1
|
Wu Y, Zhou W, Qiu Y, Wang S, Liu J, Chen Y, Xu X, Liu Y. 4D Assembly of Time-dependent Lanthanide Supramolecular Multicolor Phosphorescence for Encryption and Visual Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415418. [PMID: 39950854 PMCID: PMC11984880 DOI: 10.1002/advs.202415418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/21/2025] [Indexed: 04/12/2025]
Abstract
Supramolecular dynamic room temperature phosphorescence (RTP) is the focus of current research because of its wide application in biological imaging and information anti-counterfeiting. Herein, a time-dependent supramolecular lanthanide phosphorescent 4D assembly material with multicolor luminescence including white, which is composed of 4-(4-bromophenyl)-pyridine salt derivative (G), inorganic clay (LP)/Eu complex and pyridine dicarboxylic acid (DPA) is reported. Compared with the self-assembled nanoparticle G, the lamellar assembly G/LP showed the double emission of fluorescence at 380 nm and phosphorescence at 516 nm over time. Within 60 min, the phosphorescence lifetime and the quantum yield increases from none to 7.4 ms and 27.53% respectively, achieving the time-dependent phosphorescence emission, due to the limitation of progressive stacking of LP electrostatically driven "domino effect." Furthermore, the 4D assembly of DPA and G/LP/Eu leads to a time-resolved multicolor emission from colorless to purple to white, which is successfully applied to information multi-level logic anti-counterfeiting and efficiently antibiotic selective sensor.
Collapse
Affiliation(s)
- Yun‐Ga Wu
- College of Chemistry and Material ScienceInner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional MoleculesInnovation Team of Optical Functional Molecular DevicesInner Mongolia Minzu UniversityTongliao028000P. R. China
| | - Wei‐Lei Zhou
- College of Chemistry and Material ScienceInner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional MoleculesInnovation Team of Optical Functional Molecular DevicesInner Mongolia Minzu UniversityTongliao028000P. R. China
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Yugui Qiu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- College of Chemistry and Environmental ScienceXinjiang Key Laboratory of Novel Functional Materials ChemistryKashi UniversityKashi844000P. R. China
| | - Siwei Wang
- College of Chemistry and Material ScienceInner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional MoleculesInnovation Team of Optical Functional Molecular DevicesInner Mongolia Minzu UniversityTongliao028000P. R. China
| | - Jinglin Liu
- College of Chemistry and Material ScienceInner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional MoleculesInnovation Team of Optical Functional Molecular DevicesInner Mongolia Minzu UniversityTongliao028000P. R. China
| | - Yong Chen
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Xiufang Xu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|
2
|
Fogo GM, Raghunayakula S, Emaus KJ, Torres Torres FJ, Shangguan G, Wider JM, Hüttemann M, Sanderson TH. Mitochondrial dynamics and quality control regulate proteostasis in neuronal ischemia-reperfusion. Autophagy 2025:1-15. [PMID: 40016670 DOI: 10.1080/15548627.2025.2472586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Mitochondrial damage and dysfunction are hallmarks of neuronal injury during cerebral ischemia-reperfusion (I/R). Critical mitochondrial functions including energy production and cell signaling are perturbed during I/R, often exacerbating damage and contributing to secondary injury. The integrity of the mitochondrial proteome is essential for efficient function. Mitochondrial proteostasis is mediated by the cooperative forces of mitophagy and intramitochondrial proteolysis. The aim of this study was to elucidate the patterns of mitochondrial protein dynamics and their key regulators during an in vitro model of neuronal I/R injury. Utilizing the MitoTimer reporter, we quantified mitochondrial protein oxidation and turnover during I/R injury, highlighting a key point at 2 h reoxygenation for aged/oxidized protein turnover. This turnover was found to be mediated by both LONP1-dependent proteolysis and PRKN/parkin-dependent mitophagy. Additionally, the proteostatic response of neuronal mitochondria is influenced by both mitochondrial fusion and fission machinery. Our findings highlight the involvement of both mitophagy and intramitochondrial proteolysis in the response to I/R injury.Abbreviations: cKO: conditional knockout; CLPP: caseinolytic mitochondrial matrix peptidase proteolytic subunit; DIV: days in vitro; DNM1L/DRP1: dynamin 1 like; ETC: electron transport chain; hR: hours after reoxygenation; I/R: ischemia-reperfusion; LONP1: lon peptidase 1, mitochondrial; mtUPR: mitochondrial unfolded protein response; OGD: oxygen glucose deprivation; OGD/R: oxygen glucose deprivation and reoxygenation; OPA1: OPA1 mitochondrial dynamin like GTPase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROI: region of interest; WT: wild-type.
Collapse
Affiliation(s)
- Garrett M Fogo
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Ann Romney Center for Neurologic Diseases, Department Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katlynn J Emaus
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Gary Shangguan
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph M Wider
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Thomas H Sanderson
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, USA
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Borrelli MJ, Kolendowski B, DiMattia GE, Shepherd TG. Spatiotemporal analysis of ratiometric biosensors in live multicellular spheroids using SPoRTS. CELL REPORTS METHODS 2025; 5:100987. [PMID: 39965566 PMCID: PMC11955269 DOI: 10.1016/j.crmeth.2025.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Here, we describe SPoRTS, an open-source workflow for high-throughput spatiotemporal image analysis of fluorescence-based ratiometric biosensors in living spheroids. To achieve this, we have implemented a fully automated algorithm for the acquisition of line intensity profile data, ultimately enabling semi-quantitative measurement of biosensor activity as a function of distance from the center of the spheroid. We demonstrate the functionality of SPoRTS via spatial analysis of live spheroids expressing a ratiometric biosensor based on the fluorescent, ubiquitin-based cell-cycle indicator (FUCCI) system, which identifies mitotic cells. We compare this FUCCI-based SPoRTS analysis with spatially quantified immunostaining for proliferation markers, finding that the results are strongly correlated.
Collapse
Affiliation(s)
- Matthew J Borrelli
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada; Department of Anatomy and Cell Biology, Western University, London, ON N6A 5C1, Canada
| | - Bart Kolendowski
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada
| | - Gabriel E DiMattia
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada; Department of Oncology, Western University, London, ON N6A 5W9, Canada; Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
| | - Trevor G Shepherd
- The Mary and John Knight Translational Ovarian Cancer Research Unit, Verspeeten Family Cancer Centre, London, ON N6A 5W9, Canada; Department of Anatomy and Cell Biology, Western University, London, ON N6A 5C1, Canada; Department of Oncology, Western University, London, ON N6A 5W9, Canada; Department of Obstetrics and Gynecology, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
4
|
Ono M. TockyPrep: data preprocessing methods for flow cytometric fluorescent timer analysis. BMC Bioinformatics 2025; 26:44. [PMID: 39923022 PMCID: PMC11807314 DOI: 10.1186/s12859-025-06058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Fluorescent Timer proteins, which display time-dependent changes in their emission spectra, are invaluable for analyzing the temporal dynamics of cellular events at the single-cell level. We previously developed the Timer-of-cell-kinetics-and-activity (Tocky) tools, utilizing a specific Timer protein, Fast-FT, to monitor temporal changes in cellular activities. Despite their potential, the analysis of Timer fluorescence in flow cytometry is frequently compromised by variability in instrument settings and the absence of standardized preprocessing methods. The development and implementation of effective data preprocessing methods remain to be achieved. RESULTS In this study, we introduce the R package that automates the data preprocessing of Timer fluorescence data from flow cytometry experiments for quantitative analysis at single-cell level. Our aim is to standardize Timer data analysis to enhance reproducibility and accuracy across different experimental setups. The package includes a trigonometric transformation method to elucidate the dynamics of Fluorescent Timer proteins. We have identified the normalization of immature and mature Timer fluorescence data as essential for robust analysis, clarifying how this normalization affects the analysis of Timer maturation. These preprocessing methods are all encapsulated within the TockyPrep package. CONCLUSIONS TockyPrep is available for distribution via GitHub at https://github.com/MonoTockyLab/TockyPrep , providing tools for data preprocessing and basic visualization of Timer fluorescence data. This toolkit is expected to enhance the utility of experimental systems utilizing Fluorescent Timer proteins, including the Tocky tools.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
5
|
Sanial M, Miled R, Alves M, Claret S, Joly N, Proux‐Gillardeaux V, Plessis A, Léon S. Direct observation of fluorescent proteins in gels: A rapid, cost-efficient, and quantitative alternative to immunoblotting. Biol Cell 2025; 117:e2400161. [PMID: 39924827 PMCID: PMC11808229 DOI: 10.1111/boc.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND INFORMATION The discovery of green fluorescent protein (GFP) and its derivatives has revolutionized cell biology. These fluorescent proteins (FPs) have enabled the real-time observation of protein localization and dynamics within live cells. Applications of FP vary from monitoring gene/protein expression patterns, visualizing protein-protein interactions, measuring protein stability, assessing protein mobility, and creating biosensors. The utility of FPs also extends to biochemical approaches through immunoblotting and proteomic analyses, aided by anti-FP antibodies and nanobodies. FPs are notoriously robust proteins with a tightly folded domain that confers a strong stability and a relative resistance to degradation and denaturation. METHODS AND RESULTS In this study, we report that various green, orange, and red FPs can be maintained in a native, fluorescent state during the entire process of protein sample extraction, incubation with sample buffer, loading, and migration on SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) with only minor adaptations of traditional protocols. This protocol results in the ability to detect and quantify in-gel fluorescence (IGF) of endogenously-expressed proteins tagged with FPs directly after migration, using standard fluorescence-imaging devices. This approach eliminates the need for antibodies and chemiluminescent reagents, as well as the time-consuming steps inherent in immunoblotting such as transfer onto a membrane and antibody incubations. CONCLUSIONS AND SIGNIFICANCE Overall, IGF detection provides clearer data with less background interference, a sensitivity comparable to or better than antibody-based detection, a better quantification, and a broader dynamic range. After fluorescence imaging, gels can still be used for other applications such as total protein staining or immunoblotting if needed. It also expands possibilities by allowing the detection of FPs for which antibodies are not available. Our study explores the feasibility, limitations, and applications of IGF for detecting endogenously expressed proteins in cell extracts, providing insights into sample preparation, imaging conditions, and sensitivity optimizations, and potential applications such as co-immunoprecipitation experiments.
