1
|
Xiao Q, Zhai L, Zhang X, Liu Y, Li J, Xie X, Xu G, He S, Fu H, Tang Y, Zhang F, Liu Y. How can we establish animal models of HIV-associated lymphoma? Animal Model Exp Med 2024; 7:484-496. [PMID: 38567763 PMCID: PMC11369037 DOI: 10.1002/ame2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/27/2024] [Indexed: 09/04/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection is strongly associated with a heightened incidence of lymphomas. To mirror the natural course of human HIV infection, animal models have been developed. These models serve as valuable tools to investigate disease pathobiology, assess antiretroviral and immunomodulatory drugs, explore viral reservoirs, and develop eradication strategies. However, there are currently no validated in vivo models of HIV-associated lymphoma (HAL), hampering progress in this crucial domain, and scant attention has been given to developing animal models dedicated to studying HAL, despite their pivotal role in advancing knowledge. This review provides a comprehensive overview of the existing animal models of HAL, which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Jun Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiaoqing Xie
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Guofa Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Huihui Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yifeng Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Fujie Zhang
- Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
2
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Avdoshina DV, Kondrashova AS, Belikova MG, Bayurova EO. Murine Models of Chronic Viral Infections and Associated Cancers. Mol Biol 2022; 56:649-667. [PMID: 36217336 PMCID: PMC9534466 DOI: 10.1134/s0026893322050028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Viruses are now recognized as bona fide etiologic factors of human cancer. Carcinogenic viruses include Epstein– Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), human immunodeficiency virus type 1 (HIV-1, indirectly), and several candidate human cancer viruses. It is estimated that 15% of all human tumors worldwide are caused by viruses. Tumor viruses establish long-term persistent infections in humans, and cancer is an accidental side effect of viral replication strategies. Viruses are usually not complete carcinogens, supporting the concept that cancer results from the accumulation of multiple cooperating events, in which human cancer viruses display different, often opposing roles. The laboratory mouse Mus musculus is one of the best in vivo experimental systems for modeling human pathology, including viral infections and cancer. However, mice are unsusceptible to infection with the known carcinogenic viruses. Many murine models were developed to overcome this limitation and to address various aspects of virus-associated carcinogenesis, from tumors resulting from xenografts of human tissues and cells, including cancerous and virus infected, to genetically engineered mice susceptible to viral infections and associated cancer. The review considers the main existing models, analyzes their advantages and drawbacks, describes their applications, outlines the prospects of their further development.
Collapse
Affiliation(s)
- D. V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - A. S. Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - M. G. Belikova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia ,Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - E. O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
4
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
5
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|
6
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
7
|
Macedo AB, Novis CL, Bosque A. Targeting Cellular and Tissue HIV Reservoirs With Toll-Like Receptor Agonists. Front Immunol 2019; 10:2450. [PMID: 31681325 PMCID: PMC6804373 DOI: 10.3389/fimmu.2019.02450] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023] Open
Abstract
The elimination of both cellular and tissue latent reservoirs is a challenge toward a successful HIV cure. "Shock and Kill" are among the therapeutic strategies that have been more extensively studied to target these reservoirs. These strategies are aimed toward the reactivation of the latent reservoir using a latency-reversal agent (LRA) with the subsequent killing of the reactivated cell either by the cytotoxic arm of the immune system, including NK and CD8 T cells, or by viral cytopathic mechanisms. Numerous LRAs are currently being investigated in vitro, ex vivo as well as in vivo for their ability to reactivate and reduce latent reservoirs. Among those, several toll-like receptor (TLR) agonists have been shown to reactivate latent HIV. In humans, there are 10 TLRs that recognize different pathogen-associated molecular patterns. TLRs are present in several cell types, including CD4 T cells, the cell compartment that harbors the majority of the latent reservoir. Besides their ability to reactivate latent HIV, TLR agonists also increase immune activation and promote an antiviral response. These combined properties make TLR agonists unique among the different LRAs characterized to date. Additionally, some of these agonists have shown promise toward finding an HIV cure in animal models. When in combination with broadly neutralizing antibodies, TLR-7 agonists have shown to impact the SIV latent reservoir and delay viral rebound. Moreover, there are FDA-approved TLR agonists that are currently being investigated for cancer therapy and other diseases. All these has prompted clinical trials using TLR agonists either alone or in combination toward HIV eradication approaches. In this review, we provide an extensive characterization of the state-of-the-art of the use of TLR agonists toward HIV eradication strategies and the mechanism behind how TLR agonists target both cellular and tissue HIV reservoirs.
Collapse
Affiliation(s)
- Amanda B. Macedo
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Camille L. Novis
- Department of Pathology, Division of Microbiology and Immunology, The University of Utah, Salt Lake City, UT, United States
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
8
|
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses 2019; 11:252. [PMID: 30871179 PMCID: PMC6466164 DOI: 10.3390/v11030252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Well-developed mouse models are important for understanding the pathogenesis and progression of immunological response to viral infections in humans. Moreover, to test vaccines, anti-viral drugs and therapeutic agents, mouse models are fundamental for preclinical investigations. Human viruses, however, seldom infect mice due to differences in the cellular receptors used by the viruses for entry, as well as in the innate immune responses in mice and humans. In other words, a species barrier exists when using mouse models for investigating human viral infections. Developing transgenic (Tg) mice models expressing the human genes coding for viral entry receptors and knock-out (KO) mice models devoid of components involved in the innate immune response have, to some extent, overcome this barrier. Humanized mouse models are a third approach, developed by engrafting functional human cells and tissues into immunodeficient mice. They are becoming indispensable for analyzing human viral diseases since they nearly recapitulate the human disease. These mouse models also serve to test the efficacy of vaccines and antiviral agents. This review provides an update on the Tg, KO, and humanized mouse models that are used in studies investigating the pathogenesis of three important human-specific viruses, namely human immunodeficiency (HIV) virus 1, influenza, and dengue.
Collapse
Affiliation(s)
- Vinodhini Krishnakumar
- Department of Microbiology, School of Life Sciences, Central University of Tamilnadu, Tiruvarur 610 005, India.
| | | | - Kalichamy Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India.
| | - Min Li
- Neuroscience Research Laboratory, Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR, China.
| | | |
Collapse
|
9
|
Abstract
Psoriasis is a prevalent systemic immune-mediated disease with cutaneous manifestations. In HIV-infected patients, psoriasis may have a higher incidence, present atypical and more exuberant clinical features, and is frequently recalcitrant to treatment. Despite this aggravated severity, treatment options for psoriasis in HIV-infected individuals remain limited due to the risk of fatal immunosuppression associated with both classical immunosuppressants and new biological drugs. Notwithstanding, drug therapy in psoriasis has been undergoing major advances for the last few years, with novel drugs approved, which could significantly add to the management of HIV-infected patients. It is therefore our aim to present a review of the available literature to highlight the updated evidence on psoriasis in HIV-infected individuals, particularly in regards to its epidemiology, proposed pathophysiology, clinical presentation, currently available therapeutic options, and future perspectives.
Collapse
Affiliation(s)
- Miguel Alpalhão
- 1 Dermatology and Venereology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal.,2 Dermatology Investigation Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - J Borges-Costa
- 1 Dermatology and Venereology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal.,2 Dermatology Investigation Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.,3 Clínica Universitária de Dermatologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Filipe
- 1 Dermatology and Venereology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal.,2 Dermatology Investigation Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.,3 Clínica Universitária de Dermatologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Evering TH, Tsuji M. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System. Front Immunol 2018; 9:649. [PMID: 29670623 PMCID: PMC5893637 DOI: 10.3389/fimmu.2018.00649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| |
Collapse
|
11
|
Thaney VE, Sanchez AB, Fields JA, Minassian A, Young JW, Maung R, Kaul M. Transgenic mice expressing HIV-1 envelope protein gp120 in the brain as an animal model in neuroAIDS research. J Neurovirol 2017; 24:156-167. [PMID: 29075998 DOI: 10.1007/s13365-017-0584-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/03/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023]
Abstract
HIV-1 infection causes injury to the central nervous system (CNS) and is often associated with neurocognitive disorders. One model for brain damage seen in AIDS patients is the transgenic (tg) mouse expressing a soluble envelope protein gp120 of HIV-1 LAV in the brain in astrocytes under the control of the promoter of glial fibrillary acidic protein. These GFAP-gp120tg mice manifest several key neuropathological features observed in AIDS brains, such as decreased synaptic and dendritic density, increased numbers of activated microglia, and pronounced astrocytosis. Several recent studies show that brains of GFAP-gp120tg mice and neurocognitively impaired HIV patients share also a significant number of differentially regulated genes, activation of innate immunity and other cellular signaling pathways, disturbed neurogenesis, and learning deficits. These findings support the continued relevance of the GFAP-gp120tg mouse as a useful model to investigate neurodegenerative mechanisms and develop therapeutic strategies to mitigate the consequences associated with HIV infection of the CNS, neuroAIDS, and HAND.
