1
|
Madeira MM, Hage Z, Tsirka SE. Beyond Myelination: Possible Roles of the Immune Proteasome in Oligodendroglial Homeostasis and Dysfunction. Front Neurosci 2022; 16:867357. [PMID: 35615276 PMCID: PMC9124978 DOI: 10.3389/fnins.2022.867357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Oligodendroglia play a critical role in CNS homeostasis by myelinating neuronal axons in their mature stages. Dysfunction in this lineage occurs when early stage OPCs are not able to differentiate to replace dying Mature Myelinating Oligodendrocytes. Many hypotheses exist as to why de- and hypo-myelinating disorders and diseases occur. In this review, we present data to show that oligodendroglia can adopt components of the immune proteasome under inflammatory conditions. The works reviewed further reflect that these immune-component expressing oligodendroglia can in fact function as antigen presenting cells, phagocytosing foreign entities and presenting them via MHC II to activate CD4+ T cells. Additionally, we hypothesize, based on the limited literature, that the adoption of immune components by oligodendroglia may contribute to their stalled differentiation in the context of these disorders and diseases. The present review will underline: (1) Mechanisms of neuroinflammation in diseases associated with Immune Oligodendroglia; (2) the first associations between the immune proteasome and oligodendroglia and the subtle distinctions between these works; (3) the suggested functionality of these cells as it is described by current literature; and (4) the hypothesized consequences on metabolism. In doing so we aim to shed light on this fairly under-explored cell type in hopes that study of their functionality may lead to further mechanistic understanding of hypo- and de-myelinating neuroinflammatory disorders and diseases.
Collapse
Affiliation(s)
- Miguel M. Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Zachary Hage
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Stella E. Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- *Correspondence: Stella E. Tsirka,
| |
Collapse
|
2
|
Mahalakshmi AM, Ray B, Tuladhar S, Bhat A, Paneyala S, Patteswari D, Sakharkar MK, Hamdan H, Ojcius DM, Bolla SR, Essa MM, Chidambaram SB, Qoronfleh MW. Does COVID-19 contribute to development of neurological disease? Immun Inflamm Dis 2021; 9:48-58. [PMID: 33332737 PMCID: PMC7860611 DOI: 10.1002/iid3.387] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although coronavirus disease 2019 (COVID-19) has been associated primarily with pneumonia, recent data show that the causative agent of COVID-19, the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect a large number of vital organs beyond the lungs, such as the heart, kidneys, and the brain. Thus, there is evidence showing possible retrograde transmission of the virus from the olfactory epithelium to regions of the brain stem. METHODS This is a literature review article. The research design method is an evidence-based rapid review. The present discourse aim is first to scrutinize and assess the available literature on COVID-19 repercussion on the central nervous system (CNS). Standard literature and database searches were implemented, gathered relevant material, and extracted information was then assessed. RESULTS The angiotensin-converting enzyme 2 (ACE2) receptors being the receptor for the virus, the threat to the central nervous system is expected. Neurons and glial cells express ACE2 receptors in the CNS, and recent studies suggest that activated glial cells contribute to neuroinflammation and the devastating effects of SARS-CoV-2 infection on the CNS. The SARS-CoV-2-induced immune-mediated demyelinating disease, cerebrovascular damage, neurodegeneration, and depression are some of the neurological complications discussed here. CONCLUSION This review correlates present clinical manifestations of COVID-19 patients with possible neurological consequences in the future, thus preparing healthcare providers for possible future consequences of COVID-19.
Collapse
Affiliation(s)
- Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - Bipul Ray
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
- Center for Experimental Pharmacology and Toxicology (CPT), Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
- Center for Experimental Pharmacology and Toxicology (CPT), Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - Abid Bhat
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
- Center for Experimental Pharmacology and Toxicology (CPT), Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | | | - Duraisamy Patteswari
- Division of Cognitive Neuroscience and Psychology, Faculty of Life SciencesJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - Meena Kishore Sakharkar
- The Drug Discovery and Development Research Group, College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonSKCanada
| | - Hamdan Hamdan
- Department of PhysiologyAl Faisal UniversityRiyadhSaudi Arabia
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of DentistryUniversity of the PacificSan FranciscoCaliforniaUSA
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of MedicineNazarbayev UniversityNur‐Sultan020000Kazakhstan
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMSSultan Qaboos UniversityMuscatOman
- Principal Investigator, Ageing and Dementia Research GroupSultan Qaboos UniversityMuscatOman
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of PharmacyJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
- Center for Experimental Pharmacology and Toxicology (CPT), Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruKarnatakaIndia
| | - M. Walid Qoronfleh
- Research & Policy DepartmentWorld Innovation Summit for Health (WISH)Qatar FoundationDohaQatar
- Research & Policy DivisionQ3CG Research InstituteYpsilantiMichiganUSA
| |
Collapse
|
3
|
Murta V, Villarreal A, Ramos AJ. Severe Acute Respiratory Syndrome Coronavirus 2 Impact on the Central Nervous System: Are Astrocytes and Microglia Main Players or Merely Bystanders? ASN Neuro 2020; 12:1759091420954960. [PMID: 32878468 PMCID: PMC7476346 DOI: 10.1177/1759091420954960] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With confirmed coronavirus disease 2019 (COVID-19) cases surpassing the 18 million mark around the globe, there is an imperative need to gain comprehensive understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are associated with respiratory or intestinal symptoms, reports of neurological signs and symptoms are increasing. The etiology of these neurological manifestations remains obscure, and probably involves several direct pathways, not excluding the direct entry of the virus to the central nervous system (CNS) through the olfactory epithelium, circumventricular organs, or disrupted blood–brain barrier. Furthermore, neuroinflammation might occur in response to the strong systemic cytokine storm described for COVID-19, or due to dysregulation of the CNS rennin-angiotensin system. Descriptions of neurological manifestations in patients in the previous coronavirus (CoV) outbreaks have been numerous for the SARS-CoV and lesser for Middle East respiratory syndrome coronavirus (MERS-CoV). Strong evidence from patients and experimental models suggests that some human variants of CoV have the ability to reach the CNS and that neurons, astrocytes, and/or microglia can be target cells for CoV. A growing body of evidence shows that astrocytes and microglia have a major role in neuroinflammation, responding to local CNS inflammation and/or to disbalanced peripheral inflammation. This is another potential mechanism for SARS-CoV-2 damage to the CNS. In this comprehensive review, we will summarize the known neurological manifestations of SARS-CoV-2, SARS-CoV and MERS-CoV; explore the potential role for astrocytes and microglia in the infection and neuroinflammation; and compare them with the previously described human and animal CoV that showed neurotropism to propose possible underlying mechanisms.
Collapse
Affiliation(s)
- Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto J Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, UBA-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection. Exp Mol Pathol 2020; 115:104474. [PMID: 32454103 PMCID: PMC7245307 DOI: 10.1016/j.yexmp.2020.104474] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/12/2023]
Abstract
The pathogenesis of viral infections involves an immune response by cytokines, causing a deleterious effect on organ function, in addition to tissue destruction due to viral replication. Clinical symptoms and laboratory findings of the human coronavirus disease COVID-19, caused by the novel coronavirus SARS CoV-2, indicate cytokine involvement. Our laboratory showed that an experimental murine coronavirus (MHV-A59) can be transmitted into the brain by intranasal or intracerebral exposure and that neurovirulence is mediated by cytokine secretion. In this study we investigated which cells in the brain produce cytokines, thus functioning as the brain's innate immune system. Using tissue cultures of microglia, and clonal populations of astrocytes, we found that microglia and type I astrocytes (but not types II and III), produced pro-inflammatory cytokines in response to MHV-A59 infection. A molecularly closely related, non-encephalitic strain of the virus (MHV-2) caused in vitro infection, but without cytokine induction. Furthermore, immunofluorescence and immunohistochemistry revealed that type I astrocytes and microglia have perivascular foot processes necessary for the formation of the perivascular glymphatic system, the anatomical site of the brain's innate immune system. Cytokine secretion by type I astrocytes and microglia, as part of the brain's glymphatic and innate immune system, contributes to the pathogenesis of an encephalitic coronavirus infection, and indicates the rationale for anti-cytokine therapies for COVID-19. Cytokine induction mediates the neurologic pathogenesis of coronavirus infection. Type I astrocytes and microglia send foot-processes around blood vessels in the brain, forming the glymphatic system. The glymphatic system is the site of the brain’s innate immune system. The brain’s innate immune system functions during coronavirus infection by the induction of pro-inflammatory cytokines. This experimental coronavirus model system sheds light on the neurologic manifestations of the human disease COVID-19.
