungal pathogenesis. However, recent investigations have highlighted significant genotypic and phenotypic heterogeneity across isolates that influence genetic circuitry and virulence within a species. Candida glabrata is the second leading cause of candidiasis, a life-threatening infection, and undergoes extensive karyotype and phenotypic changes in response to stress. Much of the work conducted on this pathogen has focused on two sequenced strains, CBS138 (ATCC 2001) and BG2. Few studies have compared these strains in detail, but key differences include mating type and altered patterns of expression of EPA adhesins. In fact, most C. glabrata isolates and BG2 are MATa, while CBS138 is MATα. However, it is not known if other phenotypic differences between these strains play a role in our understanding of C. glabrata pathogenesis. Thus, we set out to characterize metabolic, cell wall, and host-interaction attributes for CBS138 and BG2. We found that BG2 utilized a broader range of nitrogen sources and had reduced cell wall size and carbohydrate exposure than CBS138, which we hypothesized results in differences in innate immune interactions and virulence. We observed that, although both strains were phagocytosed to a similar extent, BG2 replicated to higher numbers in macrophages and was more virulent during Galleria mellonella infection than CBS138 in a dose-dependent manner. Interestingly, deletion of SNF3, a major nutrient sensor, did not affect virulence in G. mellonella for BG2, but significantly enhanced larval killing in the CBS138 background compared to the parent strain. Understanding these fundamental differences in metabolism and host interactions will allow more robust conclusions to be drawn in future studies of C. glabrata pathogenesis. IMPORTANCE Reference strains provide essential insights into the mechanisms underlying virulence in fungal pathogens. However, recent studies in Candida albicans and other species have revealed significant genotypic and phenotypic diversity within clinical isolates that are challenging paradigms regarding key virulence factors and their regulation. Candida glabrata is the second leading cause of candidiasis, and many studies use BG2 or CBS138 for their investigations. Therefore, we aimed to characterize important virulence-related phenotypes for both strains that might alter conclusions about C. glabrata pathogenesis. Our study provides context for metabolic and cell wall changes and how these may influence host interaction phenotypes. Understanding these differences is necessary to support robust conclusions about how virulence factors may function in these and other very different strain backgrounds.
Collapse
|
15
|
Lin CJ, Yang SY, Hsu LH, Yu SJ, Chen YL. The Gcn5-Ada2-Ada3 histone acetyltransferase module has divergent roles in pathogenesis of Candida glabrata. Med Mycol 2023; 61:myad004. [PMID: 36715154 DOI: 10.1093/mmy/myad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Candida glabrata is an opportunistic fungal pathogen and the second most prevalent species isolated from candidiasis patients. C. glabrata has intrinsic tolerance to antifungal drugs and oxidative stresses and the ability to adhere to mucocutaneous surfaces. However, knowledge about the regulation of its virulence traits is limited. The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex modulates gene transcription by histone acetylation through the histone acetyltransferase (HAT) module comprised of Gcn5-Ada2-Ada3. Previously, we showed that the ada2 mutant was hypervirulent but displayed decreased tolerance to antifungal drugs and cell wall perturbing agents. In this study, we further characterized the functions of Ada3 and Gcn5 in C. glabrata. We found that single, double, or triple deletions of the HAT module, as expected, resulted in a decreased level of acetylation on histone H3 lysine 9 (H3K9) and defective growth. These mutants were more susceptible to antifungal drugs, oxidative stresses, and cell wall perturbing agents compared with the wild-type. In addition, HAT module mutants exhibited enhanced agar invasion and upregulation of adhesin and proteases encoding genes, whereas the biofilm formation of those mutants was impaired. Interestingly, HAT module mutants exhibited enhanced induction of catalases (CTA1) expression upon treatment with H2O2 compared with the wild-type. Lastly, although ada3 and gcn5 exhibited marginal hypervirulence, the HAT double and triple mutants were hypervirulent in a murine model of candidiasis. In conclusion, the HAT module of the SAGA complex plays unique roles in H3K9 acetylation, drug tolerance, oxidative stress response, adherence, and virulence in C. glabrata.
Collapse
Affiliation(s)
- Chi-Jan Lin
- Institute of Molecular Biology, National Chung Hsing University, 40227 Taichung, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Sheng-Yung Yang
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Li-Hang Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Shang-Jie Yu
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
16
|
Chen Q, Fan Y, Zhang B, Yan C, Chen Z, Wang L, Hu Y, Huang Q, Su J, Ren J, Xu H. Specific fungi associated with response to capsulized fecal microbiota transplantation in patients with active ulcerative colitis. Front Cell Infect Microbiol 2023; 12:1086885. [PMID: 36683707 PMCID: PMC9849685 DOI: 10.3389/fcimb.2022.1086885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Objective Fecal microbiota transplantation (FMT) is a novel microbial treatment for patients with ulcerative colitis (UC). In this study, we performed a clinical trial of capsulized FMT in UC patients to determine the association between the gut fungal community and capsulized FMT outcomes. Design This study recruited patients with active UC (N = 22) and healthy individuals (donor, N = 9) according to the criteria. The patients received capsulized FMT three times a week. Patient stool samples were collected before (week 0) and after FMT follow-up visits at weeks 1, 4, and 12. Fungal communities were analysed using shotgun metagenomic sequencing. Results According to metagenomic analysis, fungal community evenness index was greater in samples collected from patients, and the overall fungal community was clustered among the samples collected from donors. The dominant fungi in fecal samples collected from donors and patients were Ascomycota and Basidiomycota. However, capsulized FMT ameliorated microbial fungal diversity and altered fungal composition, based on metagenomic analysis of fecal samples collected before and during follow-up visits after capsulized FMT. Fungal diversity decreased in samples collected from patients who achieved remission after capsulized FMT, similar to samples collected from donors. Patients achieving remission after capsulized FMT had specific enrichment of Kazachstania naganishii, Pyricularia grisea, Lachancea thermotolerans, and Schizosaccharomyces pombe compared with patients who did not achieve remission. In addition, the relative abundance of P. grisea was higher in remission fecal samples during the follow-up visit. Meanwhile, decreased levels of pathobionts, such as Candida and Debaryomyces hansenii, were associated with remission in patients receiving capsulized FMT. Conclusion In the metagenomic analysis of fecal samples from donors and patients with UC receiving capsulized FMT, shifts in gut fungal diversity and composition were associated with capsulized FMT and validated in patients with active UC. We also identified the specific fungi associated with the induction of remission. ClinicalTrails.gov (NCT03426683).