Collapse
Affiliation(s)
- Victoria E Thaney
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jerel A Fields
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Abstract
Human immunodeficiency virus (HIV) remains a significant source of morbidity and mortality worldwide. No effective vaccine is available to prevent HIV transmission, and although antiretroviral therapy can prevent disease progression, it does not cure HIV infection. Substantial effort is therefore currently directed toward basic research on HIV pathogenesis and persistence and developing methods to stop the spread of the HIV epidemic and cure those individuals already infected with HIV. Humanized mice are versatile tools for the study of HIV and its interaction with the human immune system. These models generally consist of immunodeficient mice transplanted with human cells or reconstituted with a near-complete human immune system. Here, we describe the major humanized mouse models currently in use, and some recent advances that have been made in HIV research/therapeutics using these models.
Collapse
Affiliation(s)
- Matthew D Marsden
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095;
| | - Jerome A Zack
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095; .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095;
| |
Collapse
|
13
|
Molès JP, Griez A, Guilhou JJ, Girard C, Nagot N, Van de Perre P, Dujols P. Cytosolic RNA:DNA Duplexes Generated by Endogenous Reverse Transcriptase Activity as Autonomous Inducers of Skin Inflammation in Psoriasis. PLoS One 2017; 12:e0169879. [PMID: 28095445 PMCID: PMC5240966 DOI: 10.1371/journal.pone.0169879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022] Open
Abstract
Psoriasis is a chronic skin disease of unknown ætiology. Recent studies suggested that a large amount of cytosolic DNA (cyDNA) in keratinocytes is breaking keratinocytes DNA tolerance and promotes self-sustained inflammation in the psoriatic lesion. We investigated the origin of this cyDNA. We show that, amongst all the possible DNA structures, the cyDNA could be present as RNA:DNA duplexes in keratinocytes. We further show that endogenous reverse transcriptase activities generate such duplexes and consequently activate the production of Th1-inflammatory cytokines. These observations open a new research avenue related to endogenous retroelements for the aetiology of psoriasis and probably of other human chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jean-Pierre Molès
- Inserm UMR 1058, Montpellier, France
- Etablissement Français du Sang, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Anthony Griez
- Inserm UMR 1058, Montpellier, France
- Etablissement Français du Sang, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Jean-Jacques Guilhou
- University of Montpellier, Montpellier, France
- CHU of Montpellier, Montpellier, France
| | - Céline Girard
- Inserm UMR 1058, Montpellier, France
- Etablissement Français du Sang, Montpellier, France
- University of Montpellier, Montpellier, France
- CHU of Montpellier, Montpellier, France
| | - Nicolas Nagot
- Inserm UMR 1058, Montpellier, France
- Etablissement Français du Sang, Montpellier, France
- University of Montpellier, Montpellier, France
- CHU of Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Inserm UMR 1058, Montpellier, France
- Etablissement Français du Sang, Montpellier, France
- University of Montpellier, Montpellier, France
- CHU of Montpellier, Montpellier, France
| | - Pierre Dujols
- Inserm UMR 1058, Montpellier, France
- Etablissement Français du Sang, Montpellier, France
- University of Montpellier, Montpellier, France
- CHU of Montpellier, Montpellier, France
| |
Collapse
|
14
|
HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity. PLoS One 2015; 10:e0130189. [PMID: 26066624 PMCID: PMC4465743 DOI: 10.1371/journal.pone.0130189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/17/2015] [Indexed: 12/21/2022] Open
Abstract
Background The potential role of the human immunodeficiency virus-1 (HIV-1) accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines) and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef) treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3), thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT)-1, STAT-2 and STAT-3 through the production of proinflammatory factors. Methodology/Principal Findings We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS) with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-β (IFNβ) release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells. Conclusions These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.
Collapse
|
15
|
Marsden MD, Zack JA. Studies of retroviral infection in humanized mice. Virology 2015; 479-480:297-309. [PMID: 25680625 DOI: 10.1016/j.virol.2015.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/02/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
Abstract
Many important aspects of human retroviral infections cannot be fully evaluated using only in vitro systems or unmodified animal models. An alternative approach involves the use of humanized mice, which consist of immunodeficient mice that have been transplanted with human cells and/or tissues. Certain humanized mouse models can support robust infection with human retroviruses including different strains of human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV). These models have provided wide-ranging insights into retroviral biology, including detailed information on primary infection, in vivo replication and pathogenesis, latent/persistent reservoir formation, and novel therapeutic interventions. Here we describe the humanized mouse models that are most commonly utilized to study retroviral infections, and outline some of the important discoveries that these models have produced during several decades of intensive research.
Collapse
Affiliation(s)
- Matthew D Marsden
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA
| | - Jerome A Zack
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Curreli S, Krishnan S, Reitz M, Lunardi-Iskandar Y, Lafferty MK, Garzino-Demo A, Zella D, Gallo RC, Bryant J. B cell lymphoma in HIV transgenic mice. Retrovirology 2013; 10:92. [PMID: 23985023 PMCID: PMC3847158 DOI: 10.1186/1742-4690-10-92] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/22/2013] [Indexed: 01/09/2023] Open
Abstract
Background Human Immunodeficiency Virus Type I (HIV-1) infection is associated with a high incidence of B-cell lymphomas. The role of HIV in these lymphomas is unclear and currently there are no valid in vivo models for better understanding HIV-related lymphomagenesis. Transgenic (Tg) 26 mice have a 7.4-kb pNL4-3 HIV-1 provirus lacking a 3.1-kb sequence encompassing parts of the gag-pol region. Approximately 15% of these HIV Tg mice spontaneously develop lymphoma with hallmark pre-diagnostic markers including skin lesions, diffuse lymphadenopathy and an increase in pro-inflammatory serum cytokines. Here we describe the phenotypic and molecular characteristics of the B cell leukemia/lymphoma in the Tg mice. Results The transformed B cell population consists of CD19+pre-BCR+CD127+CD43+CD93+ precursor B cells. The tumor cells are clonal and characterized by an increased expression of several cellular oncogenes. Expression of B cell-stimulatory cytokines IL-1β, IL-6, IL-10, IL-12p40, IL-13 and TNFα and HIV proteins p17, gp120 and nef were elevated in the Tg mice with lymphoma. Conclusions Increased expression of HIV proteins and the B-cell stimulatory factors is consistent with the interpretation that one or more of these factors play a role in lymphoma development. The lymphomas share many similarities with those occurring in HIV/AIDS+ patients and may provide a valuable model for understanding AIDS-related lymphomagenesis and elucidating the role played by HIV-1.
Collapse
Affiliation(s)
- Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.
Collapse
|
18
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Animal models in virus research: their utility and limitations. Crit Rev Microbiol 2012; 39:325-61. [PMID: 22978742 DOI: 10.3109/1040841x.2012.711740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.