Collapse
|
5
|
Imai K, Kotani T, Tsuda H, Nakano T, Ushida T, Iwase A, Nagai T, Toyokuni S, Suzumura A, Kikkawa F. Administration of molecular hydrogen during pregnancy improves behavioral abnormalities of offspring in a maternal immune activation model. Sci Rep 2018; 8:9221. [PMID: 29907804 PMCID: PMC6003913 DOI: 10.1038/s41598-018-27626-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate long-term outcomes of the offspring in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) model and the effect of maternal molecular hydrogen (H2) administration. We have previously demonstrated in the MIA mouse model that maternal administration of H2 attenuates oxidative damage and neuroinflammation, including induced pro-inflammatory cytokines and microglial activation, in the fetal brain. Short-term memory, sociability and social novelty, and sensorimotor gating were evaluated using the Y-maze, three-chamber, and prepulse inhibition (PPI) tests, respectively, at postnatal 3 or 4 weeks. The number of neurons and oligodendrocytes was also analyzed at postnatal 5 weeks by immunohistochemical analysis. Offspring of the LPS-exposed dams showed deficits in short-term memory and social interaction, following neuronal and oligodendrocytic loss in the amygdala and cortex. Maternal H2 administration markedly attenuated these LPS-induced abnormalities. Moreover, we evaluated the effect of H2 on LPS-induced astrocytic activation, both in vivo and in vitro. The number of activated astrocytes with hypertrophic morphology was increased in LPS-exposed offspring, but decreased in the offspring of H2-administered dams. In primary cultured astrocytes, LPS-induced pro-inflammatory cytokines were attenuated by H2 administration. Overall, these findings indicate that maternal H2 administration exerts neuroprotective effects and ameliorates MIA-induced neurodevelopmental deficits of offspring later in life.
Collapse
Affiliation(s)
- Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, 3-35, Michishita-Cho, Nakamura-Ku, Nagoya, 453-8511, Japan
| | - Tomoko Nakano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
6
|
Sato F, Omura S, Jaffe S, Tsunoda I. Role of CD4+ T Cells in the Pathophysiology of Multiple Sclerosis. MULTIPLE SCLEROSIS 2016. [PMCID: PMC7150304 DOI: 10.1016/b978-0-12-800763-1.00004-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Although the precise etiology of MS remains unclear, CD4+ T cells have been proposed to play not only effector but also regulatory roles in MS. CD4+ T cells can be divided into four subsets: pro-inflammatory helper T (Th) 1 and Th17 cells, anti-inflammatory Th2 cells and regulatory T cells (Tregs). The roles of CD4+ T cells in MS have been clarified by either “loss-of-function” or “gain-of-function” methods, which have been carried out mainly in autoimmune and viral models of MS: experimental autoimmune encephalomyelitis and Theiler's murine encephalomyelitis virus infection, respectively. Observations in MS patients were consistent with the mechanisms found in the MS models, that is, increased pro-inflammatory Th1 and Th17 activity is associated with disease exacerbation, while anti-inflammatory Th2 cells and Tregs appear to play a protective role.
Collapse
|
7
|
Parajuli B, Horiuchi H, Mizuno T, Takeuchi H, Suzumura A. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia 2015; 63:2274-84. [PMID: 26184677 DOI: 10.1002/glia.22892] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/05/2015] [Accepted: 06/30/2015] [Indexed: 12/28/2022]
Abstract
The chemokine CCL11 (also known as eotaxin-1) is a potent eosinophil chemoattractant that mediates allergic diseases such as asthma, atopic dermatitis, and inflammatory bowel diseases. Previous studies demonstrated that concentrations of CCL11 are elevated in the sera and cerebrospinal fluids (CSF) of patients with neuroinflammatory disorders, including multiple sclerosis. Moreover, the levels of CCL11 in plasma and CSF increase with age, and CCL11 suppresses adult neurogenesis in the central nervous system (CNS), resulting in memory impairment. However, the precise source and function of CCL11 in the CNS are not fully understood. In this study, we found that activated astrocytes release CCL11, whereas microglia predominantly express the CCL11 receptor. CCL11 significantly promoted the migration of microglia, and induced microglial production of reactive oxygen species by upregulating nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1), thereby promoting excitotoxic neuronal death. These effects were reversed by inhibition of NOX1. Our findings suggest that CCL11 released from activated astrocytes triggers oxidative stress via microglial NOX1 activation and potentiates glutamate-mediated neurotoxicity, which may be involved in the pathogenesis of various neurological disorders.
Collapse
Affiliation(s)
- Bijay Parajuli
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| | - Hiroshi Horiuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| | - Tetsuya Mizuno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya, Japan
| |
Collapse
|
8
|
Horiuchi H, Parajuli B, Kawanokuchi J, Jin S, Mizuno T, Takeuchi H, Suzumura A. Oligomeric amyloid β facilitates microglial excitotoxicity by upregulating tumor necrosis factor‐α and downregulating excitatory amino acid transporter 2 in astrocytes. CLINICAL AND EXPERIMENTAL NEUROIMMUNOLOGY 2015; 6:183-190. [DOI: 10.1111/cen3.12192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractObjectivesSoluble oligomeric amyloid β (oAβ) directly causes synaptic dysfunction and neuronal death, which are involved in the pathogenesis of Alzheimer's disease. In contrast, several lines of evidence have shown that glia‐mediated excitotoxicity is also involved in the disease progression of Alzheimer's disease. However, it is still unclear how oAβ induces glia‐mediated excitotoxicity. Therefore, we tried to clarify the mechanism of oAβ‐induced glia‐mediated excitotoxicity using mouse primary cultures.MethodsGlial glutamate production was assessed using a colorimetric assay kit. Glial production of tumor necrosis factor‐α (TNF‐α) was evaluated using a specific enzyme‐linked immunosorbent assay kit. Microglial survival was examined using the MTS assay. mRNA and protein expression levels of excitatory amino acid transporter 2 were determined using quantitative polymerase chain reaction and western blotting, respectively.ResultsWe showed that oAβ‐stimulation induces glutamate release from astrocyte/microglia co‐cultures, but not from single culture of astrocytes or microglia. oAβ increased TNF‐α release from astrocytes, but not from microglia, and the astrocyte‐derived TNF‐α enhanced glutamate release from microglia. TNF‐α elongated microglial survival and triggered sustained microglial glutamate release in a positive feedback mechanism through TNF‐α receptor 1. Furthermore, treatment of oAβ decreased astrocytic expression of excitatory amino acid transporter 2, which plays a pivotal role in homeostasis of the extracellular glutamate level.ConclusionsThe present findings suggest that oAβ contributes to glia‐mediated excitotoxicity through the two‐hit mechanism by suppressing astrocytic glutamate uptake through excitatory amino acid transporter 2 and enhancing microglial glutamate release, and triggers chronic glial neuroinflammation through the TNF‐α/TNF‐α receptor 1 positive feedback loop in Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroshi Horiuchi
- Department of Neuroimmunology Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| | - Bijay Parajuli
- Department of Neuroimmunology Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| | - Jun Kawanokuchi
- Department of Neuroimmunology Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| | - Shijie Jin
- Department of Neuroimmunology Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| | - Tetsuya Mizuno
- Department of Neuroimmunology Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| | - Akio Suzumura
- Department of Neuroimmunology Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| |
Collapse
|
9
|
Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Takeuchi H, Suzumura A. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One 2014; 9:e110024. [PMID: 25313834 PMCID: PMC4196962 DOI: 10.1371/journal.pone.0110024] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/09/2014] [Indexed: 11/21/2022] Open
Abstract
The blood–brain barrier (BBB) is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH) released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson’s disease, amyotrophic lateral sclerosis, and Alzheimer’s disease. Interleukin-1β (IL-1β), a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shijie Jin
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshifumi Sonobe
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yi Cheng
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Horiuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Bijay Parajuli
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Jun Kawanokuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tetsuya Mizuno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Different mechanisms of inflammation induced in virus and autoimmune-mediated models of multiple sclerosis in C57BL6 mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:589048. [PMID: 24083230 PMCID: PMC3780522 DOI: 10.1155/2013/589048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/01/2013] [Indexed: 01/17/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the human central nervous system (CNS). Neurotropic demyelinating strain of MHV (MHV-A59 or its isogenic recombinant strain RSA59) induces MS-like disease in mice mediated by microglia, along with a small population of T cells. The mechanism of demyelination is at least in part due to microglia-mediated myelin stripping, with some direct axonal injury. Immunization with myelin oligodendrocyte glycoprotein (MOG) induces experimental autoimmune encephalomyelitis (EAE), a mainly CD4+ T-cell-mediated disease, although CD8+ T cells may play a significant role in demyelination. It is possible that both autoimmune and nonimmune mechanisms such as direct viral toxicity may induce MS. Our study directly compares CNS pathology in autoimmune and viral-induced MS models. Mice with viral-induced and EAE demyelinating diseases demonstrated similar patterns and distributions of demyelination that accumulated over the course of the disease. However, significant differences in acute inflammation were noted. Inflammation was restricted mainly to white matter at all times in EAE, whereas inflammation initially largely involved gray matter in acute MHV-induced disease and then is subsequently localized only in white matter in the chronic disease phase. The presence of dual mechanisms of demyelination may be responsible for the failure of immunosuppression to promote long-term remission in many MS patients.