Collapse
Affiliation(s)
| | - Ryan Miled
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Marine Alves
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Sandra Claret
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Nicolas Joly
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | | | - Anne Plessis
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| | - Sébastien Léon
- CNRSInstitut Jacques MonodUniversité Paris CitéParisFrance
| |
Collapse
|
6
|
Liu Y, Lin Y, Lei Y, Xie W, Wei Y, Zhang H, Zhuang X, Cao H, Wang X. Early developmental anomalies in zebrafish (Danio rerio) embryos induced by the Clematis florida Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118897. [PMID: 39369922 DOI: 10.1016/j.jep.2024.118897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The C.florida. is one of the common medicines used by She population in China, with therapeutic effects of promoting blood circulation and anti-inflammatory. According to the acute toxicity grading standard of chemical substances, this herb is a low-toxicity herb. At present, the safety of C.florida., especially its impact on early embryonic development, is still unclear. AIM OF THE STUDY This study investigated the toxic effects of C. florida. on early embryonic development using a zebrafish embryo model. MATERIALS AND METHODS In this study, we used zebrafish embryos exposed to C.florida. at early stage to assess the early developmental toxicity by analyzing the developmental toxicity phenotype, oxidative stress, cell apoptosis, total enzyme activity, behavioral trajectory, and gene expression levels. RESULTS Embryos of the zebrafish exposed to different concentrations of C.florida. exhibited multiple organs and systems developmental disorders, including the heart, vessels, brain, bone, liver, and so on. Especially, with the increase of drug concentration, it is observed that the developmental malformations of the cardiovascular structure and function in larvae are becoming increasingly severe. In addition, results show that the abnormalities in embryonic development may be attributed to oxidative stress induced by apoptosis and activation of immune system resulting from an imbalance in the hematopoietic system. CONCLUSIONS This study provides a comprehensive and detailed summary of the toxic effects of C.florida. on embryonic development, which contributes to a deeper understanding of the potential adverse developmental consequences, and also prompt people to pay considerable attention to its treatment in medicinal practice.
Collapse
Affiliation(s)
- Yingying Liu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350013, China; Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350011, China
| | - Yuan Lin
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350013, China; Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350011, China
| | - Yuqing Lei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350013, China
| | - Wenpeng Xie
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350011, China
| | - Yalan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350013, China
| | - Haitao Zhang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350013, China
| | - Xudong Zhuang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350013, China
| | - Hua Cao
- Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350013, China.
| |
Collapse
|
7
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Terada Y, Obara K, Yoshioka Y, Ochiya T, Bito H, Tsuchida K, Ageta H, Ageta-Ishihara N. Intracellular dynamics of ubiquitin-like 3 visualized using an inducible fluorescent timer expression system. Biol Open 2024; 13:bio060345. [PMID: 39498724 PMCID: PMC11556312 DOI: 10.1242/bio.060345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Exosomes are small extracellular vesicles (sEVs) secreted via multivesicular bodies (MVBs)/late endosomes and mediators of cell-cell communication. We previously reported a novel post-translational modification by ubiquitin-like 3 (UBL3). UBL3 is localized in MVBs and the plasma membrane and released outside as sEVs, including exosomes. Approximately 60% of proteins sorted in sEVs are affected by UBL3 and localized in various organelles, the plasma membrane, and the cytosol, suggesting that its dynamic movement in the cell before entering the MVBs. To examine the intracellular dynamics of UBL3, we constructed a sophisticated visualization system via fusing fluorescent timers that changed from blue to red form over time with UBL3 and by its expression under Tet-on regulation. Intriguingly, we found that after synthesis, UBL3 was initially distributed within the cytosol. Subsequently, UBL3 was localized to MVBs and the plasma membrane and finally showed predominant accumulation in MVBs. Furthermore, by super-resolution microscopy analysis, UBL3 was found to be associated with one of its substrates, α-tubulin, in the cytosol, and the complex was subsequently transported to MVBs. This spatiotemporal visualization system for UBL3 will form a basis for further studies to elucidate when and where UBL3 associates with its substrates/binding proteins before localization in MVBs.
Collapse
Affiliation(s)
- Yuka Terada
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kumi Obara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Natsumi Ageta-Ishihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
9
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
10
|
Sarker FA, Chen Y, Westhaus A, Lisowski L, O'Neill GM. Identifying adeno-associated virus (AAV) vectors that efficiently target high grade glioma cells, for in vitro monitoring of temporal cell responses. FEBS Open Bio 2024; 14:1914-1925. [PMID: 39256894 PMCID: PMC11532971 DOI: 10.1002/2211-5463.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
To improve the translation of preclinical cancer research data to successful clinical effect, there is an increasing focus on the use of primary patient-derived cancer cells with limited growth in culture to reduce genetic and phenotype drift. However, these primary lines are less amenable to standardly used methods of exogenous DNA introduction. Adeno-associated viral (AAV) vectors display tropism for a wide range of human tissues, avidly infect primary cells and have a good safety profile. In the present study, we therefore used a next-generation sequencing (NGS) barcoded AAV screening method to assess transduction capability of a panel of 36 AAVs in primary cell lines representing high-grade glioma (HGG) brain tumours including glioblastoma (GBM) and diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). As proof of principle, we created a reporter construct to analyse activity of the transcriptional co-activators yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). Transcriptional activation was monitored by promoter-driven expression of the Timer fluorescent tag, a protein that fluoresces green immediately after transcription and transitions to red fluorescence over time. As expected, attempts to express the reporter in primary HGG cells from plasmid expression vectors were unsuccessful. Using the top candidate from the AAV screen, we demonstrate successful AAV-mediated transduction of HGG cells with the YAP/TAZ dynamic activity reporter. In summary, the NGS-screening approach facilitated screening of many potential AAVs, identifying vectors that can be used to study the biology of primary HGG cells.
Collapse
Affiliation(s)
- Farhana A. Sarker
- Children's Hospital Clinical School, Faculty of Medicine and HealthUniversity of SydneyAustralia
- Children's Cancer Research UnitThe Children's Hospital at WestmeadSydneyAustralia
| | - Yuyan Chen
- Children's Hospital Clinical School, Faculty of Medicine and HealthUniversity of SydneyAustralia
- Children's Cancer Research UnitThe Children's Hospital at WestmeadSydneyAustralia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteThe University of SydneyWestmeadAustralia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteThe University of SydneyWestmeadAustralia
- Australian Genome Therapeutics CentreChildren's Medical Research Institute and Sydney Children's Hospitals NetworkWestmeadAustralia
- Laboratory of Molecular Oncology and Innovative TherapiesMilitary Institute of MedicineWarsawPoland
| | - Geraldine M. O'Neill
- Children's Hospital Clinical School, Faculty of Medicine and HealthUniversity of SydneyAustralia
- Children's Cancer Research UnitThe Children's Hospital at WestmeadSydneyAustralia
| |
Collapse
|
11
|
Lee DS, Schrader A, Zou J, Ang WH, Warchol ME, Sheets L. Direct targeting of mitochondria by cisplatin leads to cytotoxicity in zebrafish lateral-line hair cells. iScience 2024; 27:110975. [PMID: 39398243 PMCID: PMC11466657 DOI: 10.1016/j.isci.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Cisplatin is a chemotherapy drug that causes permanent hearing loss by injuring cochlear hair cells. Hair cell mitochondria have emerged as potential mediators of hair cell cytotoxicity. Using in vivo live imaging of hair cells in the zebrafish lateral-line organ expressing a genetically encoded indicator of cumulative mitochondrial activity, we first demonstrate that greater redox history increases susceptibility to cisplatin. Next, we conducted time-lapse imaging to understand dynamic changes in mitochondrial homeostasis and observe elevated mitochondrial and cytosolic calcium that surge prior to hair cell death. Furthermore, using a localized probe that fluoresces in the presence of cisplatin, we show that cisplatin directly accumulates in hair cell mitochondria, and this accumulation occurs before mitochondrial dysregulation and apoptosis. Our findings provide evidence that cisplatin directly targets hair cell mitochondria and support that the mitochondria are integral to cisplatin cytotoxicity in hair cells.
Collapse
Affiliation(s)
- David S. Lee
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela Schrader
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiaoxia Zou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School – Integrated Science and Engineering Programme (ISEP), National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Mark E. Warchol
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lavinia Sheets
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Lee DS, Schrader A, Zou J, Ang WH, Warchol M, Sheets L. Cisplatin drives mitochondrial dysregulation in sensory hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577846. [PMID: 38352581 PMCID: PMC10862698 DOI: 10.1101/2024.01.29.577846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
Abstract
Cisplatin is a chemotherapy drug that causes permanent hearing loss by injuring cochlear hair cells. The mechanisms that initiate injury are not fully understood, but mitochondria have emerged as potential mediators of hair cell cytotoxicity. Using in vivo live imaging of hair cells in the zebrafish lateral-line organ expressing a genetically encoded indicator of cumulative mitochondrial activity, we first demonstrate that greater redox history increases susceptibility to cisplatin. Next, we conducted time-lapse imaging to understand dynamic changes in mitochondrial homeostasis and observe elevated mitochondrial and cytosolic calcium that surge prior to hair cell death. Furthermore, using a localized probe that fluoresces in the presence of cisplatin, we show that cisplatin directly accumulates in hair cell mitochondria, and this accumulation occurs before mitochondrial dysregulation and apoptosis. Our findings provide evidence that cisplatin directly targets hair cell mitochondria and support that the mitochondria are integral to cisplatin cytotoxicity in hair cells.