Collapse
Affiliation(s)
- Derrick Louz
- National Institute for Public Health and the Environment (RIVM), GMO Office , Bilthoven , The Netherlands
| | | | | | | |
Collapse
|
19
|
Mangino G, Serra V, Borghi P, Percario ZA, Horenkamp FA, Geyer M, Affabris E. Exogenous nef induces proinflammatory signaling events in murine macrophages. Viral Immunol 2012; 25:117-30. [PMID: 22413916 DOI: 10.1089/vim.2011.0082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the fact that murine cells are not permissive for human immunodeficiency virus type 1 (HIV-1) infection, several investigators have constructed transgenic (Tg) mice to model HIV-1-induced diseases to overcome this restriction. The generation of Tg mice expressing selected HIV-1 genes revealed that Nef harbors a major disease determinant. HIV-1 Nef protein is a molecular adapter able to interact with several cellular partners, interfering with cellular functions. The phenotype of Nef Tg mice was extensively characterized regarding in vivo development of AIDS-like disease and the effects of Nef expression in T lymphocytes, but the functions eventually corrupted by Nef in monocytes and macrophages were less studied. Nef treatment of human monocyte-derived macrophages induces the internalization of the protein and modulates the production and secretion of different chemokines and cytokines by activating specific intracellular signaling pathways (i.e., NF-κB, MAPK, and IRF3). Therefore we set up an in vitro murine macrophage-based model using stabilized cell lines and primary peritoneal macrophages, and treated them with recombinant myristoylated Nef(SF2) (recNef). Like human cells, murine macrophages responded to Nef treatment, activating IKK-α and IKK-β, JNK, and p38 MAP kinases. Activation of the NF-κB pathway is mandatory for the synthesis and release of a pool of cytokines and chemokines, including IFN-β, that induce tyrosine phosphorylation of the signal transducer and activator of transcription (STAT)-1, STAT-2, and STAT-3, in an autocrine and paracrine manner, confirming that murine macrophages respond to Nef similarly to human ones. These data extend the results previously obtained in human primary macrophages, allowing the use of murine cells in culture to study signaling events modulated by Nef in myeloid-derived cells. In particular, it may be feasible to use macrophages derived from mice knocked out in specific signaling intermediates to obtain greater insight into the mechanism of Nef-induced effects.
Collapse
|
20
|
Genetic knockouts suggest a critical role for HIV co-receptors in models of HIV gp120-induced brain injury. J Neuroimmune Pharmacol 2011; 7:306-18. [PMID: 22124968 DOI: 10.1007/s11481-011-9328-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/16/2011] [Indexed: 02/06/2023]
Abstract
Infection with HIV-1 frequently affects the brain and causes NeuroAIDS prior to the development of overt AIDS. The HIV-1 envelope protein gp120 interacts with host CD4 and chemokine co-receptors to initiate infection of macrophages and lymphocytes. In addition, the virus or fragments of it, such as gp120, cause macrophages to produce neurotoxins and trigger neuronal injury and apoptosis. Moreover, the two major HIV co-receptors, the chemokine receptors CCR5 and CXCR4, serve numerous physiological functions and are widely expressed beyond immune cells, including cells in the brain. Therefore, HIV co-receptors are poised to play a direct and indirect part in the development of NeuroAIDS. Although rodents are not permissive to infection with wild type HIV-1, viral co-receptors - more than CD4 - are highly conserved between species, suggesting the animals can be suitable models for mechanistic studies addressing effects of receptor-ligand interaction other than infection. Of note, transgenic mice expressing HIV gp120 in the brain share several pathological hallmarks with NeuroAIDS brains. Against this background, we will discuss recently completed or initiated, ongoing studies that utilize HIV co-receptor knockout and viral gp120-transgenic mice as models for in vitro and in vivo experimentation in order to address the potential roles of HIV gp120 and its co-receptors in the development of NeuroAIDS.
Collapse
|
21
|
|
22
|
Adult AIDS-like disease in a novel inducible human immunodeficiency virus type 1 Nef transgenic mouse model: CD4+ T-cell activation is Nef dependent and can occur in the absence of lymphophenia. J Virol 2009; 83:11830-46. [PMID: 19740990 DOI: 10.1128/jvi.01466-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CD4C/HIV(nef) transgenic (Tg) mice express Nef in CD4+ T cells and in the cells of the macrophage/monocyte/dendritic lineage, and they develop an AIDS-like disease similar to human AIDS. In these mice, Nef is constitutively expressed throughout life. To rule out the contribution of any developmental defects caused by early expression of Nef, we generated inducible human immunodeficiency virus type 1 (HIV-1) Nef Tg mice by using the tetracycline-inducible system. Faithful expression of the Nef transgene was induced in (CD4C/rtTA x TRE/HIV(Nef)) or (CD4C/rtTA2S-M2 x TRE/HIV(Nef)) double-Tg mice upon doxycycline (DOX) treatment in drinking water. Long-term treatment of these mice with DOX also led to loss, apoptosis, and activation of CD4+ T cells, this latter phenotype being observed even with low levels of Nef. These phenotypes could be transferred by bone marrow (BM) transplantation, indicating a hematopoietic cell autonomous effect. In addition, in mixed Tg:non-Tg BM chimeras, only Tg and not non-Tg CD4+ T cells exhibited an effector/memory phenotype in the absence of lymphopenia. Finally, the DOX-induced double-Tg mice developed nonlymphoid organ diseases similar to those of CD4C/HIV(Nef) Tg mice and of humans infected with HIV-1. These results show for the first time that adult mice are susceptible to the detrimental action of Nef and that Nef-mediated T-cell activation can be independent of lymphopenia. These Tg mice represent a unique model which is likely to be instrumental for understanding the cellular and molecular pathways of Nef action as well as the main characteristics of immune reconstitution following DOX withdrawal.
Collapse
|
23
|
Cedeno-Laurent F, Bryant J, Fishelevich R, Jones OD, Deng A, Eng ML, Gaspari AA, Trujillo JR. Inflammatory papillomatous hyperplasia and epidermal necrosis in a transgenic rat for HIV-1. J Dermatol Sci 2008; 53:112-9. [PMID: 19004620 DOI: 10.1016/j.jdermsci.2008.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 11/18/2022]
Abstract
BACKGROUND Skin lesions commonly affect AIDS patients. The pathogenesis of certain dermatologic disorders primarily associated to HIV-1 is unclear, and better forms of therapy for these conditions need to be discovered. Transgenic animal models represent a novel approach for the study of these disorders and for the quest of more effective forms of treatment. OBJECTIVE Characterize this HIV-1 transgenic rat as a model to study skin diseases related to HIV/AIDS. METHODS A transgenic rat was developed, using an HIV-1 construct with deleted gag and pol genes. Morphological and genotypical evaluations were followed by cytokine profile characterization of the lesions. RESULTS We report the characterization of a colony of HIV-1 transgenic rats that developed skin lesions in a frequency of 22.5%. Cutaneous expression of functional HIV-1 transgenes correlated precisely with the severity of the phenotype. In early stages, rats manifested localized areas of xerosis and dispersed papulosquamous lesions. These hyperplastic manifestations were observed in conjunction with an increased epidermal expression of tat protein and a Th1/Th2 profile of cytokines. As the lesions progressed, they formed inflammatory plaques that subsequently ulcerated. Histologically, these lesions displayed a profound lymphocytic infiltrate, epidermal necrosis, and a marked increase of both Th1 and Th2 derived cytokines. Moreover, the presence of circulating IgG antibodies against HIV-1 gp120 was detected. CONCLUSION This animal model as other HIV-1 transgenic mice described in the past, is not able to fully explain the myriad of skin findings that can occur in HIV-infected humans; however, it represents a potential animal model system for the study of immune-mediated inflammatory skin diseases.
Collapse
Affiliation(s)
- Filiberto Cedeno-Laurent
- Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Boberg A, Bråve A, Johansson S, Wahren B, Hinkula J, Rollman E. Murine models for HIV vaccination and challenge. Expert Rev Vaccines 2008; 7:117-30. [PMID: 18251698 DOI: 10.1586/14760584.7.1.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 only infects humans and chimpanzees. SIV or SHIV are, therefore, used as models for HIV in rhesus, cynomologus and pigtail macaques. Since conducting experiments in primate models does not fully mimic infection or vaccination against HIV-1 and is expensive, there is a great need for small-animal models in which it is possible to study HIV-1 infection, immunity and vaccine efficacy. This review summarizes the available murine models for studying HIV-1 infection with an emphasis on our experience of the HIV-1-infected-cell challenge as a model for evaluating candidate HIV-1 vaccines. In the cell-based challenge model, several important factors that, hopefully, can be related to vaccine efficacy in humans were discovered: the efficiency of combining plasmid DNA representing several of the viral genes originating from multiple clades of HIV-1, the importance of adjuvants activating innate and induced immunity and the enhanced HIV eradication by drug-conjugated antibody.
Collapse
Affiliation(s)
- Andreas Boberg
- Swedish Institute for Infectious Disease Control and Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Psoriasis can be provoked or exacerbated by a variety of different environmental factors, particularly infections and drugs. Strong evidence exists for the induction of guttate psoriasis by a preceding tonsillar Streptococcus pyogenes infection, whereas disease exacerbation has been linked with skin and/or gut colonization by Staphylococcus aureus, Malassezia, and Candida albicans. The role, if any, of viruses (papillomaviruses, HIV, and endogenous retroviruses) present in lesional skin is at present unknown. The use of various drugs, such as lithium, beta-blockers, antimalarial agents, nonsteroidal anti-inflammatory drugs, and angiotensin-converting enzyme inhibitors, has also been associated with induction or worsening of disease in psoriatic patients.