Collapse
|
11
|
Miljković D, Timotijević G, Stojković MM. Astrocytes in the tempest of multiple sclerosis. FEBS Lett 2011; 585:3781-8. [DOI: 10.1016/j.febslet.2011.03.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/11/2022]
|
12
|
A mechanism of virus-induced demyelination. Interdiscip Perspect Infect Dis 2010; 2010:109239. [PMID: 20652053 PMCID: PMC2905936 DOI: 10.1155/2010/109239] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/20/2010] [Indexed: 11/17/2022] Open
Abstract
Myelin forms an insulating sheath surrounding axons in the central and peripheral nervous systems and is essential for rapid propagation of neuronal action potentials. Demyelination is an acquired disorder in which normally formed myelin degenerates, exposing axons to the extracellular environment. The result is dysfunction of normal neuron-to-neuron communication and in many cases, varying degrees of axonal degeneration. Numerous central nervous system demyelinating disorders exist, including multiple sclerosis. Although demyelination is the major manifestation of most of the demyelinating diseases, recent studies have clearly documented concomitant axonal loss to varying degrees resulting in long-term disability. Axonal injury may occur secondary to myelin damage (outside-in model) or myelin damage may occur secondary to axonal injury (inside-out model). Viral induced demyelination models, has provided unique imminent into the cellular mechanisms of myelin destruction. They illustrate mechanisms of viral persistence, including latent infections, virus reactivation and viral-induced tissue damage. These studies have also provided excellent paradigms to study the interactions between the immune system and the central nervous system (CNS). In this review we will discuss potential cellular and molecular mechanism of central nervous system axonal loss and demyelination in a viral induced mouse model of multiple sclerosis.
Collapse
|
13
|
Carpentier PA, Getts MT, Miller SD. Pro-inflammatory functions of astrocytes correlate with viral clearance and strain-dependent protection from TMEV-induced demyelinating disease. Virology 2008; 375:24-36. [PMID: 18289626 DOI: 10.1016/j.virol.2008.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 01/03/2008] [Accepted: 01/15/2008] [Indexed: 12/11/2022]
Abstract
Intracerebral infection of susceptible strains of mice, e.g. SJL/J, with Theiler's murine encephalomyelitis virus (TMEV) leads to a persistent CNS infection accompanied by development of a chronic-progressive inflammatory CNS autoimmune demyelinating disease which is clinically and pathologically similar to human multiple sclerosis. In contrast, resistant strains of mice, e.g. C57BL/6 (B6), effectively clear TMEV from the CNS and do not develop demyelinating disease. Although CD8(+) T cells are crucial for viral clearance in B6 mice, SJL mice also mount potent CD8(+) T cell responses against virus, thus the reason for the viral persistence in the CNS in these mice is unclear. Here, we examined innate anti-viral responses of CNS-resident astrocytes as a potential determinant of viral persistence and disease susceptibility. We demonstrate that B6 astrocytes produce significantly higher levels of cytokines, chemokines and adhesion molecules in response to TMEV infection, or stimulation with IFN-gamma and TNF-alpha or poly I:C than SJL mice. In addition, TMEV more effectively induces MHC I molecules on B6 astrocytes than SJL, corresponding with an increased ability to activate TMEV-specific CD8(+) T cells directly ex vivo. These results suggest that enhanced anti-viral responses of B6 astrocytes contribute to the ability of these mice to clear TMEV from the CNS and therefore to their resistance to the development of autoimmune demyelinating disease.
Collapse
Affiliation(s)
- Pamela A Carpentier
- Northwestern University Feinberg School of Medicine, Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
14
|
Suzumura A. Immune Response in the Brain: Glial Response and Cytokine Production. CYTOKINES AND THE BRAIN 2008. [PMCID: PMC7185635 DOI: 10.1016/s1567-7443(07)10014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Hamo L, Stohlman SA, Otto‐Duessel M, Bergmann CC. Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis. Glia 2007; 55:1169-77. [PMID: 17600339 PMCID: PMC7165879 DOI: 10.1002/glia.20538] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The potential interplay of glial cells with T cells during viral induced inflammation was assessed by comparing major histocompatibility complex molecule upregulation and retention on astrocytes and microglia. Transgenic mice expressing green fluorescent protein under control of the astrocyte‐specific glial fibrillary acidic protein promoter were infected with a neurotropic coronavirus to facilitate phenotypic characterization of astrocytes and microglia using flow cytometry. Astrocytes in the adult central nervous system up‐regulated class I surface expression, albeit delayed compared with microglia. Class II was barely detectable on astrocytes, in contrast to potent up‐regulation on microglia. Maximal MHC expression in both glial cell types correlated with IFN‐γ levels and lymphocyte accumulation. Despite a decline of IFN‐γ concomitant to virus clearance, MHC molecule expression on glia was sustained. These data demonstrate distinct regulation of both class I and class II expression by microglia and astrocytes in vivo following viral induced inflammation. Furthermore, prolonged MHC expression subsequent to viral clearance implies a potential for ongoing presentation. © 2007 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Ludwig Hamo
- Department of Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Stephen A. Stohlman
- Department of Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California
- Present address:
Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195
| | - Maya Otto‐Duessel
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California
- Present address:
Department of Radiology, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027
| | - Cornelia C. Bergmann
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
16
|
Abraham S, Manjunath R. Induction of classical and nonclassical MHC-I on mouse brain astrocytes by Japanese encephalitis virus. Virus Res 2006; 119:216-20. [PMID: 16621104 DOI: 10.1016/j.virusres.2006.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Infection with Flaviviruses upregulates the cell surface expression of MHC-I, MHC-II, ICAM-1 (CD54), VCAM-1 (CD106) and TAP proteins. Although all these studies have been confirmed using West Nile virus and other Flaviviruses, there are few reports that have examined the effects of Japanese encephalitis virus (JEV) infection directly on nonclassical and classical MHC expression in astrocytes. We show in this report that JEV infection of mouse brain astrocytes results in induction of the nonclassical MHC Class Ib genes, H-2T23, H-2Q4 and H-2T10 in addition to MHC-I, Type I (alpha/beta) IFNs, TAP-1, TAP-2, Tapasin, LMP-2, LMP-7 and LMP-10 but not IFNgamma, CD80, CD86 and MHC-II genes. The increased cell surface expression of these antigens as well as induction of the genes mentioned above as measured by RT-PCR suggests that JEV infection may lead to the induction of classical MHC Class Ia as well as nonclassical MHC Class Ib molecules.