Collapse
|
13
|
Goldman C, Kareva T, Sarrafha L, Schuldt BR, Sahasrabudhe A, Ahfeldt T, Blanchard JW. Genetically Encoded and Modular SubCellular Organelle Probes (GEM-SCOPe) reveal lysosomal and mitochondrial dysfunction driven by PRKN knockout. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594886. [PMID: 38979135 PMCID: PMC11230217 DOI: 10.1101/2024.05.21.594886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cellular processes including lysosomal and mitochondrial dysfunction are implicated in the development of many diseases. Quantitative visualization of mitochondria and lysosoesl is crucial to understand how these organelles are dysregulated during disease. To address a gap in live-imaging tools, we developed GEM-SCOPe (Genetically Encoded and Modular SubCellular Organelle Probes), a modular toolbox of fluorescent markers designed to inform on localization, distribution, turnover, and oxidative stress of specific organelles. We expressed GEM-SCOPe in differentiated astrocytes and neurons from a human pluripotent stem cell PRKN-knockout model of Parkinson's disease and identified disease-associated changes in proliferation, lysosomal distribution, mitochondrial transport and turnover, and reactive oxygen species. We demonstrate GEM-SCOPe is a powerful panel that provide critical insight into the subcellular mechanisms underlying Parkinson's disease in human cells. GEM-SCOPe can be expanded upon and applied to a diversity of cellular models to glean an understanding of the mechanisms that promote disease onset and progression.
Collapse
Affiliation(s)
- Camille Goldman
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Tatyana Kareva
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Lily Sarrafha
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Braxton R. Schuldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Abhishek Sahasrabudhe
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Joel W. Blanchard
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Lead Contact
| |
Collapse
|
14
|
Peter M, Shipman S, Heo J, Macklis JD. Limitations of fluorescent timer protein maturation kinetics to isolate transcriptionally synchronized human neural progenitor cells. iScience 2024; 27:109911. [PMID: 38784012 PMCID: PMC11111830 DOI: 10.1016/j.isci.2024.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Differentiation of human pluripotent stem cells (hPSCs) into subtype-specific neurons holds substantial potential for disease modeling in vitro. For successful differentiation, a detailed understanding of the transcriptional networks regulating cell fate decisions is critical. The heterochronic nature of neurodevelopment, during which distinct cells in the brain and during in vitro differentiation acquire their fates in an unsynchronized manner, hinders pooled transcriptional comparisons. One approach is to "translate" chronologic time into linear developmental and maturational time. Simple binary promotor-driven fluorescent proteins (FPs) to pool similar cells are unable to achieve this goal, due to asynchronous promotor onset in individual cells. We tested five fluorescent timer (FT) molecules expressed from the endogenous paired box 6 (PAX6) promoter in 293T and human hPSCs. Each of these FT systems faithfully reported chronologic time in 293T cells, but none of the FT constructs followed the same fluorescence kinetics in human neural progenitor cells.
Collapse
Affiliation(s)
- Manuel Peter
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Seth Shipman
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jaewon Heo
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Rose K, Chen N, Andreev A, Chen J, Kefalov VJ, Chen J. Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors. Curr Biol 2024; 34:1492-1505.e6. [PMID: 38508186 PMCID: PMC11003846 DOI: 10.1016/j.cub.2024.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Vision under dim light relies on primary cilia elaborated by rod photoreceptors in the retina. This specialized sensory structure, called the rod outer segment (ROS), comprises hundreds of stacked, membranous discs containing the light-sensitive protein rhodopsin, and the incorporation of new discs into the ROS is essential for maintaining the rod's health and function. ROS renewal appears to be primarily regulated by extrinsic factors (light); however, results vary depending on different model organisms. We generated two independent transgenic mouse lines where rhodopsin's fate is tracked by a fluorescently labeled rhodopsin fusion protein (Rho-Timer) and show that rhodopsin incorporation into nascent ROS discs appears to be regulated by both external lighting cues and autonomous retinal clocks. Live-cell imaging of the ROS isolated from mice exposed to six unique lighting conditions demonstrates that ROS formation occurs in a periodic manner in cyclic light, constant darkness, and artificial light/dark cycles. This alternating bright/weak banding of Rho-Timer along the length of the ROS relates to inhomogeneities in rhodopsin density and potential points of structural weakness. In addition, we reveal that prolonged dim ambient light exposure impacts not only the rhodopsin content of new discs but also that of older discs, suggesting a dynamic interchange of material between new and old discs. Furthermore, we show that rhodopsin incorporation into the ROS is greatly altered in two autosomal recessive retinitis pigmentosa mouse models, potentially contributing to the pathogenesis. Our findings provide insights into how extrinsic (light) and intrinsic (retinal clocks and genetic mutation) factors dynamically regulate mammalian ROS renewal.
Collapse
Affiliation(s)
- Kasey Rose
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Natalie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Andrey Andreev
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiayan Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine CA 92697, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
16
|
Schulte M, Grotheer L, Hensel M. Bright individuals: Applications of fluorescent protein-based reporter systems in single-cell cellular microbiology. Mol Microbiol 2024; 121:605-617. [PMID: 38234267 DOI: 10.1111/mmi.15227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Activation and function of virulence functions of bacterial pathogens are highly dynamic in time and space, and can show considerable heterogeneity between individual cells in pathogen populations. To investigate the complex events in host-pathogen interactions, single cell analyses are required. Fluorescent proteins (FPs) are excellent tools to follow the fate of individual bacterial cells during infection, and can also be deployed to use the pathogen as a sensor for its specific environment in host cells or host organisms. This Resources describes design and applications of dual fluorescence reporters (DFR) in cellular microbiology. DFR feature constitutively expressed FPs for detection of bacterial cells, and FPs expressed by an environmentally regulated promoter for interrogation of niche-specific cues or nutritional parameters. Variations of the basic design allow the generation of DFR that can be used to analyze, on single cell level, bacterial proliferation during infection, subcellular localization of intracellular bacteria, stress response, or persister state. We describe basic considerations for DFR design and review recent applications of DFR in cellular microbiology.
Collapse
Affiliation(s)
- Marc Schulte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Luisa Grotheer
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
17
|
Leung HH, Mansour C, Rousseau M, Nakhla A, Kiselyov K, Venkatachalam K, Wong CO. Drosophila tweety facilitates autophagy to regulate mitochondrial homeostasis and bioenergetics in Glia. Glia 2024; 72:433-451. [PMID: 37870193 PMCID: PMC10842981 DOI: 10.1002/glia.24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.
Collapse
Affiliation(s)
- Ho Hang Leung
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Present address: South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Christina Mansour
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Morgan Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Anwar Nakhla
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
18
|
Himuro M, Wakabayashi Y, Taguchi T, Katahira T, Suzuki L, Iida H, Ogihara T, Nishida Y, Sasaki S, Lynn FC, Hiraoka Y, Oshima S, Okamoto R, Fujitani Y, Watada H, Miyatsuka T. Novel time-resolved reporter mouse reveals spatial and transcriptional heterogeneity during alpha cell differentiation. Diabetologia 2024; 67:156-169. [PMID: 37870650 DOI: 10.1007/s00125-023-06028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.
Collapse
Affiliation(s)
- Miwa Himuro
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Wakabayashi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Taguchi
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takehiro Katahira
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Luka Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Iida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Ogihara
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan.
| |
Collapse
|
19
|
Ossa-Hernández N, Marins LF, Almeida RV, Almeida DV. Red Fluorescent Protein Variant with a Dual-Peak Emission of Fluorescence. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1099-1109. [PMID: 37864761 DOI: 10.1007/s10126-023-10262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
The marine environment is a rich reservoir of diverse biological entities, many of which possess unique properties that are of immense value to biotechnological applications. One such example is the red fluorescent protein derived from the coral Discosoma sp. This protein, encoded by the DsRed gene, has been the subject of extensive research due to its potential applications in various fields. In the study, a variant of the red fluorescent protein was generated through random mutagenesis using the DsRed2 gene as a template. The process employed error-prone PCR (epPCR) to introduce random mutations, leading to the isolation of twelve gene variants. Among these, one variant stood out due to its unique spectral properties, exhibiting dual fluorescence emission at both 480 nm (green) and 550 nm (red). This novel variant was expressed in both Escherichia coli and zebrafish (Danio rerio) muscle, confirming the dual fluorescence emission in both model systems. One of the immediate applications of this novel protein variant is in ornamental aquaculture. The dual fluorescence can serve as a unique marker or trait, enhancing the aesthetic appeal of aquatic species in ornamental settings.