Collapse
Affiliation(s)
- Lionel Fry
- Faculty of Medicine, Imperial College, St Mary's Campus, W2 1PG London, UK.
| | | |
Collapse
|
26
|
Nonprimate models of HIV-1 infection and pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:399-422. [PMID: 18086419 DOI: 10.1016/s1054-3589(07)56013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Münk C, Zielonka J, Constabel H, Kloke BP, Rengstl B, Battenberg M, Bonci F, Pistello M, Löchelt M, Cichutek K. Multiple restrictions of human immunodeficiency virus type 1 in feline cells. J Virol 2007; 81:7048-60. [PMID: 17459941 PMCID: PMC1933292 DOI: 10.1128/jvi.02714-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity approximately 10- to approximately 40-fold.
Collapse
Affiliation(s)
- Carsten Münk
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Sun J, Soos T, Kewalramani VN, Osiecki K, Zheng JH, Falkin L, Santambrogio L, Littman DR, Goldstein H. CD4-specific transgenic expression of human cyclin T1 markedly increases human immunodeficiency virus type 1 (HIV-1) production by CD4+ T lymphocytes and myeloid cells in mice transgenic for a provirus encoding a monocyte-tropic HIV-1 isolate. J Virol 2006; 80:1850-62. [PMID: 16439541 PMCID: PMC1367149 DOI: 10.1128/jvi.80.4.1850-1862.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-encoded Tat provides transcriptional activation critical for efficient HIV-1 replication by interacting with cyclin T1 and recruiting P-TEFb to efficiently elongate the nascent HIV transcript. Tat-mediated transcriptional activation in mice is precluded by species-specific structural differences that prevent Tat interaction with mouse cyclin T1 and severely compromise HIV-1 replication in mouse cells. We investigated whether transgenic mice expressing human cyclin T1 under the control of a murine CD4 promoter/enhancer cassette that directs gene expression to CD4(+) T lymphocytes and monocytes/macrophages (hu-cycT1 mice) would display Tat responsiveness in their CD4-expressing mouse cells and selectively increase HIV-1 production in this cellular population, which is infected primarily in HIV-1-positive individuals. To this end, we crossed hu-cycT1 mice with JR-CSF transgenic mice carrying the full-length HIV-1(JR-CSF) provirus under the control of the endogenous HIV-1 long terminal repeat and demonstrated that human cyclin T1 expression is sufficient to support Tat-mediated transactivation in primary mouse CD4 T lymphocytes and monocytes/macrophages and increases in vitro and in vivo HIV-1 production by these stimulated cells. Increased HIV-1 production by CD4(+) T lymphocytes was paralleled with their specific depletion in the peripheral blood of the JR-CSF/hu-cycT1 mice, which increased over time. In addition, increased HIV-1 transgene expression due to human cyclin T1 expression was associated with increased lipopolysaccharide-stimulated monocyte chemoattractant protein 1 production by JR-CSF mouse monocytes/macrophages in vitro. Therefore, the JR-CSF/hu-cycT1 mice should provide an improved mouse system for investigating the pathogenesis of various aspects of HIV-1-mediated disease and the efficacies of therapeutic interventions.
Collapse
Affiliation(s)
- Jinglin Sun
- Albert Einstein College of Medicine, Forschheimer Building, Room 408, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Potash MJ, Chao W, Bentsman G, Paris N, Saini M, Nitkiewicz J, Belem P, Sharer L, Brooks AI, Volsky DJ. A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc Natl Acad Sci U S A 2005; 102:3760-5. [PMID: 15728729 PMCID: PMC553332 DOI: 10.1073/pnas.0500649102] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We created a model of HIV-1 infection of conventional mice for investigation of viral replication, control, and pathogenesis. To target HIV-1 to mice, the coding region of gp120 in HIV-1/NL4-3 was replaced with that of gp80 from ecotropic murine leukemia virus, a retrovirus that infects only rodents. The resulting chimeric virus construct, EcoHIV, productively infected murine lymphocytes, but not human lymphocytes, in culture. Adult, immunocompetent mice were readily susceptible to infection by a single inoculation of EcoHIV as shown by detection of virus in splenic lymphocytes, peritoneal macrophages, and the brain. The virus produced in animals was infectious, as shown by passage in culture, and immunogenic, as shown by induction of antibodies to HIV-1 Gag and Tat. A second chimeric virus based on clade D HIV-1/NDK was also highly infectious in mice; it was detected in both spleen and brain 3 wk after tail vein inoculation, and it induced expression of infection response genes, MCP-1, STAT1, IL-1beta, and complement component C3, in brain tissue as determined by quantitative real-time PCR. EcoHIV infection of mice forms a useful model of HIV-1 infection of human beings for convenient and safe investigation of HIV-1 therapy, vaccines, and potentially pathogenesis.
Collapse
Affiliation(s)
- Mary Jane Potash
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University Medical Center, 432 West 58th Street, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Osiecki K, Xie L, Zheng JH, Squires R, Pettoello-Mantovani M, Goldstein H. Identification of granulocyte-macrophage colony-stimulating factor and lipopolysaccharide-induced signal transduction pathways that synergize to stimulate HIV type 1 production by monocytes from HIV type 1 transgenic mice. AIDS Res Hum Retroviruses 2005; 21:125-39. [PMID: 15725751 DOI: 10.1089/aid.2005.21.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
HIV-1-infected monocyte/macrophages located in lymph nodes and tissues are highly productive sources of HIV-1 and may function as a persistent reservoir contributing to the rebound viremia observed after highly active antiretroviral therapy is stopped. Mechanisms activating latently infected, primary monocyte/macrophages to produce HIV-1 were investigated using monocytes isolated from a transgenic mouse line carrying a full-length proviral clone of a monocyte-tropic HIV-1 isolate, HIV-1(JR-CSF), regulated by the endogenous long terminal repeat (LTR) (JR-CSF mice). Granulocyte-macrophage colony-stimulating factor (GM-CSF) combined with lipopolysaccharide (LPS) induced infectious HIV-1 production by JR-CSF mouse monocytes over 10-fold and 100-fold higher than that stimulated by GM-CSF or LPS alone, respectively. We examined mechanisms of GM-CSF synergy with LPS and demonstrated that GM-CSF up-regulated the LPS receptor, TLR-4, and also synergized with LPS to activate mitogen-activated protein (MAP) kinase/ERK kinase and the Sp1 transcription factor. Inhibitors of either MAP kinase/ERK kinase or p38 kinase but not PI 3-kinase potently suppressed GM-CSF and LPS-induced HIV-1 production by JR-CSF mouse monocytes. Because Sp1 is activated by both the MAP kinase/ERK kinase and p38 kinase pathways, we postulate that synergistic activation of these pathways by GM-CSF and LPS induced sufficient levels of Sp1 to activate the HIV-1 LTR in a Tat-independent manner and induced HIV-1 production by JR-CSF mouse monocytes. Thus, our study delineated the pathway of HIV-1 LTR activation by GM-CSF and LPS and indicated that JR-CSF transgenic mice may provide a new in vitro and in vivo system for investigating the mechanism by which inflammatory and infectious stimuli activate HIV-1 production from latently infected monocytes.