Collapse
Affiliation(s)
- Sojan Abraham
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
17
|
Tepavcević V, Blakemore WF. Glial grafting for demyelinating disease. Philos Trans R Soc Lond B Biol Sci 2006; 360:1775-95. [PMID: 16147541 PMCID: PMC1569542 DOI: 10.1098/rstb.2005.1700] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Remyelination of demyelinated central nervous system (CNS) axons is considered as a potential treatment for multiple sclerosis, and it has been achieved in experimental models of demyelination by transplantation of pro-myelinating cells. However, the experiments undertaken have not addressed the need for tissue-type matching in order to achieve graft-mediated remyelination since they were performed in conditions in which the chance for graft rejection was minimized. This article focuses on the factors determining survival of allogeneic oligodendrocyte lineage cells and their contribution to the remyelination of demyelinating CNS lesions. The immune status of the CNS as well as the suitability of different models of demyelination for graft rejection studies are discussed, and ways of enhancing allogeneic oligodendrocyte-mediated remyelination are presented. Finally, the effects of glial graft rejection on host remyelination are described, highlighting the potential benefits of the acute CNS inflammatory response for myelin repair.
Collapse
Affiliation(s)
- V Tepavcević
- Department of Veterinary Medicine, MS Society Cambridge Centre for Myelin Repair, Cambridge Centre for Brain Repair, UK.
| | | |
Collapse
|
18
|
Li Y, Lavi E. The Role of Astrocytes, Microglia, and Endothelial Cells in Coronavirus-Induced Demyelination. EXPERIMENTAL MODELS OF MULTIPLE SCLEROSIS 2005. [PMCID: PMC7121167 DOI: 10.1007/0-387-25518-4_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Histopathology in Coronavirus-Induced Demyelination. EXPERIMENTAL MODELS OF MULTIPLE SCLEROSIS 2005. [PMCID: PMC7122357 DOI: 10.1007/0-387-25518-4_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The experimental model system of coronavirus mouse hepatitis virus (MHV) induced demyelination in 4–6 week old C57Bl/6 or Balb/c mice exhibits a biphasic disease and two distinct forms of virus-induced demyelination. During the acute phase of the disease MHV infection causes acute encephalitis, and some strains of virus cause also hepatitis. Infection with the JHM strain of MHV causes severe panencephalitis, whereas MHV-A59 causes mild to moderate encephalitis involving specific limbic and limbic related areas of the brain and brain stem. The target cells are neurons and glia including oligodendrocytes. Demyelination during the acute stage is due to cytolytic infection of oligodendrocytes. After two weeks, the disease process enters a chronic stage of immune-mediated demyelination, in the presence of high levels of anti-viral antibodies and persistent low levels viral RNA in glial cells, without detectable levels of infectious virus or viral antigens.
Collapse
|
20
|
Li Y, Fu L, Gonzales DM, Lavi E. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. J Virol 2004; 78:3398-406. [PMID: 15016862 PMCID: PMC371061 DOI: 10.1128/jvi.78.7.3398-3406.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular and cellular basis of coronavirus neurovirulence is poorly understood. Since neurovirulence may be determined at the early stages of infection of the central nervous system (CNS), we hypothesize that it may depend on the ability of the virus to induce proinflammatory signals from brain cells for the recruitment of blood-derived inflammatory cells. To test this hypothesis, we studied the interaction between coronaviruses (mouse hepatitis virus) of different neurovirulences with primary cell cultures of brain immune cells (astrocytes and microglia) and mouse tissues. We found that the level of neurovirulence of the virus correlates with its differential ability to induce proinflammatory cytokines (interleukin 12 [IL-12] p40, tumor necrosis factor alpha, IL-6, IL-15, and IL-1beta) in astrocytes and microglia and in mouse brains and spinal cords. These findings suggest that coronavirus neurovirulence may depend on a novel discriminatory ability of astrocytes and microglia to induce a proinflammatory response in the CNS.
Collapse
Affiliation(s)
- Yun Li
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Cell surface macromolecules play a crucial role in the biology and pathobiology of flaviviruses, both as receptors for virus entry and as signaling molecules for cell–cell interactions in the processes of vascular permeability and inflammation. This review examines the cell tropism and pathogenesis of flaviviruses from the standpoint of cell surface molecules, which have been implicated as receptors in both virus–cell as well as cell–cell interactions. The emerging picture is one that encompasses extensive regulation and interplay among the invading virus, viral immune complexes, Fc receptors, major histocompatibility complex antigens, and adhesion molecules.
Collapse
Affiliation(s)
- Robert Anderson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4H7 Canada
| |
Collapse
|
22
|
Abstract
Dendritic cells (DCs) play a pivotal role as antigen-presenting cells in the antiviral immune response. Here we show that Hantaan virus (HTNV), which belongs to the Bunyaviridae family (genus Hantavirus) and causes hemorrhagic fever with renal syndrome, productively infects human DCs in vitro. In the course of HTNV infection, DCs did not show any cytopathic effect and viral replication did not induce cell lysis or apoptosis. Furthermore, HTNV did not affect apoptosis-inducing signals that are important for the homeostatic control of mature DCs. In contrast to immunosuppressive viruses, e.g., human cytomegalovirus, HTNV activated immature DCs, resulting in upregulation of major histocompatibility complex (MHC), costimulatory, and adhesion molecules. Intriguingly, strong upregulation of MHC class I molecules and an increased intercellular cell adhesion molecule type 1 expression was also detected on HTNV-infected endothelial cells. In addition, antigen uptake by HTNV-infected DCs was reduced, another characteristic feature of DC maturation. Consistent with these findings, we observed that HTNV-infected DCs stimulated T cells as efficiently as did mature DCs. Finally, infection of DCs with HTNV induced the release of the proinflammatory cytokines tumor necrosis factor alpha and alpha interferon. Taken together, our findings indicate that hantavirus-infected DCs may significantly contribute to hantavirus-associated pathogenesis.
Collapse
Affiliation(s)
- Martin J Raftery
- Institute of Virology, Charité Medical School, Humboldt University Berlin, D-10098 Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Jarosinski KW, Massa PT. Interferon regulatory factor-1 is required for interferon-gamma-induced MHC class I genes in astrocytes. J Neuroimmunol 2002; 122:74-84. [PMID: 11777545 DOI: 10.1016/s0165-5728(01)00467-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies have shown that the role of the transcription factor interferon regulatory factor-1 (IRF-1) in the expression of major histocompatibility complex (MHC) class I molecules is tissue-specific. Our previous studies indicated a role for IRF-1 in expression of MHC class I genes in cultured astrocytes in response to interferon-gamma (IFN-gamma). However, the requirement for IRF-1 in MHC class I expression has not been directly analyzed in neural tissue. To further ascertain the importance of IRF-1 in the induction of MHC class I genes in astrocytes in response to IFN-gamma, we analyzed astrocytes from mice with a targeted disruption of the IRF-1 gene (IRF-1(-/-) mice). As expected, astrocytes from wild type (IRF-1(+/+)) mice showed a coordinate increase in both IRF-1 and MHC class I gene expression in response to IFN-gamma. To the contrary, astrocytes from IRF-1(-/-) mice had greatly reduced MHC class I mRNA expression. MHC class I gene promoter activity in astrocytes was controlled entirely through a single enhancer, the MHC-IRF-E, to which IRF-1 bound in response to IFN-gamma in wild type but not in IRF-1(-/-) mouse astrocytes. In vivo, astrocytes in brains of wild type mice readily responded to IFN-gamma to express MHC class I molecules. This correlated with increased MHC class I mRNA in the brain. In contrast, brains of IRF-1(-/-) mice showed no MHC class I gene induction following exposure to IFN-gamma indicating that all cells in the central nervous system (CNS) including astrocytes with the potential to express MHC class I molecules were dependent on IRF-1. These studies conclusively demonstrate a major role for IRF-1/MHC-IRF-E interactions in controlling MHC class I gene expression in astrocytes in response to IFN-gamma.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| | | |
Collapse
|
24
|
Abstract
Most murine hepatitis virus (MHV) strains, as their name suggests, infect the liver. However, several murine strains are tropic for the central nervous system (CNS) and cause encephalitis with subsequent CNS demyelination. The CNS demyelination shares pathological similarities with human CNS demyelinating diseases such as multiple sclerosis (MS). These viruses are, therefore, used to study the role of the immune system in viral clearance from the CNS, in CNS demyelination, and in remyelination. Nevertheless, it is still unclear exactly how MHV induces demyelination and to what extent the immune system plays a role in this pathology. Here we review this field in the context of the immune response to MHV in the liver and the CNS focusing on studies that have been published in the past 5 years.