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China,Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China,Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Jianlin Ren, ; Hongzhi Xu,
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China,Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China,Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Jianlin Ren, ; Hongzhi Xu,
| |
Collapse
|
17
|
Raj K, Rishi P, Shukla G, Rudramurhty SM, Mongad DS, Kaur A. Possible Contribution of Alternative Transcript Isoforms in Mature Biofilm Growth Phase of Candida glabrata. Indian J Microbiol 2022; 62:583-601. [PMID: 36458226 PMCID: PMC9705674 DOI: 10.1007/s12088-022-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Expression of genome-wide alternative transcript isoforms and differential transcript isoform usage in different biological conditions (isoform switching) are responsible for the varied proteomic functional diversity in higher eukaryotic organisms. However, these mechanisms have not been studied in Candida glabrata, which is a potent eukaryotic opportunistic pathogen. Biofilm formation is an important virulence factor of C. glabrata that withstands antifungal drug stress and overcomes the host-immune response. Here, we present the genome-wide differential transcript isoform expression (DTE) and differential transcript isoform usage (DTU) in a mature biofilm growth phase of C. glabrata (clinical isolate; NCCPF 100,037) using the RNA sequencing approach. The DTE analysis generated 7837 transcript isoforms from the C. glabrata genome (5293 genes in total), and revealed that transcript isoforms generated from 292 genes showed significant DTU in the mature biofilm cells. Gene ontology, pathway analysis and protein-protein interactions of significant transcript isoforms, further substantiated that their specific expression and differential usage is required for transitioning the planktonic cells to biofilm in C. glabrata. The present study reported the possible role of expression of alternative transcript isoforms and differential transcript isoform usage in the mature biofilms of C. glabrata. The observation derived from the study may prove to be beneficial for making future antifungal therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01036-7.
Collapse
Affiliation(s)
- Khem Raj
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Shivaprakash M. Rudramurhty
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dattatray S. Mongad
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| | - Amrita Kaur
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| |
Collapse
|
18
|
Marcet-Houben M, Alvarado M, Ksiezopolska E, Saus E, de Groot PWJ, Gabaldón T. Chromosome-level assemblies from diverse clades reveal limited structural and gene content variation in the genome of Candida glabrata. BMC Biol 2022; 20:226. [PMID: 36209154 PMCID: PMC9548116 DOI: 10.1186/s12915-022-01412-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Candida glabrata is an opportunistic yeast pathogen thought to have a large genetic and phenotypic diversity and a highly plastic genome. However, the lack of chromosome-level genome assemblies representing this diversity limits our ability to accurately establish how chromosomal structure and gene content vary across strains. Results Here, we expanded publicly available assemblies by using long-read sequencing technologies in twelve diverse strains, obtaining a final set of twenty-one chromosome-level genomes spanning the known C. glabrata diversity. Using comparative approaches, we inferred variation in chromosome structure and determined the pan-genome, including an analysis of the adhesin gene repertoire. Our analysis uncovered four new adhesin orthogroups and inferred a rich ancestral adhesion repertoire, which was subsequently shaped through a still ongoing process of gene loss, gene duplication, and gene conversion. Conclusions C. glabrata has a largely stable pan-genome except for a highly variable subset of genes encoding cell wall-associated functions. Adhesin repertoire was established for each strain and showed variability among clades. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01412-1.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - María Alvarado
- Regional Center for Biomedical Research, University of Castilla-La Mancha, E-02008, Albacete, Spain
| | - Ewa Ksiezopolska
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Piet W J de Groot
- Regional Center for Biomedical Research, University of Castilla-La Mancha, E-02008, Albacete, Spain.,Castilla-La Mancha Science & Technology Park, E-02006, Albacete, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain. .,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. .,Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
19
|
Descorps-Declère S, Richard GF. Megasatellite formation and evolution in vertebrate genes. Cell Rep 2022; 40:111347. [PMID: 36103826 DOI: 10.1016/j.celrep.2022.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
Since formation of the first proto-eukaryotes, gene repertoire and genome complexity have significantly increased. Among genetic elements responsible for this increase are tandem repeats. Here we describe a genome-wide analysis of large tandem repeats, called megasatellites, in 58 vertebrate genomes. Two bursts occurred, one after the radiation between Agnatha and Gnathostomata fishes and the second one in therian mammals. Megasatellites are enriched in subtelomeric regions and frequently encoded in genes involved in transcription regulation, intracellular trafficking, and cell membrane metabolism, reminiscent of what is observed in fungus genomes. The presence of many introns within young megasatellites suggests that an exon-intron DNA segment is first duplicated and amplified before accumulation of mutations in intronic parts partially erases the megasatellite in such a way that it becomes detectable only in exons. Our results suggest that megasatellite formation and evolution is a dynamic and still ongoing process in vertebrate genomes.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 25 rue du Dr Roux, 75015 Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Natural & Synthetic Genome Instabilities, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
20
|
Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:789-802. [PMID: 35829973 DOI: 10.1007/s10123-022-00264-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
Eukaryotic cells respond to environmental cues through mitogen activated protein kinase (MAPK) signaling pathways. Each MAPK cascade is specific to particular stimuli and mediates specialized responses through activation of transcription factors. In the budding yeast, Saccharomyces cerevisiae, the pheromone-induced mating pathway and the starvation-responsive invasive growth/filamentation pathway generate their distinct outputs through the transcription factors Ste12 and Tec1, respectively. In this study, we report the functional characterization of these transcription factors in the closely related human opportunistic pathogenic yeast Candida glabrata. Two homologues each for S. cerevisiae TEC1 and STE12 were identified in C. glabrata. Both C. glabrata Tec1 proteins contain the N-terminal TEA DNA-binding domain characteristic of the TEA/ATTS transcription factor family. Similarly, the DNA-binding homeodomain shared by members of the highly conserved fungal Ste12 transcription factor family is present in N-terminus of both C. glabrata Ste12 transcription factors. We show that both C. glabrata STE12 genes are at least partial functional orthologues of S. cerevisiae STE12 as they can rescue the mating defect of haploid S. cerevisiae ste12 null mutant. Knockout of one of the STE12 genes (ORF CAGL0H02145g) leads to decreased biofilm development; a stronger biofilm-impaired phenotype results from loss of both CgSTE12 genes in the double deletion mutant (Cgste12ΔΔ). The transcript levels of one of the TEC1 genes (ORF CAGL0M01716g) were found to be upregulated upon exposure to low pH; its deletion causes slightly increased sensitivity to higher concentrations of acetic acid. Heat shock leads to increase in mRNA levels of one of the STE12 genes (ORF CAGL0M01254g). These findings suggest a role of Tec1 and Ste12 transcription factors in the regulation of some traits (biofilm formation, response to low pH stress and elevated temperature) that contribute to C. glabrata's ability to colonize various host niches and to occasionally cause disease.