Collapse
Affiliation(s)
- Kristin Osiecki
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
32
|
de Repentigny L, Lewandowski D, Jolicoeur P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 2004; 17:729-59, table of contents. [PMID: 15489345 PMCID: PMC523562 DOI: 10.1128/cmr.17.4.729-759.2004] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oropharyngeal and esophageal candidiases remain significant causes of morbidity in human immunodeficiency virus (HIV)-infected patients, despite the dramatic ability of antiretroviral therapy to reconstitute immunity. Notable advances have been achieved in understanding, at the molecular level, the relationships between the progression of HIV infection, the acquisition, maintenance, and clonality of oral candidal populations, and the emergence of antifungal resistance. However, the critical immunological defects which are responsible for the onset and maintenance of mucosal candidiasis in patients with HIV infection have not been elucidated. The devastating impact of HIV infection on mucosal Langerhans' cell and CD4(+) cell populations is most probably central to the pathogenesis of mucosal candidiasis in HIV-infected patients. However, these defects may be partly compensated by preserved host defense mechanisms (calprotectin, keratinocytes, CD8(+) T cells, and phagocytes) which, individually or together, may limit Candida albicans proliferation to the superficial mucosa. The availability of CD4C/HIV transgenic mice expressing HIV-1 in immune cells has provided the opportunity to devise a novel model of mucosal candidiasis that closely mimics the clinical and pathological features of candidal infection in human HIV infection. These transgenic mice allow, for the first time, a precise cause-and-effect analysis of the immunopathogenesis of mucosal candidiasis in HIV infection under controlled conditions in a small laboratory animal.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada.
| | | | | |
Collapse
|
33
|
Dickie P, Roberts A, Uwiera R, Witmer J, Sharma K, Kopp JB. Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy. Virology 2004; 322:69-81. [PMID: 15063118 DOI: 10.1016/j.virol.2004.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 12/16/2003] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
Clinical and morphologic features of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN), such as proteinuria, sclerosing glomerulopathy, tubular degeneration, and interstitial disease, have been modeled in mice bearing an HIV proviral transgene rendered noninfectious through a deletion in gag/pol. Exploring the genetic basis of HIVAN, HIV transgenic mice bearing mutations in either or both of the accessory genes nef and vpr were created. Proteinuria and focal glomerulosclerosis (FGS) only developed in mice with an intact vpr gene. Transgenic mice bearing a simplified proviral DNA (encoding only Tat and Vpr) developed renal disease characterized by FGS in which Vpr protein was localized to glomerular and tubular epithelia by immunohistochemistry. The dual transgenic progeny of HIV[Tat/Vpr] mice bred to HIV[DeltaVpr] proviral transgenic mice displayed a more severe nephropathy with no apparent increase in Vpr expression, implying that multiple viral genes contribute to HIVAN. However, the unique contribution of macrophage-specific Vpr expression in the development of glomerular disease was underscored by the induction of FGS in multiple murine lines bearing a c-fms/vpr transgene.
Collapse
Affiliation(s)
- Peter Dickie
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | | | | | | | | | |
Collapse
|
34
|
Namazi MR. Paradoxical exacerbation of psoriasis in AIDS: proposed explanations including the potential roles of substance P and gram-negative bacteria. Autoimmunity 2004; 37:67-71. [PMID: 15115314 DOI: 10.1080/08916930310001637986] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Psoriasis, a TH1-induced disorder, is not more common in human immunodeficiency virus (HIV) infection than in the general population. However, it may appear for the first time or pre-existing psoriasis may worsen and be difficult to treat in HIV disease. The paradoxical exacerbation of psoriasis in AIDS has not been fully explained. Various explanations have been proposed including (a) the reduction of Langerhans' cells (LCs) in HIV disease, (b) the direct epidermal proliferative effect of HIV, (c) the altered cytokine profile in HIV disease, (d) HIV-induced macrophage nitric oxide (NO) production, (e) the increased CD8/CD4 T-cell ratio in HIV infection and (f) the increased colonization of skin by Staphylococcus aureus. However, the observations that (a) LCs cells play an important role in the pathogenesis of psoriasis and a variety of topical and systemic psoriasis treatments cause a reversible decrease in LC function, (b) psoriasis may improve in end-stage HIV infection, (c) overproduction of some TH2 cytokines and underproduction of IL-2 in HIV infection, and (d) the presence of NO favors a TH2 response over a TH1 response make the first four explanations difficult to interpret. Since psoriasis is exacerbated in HIV infection possibly due to the increased staphylococcal colonization, and psoriatic keratinocytes could aggravate HIV infection through production of TNF-alpha, it could be reasoned that in HIV-positive psoriatics a strong vicious cycle is present between the degree of immune deficiency and the staphylococcal colonization, explaining the poor prognosis of both AIDS and psoriasis in these patients. With reference to the studies which indicate significant involvement of substance P (SP) in the pathogenesis of psoriasis and on the other hand increased release of this agent by HIV-infected immune cells it is proposed that SP plays an important role in creating the paradox. Since in HIV-positive psoriatics the source of SP is largely immune cells not neurons, capsaicin, which exerts its action selectively on a subpopulation of neurons, could not be of significant therapeutic value. As SP significantly enhances HIV-1 replication in latently infected immune cells, psoriatic lesions, being heavily infiltrated with immune cells and having high concentrations of SP, could serve as high HIV-replication foci, with the resultant rapid progression of the infection towards AIDS. Additionally, given that lipopolysaccharide is supposed to exacerbate psoriasis, increase of gram-negative infections or cutaneous colonization with these organisms in AIDS may partly explain the paradox. Understanding the HIV-induced immunodysregulation that is associated with psoriasis in some HIV-seropositive patients may assist in the delineation of the immunopathogenesis of the disease in HIV-seronegative psoriatics.
Collapse
Affiliation(s)
- M R Namazi
- Dermatology Department, Shiraz University of Medical Sciences, P.O. Box 71955-687, Shiraz, Iran.
| |
Collapse
|
35
|
Equils O, Schito ML, Karahashi H, Madak Z, Yarali A, Michelsen KS, Sher A, Arditi M. Toll-like receptor 2 (TLR2) and TLR9 signaling results in HIV-long terminal repeat trans-activation and HIV replication in HIV-1 transgenic mouse spleen cells: implications of simultaneous activation of TLRs on HIV replication. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5159-64. [PMID: 12734363 DOI: 10.4049/jimmunol.170.10.5159] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Opportunistic infections are common in HIV-infected patients; they activate HIV replication and contribute to disease progression. In the present study we examined the role of Toll-like receptor 2 (TLR2) and TLR9 in HIV-long terminal repeat (HIV-LTR) trans-activation and assessed whether TLR4 synergized with TLR2 or TLR9 to induce HIV replication. Soluble Mycobacterium tuberculosis factor (STF) and phenol-soluble modulin from Staphylococcus epidermidis induced HIV-LTR trans-activation in human microvessel endothelial cells cotransfected with TLR2 cDNA. Stimulation of ex vivo spleen cells from HIV-1 transgenic mice with TLR4, TLR2, and TLR9 ligands (LPS, STF, and CpG DNA, respectively) induced p24 Ag production in a dose-dependent manner. Costimulation of HIV-1 transgenic mice spleen cells with LPS and STF or CpG DNA induced TNF-alpha and IFN-gamma production in a synergistic manner and p24 production in an additive fashion. In the THP-1 human monocytic cell line stably expressing the HIV-LTR-luciferase construct, LPS and STF also induced HIV-LTR trans-activation in an additive manner. This is the first time that TLR2 and TLR9 and costimulation of TLRs have been shown to induce HIV replication. Together these results underscore the importance of TLRs in bacterial Ag- and CpG DNA-induced HIV-LTR trans-activation and HIV replication. These observations may be important in understanding the role of the innate immune system and the molecular mechanisms involved in the increased HIV replication and HIV disease progression associated with multiple opportunistic infections.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Animals
- Antigens, Differentiation/pharmacology
- Cell Line, Transformed
- Cells, Cultured
- Cytokines/biosynthesis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- HIV Long Terminal Repeat/genetics
- HIV Long Terminal Repeat/immunology
- HIV-1/genetics
- HIV-1/immunology
- HIV-1/physiology
- Humans
- Ligands
- Lipopolysaccharides/pharmacology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Transgenic
- Mycobacterium tuberculosis/immunology
- Myeloid Differentiation Factor 88
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Immunologic
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Spleen/virology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptor 9
- Toll-Like Receptors
- Transcriptional Activation/immunology
- Tumor Cells, Cultured
- Up-Regulation/genetics
- Up-Regulation/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Ozlem Equils
- Division of Pediatric Infectious Diseases, Steven Spielberg Pediatric Research Center, Burns and Allen Research Institute, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ. Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1693-707. [PMID: 12707054 PMCID: PMC1851199 DOI: 10.1016/s0002-9440(10)64304-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat protein is a key pathogenic factor in a variety of acquired immune deficiency syndrome (AIDS)-associated disorders. A number of studies have documented the neurotoxic property of Tat protein, and Tat has therefore been proposed to contribute to AIDS-associated neurological diseases. Nevertheless, the bulk of these studies are performed in in vitro neuronal cultures without taking into account the intricate cell-cell interaction in the brain, or by injection of recombinant Tat protein into the brain, which may cause secondary stress or damage to the brain. To gain a better understanding of the roles of Tat protein in HIV-1 neuropathogenesis, we attempted to establish a transgenic mouse model in which Tat expression was regulated by both the astrocyte-specific glial fibrillary acidic protein promoter and a doxycycline (Dox)-inducible promoter. In the present study, we characterized the phenotypic and neuropathogenic features of these mice. Both in vitro and in vivo assays confirmed that Tat expression occurred exclusively in astrocytes and was Dox-dependent. Tat expression in the brain caused failure to thrive, hunched gesture, tremor, ataxia, and slow cognitive and motor movement, seizures, and premature death. Neuropathologies of these mice were characterized by breakdown of cerebellum and cortex, brain edema, astrocytosis, degeneration of neuronal dendrites, neuronal apoptosis, and increased infiltration of activated monocytes and T lymphocytes. These results together demonstrate that Tat expression in the absence of HIV-1 infection is sufficient to cause neuropathologies similar to most of those noted in the brain of AIDS patients, and provide the first evidence in the context of a whole organism to support a critical role of Tat protein in HIV-1 neuropathogenesis. More importantly, our data suggest that the Dox inducible, brain-targeted Tat transgenic mice offer an in vivo model for delineating the molecular mechanisms of Tat neurotoxicity and for developing therapeutic strategies for treating HIV-associated neurological disorders.