Collapse
Affiliation(s)
- A. E. Matthews
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
| | - S. R. Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
| | - Y. Paterson
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
- University of Pennsylvania, 323 Johnson Pavilion, 3610 Hamilton Walk, 19104-6076 Philadelphia, PA USA
| |
Collapse
|
25
|
Redwine JM, Buchmeier MJ, Evans CF. In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1219-24. [PMID: 11583948 PMCID: PMC1850521 DOI: 10.1016/s0002-9440(10)62507-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Demyelination in multiple sclerosis and in animal models is associated with infiltrating CD8+ and CD4+ T cells. Although oligodendrocytes and axons are damaged in these diseases, the roles T cells play in the demyelination process are not completely understood. Antigen-specific CD8+ T cell lysis of target cells is dependent on interactions between the T cell receptor and major histocompatibility complex (MHC) class I-peptide complexes on the target cell. In the normal central nervous system, expression of MHC molecules is very low but often increases during inflammation. We set out to precisely define which central nervous system cells express MHC molecules in vivo during infection with a strain of murine hepatitis virus that causes a chronic, inflammatory demyelinating disease. Using double immunofluorescence labeling, we show that during acute infection with murine hepatitis virus, MHC class I is expressed in vivo by oligodendrocytes, neurons, microglia, and endothelia, and MHC class II is expressed only by microglia. These data indicate that oligodendrocytes and neurons have the potential to present antigen to T cells and thus be damaged by direct antigen-specific interactions with CD8+ T lymphocytes.
Collapse
Affiliation(s)
- J M Redwine
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
26
|
Marten NW, Stohlman SA, Bergmann CC. MHV infection of the CNS: mechanisms of immune-mediated control. Viral Immunol 2001; 14:1-18. [PMID: 11270593 DOI: 10.1089/08828240151061329] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mice infected with neurotropic strains of mouse hepatitis virus (MHV) clear infectious virus; nevertheless, viral persistence in the central nervous system (CNS) is associated with ongoing primary demyelination. Acute infection induces a potent regional CD8+ T-cell response. The high prevalence of virus specific T cells correlates with ex vivo cytolytic activity, interferon-gamma (IFN-gamma) secretion and efficient reduction in virus. Viral clearance from most cell types is controlled by a perforin dependent mechanism. However, IFN-gamma is essential for controlling virus replication in oligodendrocytes. Furthermore, CD4+ T cells enhance CD8+ T-cell survival and effectiveness. Clearance of infectious virus is associated with a gradual decline of CNS T cells; nevertheless, activated T cells are retained within the CNS. The loss of cytolytic activity, but retention of IFN-gamma secretion during viral clearance suggests stringent regulation of CD8+ T-cell effector function, possibly as a means to minimize CNS damage. However, similar CD8+ T-cell responses to demyelinating and non demyelinating JHMV variants support the notion that CD8+ T cells do not contribute to the demyelinating process. Although T-cell retention is tightly linked to the presence of persisting virus, contributions to regulating the latent state are unknown. Studies in B-cell-deficient mice suggest that antibodies are required to prevent virus recrudescence. Although acute JHMV infection is thus primarily controlled by CD8+ T cells, both CD4+ T cells and B cells make significant contributions in maintaining the balance between viral replication and immune control, thus allowing host and pathogen survival.
Collapse
Affiliation(s)
- N W Marten
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles 90033, USA.
| | | | | |
Collapse
|
27
|
Das Sarma J, Fu L, Hingley ST, Lavi E. Mouse hepatitis virus type-2 infection in mice: an experimental model system of acute meningitis and hepatitis. Exp Mol Pathol 2001; 71:1-12. [PMID: 11502093 DOI: 10.1006/exmp.2001.2378] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection with mouse hepatitis virus (MHV) strain A59 produces acute hepatitis, encephalitis, and chronic demyelination in mice. However, little is known about a closely related strain, MHV-2, which is only weakly neurotropic. To better understand the molecular basis of neurotropism of MHVs, we compared the pathogenesis and genomic sequence of MHV-2 with that of MHV-A59. Intracerebral injection of MHV-2 into 4-week-old C57B1/6 mice produces acute meningitis and hepatitis without encephalitis or chronic inflammatory demyelination. Sequence comparison between MHV-2 and MHV-A59 reveals 94-98% sequence identity of the replicase gene, 83-95% sequence identity of genes 2a, 3, 5b, 6, and 7, and marked difference in the sequence of genes, 2b, 4, and 5a. This information provides the basis for further studies exploring the mechanism of viral neurotropism and virus-induced demyelination.
Collapse
Affiliation(s)
- J Das Sarma
- Division of Neuropathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- P J Talbot
- Centre de recherche en santé humaine, INRS-Institut Armand-Frappier 531, boulevard des Prairies, Laval, Québec, Canada, H7V 1B7.
| | | | | |
Collapse
|
29
|
Momburg F, Müllbacher A, Lobigs M. Modulation of transporter associated with antigen processing (TAP)-mediated peptide import into the endoplasmic reticulum by flavivirus infection. J Virol 2001; 75:5663-71. [PMID: 11356974 PMCID: PMC114279 DOI: 10.1128/jvi.75.12.5663-5671.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to many other viruses that escape the cellular immune response by downregulating major histocompatibility complex (MHC) class I molecules, flavivirus infection can upregulate their cell surface expression. Previously we have presented evidence that during flavivirus infection, peptide supply to the endoplasmic reticulum is increased (A. Müllbacher and M. Lobigs, Immunity 3:207-214, 1995). Here we show that during the early phase of infection with different flaviviruses, the transport activity of the peptide transporter associated with antigen processing (TAP) is augmented by up to 50%. TAP expression is unaltered during infection, and viral but not host macromolecular synthesis is required for enhanced peptide transport. This study is the first demonstration of transient enhancement of TAP-dependent peptide import into the lumen of the endoplasmic reticulum as a consequence of a viral infection. We suggest that the increased supply of peptides for assembly with MHC class I molecules in flavivirus-infected cells accounts for the upregulation of MHC class I cell surface expression with the biological consequence of viral evasion of natural killer cell recognition.
Collapse
Affiliation(s)
- F Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Abstract
Cytotoxic CD8 T lymphocytes (CTLs) are critical for the clearance of noncytopathic viruses from infected cells. This chapter discusses one mechanism used by viruses to persist—namely, the selection of a variant virus in which changes in the sequence of a CTL epitope abrogate recognition. The unique features of cytotoxic CD8 T cell function in the central nervous system (CNS) are discussed. The role of CTL escape mutants in the viral evasion of the immune system and subsequent disease progression in non-CNS infections are summarized. The immune response in the CNS is similar to the response in extraneural tissue, but several aspects of the activation of the immune response, cellular trafficking, and antigen presentation are unique to the CNS. Although the CNS has classically been considered a site of immune privilege, surveillance of the normal CNS by circulating, activated lymphocytes occurs, with a limited number of lymphocytes being present in the normal CNS at any given time. In mice infected with mouse hepatitis virus and in some humans persistently infected with human immunodeficiency virus type1, hepatitis B virus or hepatitis C virus, CTL escape mutants play an important role in virus amplification and disease progression.
Collapse
Affiliation(s)
- S Perlman
- Departments of Pediatrics and Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
31
|
Abstract
Lack of IFN-beta and MHC class I expression in measles virus (MV) infected neurons could impair the host antiviral defense mechanism and result in virus escape from recognition by cytotoxic T-cells. Induction of IFN-beta and MHC class I gene expression requires NF-kappaB activation which depends on degradation of IkappaBalpha, an inhibitory protein of NF-kappaB. In earlier studies we demonstrated that in contrast to glial cells, MV was unable to induce IkappaBalpha degradation in neuronal cells. It is unclear whether this failure is due to the presence of a neuron-specific IkappaBalpha isoform or a defect in the MV signaling cascade that leads to IkappaBalpha phosphorylation and degradation. In this study, an IkappaBalpha-wild type (WT) expression vector was transfected into neuronal and glial cells and subsequently exposed to MV. In contrast to glial cells, IkappaBalpha-WT was degraded in neuronal cells in response to TNFalpha but not MV. The findings eliminate the existence of an IkappaBalpha isoform in neuronal cells that is resistant to phosphorylation by MV. Blocking de novo protein synthesis with cyclohexamide had no effect on neuronal IkappaBalpha, indicating that lack of degradation rather than increased synthesis is responsible for IkappaBalpha accumulation in MV-stimulated neuronal cells. To determine if malfunction in the MV receptor CD46 is responsible for failure of IkappaBalpha phosphorylation and degradation, neuronal cells were transfected with a wild type CD46 (CD46-WT) expression vector. MV stimulation of CD46-WT transfected cells failed to induce IkappaBalpha degradation. Collectively these findings indicate that failure of MV to phosphorylate neuronal IkappaBalpha is not due to a presence of an IkappaBalpha isoform or malfunction of the MV receptor, and is more likely to be due to a defect in the signaling pathway that normally leads to IkappaBalpha phosphorylation and degradation.