Collapse
Affiliation(s)
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Rodrigo Volcan Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Daniela Volcan Almeida
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas (UFPEL), Campus Universitário Capão do Leão s/n, CEP, Pelotas, RS, 96160-000, Brazil.
| |
Collapse
|
20
|
Sindeeva OA, Demina PA, Kozyreva ZV, Muslimov AR, Gusliakova OI, Laushkina VO, Mordovina EA, Tsyupka D, Epifanovskaya OS, Sapach AY, Goryacheva IY, Sukhorukov GB. Labeling and Tracking of Individual Human Mesenchymal Stromal Cells Using Photoconvertible Fluorescent Microcapsules. Int J Mol Sci 2023; 24:13665. [PMID: 37686471 PMCID: PMC10488098 DOI: 10.3390/ijms241713665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as "gold standard" to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines. A crucial disadvantage of this method is the need for genetic modification of the primary culture, which casts doubt on the possibility of exploring the resulting clones in personalized medicine. Here we present a new approach for labeling and tracking hMSCs without genetic modification based on the application of cell-internalizable photoconvertible polyelectrolyte microcapsules (size: 2.6 ± 0.5 μm). These capsules were loaded with rhodamine B, and after thermal treatment, exhibited fluorescent photoconversion properties. Photoconvertible capsules demonstrated low cytotoxicity, did not affect the immunophenotype of the hMSCs, and maintained a high level of fluorescent signal for at least seven days. The developed approach was tested for cell tracking for four days and made it possible to trace the destiny of daughter cells without the need for additional labeling.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; (Z.V.K.); (O.I.G.); (A.Y.S.); (I.Y.G.)
| | - Polina A. Demina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (P.A.D.); (E.A.M.); (D.T.)
| | - Zhanna V. Kozyreva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; (Z.V.K.); (O.I.G.); (A.Y.S.); (I.Y.G.)
| | - Albert R. Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia;
- Laboratory of Nano and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia; (V.O.L.); (O.S.E.)
| | - Olga I. Gusliakova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; (Z.V.K.); (O.I.G.); (A.Y.S.); (I.Y.G.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (P.A.D.); (E.A.M.); (D.T.)
| | - Valeriia O. Laushkina
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia; (V.O.L.); (O.S.E.)
| | - Ekaterina A. Mordovina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (P.A.D.); (E.A.M.); (D.T.)
| | - Daria Tsyupka
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (P.A.D.); (E.A.M.); (D.T.)
| | - Olga S. Epifanovskaya
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia; (V.O.L.); (O.S.E.)
| | - Anastasiia Yu. Sapach
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; (Z.V.K.); (O.I.G.); (A.Y.S.); (I.Y.G.)
| | - Irina Yu. Goryacheva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; (Z.V.K.); (O.I.G.); (A.Y.S.); (I.Y.G.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (P.A.D.); (E.A.M.); (D.T.)
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia; (Z.V.K.); (O.I.G.); (A.Y.S.); (I.Y.G.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
21
|
Peter M, Shipman S, Macklis JD. Limitations of fluorescent timer protein maturation kinetics to isolate transcriptionally synchronized cortically differentiating human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552012. [PMID: 37609140 PMCID: PMC10441295 DOI: 10.1101/2023.08.04.552012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Differentiation of human pluripotent stem cells (hPSC) into distinct neuronal populations holds substantial potential for disease modeling in vitro, toward both elucidation of pathobiological mechanisms and screening of potential therapeutic agents. For successful differentiation of hPSCs into subtype-specific neurons using in vitro protocols, detailed understanding of the transcriptional networks and their dynamic programs regulating endogenous cell fate decisions is critical. One major roadblock is the heterochronic nature of neurodevelopment, during which distinct cells and cell types in the brain and during in vitro differentiation mature and acquire their fates in an unsynchronized manner, hindering pooled transcriptional comparisons. One potential approach is to "translate" chronologic time into linear developmental and maturational time. Attempts to partially achieve this using simple binary promotor-driven fluorescent proteins (FPs) to pool similar cells have not been able to achieve this goal, due to asynchrony of promotor onset in individual cells. Toward solving this, we generated and tested a range of knock-in hPSC lines that express five distinct dual FP timer systems or single time-resolved fluorescent timer (FT) molecules, either in 293T cells or in human hPSCs driving expression from the endogenous paired box 6 (PAX6) promoter of cerebral cortex progenitors. While each of these dual FP or FT systems faithfully reported chronologic time when expressed from a strong inducible promoter in 293T cells, none of the tested FP/FT constructs followed the same fluorescence kinetics in developing human neural progenitor cells, and were unsuccessful in identification and isolation of distinct, developmentally synchronized cortical progenitor populations based on ratiometric fluorescence. This work highlights unique and often surprising expression kinetics and regulation in specific cell types differentiating from hPSCs.
Collapse
Affiliation(s)
- Manuel Peter
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Seth Shipman
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Current Address: Gladstone Institute of Data Science and Biotechnology, and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
22
|
Syahirah R, Beckman J, Malik H, Hsu AY, Deng Q. Method for Visualization of Emergency Granulopoiesis in the Zebrafish Embryo. Zebrafish 2023; 20:175-179. [PMID: 37306974 PMCID: PMC10495196 DOI: 10.1089/zeb.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Emergency granulopoiesis (EG) is a response to severe inflammation in which increased neutrophils are generated in the hematopoietic tissue. Photolabeling is utilized to distinguish newly developed neutrophils from existing neutrophils. However, this technique requires a strong laser line and labels subsets of the existing neutrophils. Here we create a transgenic zebrafish line that expresses a time-dependent switch from green fluorescent protein (GFP) to red fluorescent protein (RFP) in neutrophils, which allows quantification of EG using simple GFP/RFP ratiometric imaging.
Collapse
Affiliation(s)
- Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer Beckman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Hanna Malik
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Alan Y. Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
23
|
Kamienieva I, Charzyńska A, Duszyński J, Malińska D, Szczepanowska J. In search for mitochondrial biomarkers of Parkinson's disease: Findings in parkin-mutant human fibroblasts. Biochim Biophys Acta Mol Basis Dis 2023:166787. [PMID: 37302428 DOI: 10.1016/j.bbadis.2023.166787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Most cases of Parkinson's disease (PD) are idiopathic, with unknown aetiology and genetic background. However, approximately 10 % of cases are caused by defined genetic mutations, among which mutations in the parkin gene are the most common. There is increasing evidence of the involvement of mitochondrial dysfunction in the development of both idiopathic and genetic PD. However, the data on mitochondrial changes reported by different studies are inconsistent, which can reflect the variability in genetic background of the disease. Mitochondria, as a plastic and dynamic organelles, are the first place in the cell to respond to external and internal stress. In this work, we characterized mitochondrial function and dynamics (network morphology and turnover regulation) in primary fibroblasts from PD patients with parkin mutations. We performed clustering analysis of the obtained data to compare the profiles of mitochondrial parameters in PD patients and healthy donors. This allowed to extract the features characteristic for PD patients fibroblasts, which were a smaller and less complex mitochondrial network and decreased levels of mitochondrial biogenesis regulators and mitophagy mediators. The approach we used allowed a comprehensive characteristics of elements common for mitochondrial dynamics remodelling accompanying pathogenic mutation. This may be helpful in the deciphering key pathomechanisms of the PD disease.
Collapse
Affiliation(s)
- Iryna Kamienieva
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Agata Charzyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland.
| |
Collapse
|
24
|
Demina PA, Sindeeva OA, Abramova AM, Saveleva MS, Sukhorukov GB, Goryacheva IY. Fluorescent polymer markers photoconvertible with a 532 nm laser for individual cell labeling. JOURNAL OF BIOPHOTONICS 2023; 16:e202200379. [PMID: 36726223 DOI: 10.1002/jbio.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/07/2023]
Abstract
Fluorescent photoconvertible materials and molecules have been successfully exploited as bioimaging markers and cell trackers. Recently, the novel fluorescent photoconvertible polymer markers have been developed that allow the long-term tracking of individual labeled cells. However, it is still necessary to study the functionality of this type of fluorescent labels for various operating conditions, in particular for commonly used discrete wavelength lasers. In this article, the photoconversion of fluorescent polymer labels with both pulsed and continuous-wave lasers with 532 nm-irradiation wavelength, and under different laser power densities were studied. The photoconversion process was described and its possible mechanism was proposed. The peculiarities of fluorescent polymer capsules performance as an aqueous suspension and as a single capsule were described. We performed the successful nondestructivity marker photoconversion inside RAW 264.7 monocyte/macrophage cells under continuous-wave laser with 532 nm-irradiation wavelength, showing prospects of these fluorescent markers for long-term live cell labeling.
Collapse
Affiliation(s)
- P A Demina
- Science Medical Center, Saratov State University, Saratov, Russia
| | - O A Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A M Abramova
- Science Medical Center, Saratov State University, Saratov, Russia
| | - M S Saveleva
- Science Medical Center, Saratov State University, Saratov, Russia
| | - G B Sukhorukov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - I Y Goryacheva
- Science Medical Center, Saratov State University, Saratov, Russia
| |
Collapse
|
25
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Subach OM, Vlaskina AV, Agapova YK, Nikolaeva AY, Anokhin KV, Piatkevich KD, Patrushev MV, Boyko KM, Subach FV. Blue-to-Red TagFT, mTagFT, mTsFT, and Green-to-FarRed mNeptusFT2 Proteins, Genetically Encoded True and Tandem Fluorescent Timers. Int J Mol Sci 2023; 24:ijms24043279. [PMID: 36834686 PMCID: PMC9963904 DOI: 10.3390/ijms24043279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent maturation of two forms with different colors. However, tFTs are limited to derivatives of the mCherry and mRuby red fluorescent proteins and have low brightness and photostability. The number of tdFTs is also limited, and there are no blue-to-red or green-to-far-red tdFTs. tFTs and tdFTs have not previously been directly compared. Here, we engineered novel blue-to-red tFTs, called TagFT and mTagFT, which were derived from the TagRFP protein. The main spectral and timing characteristics of the TagFT and mTagFT timers were determined in vitro. The brightnesses and photoconversions of the TagFT and mTagFT tFTs were characterized in live mammalian cells. The engineered split version of the TagFT timer matured in mammalian cells at 37 °C and allowed the detection of interactions between two proteins. The TagFT timer under the control of the minimal arc promoter, successfully visualized immediate-early gene induction in neuronal cultures. We also developed and optimized green-to-far-red and blue-to-red tdFTs, named mNeptusFT and mTsFT, which were based on mNeptune-sfGFP and mTagBFP2-mScarlet fusion proteins, respectively. We developed the FucciFT2 system based on the TagFT-hCdt1-100/mNeptusFT2-hGeminin combination, which could visualize the transitions between the G1 and S/G2/M phases of the cell cycle with better resolution than the conventional Fucci system because of the fluorescent color changes of the timers over time in different phases of the cell cycle. Finally, we determined the X-ray crystal structure of the mTagFT timer and analyzed it using directed mutagenesis.