Collapse
Affiliation(s)
- Byung Oh Kim
- Department of Microbiology and Immunology, the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Buonaguro FM, Tornesello ML, Buonaguro L, Satriano RA, Ruocco E, Castello G, Ruocco V. Kaposi's sarcoma: aetiopathogenesis, histology and clinical features. J Eur Acad Dermatol Venereol 2003; 17:138-154. [PMID: 12705742 DOI: 10.1046/j.1468-3083.2003.00670.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Kaposi's sarcoma (KS) represents today one of the most common skin cancers in transplanted Mediterranean subjects and, since the epidemic of human immunodeficiency virus/acquired immune deficiency syndrome, in young unmarried single men. The disease has been associated with the recent identified human herpesvirus (HHV)-8 or KS herpesvirus and its incidence in the general population shows a north to south gradient that parallels the HHV-8 increasing prevalence from Nordic countries to sub-Saharan regions. The identification of the aetiopathogenetic mechanisms (viral agents and immunodeficiency) involved in the pathogenesis of KS, are relevant for identifying susceptible subjects (HHV-8 seropositive subjects), monitoring the immune levels in iatrogenic immune suppressed patients, and developing new therapeutic approaches based on antiviral and immune modulators. LEARNING OBJECTIVE This article should enable the reader: (i) to learn about the clinical and molecular aspects of KS in order to have a multidisciplinary approach to a tumour that shows unique features; (ii) to consider the role of viral agents and immunity; and (iii) to recognize properties of an opportunistic neoplasm. The identification of the HHV-8 role in KS pathogenesis should establish a relevant tool in the clinical management of KS patients.
Collapse
Affiliation(s)
- F M Buonaguro
- Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Koito A, Shigekane H, Matsushita S. Ability of small animal cells to support the postintegration phase of human immunodeficiency virus type-1 replication. Virology 2003; 305:181-91. [PMID: 12504551 DOI: 10.1006/viro.2002.1755] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We examine the potential for a broad range of small animal cells, including rodent, mink, and avian cells, from multiple tissues to support postintegration steps of HIV-1 replication. These cells were engineered so as to support a stable expression of human cyclin T1 and were further transduced with HIV-1 gag and pol genes. Viral gene expression was activated by the presence of human cyclin T1, but, with the exception of mink cells, was not at the level seen in human cells. Furthermore, there were considerable defects in p24 CA release, in particular in the case of rodent cells. Fractionation of Gag proteins by sucrose floatation revealed that the Gag in human cells trafficked to membrane fractions and was processed to p24 CA and p17 MA efficiently. Confocal imaging demonstrated that Gag was localized in a punctate pattern at the plasma membrane as well as intracellular membrane trans-Golgi cisternae in these cells. In contrast, the majority of Gag in rodent cells was largely present in cytosolic complexes and remained unprocessed. Labeling with [9,10(n)-(3)H]myristic acid showed a similar degree of N-myristoylated Pr55(gag) in rodent and human cells, indicating that while N-myristoylation of Gag was essential for membrane binding, it was not sufficient to confer membrane targeting specificity. Remarkably, despite the reduced level of intracellular Gag processing, mink Mv.1.Lu cells did not appear to differ significantly from human cells in support of virion assembly and release. Analysis of reciprocal heterokaryons suggested that the cellular factor(s) required for efficient assembly and release of infectious virions is lacking in murine cells but appears to be functionally present in mink as well as human cells. Our findings confirm and extend previous reports of multiple blocks to HIV replication in nonhuman cells that are most profound in murine cells. They also raise the possibility that other small animals, such as mink, could serve as novel model systems for studying HIV-1 infection and disease.
Collapse
Affiliation(s)
- Atsushi Koito
- Division of Clinical Retrovirology and Infectious Diseases, Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan.
| | | | | |
Collapse
|
39
|
Assmann KJM, van Son JPHF, Dïjkman HBPM, Mentzel S, Wetzels JFM. Antibody-induced albuminuria and accelerated focal glomerulosclerosis in the Thy-1.1 transgenic mouse. Kidney Int 2002; 62:116-26. [PMID: 12081570 DOI: 10.1046/j.1523-1755.2002.00428.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Podocytes play an important role in the development of proteinuria and focal glomerulosclerosis. Previously we have demonstrated that a combination of two monoclonal antibodies (mAb) against aminopeptidase A (APA), an enzyme present on podocytes, induces a massive acute albuminuria in mice. The present study examined the relationship between the acute antibody-induced albuminuria and the development of focal glomerulosclerosis in the Thy-1.1 transgenic mouse. This mouse expresses a hybrid human-mouse Thy-1.1 antigen on the podocytes, and slowly but spontaneously develops albuminuria and focal glomerulosclerosis. METHODS Five-week-old non-albuminuric Thy-1.1 transgenic and non-transgenic control mice were injected with anti-APA and anti-Thy-1.1 mAb or saline. Albuminuria was measured at days 1, 7, 14 and 21. At day 21 kidneys were processed for light microscopy, immunofluorescence, and electron microscopy. RESULTS Injection of anti-APA and anti-Thy1.1 mAb in Thy-1.1 transgenic mice induced an albuminuria at day 1 that persisted at day 21. The acute albuminuria after injection of anti-APA mAb was more prominent but transient in non-transgenic mice. In non-trangenic mice no albuminuria could be induced with anti-Thy 1.1 mAb. Light microscopy revealed normal glomeruli at day 1 in all transgenic mice, however, at day 21 advanced glomerulosclerotic lesions were seen in mice injected with either anti-APA mAb (37+/-19% of glomeruli affected) or anti-Thy-1.1 mAb (71+/-5%). Non-transgenic mice did not reveal sclerotic lesions at any time investigated. In the transgenic mice the percentage of focal glomerulosclerosis at day 21 did not correlate with albuminuria at day 21. However, we found a highly significant correlation between percentage of focal glomerulosclerosis and the time-averaged albuminuria over the three-week study period (P < 0.001). CONCLUSION Injection of a combination of anti-APA or anti-Thy-1.1 mAb into one mo old, non-albuminuric Thy-1.1 transgenic mice induces an acute albuminuria at day 1 that is accompanied by an accelerated focal glomerulosclerosis at day 21. We suggest that the Thy-1.1 transgenic mouse is an excellent model to study specifically the relation between podocytic injury, albuminuria and the development of focal glomerulosclerosis.
Collapse
Affiliation(s)
- Karel J M Assmann
- Department of Pathology, Division of Nephrology, University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Camargo FD, Huey-Louie DA, Finn AV, Sassani AB, Cozen AE, Moriwaki H, Schneider DB, Agah R, Dichek DA. Germline incorporation of a replication-defective adenoviral vector in mice does not alter immune responses to adenoviral vectors. Mol Ther 2000; 2:496-504. [PMID: 11082323 DOI: 10.1006/mthe.2000.0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The utility of adenoviral vectors is limited by immune responses to adenoviral antigens. We sought to develop immune-competent mice in which the immune response to adenoviral antigens was selectively absent. To do so, we generated mice that were transgenic for a replication-defective vector. Adenoviral antigens might be seen as self-antigens by these mice, and the mice could exhibit immunologic tolerance after postnatal exposure to adenoviral vectors. In addition, characterization of these mice could reveal potential consequences of germline transmission of an adenoviral vector, as might occur in a gene therapy trial. Injection of a "null" (not containing a transgene) E1, E3-deleted vector genome into mouse zygotes yielded five founders that were capable of transmitting the vector genome. Among offspring of these mice, transgenic pups were significantly underrepresented: 108 of 255 pups (42%) were transgenic (P<0.02 versus expected frequency of 50%). Postnatal transgenic mice, however, had no apparent abnormalities. Persistence of an adenoviral vector after intravenous injection was equivalent in livers of transgenic mice and their nontransgenic littermates. Transgenic and nontransgenic mice also had equivalent humoral and cellular immune responses to adenoviral vector injection. Mice that are transgenic for an E1, E3-deleted adenoviral genome can be easily generated; however, they are not tolerant of adenovirus. Moreover, germline transmission of an adenoviral vector genome does not prevent generation of a robust immune response after exposure to adenoviral antigens.