Collapse
Affiliation(s)
- Y Y Fang
- Department of Neurology, University of Maryland at Baltimore, 21201, USA
| | | | | |
Collapse
|
32
|
Das Sarma J, Fu L, Tsai JC, Weiss SR, Lavi E. Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus. J Virol 2000; 74:9206-13. [PMID: 10982367 PMCID: PMC102119 DOI: 10.1128/jvi.74.19.9206-9213.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Demyelination is the pathologic hallmark of the human immune-mediated neurologic disease multiple sclerosis, which may be triggered or exacerbated by viral infections. Several experimental animal models have been developed to study the mechanism of virus-induced demyelination, including coronavirus mouse hepatitis virus (MHV) infection in mice. The envelope spike (S) glycoprotein of MHV contains determinants of properties essential for virus-host interactions. However, the molecular determinants of MHV-induced demyelination are still unknown. To investigate the mechanism of MHV-induced demyelination, we examined whether the S gene of MHV contains determinants of demyelination and whether demyelination is linked to viral persistence. Using targeted RNA recombination, we replaced the S gene of a demyelinating virus (MHV-A59) with the S gene of a closely related, nondemyelinating virus (MHV-2). Recombinant viruses containing an S gene derived from MHV-2 in an MHV-A59 background (Penn98-1 and Penn98-2) exhibited a persistence-positive, demyelination-negative phenotype. Thus, determinants of demyelination map to the S gene of MHV. Furthermore, viral persistence is insufficient to induce demyelination, although it may be a prerequisite for the development of demyelination.
Collapse
Affiliation(s)
- J Das Sarma
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
33
|
Lavi E, Das Sarma J, Weiss SR. Cellular reservoirs for coronavirus infection of the brain in beta2-microglobulin knockout mice. Pathobiology 1999; 67:75-83. [PMID: 10023135 PMCID: PMC7179536 DOI: 10.1159/000028054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mouse hepatitis virus (MHV) A59 infection which causes acute encephalitis, hepatitis, and chronic demyelination, is one of the experimental models for multiple sclerosis. Previous studies showed that lethal infection of beta2-microglobulin 'knockout' (beta2M(-/-)) mice required 500-fold less virus and viral clearance was delayed as compared to infection of immunocompetent C57Bl/6 (B6) mice. To investigate the mechanism of the increased susceptibility of beta2M(-/-) mice to MHV-A59, we studied organ pathology and the distribution of viral antigen and RNA during acute and chronic infection. A59-infected beta2M(-/-) mice were more susceptible to acute encephalitis and hepatitis, but did not have increased susceptibility to demyelination. Viral antigen and RNA distribution in the brain was increased in microglia, lymphocytes, and small vessel endothelial cells while the distribution in neurons and glia was similar in beta2M(-/-) mice and B6 mice. Acute hepatitis and thymus cortical hypoplasia in beta2M(-/-) mice were delayed in onset but pathologic changes in these organs were similar to those in B6 mice. The low rate of demyelination in beta2M(-/-) mice was consistent with the low dose of the virus given. A less neurotropic virus MHV-2, caused increased parenchymal inflammation in beta2M(-/-) mice, but without demyelination. Thus, CD8+ cells were important for viral clearance from endothelial cells, microglia and inflammatory cells, but not from neuronal and glial cells. In addition, CD8+ cells played a role in preventing the spread of encephalitis.
Collapse
Affiliation(s)
- E Lavi
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085,
| | | | | |
Collapse
|
34
|
Wang Q, Haluskey JA, Lavi E. Coronavirus MHV-A59 causes upregulation of interferon-beta RNA in primary glial cell cultures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:451-4. [PMID: 9782314 DOI: 10.1007/978-1-4615-5331-1_57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infection of mice with coronavirus mouse hepatitis virus strain MHV-A59 causes focal acute encephalitis, hepatitis and chronic demyelinating disease. To investigate host interferon (IFN) response to viral infection within the brain, RNA was extracted from A59-or MHV-2- infected and mock-infected primary astrocyte cultures from newborn mice, RT-PCR amplified RNA with primers specific for the various IFNs, transferred to nylon membranes and hybridized with IFN specific digoxigenin-labeled probes. Infection of primary astrocyte cultures from newborn mice with either A59 or MHV-2 caused upregulation of IFN-beta RNA, but not IFN-gamma or IFN-alpha. Thus, brain astrocytes are capable of producing a local IFN-beta response upon infection with MHV. The response of the other IFNs following MHV infection may be derived from inflammatory cells.
Collapse
Affiliation(s)
- Q Wang
- Department of Pathology, University of Pennsylvania, School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
35
|
Agresti C, Bernardo A, Del Russo N, Marziali G, Battistini A, Aloisi F, Levi G, Coccia EM. Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-gamma and TNF-alpha in oligodendrocytes. Eur J Neurosci 1998; 10:2975-83. [PMID: 9758167 DOI: 10.1111/j.1460-9568.1998.00313.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to understand the molecular basis of the synergistic action of interferon gamma (IFN-gamma) and tumour necrosis factor alpha (TNF-alpha) on rat oligodendrocyte development, we studied some aspects of the signalling pathways involved in the regulation of the major histocompatibility complex (MHC) class I and the interferon regulatory factor 1 (IRF-1) gene expression. Two well-defined inducible enhancers of the MHC class I gene promoter, the MHC class I regulatory element (MHC-CRE) and the interferon consensus sequence (ICS), were analysed. Neither IFN-gamma nor TNF-alpha was capable of inducing MHC-CRE binding activity when administrated alone. Following the exposure of oligodendrocytes to IFN-gamma, TNF-R1 expression was transcriptionally induced by the binding of signal transducer and activator of transcription (STAT-1) homodimers to the IFN-gamma activated site (GAS) present in the gene promoter. The upregulation of TNF-R1 allowed TNF-alpha to induce the binding of nuclear factor-kappaB (NF-kappaB) to the MHC-CRE site. With respect to ICS element, IFN-gamma induced IRF-1 binding, that was further enhanced upon co-treatment with TNF-alpha. The existence of a synergism between IFN-gamma and TNF-alpha in stimulating IRF-1 expression at the transcriptional level was supported by IRF-1 promoter analysis: IFN-gamma directly induced the binding of STAT-1 homodimers to the GAS element, while NF-kappaB binding to the kappaB sequence was activated by TNF-alpha only after IFN-gamma treatment. This transcriptional regulation of IRF-1 gene by IFN-gamma and TNF-alpha was confirmed at the mRNA level. The synergism demonstrated in the present study highlights the importance of cytokine interactions in magnifying their biological effects during brain injury and inflammation.
Collapse
Affiliation(s)
- C Agresti
- Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mavria G, Hall KT, Jones RA, Blair GE. Transcriptional regulation of MHC class I gene expression in rat oligodendrocytes. Biochem J 1998; 330 ( Pt 1):155-61. [PMID: 9461504 PMCID: PMC1219121 DOI: 10.1042/bj3300155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I molecules are normally expressed at very low levels in the brain and their up-regulation in response to cytokines and viral infections has been associated with a number of neurological disorders. Here we demonstrate that the down-regulation of surface class I molecules in differentiated primary rat oligodendrocytes was accompanied by reduced steady-state levels of class I heavy-chain mRNA. Transient expression assays were performed in oligodendrocytes and fibroblasts, using a mouse H-2Kb class I promoter chloramphenicol acetyltransferase plasmid termed pH2KCAT (which contained 5'-flanking sequences from -2033 to +5 bp of the H-2Kb gene relative to the transcriptional start site at +1 bp). These assays showed that H-2Kb promoter activity was reduced in oligodendrocytes but not in class I-expressing fibroblasts. H-2Kb promoter activity was up-regulated in oligodendrocytes co-transfected with a plasmid expression vector encoding the transcriptional activator tax of human T-cell leukaemia virus type I, showing that down-regulation of promoter activity was reversible. Deletion mutant analysis of the H-2Kb promoter revealed the presence of negative regulatory elements that were functional in oligodendrocytes at -1.61 to -1.07 kb and -242 to -190 bp. Deletion of sequences in pH2KCAT encompassing the downstream element totally abolished promoter activity in both oligodendrocytes and fibroblasts, whereas a deletion within the upstream negative regulatory element increased promoter activity specifically in oligodendrocytes. The upstream negative regulatory element also down-regulated a linked heterologous herpes simplex virus thymidine kinase promoter in oligodendrocytes, but not in fibroblasts. Gel retardation assays using overlapping DNA probes that spanned the entire -1.61 to -1.07 kb region revealed the presence of a number of DNA-binding activities that were present in oligodendrocyte, but not in fibroblast nuclear extracts.