Collapse
|
21
|
Zhao G, Rusche LN. Sirtuins in Epigenetic Silencing and Control of Gene Expression in Model and Pathogenic Fungi. Annu Rev Microbiol 2022; 76:157-178. [PMID: 35609947 DOI: 10.1146/annurev-micro-041020-100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi, including yeasts, molds, and mushrooms, proliferate on decaying matter and then adopt quiescent forms once nutrients are depleted. This review explores how fungi use sirtuin deacetylases to sense and respond appropriately to changing nutrients. Because sirtuins are NAD+-dependent deacetylases, their activity is sensitive to intracellular NAD+ availability. This allows them to transmit information about a cell's metabolic state on to the biological processes they influence. Fungal sirtuins are primarily known to deacetylate histones, repressing transcription and modulating genome stability. Their target genes include those involved in NAD+ homeostasis, metabolism, sporulation, secondary metabolite production, and virulence traits of pathogenic fungi. By targeting different genes over evolutionary time, sirtuins serve as rewiring points that allow organisms to evolve novel responses to low NAD+ stress by bringing relevant biological processes under the control of sirtuins. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guolei Zhao
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| | - Laura N Rusche
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| |
Collapse
|
22
|
Helmstetter N, Chybowska AD, Delaney C, Da Silva Dantas A, Gifford H, Wacker T, Munro C, Warris A, Jones B, Cuomo CA, Wilson D, Ramage G, Farrer RA. Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes, and drug targets. Genetics 2022; 221:iyac031. [PMID: 35199143 PMCID: PMC9071574 DOI: 10.1093/genetics/iyac031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Candida glabrata is the second most common etiological cause of worldwide systemic candidiasis in adult patients. Genome analysis of 68 isolates from 8 hospitals across Scotland, together with 83 global isolates, revealed insights into the population genetics and evolution of C. glabrata. Clinical isolates of C. glabrata from across Scotland are highly genetically diverse, including at least 19 separate sequence types that have been recovered previously in globally diverse locations, and 1 newly discovered sequence type. Several sequence types had evidence for ancestral recombination, suggesting transmission between distinct geographical regions has coincided with genetic exchange arising in new clades. Three isolates were missing MATα1, potentially representing a second mating type. Signatures of positive selection were identified in every sequence type including enrichment for epithelial adhesins thought to facilitate fungal adhesin to human epithelial cells. In patent microevolution was identified from 7 sets of recurrent cases of candidiasis, revealing an enrichment for nonsynonymous and frameshift indels in cell surface proteins. Microevolution within patients also affected epithelial adhesins genes, and several genes involved in drug resistance including the ergosterol synthesis gene ERG4 and the echinocandin target FKS1/2, the latter coinciding with a marked drop in fluconazole minimum inhibitory concentration. In addition to nuclear genome diversity, the C. glabrata mitochondrial genome was particularly diverse, with reduced conserved sequence and conserved protein-encoding genes in all nonreference ST15 isolates. Together, this study highlights the genetic diversity within the C. glabrata population that may impact virulence and drug resistance, and 2 major mechanisms generating this diversity: microevolution and genetic exchange/recombination.
Collapse
Affiliation(s)
- Nicolas Helmstetter
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | | | - Christopher Delaney
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Hugh Gifford
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Theresa Wacker
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Carol Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Adilia Warris
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Brian Jones
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | | | - Duncan Wilson
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
| | - Gordon Ramage
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rhys A Farrer
- Medical Research Council, Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Saguez C, Viterbo D, Descorps-Declère S, Cormack BP, Dujon B, Richard GF. Functional variability in adhesion and flocculation of yeast megasatellite genes. Genetics 2022; 221:iyac042. [PMID: 35274698 PMCID: PMC9071537 DOI: 10.1093/genetics/iyac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Megasatellites are large tandem repeats found in all fungal genomes but especially abundant in the opportunistic pathogen Candida glabrata. They are encoded in genes involved in cell-cell interactions, either between yeasts or between yeast and human cells. In the present work, we have been using an iterative genetic system to delete several Candida glabrata megasatellite-containing genes and found that 2 of them were positively involved in adhesion to epithelial cells, whereas 3 genes negatively controlled adhesion. Two of the latter, CAGL0B05061g or CAGL0A04851g, were also negative regulators of yeast-to-yeast adhesion, making them central players in controlling Candida glabrata adherence properties. Using a series of synthetic Saccharomyces cerevisiae strains in which the FLO1 megasatellite was replaced by other tandem repeats of similar length but different sequences, we showed that the capacity of a strain to flocculate in liquid culture was unrelated to its capacity to adhere to epithelial cells or to invade agar. Finally, to understand how megasatellites were initially created and subsequently expanded, an experimental evolution system was set up, in which modified yeast strains containing different megasatellite seeds were grown in bioreactors for more than 200 generations and selected for their ability to sediment at the bottom of the culture tube. Several flocculation-positive mutants were isolated. Functionally relevant mutations included general transcription factors as well as a 230-kbp segmental duplication.
Collapse
Affiliation(s)
- Cyril Saguez
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
- Present address: Abolis Biotechnologies, 5 Rue Henri Desbruères, Evry 91030, France
| | - David Viterbo
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| | - Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris F-75015, France
| | - Brendan P Cormack
- Department of Molecular Biology & Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Bernard Dujon
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| |
Collapse
|
24
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
25
|
FLO8 deletion leads to decreased adhesion and virulence with downregulated expression of EPA1, EPA6, and EPA7 in Candida glabrata. Braz J Microbiol 2022; 53:727-738. [PMID: 35122657 PMCID: PMC9151949 DOI: 10.1007/s42770-022-00703-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Candida glabrata does not develop into a pathogenic hiphal form; however, it has become the second most common pathogen of fungal infections in humans, partly because of its adhesion ability and virulence. OBJECTIVES The present study aimed to determine whether Flo8, a transcription factor that plays an important role in the virulence and drug resistance in Candida albicans, has a similar role in C. glabrata. METHODS We constructed FLO8 null strains of a C. glabrata standard strain and eight clinical strains from different sources, and a FLO8 complemented strain. Real-time quantitative PCR, biofilm formation assays, hydrophobicity tests, adhesion tests, Caenorhabditis elegans survival assay, and drug-susceptibility were then performed. RESULTS Compared with the wild-type strains, the biofilm formation, hydrophobicity, adhesion, and virulence of the FLO8-deficient strains decreased, accompanied by decreased expression of EPA1, EPA6, and EPA7. On the other hand, it showed no changes in antifungal drug resistance, although the expression levels of CDR1, CDR2, and SNQ2 increased after FLO8 deletion. CONCLUSIONS These results indicated that Flo8 is involved in the adhesion and virulence of C. glabrata, with FLO8 deletion leading to decreased expression of EPA1, EPA6, and EPA7 and decreased biofilm formation, hydrophobicity, adhesion, and virulence.
Collapse
|
26
|
López-Fuentes E, Hernández-Hernández G, De Las Peñas A, Castaño I. Subtelomeric Chromatin Structure by Chromosome Conformation Capture (3C)-qPCR Methodology in Candida glabrata. Methods Mol Biol 2022; 2542:71-89. [PMID: 36008657 DOI: 10.1007/978-1-0716-2549-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chromatin architecture has an enormous impact on gene regulation, DNA replication, repair, and packaging. Chromatin is organized in a complex hierarchical manner in which distant fragments of DNA can interact with each other through DNA loops. DNA loops can interact between themselves to form topologically associated domains (TADs) that are further organized into functional compartments. In the last two decades, Chromatin Conformation Capture (3C technology) and its high-throughput derivatives allowed detailed analysis of the chromatin architecture. The 3C method is based on ligation of distant fragments brought together by DNA looping. The method analyzes a particular genomic region of interest and quantifies the interactions between a defined fragment with all the surrounding fragments of the region. It consists of four steps: (1) The long-distance interacting chromatin fragments are fixed with formaldehyde in whole cells which are then lysed; (2) the fixed chromatin is digested with a carefully chosen restriction enzymes to separate intervening DNA fragments; (3) the fragments brought into proximity by DNA looping are ligated in conditions favoring intramolecular ligation; and (4) the interactions are quantified by quantitative PCR using the TaqMan technology and unidirectional primers. Herein, we describe the use of this methodology to analyze the chromatin conformation at a subtelomeric locus containing three genes encoding adhesins and several cis-regulatory elements, in the pathogenic yeast Candida glabrata.