Collapse
Affiliation(s)
- F D Camargo
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dickie P. Nef modulation of HIV type 1 gene expression and cytopathicity in tissues of HIV transgenic mice. AIDS Res Hum Retroviruses 2000; 16:777-90. [PMID: 10826484 DOI: 10.1089/088922200308774] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transgenic mice bearing HIV-1 proviral DNA deleted in the gag/pol region (HIVd1443 mice) model a chronic, nonproductive form of viral gene expression in various cell types including macrophages. They display a disease phenotype that includes HIV-associated nephropathy (HIVAN), congenital cataracts, papillomatosis, and growth failure. The role of HIV-1 Nef in viral gene regulation and the development of disease was explored in mice bearing an isogenic HIV transgene in which nef was mutated by frameshift mutation. Like its Nef+ counterpart, HIVd1443[Nef-] mice expressed HIV gene products in the skin, muscle, kidney, and peritoneal macrophages. While these mice did not develop cataracts, papillomatous skin lesions, or display any apparent growth defect, they did develop HIVAN. Nef expression was introduced to HIVd1443[Nef-] mice through breeding to mice bearing an HIV LTR-linked nef transgene. Nef-complemented HIVd1443[Nef-] mice had reduced levels of viral gene products in the muscle and kidney. In contrast, HIV gene expression in the skin of these mice remained high and papillomatous lesions emerged that were more severe than those on wild-type HIVd1443 mice. Still, Nef had a negative effect on LPS-induced viral gene expression in visibly normal skin. In comparisons of peritoneal macrophages, viral RNA expression was significantly reduced in resident macrophages of Nef+ mice. HIV inflammatory macrophages expressed viral genes and displayed an altered FACS profile. In particular, Nef+ populations were marked by an increased proportion of F4/80med/Mac-1-cells as well as fewer Mac-1 cells and reduced F4/80 staining. This HIV proviral transgenic model has demonstrated the capacity of HIV-1 Nef to contribute to HIV cytopathicity by altering cellular maturation and viral gene expression in vivo.
Collapse
Affiliation(s)
- P Dickie
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
42
|
Abstract
Psoriasis occurs with at least undiminished frequency in HIV-infected individuals. The behavior of psoriasis in HIV disease is of interest, in terms of pathogenesis and therapy because of the background of profound immunodysregulation. It is paradoxical that, while drugs that target T lymphocytes are effective in psoriasis, the condition should be exacerbated by HIV infection. The etiopathogenesis of psoriasis is unknown, but genetic and environmental factors are thought to be involved. There are controversial issues regarding the immunological basis of psoriasis and the role of CD4+ versus CD8+ T lymphocytes. Current opinion favors an autoimmune basis for psoriasis although the precipitating activating signal(s) within psoriatic plaques remains unknown. Candidate skin autoantigens that have cross-reactive determinants with bacterial antigens include keratins. The immunodysregulation resulting from HIV infection may trigger psoriasis in those genetically predisposed by the Cw*0602 allele. Because CD8 T cells recognize antigen in the context of class I molecules, the identification of a human leucocyte antigen (HLA) class I association in HIV-associated psoriasis strengthens the argument for an important role for CD8+ T lymphocytes in the immunopathogenesis of psoriasis. HLA-Cw*0602 could act as a cross-reactive target for cytotoxic T lymphocytes (CTLs) responding to processed peptides from microorganisms.
Collapse
Affiliation(s)
- E Mallon
- Department of Dermatology, Imperial College School of Medicine, Chelsea & Westminster Hospital, London, U.K
| | | |
Collapse
|
43
|
Abstract
Psoriasis occurs with at least undiminished frequency in HIV infected individuals. The behaviour of psoriasis in HIV disease is of interest, both in terms of pathogenesis and therapy, because of the background of profound immunodysregulation. It is paradoxical that, while drugs that target T lymphocytes are effective in psoriasis, the condition should be exacerbated by HIV infection. Antiretroviral therapy may improve psoriasis in tandem with improvement in the overall clinical and virological condition of the patient. The aetiopathogenesis of psoriasis is unknown but genetic and environmental factors are thought to be involved. There are controversial issues regarding the immunological basis of psoriasis and the role of CD4+ versus CD8+ T lymphocytes. Current opinion favours an autoimmune basis for psoriasis, although the precipitating activating signal(s) within psoriatic plaques remains unknown. The immunodysregulation resulting from HIV infection may trigger psoriasis in those genetically predisposed by the Cw*0602 allele. Since CD8+ T cells recognize antigen in the context of class I molecules, the identification of a human leucocyte antigen class I association in HIV-associated psoriasis strengthens the argument for an important role for CD8+ T lymphocytes in the immunopathogenesis of psoriasis. HLA-Cw*0602 could act as a cross-reactive target for cytotoxic T lymphocytes responding to processed peptides from microorganisms. Human retrovirus-5 is a recently described, partially characterized retrovirus and has been implicated in the pathogenesis of psoriatic arthropathy but not psoriasis.
Collapse
|
44
|
Browning Paul J, Wang EJ, Pettoello-Mantovani M, Raker C, Yurasov S, Goldstein MM, Horner JW, Chan J, Goldstein H. Mice transgenic for monocyte-tropic HIV type 1 produce infectious virus and display plasma viremia: a new in vivo system for studying the postintegration phase of HIV replication. AIDS Res Hum Retroviruses 2000; 16:481-92. [PMID: 10772534 DOI: 10.1089/088922200309142] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To generate an in vivo system for investigating the postintegration phase of HIV-1 replication, mouse lines transgenic for a full-length infectious proviral clone of a monocyte-tropic HIV-1 isolate, HIV-1JR-CSF, were constructed. Leukocytes from two independent JR-CSF transgenic mouse lines produced HIV-1 that infected human PBMCs. Plasma viremia was detected in these mice at levels (mean, >60,000 HIV RNA copies/ml) comparable to those reported for HIV-1-infected individuals. The levels of HIV RNA in these mice increased several-fold after either treatment with the superantigen Staphylococcus enterotoxin B or infection with Mycobacterium tuberculosis. Thus, a provirus encoding a monocyte-tropic HIV-1 strain under the control of its LTR expressed as a transgene in mice can proceed through the postintegration replication phase and produce infectious virus. In addition, the presence of plasma viremia that can be monitored by measuring plasma HIV-1 RNA levels permits these mice to be used to study the impact of different interventions on modulating in vivo HIV-1 production. Therefore, these mice provide a novel manipulable system to investigate the in vivo regulation of HIV-1 production by factors that activate the immune system. Furthermore, this murine system should be useful in delineating the role of human-specific factors in modulating HIV-1 replication and investigating the in vivo therapeutic efficacy of agents that target the postintegration stages of HIV-1 replication.
Collapse
Affiliation(s)
- J Browning Paul
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Doherty TM, Chougnet C, Schito M, Patterson BK, Fox C, Shearer GM, Englund G, Sher A. Infection of HIV-1 Transgenic Mice with Mycobacterium avium Induces the Expression of Infectious Virus Selectively from a Mac-1-Positive Host Cell Population. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Infection of HIV-1-transgenic mice with Mycobacterium avium, a common opportunistic pathogen in AIDS patients, was shown to result in increased tissue expression of viral specific transcripts. Moreover, by coculturing splenocytes from the transgenic animals with human T cells it was possible to demonstrate that the elevation in HIV-1 mRNA triggered by M. avium infection reflects increased production of infectious virions. Viral immune activation was also shown to correlate with a marked elevation of p24 in supernatants of ex vivo-cultured tissues and, more importantly, in systemic increases in the HIV-1 protein in plasma. Interestingly, these tissue and systemic p24 responses were found to be differentially regulated. Thus, while in vitro p24 production by cultured splenocytes increased concurrently with bacterial loads during the first 6 wk of infection, levels of the Ag in plasma actually decreased. In situ localization experiments together with FACS analysis of HIV-1-expressing splenocytes indicated that virus production is restricted largely to cells of the monocyte/macrophage lineage. Indeed, in vitro p24 expression by cells from noninfected transgenic mice was up-regulated by polyclonal stimulation of macrophages but not T cells. Together these results underscore the importance of the macrophage reservoir in persistent virus expression and establish a convenient and relevant animal model for studying the factors responsible for immune activation of HIV-1 induced by mycobacterial as well as other common coinfections encountered by AIDS patients.