Collapse
Affiliation(s)
- G Mavria
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, U.K
| | | | | | | |
Collapse
|
37
|
Taniike M, Marcus JR, Popko B, Suzuki K. Expression of major histocompatibility complex class I antigens in the demyelinating twitcher CNS and PNS. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970301)47:5<539::aid-jnr9>3.0.co;2-i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Abstract
A variety of neurological diseases in humans, including multiple sclerosis (MS), have been postulated to have a viral etiology. The use of animal models provides insights into potential mechanism(s) involved in the disease process. The murine coronavirus-induced demyelinating disease in rodents is one such model for demyelinating disease in humans.
Collapse
|
39
|
Lobigs M, Blanden RV, Müllbacher A. Flavivirus-induced up-regulation of MHC class I antigens; implications for the induction of CD8+ T-cell-mediated autoimmunity. Immunol Rev 1996; 152:5-19. [PMID: 8930665 PMCID: PMC7165549 DOI: 10.1111/j.1600-065x.1996.tb00908.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Infection of a wide variety of cells of human, mouse and other species' origin by flaviviruses such as WNV, YF, Den, MVE, KUN and JE, increases the cell-surface expression of MHC class I. This MHC class I up-regulation is not due to increased MHC class I synthesis per se, but the result of increased peptide availability in the ER for MHC class I assembly. This is most likely due to the interaction of the viral polyprotein with the ER membrane during viral replication. Flavivirus infection can overcome peptide deficiency in TAP-deficient or non-permissive cell lines such as RMA-S and Syrian hamster cells, BHK and NIL-2. The consequence of this increased MHC class I expression manifests itself in reduced susceptibility to NK cells and augmented lysis by Tc cells. In mice, long-term flavivirus-immune Tc cell memory formation is impaired, following the appearance of strong anti-self Tc cell reactivity observed in in vitro cultures from splenocytes of flavivirus-primed animals. We hypothesize that flavivirus-induced MHC class I up-regulation leads to transient T-cell autoimmunity, followed by down-regulation of both autoimmunity and virus-specific Tc cell memory. Furthermore, we speculate that flavivirus infections of humans in the tropics may be responsible for the observed lower incidence of overt autoimmunity in these geographic regions than in temperate climates where flaviviruses are not endemic.
Collapse
Affiliation(s)
- M Lobigs
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
40
|
Power C, Kong PA, Trapp BD. Major histocompatibility complex class I expression in oligodendrocytes induces hypomyelination in transgenic mice. J Neurosci Res 1996; 44:165-73. [PMID: 8723225 DOI: 10.1002/(sici)1097-4547(19960415)44:2<165::aid-jnr9>3.0.co;2-b] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increased expression of MHC Class I occurs in the central nervous system in association with demyelinating diseases such as multiple sclerosis and experimental allergic encephalomyelitis. To determine if MHC Class I expression by oligodendrocytes induces white matter pathology, the MHC Class I gene was expressed in transgenic mice under the control of the myelin basic protein (MBP) promoter. These mice display a neurological phenotype at 21 days-of-age. We examined these mice at 1,3, and 12 weeks-of-age. MHC Class I was detected in the brains and spinal cords of transgenic mice but not in control mice. Class I was located in oligodendrocyte perikarya but not in myelin sheaths. The central nervous system of these transgenic mice was hypomyelinated and contained hypertrophic microglia and astrocytes. These observations establish that Class I expression by oligodendrocytes delays normal myelination but does not cause inflammatory demyelination. This hypomyelinating animal model is of potential use in studying the interactions between immunologically active molecules and remyelination in disorders of myelin.
Collapse
Affiliation(s)
- C Power
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
41
|
McKisic MD, Paturzo FX, Smith AL. Mouse parvovirus infection potentiates rejection of tumor allografts and modulates T cell effector functions. Transplantation 1996; 61:292-9. [PMID: 8600639 DOI: 10.1097/00007890-199601270-00022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lymphocytotropic mouse parvoviruses can perturb immune responses. For example the recently identified mouse parvovirus designated MPV-1 persistently infects lymphoid tissues and interferes with the ability of cloned T cells to proliferate. As a consequence of these findings the present studies were undertaken to characterize further the immunomodulatory effects of MPV-1 on T cell-mediated immune responses in vivo and in vitro. To evaluate the effect of MPV-1 on CD8+ T cell-mediated responses sarcoma I (SaI) cells, devoid of class II major histocompatibility (MHC) antigens, were administered to MPV-1-infected adult BALB/c mice. MPV-1 infection accelerated tumor allograft rejection. Immunofluorescence staining and in situ hybridization studies of tumors suggested that direct infection of the tumor cells was not responsible for accelerated rejection. Furthermore, compared with uninfected mice, T cells from infected mice that had rejected SaI tumors had a diminished cytolytic capacity. Taken together these results suggest that MPV-1 may induce "bystander help." To examine the in vivo effect of MPV-1 on CD4+ T cell mediated responses adult mice were primed with ovalbumin (OVA) and infected with MPV-1. Spleen and popliteal lymph node cells from OVA-primed mice 3 or 7 days after MPV-1 inoculation had reduced proliferation responses, whereas the proliferative capacity of mesenteric lymph node cells from these mice was increased. Similarly, MPV-1 reduced cytokine-induced proliferation of allospecific CD8+ cloned L3 T cells and OVA-reactive CD4+ T cells without effecting cell viability. Since parvoviruses are widespread among laboratory rodents, these findings emphasize the importance of identifying and excluding parvovirus infections in mice used for transplantation studies and in cultures of mouse T lymphocytes.
Collapse
Affiliation(s)
- M D McKisic
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
42
|
Sedgwick JD. Immune surveillance and autoantigen recognition in the central nervous system. AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE 1995; 25:784-92. [PMID: 8770354 DOI: 10.1111/j.1445-5994.1995.tb02882.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central nervous system (CNS) is considered to be a severely disadvantaged site for the elicitation of immune responses. First, there is no specialised lymphatic drainage. Second, both glia and neuronal cells normally do not express appreciable levels of major histocompatibility complex molecules. Third, the vasculature of the CNS is, at least in most places, lined by endothelial cells that have tight junctions and form a barrier (the blood-brain barrier) against most molecules and cells present in the circulation. Fourth, the cells most important in the initiation of immune response, the leucocyte dendritic cell, are not present. Nevertheless, the existence of inflammatory diseases of this tissue, occurring naturally as in multiple sclerosis or in animals after peripheral immunisation with CNS autoantigens, indicates that the immune system can access and recognise antigens in this site. How this is achieved has become clearer in recent years and primarily seems to involve extravasation of activated but not resting T cells across the blood-brain barrier, and recognition of antigen on macrophage-like perivascular cells, rather than cells within the CNS parenchyme such as astrocytes or microglia. The processes involved in immunological patrolling of the CNS and development of autoimmune inflammatory disease are reviewed.
Collapse
Affiliation(s)
- J D Sedgwick
- Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, NSW
| |
Collapse
|
43
|
Abstract
Why is it that oligodendrocytes do not normally express major histocompatibility complex (MHC) molecules? To examine the effect of aberrant MHC expression in oligodendrocytes, transgenic mice have been produced which expressed the class I MHC gene, H-2Kb, under direction of the MBP promoter [Turnley et al. (1991b) Nature, 353:566-569; Yoshioka et al. (1991) Mol. Cell. Biol., 11:5479-5486]. A proportion of these mice exhibited a shivering phenotype, with tonic seizures and early death. Oligodendrocyte function and viability was shown to be affected, resulting in severe dysmyelination of the CNS. Is this phenomenon of cell damage due to aberrant expression of MHC molecules restricted to oligodendrocytes, and could other, non-MHC molecules, when aberrantly expressed, result in similar cell damage? This paper discusses these questions and examines possible mechanisms for the oligodendrocyte damage and hypomyelination observed in these transgenic mice. Finally, the implications of aberrant MHC expression in oligodendrocytes for demyelinating diseases such as multiple sclerosis are discussed.