Collapse
Affiliation(s)
- Oksana M. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Anna V. Vlaskina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Yulia K. Agapova
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Alena Y. Nikolaeva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Konstantin V. Anokhin
- Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Kiryl D. Piatkevich
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Maxim V. Patrushev
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
- Correspondence: ; Tel.: +7-499-196-7100-3389
| |
Collapse
|
27
|
Maddison DC, Mattedi F, Vagnoni A, Smith GA. Analysis of Mitochondrial Dynamics in Adult Drosophila Axons. Cold Spring Harb Protoc 2023; 2023:75-83. [PMID: 36180217 DOI: 10.1101/pdb.top107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal survival depends on the generation of ATP from an ever-changing mitochondrial network. This requires a fine balance between the constant degradation of damaged mitochondria, biogenesis of new mitochondria, movement along microtubules, dynamic processes, and adequate functional capacity to meet firing demands. The distribution of mitochondria needs to be tightly controlled throughout the entire neuron, including its projections. Axons in particular can be enormous structures compared to the size of the cell soma, and how mitochondria are maintained in these compartments is poorly defined. Mitochondrial dysfunction in neurons is associated with aging and neurodegenerative diseases, with the axon being preferentially vulnerable to destruction. Drosophila offer a unique way to study these organelles in fully differentiated adult neurons in vivo. Here, we briefly review the regulation of neuronal mitochondria in health, aging, and disease and introduce two methodological approaches to study mitochondrial dynamics and transport in axons using the Drosophila wing system.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Gaynor Ann Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
28
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
29
|
Mamana J, Humber GM, Espinal ER, Seo S, Vollmuth N, Sin J, Kim BJ. Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells. Front Cell Infect Microbiol 2023; 13:1171275. [PMID: 37139492 PMCID: PMC10149843 DOI: 10.3389/fcimb.2023.1171275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain.
Collapse
Affiliation(s)
- Julia Mamana
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Gabrielle M. Humber
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Eric R. Espinal
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Soojung Seo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Nadine Vollmuth
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jon Sin, ; Brandon J. Kim,
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jon Sin, ; Brandon J. Kim,
| |
Collapse
|
30
|
Ma X, Ding WX. Methods for Monitoring Mitochondrial Biogenesis and Turnover in Cultured Hepatocytes and Mouse Liver Using MitoTimer Reporter Assay. Methods Mol Biol 2023; 2675:97-107. [PMID: 37258758 DOI: 10.1007/978-1-0716-3247-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mitochondrial biogenesis and turnover rate are critical to maintain homeostasis of the intracellular mitochondrial pool. Altered mitochondrial biogenesis and mitophagy are closely related to many chronic diseases, highlighting the importance of mitochondrial stasis in various pathological conditions including liver diseases. We describe a detailed protocol for monitoring mitochondrial lifecycle in primary cultured mouse hepatocytes and mouse liver using the dual color fluorescence-based imaging of MitoTimer. Three types of mitochondria were visualized in mouse hepatocytes: green-only mitochondria (newly synthesized mitochondria), red-only mitochondria (old/aging mitochondria), as well as the majority of yellow mitochondria (representing an intermediate stage of mitochondria). The ratio of red/green fluorescence in each cell will be used to track mitochondrial aging. Super-resolution microscopy analysis revealed that majority of mitochondria were spatially heterogeneous with proteins from simultaneous new synthesis, maturation, and turnover in hepatocytes. MitoTimer reporter assay can specifically target to mitochondria and be used to monitor mitochondrial biogenesis and maturation as well as turnover in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
31
|
Xie Y, Zhang Y, Sun A, Peng Y, Hou W, Xiang C, Zhang G, Lai B, Hou X, Zheng F, Wang F, Liu G. The coupling of mitoproteolysis and oxidative phosphorylation enables tracking of an active mitochondrial state through MitoTimer fluorescence. Redox Biol 2022; 56:102447. [PMID: 36027677 PMCID: PMC9425061 DOI: 10.1016/j.redox.2022.102447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The regulation of mitochondria function and health is a central node in tissue maintenance, ageing as well as the pathogenesis of various diseases. However, the maintenance of an active mitochondrial functional state and its quality control mechanisms remain incompletely understood. By studying mice with a mitochondria-targeted reporter that shifts its fluorescence from "green" to "red" with time (MitoTimer), we found MitoTimer fluorescence spectrum was heavily dependent on the oxidative metabolic state in the skeletal muscle fibers. The mitoproteolytic activity was enhanced in an energy dependent manner, and accelerated the turnover of MitoTimer protein and respiratory chain substrate, responsible for a green predominant MitoTimer fluorescence spectrum under the oxidative conditions. PGC1α, as well as anti-ageing regents promoted enhanced mitoproteolysis. In addition, cells with the green predominant mitochondria exhibited lower levels of MitoSox and protein carbonylation, indicating a favorable redox state. Thus, we identified MitoTimer as a probe for mitoproteolytic activity in vivo and found a heightened control of mitoproteolysis in the oxidative metabolic state, providing a framework for understanding the maintenance of active oxidative metabolism while limiting oxidative damages.
Collapse
Affiliation(s)
- Yinyin Xie
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Yannan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Aina Sun
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Yamei Peng
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Weikang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Cong Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Guoxin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Beibei Lai
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Xiaoshuang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Fangfang Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Fan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China
| | - Geng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tec District, Nanjing, JiangSu Province, 210061, China.
| |
Collapse
|
32
|
Marro FC, Laurent F, Josse J, Blocker AJ. Methods to monitor bacterial growth and replicative rates at the single-cell level. FEMS Microbiol Rev 2022; 46:6623663. [PMID: 35772001 PMCID: PMC9629498 DOI: 10.1093/femsre/fuac030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
The heterogeneity of bacterial growth and replicative rates within a population was proposed a century ago notably to explain the presence of bacterial persisters. The term "growth rate" at the single-cell level corresponds to the increase in size or mass of an individual bacterium while the "replicative rate" refers to its division capacity within a defined temporality. After a decades long hiatus, recent technical innovative approaches allow population growth and replicative rates heterogeneity monitoring at the single-cell level resuming in earnest. Among these techniques, the oldest and widely used is time-lapse microscopy, most recently combined with microfluidics. We also discuss recent fluorescence dilution methods informing only on replicative rates and best suited. Some new elegant single cell methods so far only sporadically used such as buoyant mass measurement and stable isotope probing have emerged. Overall, such tools are widely used to investigate and compare the growth and replicative rates of bacteria displaying drug-persistent behaviors to that of bacteria growing in specific ecological niches or collected from patients. In this review, we describe the current methods available, discussing both the type of queries these have been used to answer and the specific strengths and limitations of each method.
Collapse
Affiliation(s)
- Florian C Marro
- Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, Gerland, 69007 Lyon, France,CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Frédéric Laurent
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France,Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Université Claude Bernard Lyon 1, Lyon, France,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc Lyon; www.crioac-lyon.fr), Hospices Civils de Lyon, Lyon, France,Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France,Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Université Claude Bernard Lyon 1, Lyon, France,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc Lyon; www.crioac-lyon.fr), Hospices Civils de Lyon, Lyon, France
| | - Ariel J Blocker
- Corresponding author. Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, France. E-mail:
| |
Collapse
|
33
|
Sasaki S, Lee MYY, Wakabayashi Y, Suzuki L, Winata H, Himuro M, Matsuoka TA, Shimomura I, Watada H, Lynn FC, Miyatsuka T. Spatial and transcriptional heterogeneity of pancreatic beta cell neogenesis revealed by a time-resolved reporter system. Diabetologia 2022; 65:811-828. [PMID: 35243521 DOI: 10.1007/s00125-022-05662-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS While pancreatic beta cells have been shown to originate from endocrine progenitors in ductal regions, it remains unclear precisely where beta cells emerge from and which transcripts define newborn beta cells. We therefore investigated characteristics of newborn beta cells extracted by a time-resolved reporter system. METHODS We established a mouse model, 'Ins1-GFP; Timer', which provides spatial information during beta cell neogenesis with high temporal resolution. Single-cell RNA-sequencing (scRNA-seq) was performed on mouse beta cells sorted by fluorescent reporter to uncover transcriptomic profiles of newborn beta cells. scRNA-seq of human embryonic stem cell (hESC)-derived beta-like cells was also performed to compare newborn beta cell features between mouse and human. RESULTS Fluorescence imaging of Ins1-GFP; Timer mouse pancreas successfully dissected newly generated beta cells as green fluorescence-dominant cells. This reporter system revealed that, as expected, some newborn beta cells arise close to the ducts (βduct); unexpectedly, the others arise away from the ducts and adjacent to blood vessels (βvessel). Single-cell transcriptomic analyses demonstrated five distinct populations among newborn beta cells, confirming spatial heterogeneity of beta cell neogenesis such as high probability of glucagon-positive βduct, musculoaponeurotic fibrosarcoma oncogene family B (MafB)-positive βduct and musculoaponeurotic fibrosarcoma oncogene family A (MafA)-positive βvessel cells. Comparative analysis with scRNA-seq data of mouse newborn beta cells and hESC-derived beta-like cells uncovered transcriptional similarity between mouse and human beta cell neogenesis including microsomal glutathione S-transferase 1 (MGST1)- and synaptotagmin 13 (SYT13)-highly-expressing state. CONCLUSIONS/INTERPRETATION The combination of time-resolved histological imaging with single-cell transcriptional mapping demonstrated novel features of spatial and transcriptional heterogeneity in beta cell neogenesis, which will lead to a better understanding of beta cell differentiation for future cell therapy. DATA AVAILABILITY Raw and processed single-cell RNA-sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE155742.