Collapse
Affiliation(s)
- Eunice López-Fuentes
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Grecia Hernández-Hernández
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Biología Molecular, San Luis Potosí, Mexico
| | - Alejandro De Las Peñas
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Biología Molecular, San Luis Potosí, Mexico
| | - Irene Castaño
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Biología Molecular, San Luis Potosí, Mexico.
| |
Collapse
|
27
|
Vázquez-Franco N, Gutiérrez-Escobedo G, Juárez-Reyes A, Orta-Zavalza E, Castaño I, De Las Peñas A. Candida glabrata Hst1-Rfm1-Sum1 complex evolved to control virulence-related genes. Fungal Genet Biol 2021; 159:103656. [PMID: 34974188 DOI: 10.1016/j.fgb.2021.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022]
Abstract
C. glabrata is an opportunistic fungal pathogen and the second most common cause of opportunistic fungal infections in humans, that has evolved virulence factors to become a successful pathogen: strong resistance to oxidative stress, capable to adhere and form biofilms in human epithelial cells as well as to abiotic surfaces and high resistance to xenobiotics. Hst1 (a NAD+-dependent histone deacetylase), Sum1 (putative DNA binding protein) and Rfm1 (connector protein) form a complex (HRS-C) and control the resistance to oxidative stress, to xenobiotics (the antifungal fluconazole), and adherence to epithelial cells. Hst1 is functionally conserved within the Saccharomycetaceae family, Rfm1 shows a close phylogenetic relation within the Saccharomycetaceae family while Sum1 displays a distant phylogenetic relation with members of the family and is not conserved functionally. CDR1 encodes for an ABC transporter (resistance to fluconazole) negatively controlled by HRS-C, for which its binding site is located within 223 bp upstream from the ATG of CDR1. The absence of Hst1 and Sum1 renders the cells hyper-adherent, possibly due to the overexpression of AED1, EPA1, EPA22 and EPA6, all encoding for adhesins. Finally, in a neutrophil survival assay, HST1 and SUM1, are not required for survival. We propose that Sum1 in the HRS-C diverged functionally to control a set of genes implicated in virulence: adherence, resistance to xenobiotics and oxidative stress.
Collapse
Affiliation(s)
- Norma Vázquez-Franco
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro Juárez-Reyes
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Emmanuel Orta-Zavalza
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico.
| |
Collapse
|
28
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
29
|
Hernández-Hernández G, Vera-Salazar LA, Castanedo L, López-Fuentes E, Gutiérrez-Escobedo G, De Las Peñas A, Castaño I. Abf1 Is an Essential Protein That Participates in Cell Cycle Progression and Subtelomeric Silencing in Candida glabrata. J Fungi (Basel) 2021; 7:jof7121005. [PMID: 34946988 PMCID: PMC8708972 DOI: 10.3390/jof7121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Accurate DNA replication and segregation is key to reproduction and cell viability in all organisms. Autonomously replicating sequence-binding factor 1 (Abf1) is a multifunctional protein that has essential roles in replication, transcription, and regional silencing in the model yeast Saccharomyces cerevisiae. In the opportunistic pathogenic fungus Candida glabrata, which is closely related to S. cerevisiae, these processes are important for survival within the host, for example, the regulation of transcription of virulence-related genes like those involved in adherence. Here, we describe that CgABF1 is an essential gene required for cell viability and silencing near the telomeres, where many adhesin-encoding genes reside. CgAbf1 mediated subtelomeric silencing depends on the 43 C-terminal amino acids. We also found that abnormal expression, depletion, or overexpression of Abf1, results in defects in nuclear morphology, nuclear segregation, and transit through the cell cycle. In the absence of ABF1, cells are arrested in G2 but start cycling again after 9 h, coinciding with the loss of cell viability and the appearance of cells with higher DNA content. Overexpression of CgABF1 causes defects in nuclear segregation and cell cycle progression. We suggest that these effects could be due to the deregulation of DNA replication.
Collapse
Affiliation(s)
- Grecia Hernández-Hernández
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José No. 2055 Col. Lomas 4 Sección, San Luis Potosí CP 78233, Mexico; (G.H.-H.); (L.A.V.-S.); (G.G.-E.); (A.D.L.P.)
| | - Laura A. Vera-Salazar
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José No. 2055 Col. Lomas 4 Sección, San Luis Potosí CP 78233, Mexico; (G.H.-H.); (L.A.V.-S.); (G.G.-E.); (A.D.L.P.)
| | - Leonardo Castanedo
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse, 150 ND3/30, D-44801 Bochum, Germany;
| | - Eunice López-Fuentes
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA 94158, USA;
| | - Guadalupe Gutiérrez-Escobedo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José No. 2055 Col. Lomas 4 Sección, San Luis Potosí CP 78233, Mexico; (G.H.-H.); (L.A.V.-S.); (G.G.-E.); (A.D.L.P.)
| | - Alejandro De Las Peñas
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José No. 2055 Col. Lomas 4 Sección, San Luis Potosí CP 78233, Mexico; (G.H.-H.); (L.A.V.-S.); (G.G.-E.); (A.D.L.P.)
| | - Irene Castaño
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José No. 2055 Col. Lomas 4 Sección, San Luis Potosí CP 78233, Mexico; (G.H.-H.); (L.A.V.-S.); (G.G.-E.); (A.D.L.P.)
- Correspondence: ; Tel.: +52-444-834-2038
| |
Collapse
|
30
|
Fernández-Pereira J, Alvarado M, Gómez-Molero E, Dekker HL, Blázquez-Muñoz MT, Eraso E, Bader O, de Groot PWJ. Characterization of Awp14, A Novel Cluster III Adhesin Identified in a High Biofilm-Forming Candida glabrata Isolate. Front Cell Infect Microbiol 2021; 11:790465. [PMID: 34869084 PMCID: PMC8634165 DOI: 10.3389/fcimb.2021.790465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Candida glabrata is among the most prevalent causes of candidiasis. Unlike Candida albicans, it is not capable of changing morphology between yeast and hyphal forms but instead has developed other virulence factors. An important feature is its unprecedented large repertoire of predicted cell wall adhesins, which are thought to enable adherence to a variety of surfaces under different conditions. Here, we analyzed the wall proteome of PEU1221, a high biofilm-forming clinical strain isolated from an infected central venous catheter, under biofilm-forming conditions. This isolate shows increased incorporation of putative adhesins, including eight proteins that were not detected in walls of reference strain ATCC 2001, and of which Epa22, Awp14, and Awp2e were identified for the first time. The proteomics data suggest that cluster III adhesin Awp14 is relatively abundant in PEU1221. Phenotypic studies with awp14Δ deletion mutants showed that Awp14 is not responsible for the high biofilm formation of PEU1221 onto polystyrene. However, awp14Δ mutant cells in PEU1221 background showed a slightly diminished binding to chitin and seemed to sediment slightly slower than the parental strain suggesting implication in fungal cell-cell interactions. By structural modeling, we further demonstrate similarity between the ligand-binding domains of cluster III adhesin Awp14 and those of cluster V and VI adhesins. In conclusion, our work confirms the increased incorporation of putative adhesins, such as Awp14, in high biofilm-forming isolates, and contributes to decipher the precise role of these proteins in the establishment of C. glabrata infections.