Collapse
Affiliation(s)
- A M Turnley
- Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
44
|
Lampson LA. Interpreting MHC class I expression and class I/class II reciprocity in the CNS: reconciling divergent findings. Microsc Res Tech 1995; 32:267-85. [PMID: 8573777 DOI: 10.1002/jemt.1070320402] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MHC-restricted T cells are thought to contribute to clinical demyelination in MS and other circumstances. The step-by-step mechanisms involved and ways of controlling them are still being defined. Identification of the MHC+ cells in the CNS in situ has been controversial. This chapter reviews MHC expression in neural tissue, including normal, pathological, experimental, and developing tissue in situ and isolated cells in vitro. A basic pattern is defined, in which MHC expression is limited to nonneural cells and strongest class I and II expression are on different cell types. Variations from the basic pattern are reviewed. Ways of reconciling divergent findings are discussed, including the use of "mock tissue" to help choose between technical and biological bases for divergent findings, the potential contribution of internal antigen to the in situ staining patterns, and the possibility that class I upregulation is actively suppressed in situ. Functional implications of the observed patterns of MHC expression and ways of confirming the function of each MHC+ cell type in situ are described. It is suggested that modulating MHC expression in different cell types at different times or in different directions might be desirable.
Collapse
Affiliation(s)
- L A Lampson
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
45
|
Müllbacher A, Lobigs M. Up-regulation of MHC class I by flavivirus-induced peptide translocation into the endoplasmic reticulum. Immunity 1995; 3:207-14. [PMID: 7544229 DOI: 10.1016/1074-7613(95)90090-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Flavivirus infection of mammalian cells increases the cell surface expression of major histocompatibility complex (MHC) class I molecules, the recognition elements for cytotoxic T cells. Here, we show that the mechanism for flavivirus-induced up-regulation of class I MHC involves an increase in peptide supply to the endoplasmic reticulum. Flavivirus-mediated peptide supply for MHC class I assembly is independent of the peptide transporters for class I antigen presentation, since infection of class I MHC peptide transport-deficient cell lines with flaviviruses results in the cell surface expression of biologically functional class I MHC peptide complexes. The flavivirus-induced supply of antigenic peptides to the endoplasmic reticulum is not restricted to flavivirus-encoded peptides and independent of interferon. The data imply that peptide availability regulates surface expression of class I MHC restriction elements and suggests a mechanism for flavivirus-induced immunopathology.
Collapse
Affiliation(s)
- A Müllbacher
- Division of Cell Biology, John Curtin School of Medical Research, Australian National University, Canberra
| | | |
Collapse
|
46
|
Abstract
Pathological features of MS include perivascular inflammation and demyelination with oligodendrocyte loss; in addition, attempts at remyelination are often unsuccessful and may culminate in astrocytic scarring. One approach to investigating the biological principles underlying these processes is to use in vitro systems to analyse single-cell behaviour as well as cell-cell interactions. This paper reviews such data concerned with cell injury and repair which illuminate both demyelination and remyelination. In tissue culture oligodendrocytes are susceptible to injury via cell-mediated and humoral mechanisms. Substances including complement and tumour necrosis factor are capable of killing rat oligodendrocytes in vitro; surface complement activation also initiates a number of intracellular processes within oligodendrocytes as well as providing ligands for phagocytic interactions. The reasons for oligodendrocyte complement activation are discussed, but it appears that species differences exist when extrapolating these data to humans. Myelination and remyelination can also be studied both in vitro and in vivo using defined cell populations. Results from these studies may eventually help to explain some pathological features of MS, including astrocytosis and factors governing the limits of remyelination.
Collapse
Affiliation(s)
- J Zajicek
- University of Cambridge Neurology Unit, Addenbrooke's Hospital, UK
| | | |
Collapse
|
47
|
Gombold JL, Sutherland RM, Lavi E, Paterson Y, Weiss SR. Mouse hepatitis virus A59-induced demyelination can occur in the absence of CD8+ T cells. Microb Pathog 1995; 18:211-21. [PMID: 7565015 PMCID: PMC7134808 DOI: 10.1016/s0882-4010(95)90058-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mouse hepatitis virus causes a chronic demyelinating disease in C57BL/6 mice. While early studies suggested demyelination is due to direct cytolytic effects of virus on oligodendrocytes, there is increasing evidence for the involvement of the immune system in the mechanism of demyelination. In this study we have asked whether demyelination can occur in the absence of functional MHC class I expression and CD8+ T cells. We infected transgenic mice lacking expression of beta 2 microglobulin (beta 2 M -/- mice) with MHV-A59. In beta 2M-/- mice, virus was much more lethal than in either of the parental strains used to produce the mice; furthermore, while clearance from the CNS did occur in beta 2M-/- mice, it was slower than in C57BL/6 mice. This is consistent with the importance of CD8+ cells in viral clearance. Because of the increased sensitivity of the beta 2M-/- mice to infection, only low levels of virus could be used to evaluate chronic disease. Even at these low levels, demyelination did occur in some animals. To compare infection in beta 2M-/- and C57BL/6 mice we used a higher dose of an attenuated variant of MHV-A59, C12. The attenuated variant induced less demyelination in C57BL/6 mice compared to wild type A59, but the levels observed were not significantly different from those seen in beta 2M-/- mice. Thus, MHV-induced demyelination can occur in some animals in the absence of MHC class I and CD8+ cells.
Collapse
Affiliation(s)
- J L Gombold
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6076, USA
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- L Stitz
- Institut für Virologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | |
Collapse
|
49
|
Affiliation(s)
- H Wege
- Institute for Diagnostic Virology, Federal Research Centre for Virus Diseases of Animals, Friedrich-Loeffler-Institutes, Insel Riems, Germany
| |
Collapse
|
50
|
Correale J, Li S, Weiner LP, Gilmore W. Effect of persistent mouse hepatitis virus infection on MHC class I expression in murine astrocytes. J Neurosci Res 1995; 40:10-21. [PMID: 7714917 PMCID: PMC7167169 DOI: 10.1002/jnr.490400103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurotropic strains of mouse hepatitis virus (MHV) have been used extensively for the study of viral pathogenesis in the central nervous system (CNS), serving as models for human neurological diseases such as multiple sclerosis (MS). MHV strains A59 and JHMV both cause acute and chronic encephalomyelitis and demyelination in susceptible strains of mice and rats. In acute disease, CNS damage is most likely the result of lytic infection in neurons and oligodendrocytes, and death can be prevented by the adoptive transfer of Class I-restricted CD8+ T cells. However, in later stages of the disease induced by some MHV strains, virus tends to be restricted to astrocytes in a nonlytic infection, and the immune response appears to contribute to CNS damage. These data lead us to suggest that the astrocyte may play a central role in the neuropathogenesis of MHV infection. Consistent with this possibility, A59 has been reported to induce the expression of Class I molecules of the major histocompatibility complex (MHC) in glial cells following infection in vivo and in vitro. In this communication, we have examined the influence of persistent infection by both A59 and JHMV on MHC Class I expression in primary murine astrocytes. Persistence was characterized by the presence of intracellular viral antigen and mRNA in the absence of detectable infectious virus particles. Under these conditions, JHMV, but not A59, inhibited constitutive expression of the H-2 Kb molecule, with the magnitude of inhibition increasing with postinfection time. A59 was not able to induce Class I during persistence, presumably due to the lack of infectious virus particles. Class I expression was restored by the addition of gamma-interferon (IFN-gamma) to astrocytes persistently infected with either A59 or JHMV. Thus, Class I inhibition is not a permanent consequence of JHMV persistence, and persistence does not interfere with normal signalling pathways for Class I induction.
Collapse
Affiliation(s)
- J Correale
- Department of Neurology, USC School of Medicine, Los Angeles 90033
| | | | | | | |
Collapse
|