Collapse
Affiliation(s)
- Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Michelle Y Y Lee
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yuka Wakabayashi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Luka Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Helena Winata
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Miwa Himuro
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Surgery, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
34
|
Jetto CT, Nambiar A, Manjithaya R. Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Front Cell Dev Biol 2022; 10:837337. [PMID: 35392168 PMCID: PMC8981085 DOI: 10.3389/fcell.2022.837337] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway, involves lysosomal degradation of damaged and superfluous cytosolic contents to maintain cellular homeostasis. While autophagy was initially perceived as a bulk degradation process, a surfeit of studies in the last 2 decades has revealed that it can also be selective in choosing intracellular constituents for degradation. In addition to the core autophagy machinery, these selective autophagy pathways comprise of distinct molecular players that are involved in the capture of specific cargoes. The diverse organelles that are degraded by selective autophagy pathways are endoplasmic reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among these, the main focus of this review is on the selective autophagic pathway involved in mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse mechanisms involving a complex interplay of a multitude of proteins that confers the selective recognition of damaged mitochondria and their targeting to degradation via autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane depolarisation, enhanced ROS production, mtDNA damage as well as developmental cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte maturation and somatic cell reprogramming. As research on the mechanistic aspects of this complex pathway is progressing, emerging roles of new players such as the NIPSNAP proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored. Although diverse aspects of this pathway are being investigated in depth, several outstanding questions such as distinct molecular players of basal mitophagy, selective dominance of a particular mitophagy adapter protein over the other in a given physiological condition, molecular mechanism of how specific disease mutations affect this pathway remain to be addressed. In this review, we aim to give an overview with special emphasis on molecular and signalling pathways of mitophagy and its dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Cuckoo Teresa Jetto
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- *Correspondence: Ravi Manjithaya,
| |
Collapse
|
35
|
Subach OM, Tashkeev A, Vlaskina AV, Petrenko DE, Gaivoronskii FA, Nikolaeva AY, Ivashkina OI, Anokhin KV, Popov VO, Boyko KM, Subach FV. The mRubyFT Protein, Genetically Encoded Blue-to-Red Fluorescent Timer. Int J Mol Sci 2022; 23:ijms23063208. [PMID: 35328628 PMCID: PMC8952768 DOI: 10.3390/ijms23063208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
Genetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms of mFTs are 2–3- and 5–7-fold dimmer compared to the brightness of the enhanced green fluorescent protein (EGFP). To address this limitation, we developed a blue-to-red fluorescent timer, named mRubyFT, derived from the bright mRuby2 red fluorescent protein. The blue form of mRubyFT reached its maximum at 5.7 h and completely transformed into the red form that had a maturation half-time of 15 h. Blue and red forms of purified mRubyFT were 4.1-fold brighter and 1.3-fold dimmer than the respective forms of the mCherry-derived Fast-FT timer in vitro. When expressed in mammalian cells, both forms of mRubyFT were 1.3-fold brighter than the respective forms of Fast-FT. The violet light-induced blue-to-red photoconversion was 4.2-fold less efficient in the case of mRubyFT timer compared to the same photoconversion of the Fast-FT timer. The timer behavior of mRubyFT was confirmed in mammalian cells. The monomeric properties of mRubyFT allowed the labeling and confocal imaging of cytoskeleton proteins in live mammalian cells. The X-ray structure of the red form of mRubyFT at 1.5 Å resolution was obtained and analyzed. The role of the residues from the chromophore surrounding was studied using site-directed mutagenesis.
Collapse
Affiliation(s)
- Oksana M. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (A.V.V.); (D.E.P.); (A.Y.N.); (O.I.I.); (V.O.P.)
| | - Aleksandr Tashkeev
- Unit of Animal Genomics, GIGA Research Center, University of Liège, 4000 Liege, Belgium;
| | - Anna V. Vlaskina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (A.V.V.); (D.E.P.); (A.Y.N.); (O.I.I.); (V.O.P.)
| | - Dmitry E. Petrenko
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (A.V.V.); (D.E.P.); (A.Y.N.); (O.I.I.); (V.O.P.)
| | - Filipp A. Gaivoronskii
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (F.A.G.); (K.M.B.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alena Y. Nikolaeva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (A.V.V.); (D.E.P.); (A.Y.N.); (O.I.I.); (V.O.P.)
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (F.A.G.); (K.M.B.)
| | - Olga I. Ivashkina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (A.V.V.); (D.E.P.); (A.Y.N.); (O.I.I.); (V.O.P.)
- Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Konstantin V. Anokhin
- Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir O. Popov
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (A.V.V.); (D.E.P.); (A.Y.N.); (O.I.I.); (V.O.P.)
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (F.A.G.); (K.M.B.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (F.A.G.); (K.M.B.)
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141700 Moscow, Russia
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (A.V.V.); (D.E.P.); (A.Y.N.); (O.I.I.); (V.O.P.)
- Correspondence: ; Tel.: +7-499-196-7100-3389
| |
Collapse
|
36
|
Gaus B, Brüning D, Groß S, Müller M, Rustenbeck I. The changing view of insulin granule mobility: From conveyor belt to signaling hub. Front Endocrinol (Lausanne) 2022; 13:983152. [PMID: 36120467 PMCID: PMC9478610 DOI: 10.3389/fendo.2022.983152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Before the advent of TIRF microscopy the fate of the insulin granule prior to secretion was deduced from biochemical investigations, electron microscopy and electrophysiological measurements. Since Calcium-triggered granule fusion is indisputably necessary to release insulin into the extracellular space, much effort was directed to the measure this event at the single granule level. This has also been the major application of the TIRF microscopy of the pancreatic beta cell when it became available about 20 years ago. To better understand the metabolic modulation of secretion, we were interested to characterize the entirety of the insulin granules which are localized in the vicinity of the plasma membrane to identify the characteristics which predispose to fusion. In this review we concentrate on how the description of granule mobility in the submembrane space has evolved as a result of progress in methodology. The granules are in a state of constant turnover with widely different periods of residence in this space. While granule fusion is associated +with prolonged residence and decreased lateral mobility, these characteristics may not only result from binding to the plasma membrane but also from binding to the cortical actin web, which is present in the immediate submembrane space. While granule age as such affects granule mobility and fusion probability, the preceding functional states of the beta cell leave their mark on these parameters, too. In summary, the submembrane granules form a highly dynamic heterogeneous population and contribute to the metabolic memory of the beta cells.
Collapse
Affiliation(s)
- Bastian Gaus
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sofie Groß
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Ingo Rustenbeck,
| |
Collapse
|
37
|
Gaus B, Brüning D, Hatlapatka K, Rustenbeck I. Changes in granule mobility and age contribute to changes in insulin secretion after desensitization or rest. BMJ Open Diabetes Res Care 2021; 9:9/1/e002394. [PMID: 34620619 PMCID: PMC8499263 DOI: 10.1136/bmjdrc-2021-002394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Functional impairment of the stimulus secretion coupling in pancreatic beta cells is an essential component of type 2 diabetes. It is known that prolonged stimulation desensitizes the secretion of insulin and thus contributes to beta cell dysfunction. Beta cell rest, in contrast, was shown to enhance the secretory response. Here, the underlying mechanisms were investigated. RESEARCH DESIGN AND METHODS To characterize the consequences of desensitization or rest for the number and mobility of submembrane granules, insulin-secreting MIN6 cells were desensitized by 18-hour culture with 500 µM tolbutamide or rested by 18-hour culture with 1 µM clonidine. The granules were labeled by hIns-EGFP or hIns-DsRed E5, imaged by TIRF microscopy of the cell footprint area and analyzed with an observer-independent program. Additionally, the insulin content and secretion were measured. RESULTS Concurrent with the insulin content, submembrane granules were only slightly reduced after desensitization but markedly increased after rest. Both types of pretreatment diminished arrivals and departures of granules in the submembrane space and increased the proportion of immobile long-term resident granules, but desensitization lowered and rest increased the number of exocytoses, in parallel with the effect on insulin secretion. Labeling with hIns-DsRed E5 ('timer') showed that desensitization did not affect the proportion of aged granules, whereas rest increased it. Aged granules showed a high mobility and made up only a minority of long-term residents. Long-term resident granules were more numerous after rest and had a lower lateral mobility, suggesting a firmer attachment to the membrane. CONCLUSION The number, mobility and age of submembrane granules reflect the preceding functional states of insulin-secreting cells. Representing the pool of releasable granules, their quantity and quality may thus form part of the beta cell memory on renewed stimulation.
Collapse
Affiliation(s)
- Bastian Gaus
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dennis Brüning
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin Hatlapatka
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
- DHD-Consulting GmbH, Hildesheim, Germany
| | - Ingo Rustenbeck
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
38
|
Buhlman LM, Krishna G, Jones TB, Thomas TC. Drosophila as a model to explore secondary injury cascades after traumatic brain injury. Biomed Pharmacother 2021; 142:112079. [PMID: 34463269 PMCID: PMC8458259 DOI: 10.1016/j.biopha.2021.112079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Drosophilae are emerging as a valuable model to study traumatic brain injury (TBI)-induced secondary injury cascades that drive persisting neuroinflammation and neurodegenerative pathology that imposes significant risk for long-term neurological deficits. As in mammals, TBI in Drosophila triggers axonal injury, metabolic crisis, oxidative stress, and a robust innate immune response. Subsequent neurodegeneration stresses quality control systems and perpetuates an environment for neuroprotection, regeneration, and delayed cell death via highly conserved cell signaling pathways. Fly injury models continue to be developed and validated for both whole-body and head-specific injury to isolate, evaluate, and modulate these parallel pathways. In conjunction with powerful genetic tools, the ability for longitudinal evaluation, and associated neurological deficits that can be tested with established behavioral tasks, Drosophilae are an attractive model to explore secondary injury cascades and therapeutic intervention after TBI. Here, we review similarities and differences between mammalian and fly pathophysiology and highlight strategies for their use in translational neurotrauma research.