Collapse
Affiliation(s)
- Jordan Fernández-Pereira
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - María Alvarado
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Emilia Gómez-Molero
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Henk L. Dekker
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences Amsterdam, University of Amsterdam, Amsterdam, Netherlands
| | - María Teresa Blázquez-Muñoz
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Elena Eraso
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences Amsterdam, University of Amsterdam, Amsterdam, Netherlands
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Piet W. J. de Groot
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
31
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
32
|
Hernández-Carreón O, Hernández-Howell C, Hernández-Hernández G, Herrera-Basurto MS, González-Gómez BE, Gutiérrez-Escobedo G, García-Calderón NI, Barrón-Pastor D, De Las Peñas A, Castaño I. Highly specific and rapid molecular detection of Candida glabrata in clinical samples. Braz J Microbiol 2021; 52:1733-1744. [PMID: 34331680 DOI: 10.1007/s42770-021-00584-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/18/2021] [Indexed: 01/08/2023] Open
Abstract
The most common nosocomial fungal infections are caused by several species of Candida, of which Candida glabrata is the second most frequently isolated species from bloodstream infections. C. glabrata displays relatively high minimal inhibitory concentration values (MIC) to the antifungal fluconazole and is associated with high mortality rates. To decrease mortality rates, the appropriate treatment must be administered promptly. C. glabrata contains in its genome several non-identical copies of species-specific sequences. We designed three pairs of C. glabrata-specific primers for endpoint PCR amplification that align to these species-specific sequences and amplify the different copies in the genome. Using these primers, we developed a fast, sensitive, inexpensive, and highly specific PCR-based method to positively detect C. glabrata DNA in a concentration-dependent manner from mixes of purified genomic DNA of several Candida species, as well as from hemocultures and urine clinical samples. This tool can be used for positive identification of C. glabrata in the clinic.
Collapse
Affiliation(s)
- Oscar Hernández-Carreón
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Cesia Hernández-Howell
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Grecia Hernández-Hernández
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - M Selene Herrera-Basurto
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Blanca E González-Gómez
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Norma I García-Calderón
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Daniel Barrón-Pastor
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico.
| |
Collapse
|
33
|
Cavalheiro M, Pereira D, Formosa-Dague C, Leitão C, Pais P, Ndlovu E, Viana R, Pimenta AI, Santos R, Takahashi-Nakaguchi A, Okamoto M, Ola M, Chibana H, Fialho AM, Butler G, Dague E, Teixeira MC. From the first touch to biofilm establishment by the human pathogen Candida glabrata: a genome-wide to nanoscale view. Commun Biol 2021; 4:886. [PMID: 34285314 PMCID: PMC8292413 DOI: 10.1038/s42003-021-02412-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Candida glabrata is an opportunistic pathogen that adheres to human epithelial mucosa and forms biofilm to cause persistent infections. In this work, Single-cell Force Spectroscopy (SCFS) was used to glimpse at the adhesive properties of C. glabrata as it interacts with clinically relevant surfaces, the first step towards biofilm formation. Following a genetic screening, RNA-sequencing revealed that half of the entire transcriptome of C. glabrata is remodeled upon biofilm formation, around 40% of which under the control of the transcription factors CgEfg1 and CgTec1. Using SCFS, it was possible to observe that CgEfg1, but not CgTec1, is necessary for the initial interaction of C. glabrata cells with both abiotic surfaces and epithelial cells, while both transcription factors orchestrate biofilm maturation. Overall, this study characterizes the network of transcription factors controlling massive transcriptional remodelling occurring from the initial cell-surface interaction to mature biofilm formation.
Collapse
Affiliation(s)
- Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Carolina Leitão
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Easter Ndlovu
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Andreia I Pimenta
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Rui Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Michiyo Okamoto
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Mihaela Ola
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Arsénio M Fialho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Geraldine Butler
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal.
| |
Collapse
|
34
|
Kumar A. The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth. Annu Rev Genet 2021; 55:1-21. [PMID: 34280314 DOI: 10.1146/annurev-genet-071719-020249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
35
|
Diotti R, Esposito M, Shen CH. Telomeric and Sub-Telomeric Structure and Implications in Fungal Opportunistic Pathogens. Microorganisms 2021; 9:microorganisms9071405. [PMID: 34209786 PMCID: PMC8305976 DOI: 10.3390/microorganisms9071405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Telomeres are long non-coding regions found at the ends of eukaryotic linear chromosomes. Although they have traditionally been associated with the protection of linear DNA ends to avoid gene losses during each round of DNA replication, recent studies have demonstrated that the role of these sequences and their adjacent regions go beyond just protecting chromosomal ends. Regions nearby to telomeric sequences have now been identified as having increased variability in the form of duplications and rearrangements that result in new functional abilities and biodiversity. Furthermore, unique fungal telomeric and chromatin structures have now extended clinical capabilities and understanding of pathogenicity levels. In this review, telomere structure, as well as functional implications, will be examined in opportunistic fungal pathogens, including Aspergillus fumigatus, Candida albicans, Candida glabrata, and Pneumocystis jirovecii.
Collapse
Affiliation(s)
- Raffaella Diotti
- Department of Biological Sciences, Bronx Community College, City University of New York, New York, NY 10453, USA;
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
| | - Michelle Esposito
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
- Department of Biology, College of Staten Island, City University of New York, New York, NY 10314, USA
| | - Chang Hui Shen
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
- Department of Biology, College of Staten Island, City University of New York, New York, NY 10314, USA
- The Graduate Center, PhD Program in Biochemistry, City University of New York, New York, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA
- Correspondence: ; Tel.: +1-(718)-982-3998; Fax: +1-(718)-982-3852
| |
Collapse
|
36
|
Essen LO, Vogt MS, Mösch HU. Diversity of GPI-anchored fungal adhesins. Biol Chem 2021; 401:1389-1405. [PMID: 33035180 DOI: 10.1515/hsz-2020-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.
Collapse
Affiliation(s)
- Lars-Oliver Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| | - Marian Samuel Vogt
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| |
Collapse
|
37
|
Structural Basis of Ligand Selectivity by a Bacterial Adhesin Lectin Involved in Multispecies Biofilm Formation. mBio 2021; 12:mBio.00130-21. [PMID: 33824212 PMCID: PMC8092209 DOI: 10.1128/mbio.00130-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacterial adhesins are key virulence factors that are essential for the pathogen-host interaction and biofilm formation that cause most infections. Many of the adhesin-driven cell-cell interactions are mediated by lectins. Carbohydrate recognition by lectins governs critical host-microbe interactions. MpPA14 (Marinomonas primoryensis PA14 domain) lectin is a domain of a 1.5-MDa adhesin responsible for a symbiotic bacterium-diatom interaction in Antarctica. Here, we show that MpPA14 binds various monosaccharides, with l-fucose and N-acetylglucosamine being the strongest ligands (dissociation constant [Kd], ∼150 μM). High-resolution structures of MpPA14 with 15 different sugars bound elucidated the molecular basis for the lectin’s apparent binding promiscuity but underlying selectivity. MpPA14 mediates strong Ca2+-dependent interactions with the 3,4-diols of l-fucopyranose and glucopyranoses, and it binds other sugars via their specific minor isomers. Thus, MpPA14 only binds polysaccharides like branched glucans and fucoidans with these free end groups. Consistent with our findings, adhesion of MpPA14 to diatom cells was selectively blocked by l-fucose, but not by N-acetyl galactosamine. The MpPA14 lectin homolog present in a Vibrio cholerae adhesin was produced and was shown to have the same sugar binding preferences as MpPA14. The pathogen’s lectin was unable to effectively bind the diatom in the presence of fucose, thus demonstrating the antiadhesion strategy of blocking infection via ligand-based antagonists.