Collapse
Affiliation(s)
- Lori M Buhlman
- Biomedical Sciences Program, Midwestern University, Glendale, AZ, USA.
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - T Bucky Jones
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| |
Collapse
|
39
|
The Cutting Edge of Disease Modeling: Synergy of Induced Pluripotent Stem Cell Technology and Genetically Encoded Biosensors. Biomedicines 2021; 9:biomedicines9080960. [PMID: 34440164 PMCID: PMC8392144 DOI: 10.3390/biomedicines9080960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The development of cell models of human diseases based on induced pluripotent stem cells (iPSCs) and a cell therapy approach based on differentiated iPSC derivatives has provided a powerful stimulus in modern biomedical research development. Moreover, it led to the creation of personalized regenerative medicine. Due to this, in the last decade, the pathological mechanisms of many monogenic diseases at the cell level have been revealed, and clinical trials of various cell products derived from iPSCs have begun. However, it is necessary to reach a qualitatively new level of research with cell models of diseases based on iPSCs for more efficient searching and testing of drugs. Biosensor technology has a great application prospect together with iPSCs. Biosensors enable researchers to monitor ions, molecules, enzyme activities, and channel conformation in live cells and use them in live imaging and drug screening. These probes facilitate the measurement of steady-state concentrations or activity levels and the observation and quantification of in vivo flux and kinetics. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of the false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the benefits of using biosensors in drug screening. Here, we discuss the possibilities of using biosensor technology in combination with cell models based on human iPSCs and gene editing systems. Furthermore, we focus on the current achievements and problems of using these methods.
Collapse
|
40
|
Modifying TIMER to generate a slow-folding DsRed derivative for optimal use in quickly-dividing bacteria. PLoS Pathog 2021; 17:e1009284. [PMID: 34214139 PMCID: PMC8291646 DOI: 10.1371/journal.ppat.1009284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/20/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
It is now well appreciated that members of pathogenic bacterial populations exhibit heterogeneity in growth rates and metabolic activity, and it is known this can impact the ability to eliminate all members of the bacterial population during antibiotic treatment. It remains unclear which pathways promote slowed bacterial growth within host tissues, primarily because it has been difficult to identify and isolate slow growing bacteria from host tissues for downstream analyses. To overcome this limitation, we have developed a novel variant of TIMER, a slow-folding fluorescent protein, named DsRed42, to identify subsets of slowly dividing bacteria within host tissues. The original TIMER folds too slowly for fluorescence accumulation in quickly replicating bacterial species (Escherichia coli, Yersinia pseudotuberculosis), however DsRed42 accumulates red fluorescence in late stationary phase cultures of E. coli and Y. pseudotuberculosis. We show DsRed42 signal also accumulates during exposure to sources of nitric oxide (NO), suggesting DsRed42 signal detects growth-arrested bacterial cells. In a mouse model of Y. pseudotuberculosis deep tissue infection, DsRed42 signal was detected, and primarily accumulates in bacteria expressing markers of stationary phase growth. There was no significant overlap between DsRed42 signal and NO-exposed subpopulations of bacteria within host tissues, suggesting NO stress was transient, allowing bacteria to recover from this stress and resume replication. This novel DsRed42 variant represents a tool that will enable additional studies of slow-growing subpopulations of bacteria, specifically within bacterial species that quickly divide. We have generated a variant of TIMER that can be used to mark slow-growing subsets of Yersinia pseudotuberculosis, which has a relatively short division time, similar to E. coli. We used a combination of site-directed and random mutagenesis to generate DsRed42, which has red fluorescent signal accumulation in post-exponential or stationary phase cells. Since this variant accumulates only red fluorescence, it is no longer a TIMER protein, and is more appropriately termed DsRed42. We found that nitric oxide (NO) stress is sufficient to promote DsRed42 signal accumulation in culture, however within host tissues, DsRed42 signal correlates with a stationary phase reporter (dps). These results suggest NO may cause an immediate arrest in bacterial cell division, but during growth in host tissues exposure to NO is transient, allowing bacteria to recover from this stress and resume cell division. Thus instead of indicating a response to host stressors, DsRed42 signal accumulation within host tissues appears to identify slow-growing cells that are experiencing nutrient limitation.
Collapse
|
41
|
Releasing latent Toxoplasma gondii cysts from host cells to the extracellular environment induces excystation. Int J Parasitol 2021; 51:999-1006. [PMID: 34081969 DOI: 10.1016/j.ijpara.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii, an obligate intracellular protozoan parasite, infects a wide variety of mammals and birds. Although T. gondii infects the brain and muscles in its latent cyst form containing bradyzoite stage parasites during chronic infection, when a chronically infected host becomes immunodeficient or is preyed upon by a predator, the latent cyst undergoes excystation. However, it is not yet known how T. gondii recognises the triggers of excystation in the microenvironment surrounding the cyst. In this study, we incubated T. gondii cysts from host cells in several solutions containing a variety of ionic compositions. Excystation occurred in a solution with an ionic composition which mimicked that of the extracellular environment. However, excystation did not occur in a solution that mimicked the intracellular environment. We also found that the specific Na+/K+ ratio and the presence of Ca2+, mimicking the extracellular environment, are required to trigger excystation. To examine whether the stage conversion of bradyzoite to tachyzoite occurs prior to egress, we constructed a gene-modified T. gondii strain expressing a green fluorescent protein specifically in the tachyzoite stage. During the process of cyst reactivation of this strain, green fluorescence was detected prior to excystation. This suggests that stage conversion from bradyzoite to tachyzoite occurs prior to cyst disruption. These results indicate that T. gondii bradyzoites monitor the ionic composition of their surroundings to recognise their expulsion from host cells, to effectively time their excystation and stage conversion.
Collapse
|
42
|
Demina PA, Sindeeva OA, Abramova AM, Prikhozhdenko ES, Verkhovskii RA, Lengert EV, Sapelkin AV, Goryacheva IY, Sukhorukov GB. Fluorescent Convertible Capsule Coding Systems for Individual Cell Labeling and Tracking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19701-19709. [PMID: 33900738 DOI: 10.1021/acsami.1c02767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.
Collapse
Affiliation(s)
- Polina A Demina
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna M Abramova
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | | | | | | | - Andrei V Sapelkin
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | | | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
43
|
Luk CH, Valenzuela C, Gil M, Swistak L, Bomme P, Chang YY, Mallet A, Enninga J. Salmonella enters a dormant state within human epithelial cells for persistent infection. PLoS Pathog 2021; 17:e1009550. [PMID: 33930101 PMCID: PMC8115778 DOI: 10.1371/journal.ppat.1009550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/12/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Salmonella Typhimurium (S. Typhimurium) is an enteric bacterium capable of invading a wide range of hosts, including rodents and humans. It targets different host cell types showing different intracellular lifestyles. S. Typhimurium colonizes different intracellular niches and is able to either actively divide at various rates or remain dormant to persist. A comprehensive tool to determine these distinct S. Typhimurium lifestyles remains lacking. Here we developed a novel fluorescent reporter, Salmonella INtracellular Analyzer (SINA), compatible for fluorescence microscopy and flow cytometry in single-bacterium level quantification. This identified a S. Typhimurium subpopulation in infected epithelial cells that exhibits a unique phenotype in comparison to the previously documented vacuolar or cytosolic S. Typhimurium. This subpopulation entered a dormant state in a vesicular compartment distinct from the conventional Salmonella-containing vacuoles (SCV) as well as the previously reported niche of dormant S. Typhimurium in macrophages. The dormant S. Typhimurium inside enterocytes were viable and expressed Salmonella Pathogenicity Island 2 (SPI-2) virulence factors at later time points. We found that the formation of these dormant S. Typhimurium is not triggered by the loss of SPI-2 effector secretion but it is regulated by (p)ppGpp-mediated stringent response through RelA and SpoT. We predict that intraepithelial dormant S. Typhimurium represents an important pathogen niche and provides an alternative strategy for S. Typhimurium pathogenicity and its persistence. Salmonella Typhimurium is a clinically relevant bacterial pathogen that causes Salmonellosis. It can actively or passively invade various host cell types and reside in a Salmonella-containing vacuole (SCV) within host cells. The SCV can be remodeled into a replicative niche with the aid of Salmonella Type III Secretion System 2 (T3SS2) effectors or else, the SCV is ruptured for the access of the nutrient-rich host cytosol. Depending on the infected host cell type, S. Typhimurium undertake different lifestyles that are distinct by their subcellular localization, replication rate and metabolic rate. We present here a novel fluorescent reporter system that rapidly detects S. Typhimurium lifestyles using fluorescence microscopy and flow cytometry. We identified a dormant S. Typhimurium population within enterocyte that displays capacities in host cell persistence, dormancy exit and antibiotic tolerance. We deciphered the (p)ppGpp stringent response pathway that suppresses S. Typhimurium dormancy in enterocytes while promoting dormancy in macrophages, pinpointing a divergent physiological consequence regulated by the same set of S. Typhimurium molecular mediators. Altogether, our work demonstrated the potential of fluorescent reporters in facile bacterial characterization, and revealed a dormant S. Typhimurium population in human enterocytes that are phenotypically distinct from that observed in macrophages and fibroblasts.
Collapse
Affiliation(s)
- Chak Hon Luk
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Camila Valenzuela
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Magdalena Gil
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Léa Swistak
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Perrine Bomme
- Ultrastructural Bioimaging UTechS, C2RT, Institut Pasteur, Paris, France
| | - Yuen-Yan Chang
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Adeline Mallet
- Ultrastructural Bioimaging UTechS, C2RT, Institut Pasteur, Paris, France
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
44
|
Chronic cold exposure induces autophagy to promote fatty acid oxidation, mitochondrial turnover, and thermogenesis in brown adipose tissue. iScience 2021; 24:102434. [PMID: 34027318 PMCID: PMC8134067 DOI: 10.1016/j.isci.2021.102434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 01/31/2023] Open
Abstract
Autophagy plays an important role in lipid breakdown, mitochondrial turnover, and mitochondrial function during brown adipose tissue (BAT) activation by thyroid hormone, but its role in BAT during adaptive thermogenesis remains controversial. Here, we examined BAT from mice exposed to 72 h of cold challenge as well as primary brown adipocytes treated with norepinephrine and found increased autophagy as well as increased β-oxidation, mitophagy, mitochondrial turnover, and mitochondrial activity. To further understand the role of autophagy of BAT in vivo, we generated BAT-specific Atg5 knockout (Atg5cKO) mice and exposed them to cold for 72 h. Interestingly, BAT-specific Atg5cKO mice were unable to maintain body temperature after chronic cold exposure and displayed deranged mitochondrial morphology and reactive oxygen species damage in their BAT. Our findings demonstrate the critical role of autophagy in adaptive thermogenesis, fatty acid metabolism, and mitochondrial function in BAT during chronic cold exposure.
Collapse
|
45
|
Onishi M, Okamoto K. Mitochondrial clearance: mechanisms and roles in cellular fitness. FEBS Lett 2021; 595:1239-1263. [PMID: 33615465 DOI: 10.1002/1873-3468.14060] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Mitophagy is one of the selective autophagy pathways that catabolizes dysfunctional or superfluous mitochondria. Under mitophagy-inducing conditions, mitochondria are labeled with specific molecular landmarks that recruit the autophagy machinery to the surface of mitochondria, enclosed into autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degradation. As damaged mitochondria are the major sources of reactive oxygen species, mitophagy is critical for mitochondrial quality control and cellular health. Moreover, appropriate control of mitochondrial quantity via mitophagy is vital for the energy supply-demand balance in cells and whole organisms, cell differentiation, and developmental programs. Thus, it seems conceivable that defects in mitophagy could elicit pleiotropic pathologies such as excess inflammation, tissue injury, neurodegeneration, and aging. In this review, we will focus on the molecular basis and physiological relevance of mitophagy, and potential of mitophagy as a therapeutic target to overcome such disorders.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
46
|
Kudriaeva AA, Livneh I, Baranov MS, Ziganshin RH, Tupikin AE, Zaitseva SO, Kabilov MR, Ciechanover A, Belogurov AA. In-depth characterization of ubiquitin turnover in mammalian cells by fluorescence tracking. Cell Chem Biol 2021; 28:1192-1205.e9. [PMID: 33675681 DOI: 10.1016/j.chembiol.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/29/2020] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
Despite almost 40 years having passed from the initial discovery of ubiquitin (Ub), fundamental questions related to its intracellular metabolism are still enigmatic. Here we utilized fluorescent tracking for monitoring ubiquitin turnover in mammalian cells, resulting in obtaining qualitatively new data. In the present study we report (1) short Ub half-life estimated as 4 h; (2) for a median of six Ub molecules per substrate as a dynamic equilibrium between Ub ligases and deubiquitinated enzymes (DUBs); (3) loss on average of one Ub molecule per four acts of engagement of polyubiquitinated substrate by the proteasome; (4) direct correlation between incorporation of Ub into the distinct type of chains and Ub half-life; and (5) critical influence of the single lysine residue K27 on the stability of the whole Ub molecule. Concluding, our data provide a comprehensive understanding of ubiquitin-proteasome system dynamics on the previously unreachable state of the art.
Collapse
Affiliation(s)
- Anna A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Ido Livneh
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109602 Haifa, Israel
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation; Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russian Federation
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 8, 630090 Novosibirsk, Russian Federation
| | - Snizhana O Zaitseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentieva 8, 630090 Novosibirsk, Russian Federation
| | - Aaron Ciechanover
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 3109602 Haifa, Israel
| | - Alexey A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation; Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russian Federation.
| |
Collapse
|
47
|
Time-Resolved Transcriptional Profiling of Epithelial Cells Infected by Intracellular Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9020354. [PMID: 33670223 PMCID: PMC7916935 DOI: 10.3390/microorganisms9020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
The rise in the number of antibiotic-resistant bacteria has become a serious threat to health, making it important to identify, characterize and optimize new molecules to help us to overcome the infections they cause. It is well known that Acinetobacter baumannii has a significant capacity to evade the actions of antibacterial drugs, leading to its emergence as one of the bacteria responsible for hospital and community-acquired infections. Nonetheless, how this pathogen infects and survives inside the host cell is unclear. In this study, we analyze the time-resolved transcriptional profile changes observed in human epithelial HeLa cells after infection by A. baumannii, demonstrating how it survives in host cells and starts to replicate 4 h post infection. These findings were achieved by sequencing RNA to obtain a set of Differentially Expressed Genes (DEGs) to understand how bacteria alter the host cells’ environment for their own benefit. We also determine common features observed in this set of genes and identify the protein–protein networks that reveal highly-interacted proteins. The combination of these findings paves the way for the discovery of new antimicrobial candidates for the treatment of multidrug-resistant bacteria.
Collapse
|
48
|
Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J 2021; 40:e104705. [PMID: 33438778 PMCID: PMC7849173 DOI: 10.15252/embj.2020104705] [Citation(s) in RCA: 813] [Impact Index Per Article: 203.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Degradation of mitochondria via a selective form of autophagy, named mitophagy, is a fundamental mechanism conserved from yeast to humans that regulates mitochondrial quality and quantity control. Mitophagy is promoted via specific mitochondrial outer membrane receptors, or ubiquitin molecules conjugated to proteins on the mitochondrial surface leading to the formation of autophagosomes surrounding mitochondria. Mitophagy-mediated elimination of mitochondria plays an important role in many processes including early embryonic development, cell differentiation, inflammation, and apoptosis. Recent advances in analyzing mitophagy in vivo also reveal high rates of steady-state mitochondrial turnover in diverse cell types, highlighting the intracellular housekeeping role of mitophagy. Defects in mitophagy are associated with various pathological conditions such as neurodegeneration, heart failure, cancer, and aging, further underscoring the biological relevance. Here, we review our current molecular understanding of mitophagy, and its physiological implications, and discuss how multiple mitophagy pathways coordinately modulate mitochondrial fitness and populations.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Koji Yamano
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Miyuki Sato
- Laboratory of Molecular Membrane BiologyInstitute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Noriyuki Matsuda
- The Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Koji Okamoto
- Laboratory of Mitochondrial DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
49
|
Kim H, Ju J, Lee HN, Chun H, Seong J. Genetically Encoded Biosensors Based on Fluorescent Proteins. SENSORS (BASEL, SWITZERLAND) 2021; 21:795. [PMID: 33504068 PMCID: PMC7865379 DOI: 10.3390/s21030795] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time monitoring of molecular dynamics in space and time, which are crucial for the proper functioning and regulation of complex cellular processes. Depending on the types of molecular events to be monitored, different sensing strategies need to be applied for the best design of FP-based biosensors. Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy and discuss critical factors to be considered if available, then provide representative examples of these FP-based biosensors. These will help in designing the best sensing strategy for the successful development of new genetically encoded biosensors based on FPs.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Hyeyeon Chun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.K.); (J.J.); (H.N.L.); (H.C.)
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| |
Collapse
|
50
|
Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons. J Neurosci 2020; 41:1371-1392. [PMID: 33376159 PMCID: PMC7896009 DOI: 10.1523/jneurosci.1316-20.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
In neurons, mitochondria are transported by molecular motors throughout the cell to form and maintain functional neural connections. These organelles have many critical functions in neurons and are of high interest as their dysfunction is associated with disease. While the mechanics and impact of anterograde mitochondrial movement toward axon terminals are beginning to be understood, the frequency and function of retrograde (cell body directed) mitochondrial transport in neurons are still largely unexplored. While existing evidence indicates that some mitochondria are retrogradely transported for degradation in the cell body, the precise impact of disrupting retrograde transport on the organelles and the axon was unknown. Using long-term, in vivo imaging, we examined mitochondrial motility in zebrafish sensory and motor axons. We show that retrograde transport of mitochondria from axon terminals allows replacement of the axon terminal population within a day. By tracking these organelles, we show that not all mitochondria that leave the axon terminal are degraded; rather, they persist over several days. Disrupting retrograde mitochondrial flux in neurons leads to accumulation of aged organelles in axon terminals and loss of cell body mitochondria. Assays of neural circuit activity demonstrated that disrupting mitochondrial transport and function has no effect on sensory axon terminal activity but does negatively impact motor neuron axons. Taken together, our work supports a previously unappreciated role for retrograde mitochondrial transport in the maintenance of a homeostatic distribution of mitochondria in neurons and illustrates the downstream effects of disrupting this process on sensory and motor circuits. SIGNIFICANCE STATEMENT Disrupted mitochondrial transport has been linked to neurodegenerative disease. Retrograde transport of this organelle has been implicated in turnover of aged organelles through lysosomal degradation in the cell body. Consistent with this, we provide evidence that retrograde mitochondrial transport is important for removing aged organelles from axons; however, we show that these organelles are not solely degraded, rather they persist in neurons for days. Disrupting retrograde mitochondrial transport impacts the homeostatic distribution of mitochondria throughout the neuron and the function of motor, but not sensory, axon synapses. Together, our work shows the conserved reliance on retrograde mitochondrial transport for maintaining a healthy mitochondrial pool in neurons and illustrates the disparate effects of disrupting this process on sensory versus motor circuits.
Collapse
|