Collapse
|
38
|
Adhesion Properties, Biofilm Forming Potential, and Susceptibility to Disinfectants of Contaminant Wine Yeasts. Microorganisms 2021; 9:microorganisms9030654. [PMID: 33809953 PMCID: PMC8004283 DOI: 10.3390/microorganisms9030654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, yeasts isolated from filter membranes used for the quality control of bottled wines were identified and tested for their resistance to some cleaning agents and potassium metabisulphite, adhesion to polystyrene and stainless-steel surfaces, and formation of a thin round biofilm, referred to as a MAT. A total of 40 strains were identified by rRNA internal transcribed spacer (ITS) restriction analysis and sequence analysis of D1/D2 domain of 26S rRNA gene. Strains belong to Pichia manshurica (12), Pichia kudriavzevii (9), Pichia membranifaciens (1), Candida sojae (6), Candida parapsilosis (3), Candida sonorensis (1), Lodderomyces elongisporus (2), Sporopachydermia lactativora (3), and Clavispora lusitaniae (3) species. Regarding the adhesion properties, differences were observed among species. Yeasts preferred planktonic state when tested on polystyrene plates. On stainless-steel supports, adhered cells reached values of about 6 log CFU/mL. MAT structures were formed only by yeasts belonging to the Pichia genus. Yeast species showed different resistance to sanitizers, with peracetic acid being the most effective and active at low concentrations, with minimum inhibitory concentration (MIC) values ranging from 0.08% (v/v) to 1% (v/v). C. parapsilosis was the most sensible species. Data could be exploited to develop sustainable strategies to reduce wine contamination and establish tailored sanitizing procedures.
Collapse
|
39
|
Bhattacharya S, Bouklas T, Fries BC. Replicative Aging in Pathogenic Fungi. J Fungi (Basel) 2020; 7:6. [PMID: 33375605 PMCID: PMC7824483 DOI: 10.3390/jof7010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans, Candida auris, Candida glabrata, and Cryptococcus neoformans are pathogenic yeasts which can cause systemic infections in immune-compromised as well as immune-competent individuals. These yeasts undergo replicative aging analogous to a process first described in the nonpathogenic yeast Saccharomyces cerevisiae. The hallmark of replicative aging is the asymmetric cell division of mother yeast cells that leads to the production of a phenotypically distinct daughter cell. Several techniques to study aging that have been pioneered in S. cerevisiae have been adapted to study aging in other pathogenic yeasts. The studies indicate that aging is relevant for virulence in pathogenic fungi. As the mother yeast cell progressively ages, every ensuing asymmetric cell division leads to striking phenotypic changes, which results in increased antifungal and antiphagocytic resistance. This review summarizes the various techniques that are used to study replicative aging in pathogenic fungi along with their limitations. Additionally, the review summarizes some key phenotypic variations that have been identified and are associated with changes in virulence or resistance and thus promote persistence of older cells.
Collapse
Affiliation(s)
- Somanon Bhattacharya
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
| | - Tejas Bouklas
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568, USA
| | - Bettina C. Fries
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
40
|
Beaussart A, Feuillie C, El-Kirat-Chatel S. The microbial adhesive arsenal deciphered by atomic force microscopy. NANOSCALE 2020; 12:23885-23896. [PMID: 33289756 DOI: 10.1039/d0nr07492f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbes employ a variety of strategies to adhere to abiotic and biotic surfaces, as well as host cells. In addition to their surface physicochemical properties (e.g. charge, hydrophobic balance), microbes produce appendages (e.g. pili, fimbriae, flagella) and express adhesion proteins embedded in the cell wall or cell membrane, with adhesive domains targeting specific ligands or chemical properties. Atomic force microscopy (AFM) is perfectly suited to deciphering the adhesive properties of microbial cells. Notably, AFM imaging has revealed the cell wall topographical organization of live cells at unprecedented resolution, and AFM has a dual capability to probe adhesion at the single-cell and single-molecule levels. AFM is thus a powerful tool for unravelling the molecular mechanisms of microbial adhesion at scales ranging from individual molecular interactions to the behaviours of entire cells. In this review, we cover some of the major breakthroughs facilitated by AFM in deciphering the microbial adhesive arsenal, including the exciting development of anti-adhesive strategies.
Collapse
|
41
|
Jung KW, Lee KT, Bahn YS. A Signature-Tagged Mutagenesis (STM)-based murine-infectivity assay for Cryptococcus neoformans. J Microbiol 2020; 58:823-831. [PMID: 32989639 DOI: 10.1007/s12275-020-0341-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022]
Abstract
Signature-tagged mutagenesis (STM) is a high-throughput genetic technique that can be used to investigate the function of genes by constructing a large number of mutant strains with unique DNA identification tags, pooling them, and screening them for a particular phenotypic trait. STM was first designed for the identification of genes that contribute to the virulence or infectivity of a pathogen in its host. Recently, this method has also been applied for the identification of mutants with specific phenotypes, such as antifungal drug resistance and proliferation. In the present study, we describe an STM method for the identification of genes contributing to the infectivity of Cryptococcus neoformans using a mutant library, in which each strain was tagged with a unique DNA sequence.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup o56212, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
42
|
Hoffmann D, Diderrich R, Reithofer V, Friederichs S, Kock M, Essen LO, Mösch HU. Functional reprogramming of Candida glabrata epithelial adhesins: the role of conserved and variable structural motifs in ligand binding. J Biol Chem 2020; 295:12512-12524. [PMID: 32669365 DOI: 10.1074/jbc.ra120.013968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
For host-cell interaction, the human fungal pathogen Candida glabrata harbors a large family of more than 20 cell wall-attached epithelial adhesins (Epas). Epa family members are lectins with binding pockets containing several conserved and variable structural hot spots, which were implicated in mediating functional diversity. In this study, we have performed an elaborate structure-based mutational analysis of numerous Epa paralogs to generally determine the role of diverse structural hot spots in conferring host cell binding and ligand binding specificity. Our study reveals that several conserved structural motifs contribute to efficient host cell binding. Moreover, our directed motif exchange experiments reveal that the variable loop CBL2 is key for programming ligand binding specificity, albeit with limited predictability. In contrast, we find that the variable loop L1 affects host cell binding without significantly influencing the specificity of ligand binding. Our data strongly suggest that variation of numerous structural hot spots in the ligand binding pocket of Epa proteins is a main driver of their functional diversification and evolution.
Collapse
Affiliation(s)
- Daniel Hoffmann
- Department of Genetics, Philipps-Universität, Marburg, Germany
| | - Rike Diderrich
- Department of Genetics, Philipps-Universität, Marburg, Germany
| | | | | | - Michael Kock
- Department of Biochemistry, Philipps-Universität, Marburg, Germany
| | - Lars-Oliver Essen
- Department of Biochemistry, Philipps-Universität, Marburg, Germany .,Center for Synthetic Microbiology, Philipps-Universität, Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität, Marburg, Germany .,Center for Synthetic Microbiology, Philipps-Universität, Marburg, Germany
| |
Collapse
|
43
|
Tian Y, Zhuang Y, Chen Z, Mao Y, Zhang J, Lu R, Guo L. A gain-of-function mutation in PDR1 of Candida glabrata decreases EPA1 expression and attenuates adherence to epithelial cells through enhancing recruitment of the Mediator subunit Gal11A. Microbiol Res 2020; 239:126519. [PMID: 32563123 DOI: 10.1016/j.micres.2020.126519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 05/23/2020] [Indexed: 12/28/2022]
Abstract
Genetic studies have revealed critical roles of transcription factor Pdr1 and the Mediator subunit Gal11A in regulating azole resistance in Candida glabrata. Recently, PDR1 gain-of-function (GOF) mutations have been shown to not only increase azole resistance but also enhance adherence during C. glabrata infection. However, mechanism of how Pdr1 regulates adherence, especially the implication of PDR1 GOF mutations in the regulation of the major adhesin gene EPA1, remains uncharacterized. Initially, we unexpectedly observed that expression of PDR1 harbouring GOF mutation G346D down-regulated EPA1 transcription and attenuated adherence to epithelial cells in different strain backgrounds. Given that PDR1 GOF mutations have been previously regarded as stimulators for adherence of this species, these findings prompted us to explore the regulation of EPA1 by wild-type Pdr1 and Pdr1 harbouring G346D mutation. Epitope tagged version of Pdr1 and Gal11A were utilized to determine the association of Pdr1 and Gal11A with EPA1 promoter. A combination of approaches including deletion, molecular, and biochemical assays showed that EPA1 is a direct target of Pdr1, and demonstrated for the first time that PDR1 G346D mutation decreases EPA1 expression and attenuates adherence to epithelial cells via enhancing recruitment of Gal11A. Taken together, our data propose a critical role of Gal11A in Pdr1-regulated EPA1 expression and adherence to epithelial cells, which could be utilized a novel therapeutic target for the treatment of hyper-adherent C. glabrata infection.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yihui Zhuang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhujun Chen
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yinhe Mao
- Unit of Pathogenic Fungal Infection and Host Immunity, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jing Zhang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Raposo CJ, McElroy KA, Fuchs SM. The Epithelial adhesin 1 tandem repeat region mediates protein display through multiple mechanisms. FEMS Yeast Res 2020; 20:foaa018. [PMID: 32301985 PMCID: PMC7199969 DOI: 10.1093/femsyr/foaa018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
The pathogenic yeast Candida glabrata is reliant on a suite of cell surface adhesins that play a variety of roles necessary for transmission, establishment and proliferation during infection. One particular adhesin, Epithelial Adhesin 1 [Epa1p], is responsible for binding to host tissue, a process which is essential for fungal propagation. Epa1p structure consists of three domains: an N-terminal intercellular binding domain responsible for epithelial cell binding, a C-terminal GPI anchor for cell wall linkage and a serine/threonine-rich linker domain connecting these terminal domains. The linker domain contains a 40-amino acid tandem repeat region, which we have found to be variable in repeat copy number between isolates from clinical sources. We hypothesized that natural variation in Epa1p repeat copy may modulate protein function. To test this, we recombinantly expressed Epa1p with various repeat copy numbers in S. cerevisiae to determine how differences in repeat copy number affect Epa1p expression, surface display and binding to human epithelial cells. Our data suggest that repeat copy number variation has pleiotropic effects, influencing gene expression, protein surface display and shedding from the cell surface of the Epa1p adhesin. This study serves to demonstrate repeat copy number variation can modulate protein function through a number of mechanisms in order to contribute to pathogenicity of C. glabrata.
Collapse
Affiliation(s)
- Colin J Raposo
- Department of Biology , Tufts University, 200 Boston Ave Suite 4700, Medford, MA, USA 01255
| | - Kyle A McElroy
- Department of Biology , Tufts University, 200 Boston Ave Suite 4700, Medford, MA, USA 01255
- Allen Discovery Center, Tufts University, 200 Boston Ave Suite 4600, Medford, MA 02155
| | - Stephen M Fuchs
- Department of Biology , Tufts University, 200 Boston Ave Suite 4700, Medford, MA, USA 01255
- Allen Discovery Center, Tufts University, 200 Boston Ave Suite 4600, Medford, MA 02155
| |
Collapse
|
45
|
Understand the genomic diversity and evolution of fungal pathogen Candida glabrata by genome-wide analysis of genetic variations. Methods 2020; 176:82-90. [DOI: 10.1016/j.ymeth.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022] Open
|
46
|
Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes 2020; 6:7. [PMID: 32054862 PMCID: PMC7018694 DOI: 10.1038/s41522-020-0118-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/29/2020] [Indexed: 01/09/2023] Open
Abstract
Saccharomyces cerevisiae is a mainly beneficial yeast, widely used in the food industry. However, there is growing evidence of its potential pathogenicity, leading to fungemia and invasive infections. The medical impact of yeast pathogens depends on formation of biofilms: multicellular structures, protected from the environment. Cell adhesion is a prerequisite of biofilm formation. We investigated the adherence of wild and genetically modified S. cerevisiae strains, formation of solid-liquid interface biofilms and associated regulation. Planktonic and static cells of wild strain BRF adhered and formed biofilms in glucose-free medium. Tup1p and Cyc8p were key positive and negative regulators, respectively. Glucose caused increased Cyc8p levels and blocked cell adhesion. Even low glucose levels, comparable with levels in the blood, allowed biofilm dispersal and release of planktonic cells. Cyc8p could thus modulate cell adhesion in different niches, dependently on environmental glucose level, e.g., high-glucose blood versus low-glucose tissues in host organisms.
Collapse
|
47
|
Alves R, Kastora SL, Gomes-Gonçalves A, Azevedo N, Rodrigues CF, Silva S, Demuyser L, Van Dijck P, Casal M, Brown AJP, Henriques M, Paiva S. Transcriptional responses of Candida glabrata biofilm cells to fluconazole are modulated by the carbon source. NPJ Biofilms Microbiomes 2020; 6:4. [PMID: 31993211 PMCID: PMC6978337 DOI: 10.1038/s41522-020-0114-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Candida glabrata is an important human fungal pathogen known to trigger serious infections in immune-compromised individuals. Its ability to form biofilms, which exhibit high tolerance to antifungal treatments, has been considered as an important virulence factor. However, the mechanisms involving antifungal resistance in biofilms and the impact of host niche environments on these processes are still poorly defined. In this study, we performed a whole-transcriptome analysis of C. glabrata biofilm cells exposed to different environmental conditions and constraints in order to identify the molecular pathways involved in fluconazole resistance and understand how acidic pH niches, associated with the presence of acetic acid, are able to modulate these responses. We show that fluconazole treatment induces gene expression reprogramming in a carbon source and pH-dependent manner. This is particularly relevant for a set of genes involved in DNA replication, ergosterol, and ubiquinone biosynthesis. We also provide additional evidence that the loss of mitochondrial function is associated with fluconazole resistance, independently of the growth condition. Lastly, we propose that C. glabrata Mge1, a cochaperone involved in iron metabolism and protein import into the mitochondria, is a key regulator of fluconazole susceptibility during carbon and pH adaptation by reducing the metabolic flux towards toxic sterol formation. These new findings suggest that different host microenvironments influence directly the physiology of C. glabrata, with implications on how this pathogen responds to antifungal treatment. Our analyses identify several pathways that can be targeted and will potentially prove to be useful for developing new antifungals to treat biofilm-based infections.
Collapse
Grants
- MR/M026663/1 Medical Research Council
- MR/N006364/1 Medical Research Council
- MR/N006364/2 Medical Research Council
- This study was supported by the Portuguese National Funding Agency for Science, Research and Technology FCT (grant PTDC/BIAMIC/5184/2014). RA received FCT PhD fellowship (PD/BD/113813/2015). The authors gratefully acknowledge Edinburgh Genomics for RNA-Seq library preparation and sequencing. The work on CBMA was supported by the strategic program UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569). The work on CEB was supported by PEst-OE/EQB/LA0023/2013, from FCT, “BioHealth - Biotechnology and Bioengineering approaches to improve health quality", Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER and the project “Consolidating Research Expertize and Resources on Cellular and Molecular Biotechnology at CEB/IBB”, Ref. FCOMP-01-0124-FEDER-027462. The work in Aberdeen was also supported by the European Research Council through the advanced grant “STRIFE” (C-2009-AdG-249793), by the UK Medical Research Council (MR/M026663/1) and by the Medical Research Council Center for Medical Mycology and the University of Aberdeen (MR/N006364/1). The work at KU Leuven was supported by the Federation of European Biochemical Societies (FEBS) through a short-term fellowship awarded to RA and by the Fund for Scientific Research Flanders (FWO; WO.009.16N).
- Federation of European Biochemical Societies (FEBS)
- Strategic program UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569)
- European Research Council through the advanced grant “STRIFE” (C-2009-AdG-249793), UK Medical Research Council (MR/M026663/1) and Medical Research Council Center for Medical Mycology and the University of Aberdeen (MR/N006364/1
Collapse
Affiliation(s)
- Rosana Alves
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Stavroula L. Kastora
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | - Alexandra Gomes-Gonçalves
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Nuno Azevedo
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, Center for Biological Engineering, University of Minho, Braga, Portugal
| | - Célia F. Rodrigues
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, Center for Biological Engineering, University of Minho, Braga, Portugal
- LEPABE, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Sónia Silva
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, Center for Biological Engineering, University of Minho, Braga, Portugal
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Margarida Casal
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
- MRC Center for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Mariana Henriques
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, Center for Biological Engineering, University of Minho, Braga, Portugal
| | - Sandra Paiva
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
48
|
Romo JA, Kumamoto CA. On Commensalism of Candida. J Fungi (Basel) 2020; 6:E16. [PMID: 31963458 PMCID: PMC7151168 DOI: 10.3390/jof6010016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Candida species are both opportunistic fungal pathogens and common members of the human mycobiome. Over the years, the main focus of the fungal field has been on understanding the pathogenic potential and disease manifestation of these organisms. Therefore, understanding of their commensal lifestyle, interactions with host epithelial barriers, and initial transition into pathogenesis is less developed. In this review, we will describe the current knowledge on the commensal lifestyle of these fungi, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.
Collapse
Affiliation(s)
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
49
|
Kapoor M, Moloney M, Soltow QA, Pillar CM, Shaw KJ. Evaluation of Resistance Development to the Gwt1 Inhibitor Manogepix (APX001A) in Candida Species. Antimicrob Agents Chemother 2019; 64:e01387-19. [PMID: 31611349 PMCID: PMC7187586 DOI: 10.1128/aac.01387-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023] Open
Abstract
Manogepix (MGX) targets the conserved fungal Gwt1 enzyme required for acylation of inositol early in the glycosylphosphatidylinositol biosynthesis pathway. The prodrug fosmanogepix is currently in clinical development for the treatment of invasive fungal infections. We determined that the median frequencies of spontaneous mutations conferring reduced susceptibility to MGX in Candida albicans, C. glabrata, and C. parapsilosis ranged from 3 × 10-8 to <1.85 × 10-8 Serial passage on agar identified mutants of C. albicans and C. parapsilosis with reduced susceptibility to MGX; however, this methodology did not result in C. glabrata mutants with reduced susceptibility. Similarly, serial passage in broth resulted in ≤2-fold changes in population MIC values for C. tropicalis, C. auris, and C. glabrata A spontaneous V163A mutation in the Gwt1 protein of C. glabrata and a corresponding C. albicans heterozygous V162A mutant were obtained. A C. glabrata V163A Gwt1 mutant generated using CRISPR, along with V162A and V168A mutants expressed in C. albicans and Saccharomyces cerevisiae Gwt1, respectively, all demonstrated reduced susceptibility to MGX versus control strains, suggesting the importance of this valine residue to MGX binding across different species. Cross-resistance to the three major classes of antifungals was evaluated, but no changes in susceptibility to amphotericin B or caspofungin were observed in any mutant. No change was observed in fluconazole susceptibility, with the exception of a single non-Gwt1 mutant, where a 4-fold increase in the fluconazole MIC was observed. MGX demonstrated a relatively low potential for resistance development, consistent with other approved antifungal agents and those in clinical development.
Collapse
Affiliation(s)
- Mili Kapoor
- Amplyx Pharmaceuticals, San Diego, California, USA
| | | | | | | | | |
Collapse
|
50
|
Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Fungal Genet Biol 2019; 135:103287. [PMID: 31654781 DOI: 10.1016/j.fgb.2019.103287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/22/2022]
Abstract
Candida glabrata is an opportunistic fungal pathogen that can cause life-threatening infections in immunocompromised patients. To ensure a successful infection, C. glabrata has evolved a variety of strategies to avoid killing within the host. One of these strategies is the resistance to oxidative stress. Here we show that the sulfiredoxin Srx1 and the peroxiredoxins, Tsa1 and Tsa2, are implicated in the oxidative stress response (OSR) and required for virulence. We analyzed null mutations in SRX1, TSA1 and TSA2 and showed that TSA2 and SRX1 are required to respond to oxidative stress. While TSA1 expression is constitutive, SRX1 and TSA2 are induced in the presence of H2O2 in a process dependent on H2O2 concentration and on both transcription factors Yap1 and Skn7. Msn2 and Msn4 are not necessary for the regulation of SRX1, TSA1 and TSA2. Interestingly, TSA1 and TSA2, which are localized in the cytoplasm, are induced in the presence of neutrophils and required for survival in these phagocytic cells.
Collapse
|