Collapse
Affiliation(s)
- T. Mark Doherty
- *Immunobiology Section, Laboratory of Parasitic Diseases, and
| | - Claire Chougnet
- ‡Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marco Schito
- *Immunobiology Section, Laboratory of Parasitic Diseases, and
| | - Bruce K. Patterson
- §Department of Obstetrics/Gynecology and Medicine, Division of Infectious Diseases, Northwestern University Medical School, Chicago IL 60611; and
| | - Cecil Fox
- ¶Molecular Histology, Inc., Gaithersburg, MD 20879
| | - Gene M. Shearer
- ‡Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - George Englund
- †Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, and
| | - Alan Sher
- *Immunobiology Section, Laboratory of Parasitic Diseases, and
| |
Collapse
|
46
|
Morrey JD, Bailey KW, Korba BE, Sidwell RW. Utilization of transgenic mice replicating high levels of hepatitis B virus for antiviral evaluation of lamivudine. Antiviral Res 1999; 42:97-108. [PMID: 10389653 DOI: 10.1016/s0166-3542(99)00009-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A recently developed transgenic mouse strain which expresses high levels of hepatitis B virus (HBV) was studied as a model for evaluation of potential chemotherapeutic agents. Lamivudine ([-]2'-deoxy-3'-thiacytidine), known to reduce hepatitis B viremia in human patients, and zidovudine (3'-azido-3'-deoxythymidine), previously shown to be ineffective for HBV infections in man, were used in parallel in this transgenic animal model. Orally administered lamivudine at dosages of 100, 50, and 25 mg/kg per day given once a day for 21 days significantly decreased serum and liver HBV DNA titers in a dose-responsive manner. Zidovudine (approximately 22 mg/kg per day) administered in the drinking water for 21 days was not effective in reducing these HBV parameters as compared to transgenic placebo-treated controls. The serum HBV DNA titers rebounded to high levels 1 week after cessation of lamivudine treatment. Male and female mice responded in a similar manner to these therapies. The results using this transgenic mouse model were similar to what would be predicted from treatment of HBV-infected human patients with lamivudine and zidovudine, and indicate these mice may be useful as a small animal chemotherapeutic model for study of potential HBV inhibitors.
Collapse
Affiliation(s)
- J D Morrey
- Institute for Antiviral Research, Utah State University, Logan 84322-5600, USA.
| | | | | | | |
Collapse
|
47
|
Mallon E, Young D, Bunce M, Gotch FM, Easterbrook PJ, Newson R, Bunker CB. HLA-Cw*0602 and HIV-associated psoriasis. Br J Dermatol 1998; 139:527-33. [PMID: 9767306 DOI: 10.1046/j.1365-2133.1998.02495.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aetiopathogenesis of psoriasis is unknown, but genetic and environmental factors may be involved. Psoriasis may not be one disease but a cutaneous inflammatory reaction pattern consequent upon several different independent or related stimuli in susceptible individuals. There are controversial issues regarding the immunological basis of psoriasis and the role of CD4 vs. CD8 T lymphocytes. Psoriasis has been associated with HLA-Cw6 and Cw7 by serology and specifically with HLA-Cw*0602 by polymerase chain reaction (PCR) typing. Psoriasis is probably no more common in HIV infection than in the general population; however, it may appear for the first time or pre-existing psoriasis may worsen and be difficult to treat in HIV disease. We have investigated the prevalence of HLA-C alleles, in the specific clinical context of HIV infection complicated by type 1 psoriasis, in a case control study of 14 men with HIV disease and type 1 psoriasis and 147 HIV-infected patients without psoriasis. Typing was performed using PCR with sequence-specific amplification primers. Eleven of 14 patients (79%) with psoriasis carried the HLA-Cw*0602 allele compared with 24.5% of those without psoriasis (odds ratio = 11.31; 95% confidence limits 2. 73 to 65.36; P = 0.0001). Two patients without the HLA-Cw*0602 allele carried instead the closely related Cw*0401/3 allele. The results confirm the previously reported association between the HLA-Cw*0602 allele and type 1 psoriasis, and suggest that the association with HLA-Cw*0602 is stronger in HIV-associated psoriasis although this trend needs to be supported by a larger sample. The immunodysregulation resulting from HIV infection may trigger psoriasis in those genetically predisposed by the Cw*0602 allele. As CD8 T cells recognize antigens in the context of class I major histocompatibility complex, the identification of an HLA class I association in HIV-associated psoriasis strengthens the argument for an important role for CD8 + T lymphocytes in the immunopathogenesis of psoriasis. Investigations of the pathogenesis of psoriasis should take account of clinical and other subtypes already identified.
Collapse
Affiliation(s)
- E Mallon
- Department of Dermatology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, U.K
| | | | | | | | | | | | | |
Collapse
|
48
|
Hanna Z, Kay DG, Cool M, Jothy S, Rebai N, Jolicoeur P. Transgenic mice expressing human immunodeficiency virus type 1 in immune cells develop a severe AIDS-like disease. J Virol 1998; 72:121-32. [PMID: 9420207 PMCID: PMC109356 DOI: 10.1128/jvi.72.1.121-132.1998] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have constructed transgenic (Tg) mice expressing the entire human immunodeficiency virus type 1 (HIV-1) coding sequences in cells targeted by HIV-1 infection in humans. These Tg mice developed a severe AIDS-like disease leading to early death (< 1 month). They developed muscle wasting, severe atrophy and fibrosis of lymphoid organs, tubulointerstitial nephritis, and lymphoid interstitial pneumonitis. In addition the expression of RANTES was increased in various tissues of these Tg mice relative to that in the normal controls. Disease appearance was correlated with the levels of transgene expression. The numerous pathologies observed in these mice are remarkably similar to those observed in human AIDS and, more specifically, in pediatric AIDS.
Collapse
Affiliation(s)
- Z Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Weitzul S, Duvic M. HIV-related psoriasis and Reiter's syndrome. SEMINARS IN CUTANEOUS MEDICINE AND SURGERY 1997; 16:213-8. [PMID: 9300632 DOI: 10.1016/s1085-5629(97)80044-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection with the human immunodeficiency virus (HIV) is associated with the development of psoriasis and related disorders, including psoriatic arthritis, dactylitis and enthesitis, and Reiter's syndrome. The etiologic mechanisms remain unclear but most likely represent a combination of genetic and environmental factors. Therapy for these diseases in the setting of HIV infection is often difficult not only because of their characteristically increased severity, but also because the use of conventionally effective immunosuppressive agents may be counterproductive in this patient population.
Collapse
Affiliation(s)
- S Weitzul
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, USA
| | | |
Collapse
|
50
|
Kurth J, Buzy JM, Lindstrom L, Clements JE. In vivo transcriptional regulation of the human immunodeficiency virus in the central nervous system in transgenic mice. J Virol 1996; 70:7686-94. [PMID: 8892889 PMCID: PMC190838 DOI: 10.1128/jvi.70.11.7686-7694.1996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) causes infections of the central nervous system (CNS) and has been implicated as the causative agent of AIDS-associated encephalopathy and the AIDS dementia complex. The development of in vivo models of HIV-1-mediated gene expression has shown that the HIV long terminal repeat (LTR) from the viral isolate HIV(JR-CSF) specifically supports gene expression in adult and developing CNS. To determine the molecular basis for HIV-1 developmental CNS gene expression, in vivo footprinting analysis by the ligation-mediated PCR technique was performed on CNS tissue from the brain stem of a transgenic mouse. The association of cellular proteins in the CNS with sequences in the LTR was found over sequences that defined the TATA region, the Sp-1 and NF-kappaB sites, and two upstream regions (-111 to -150 and -260 to -300). A purine-rich sequence at positions -256 to -296 of the HIV(JR-CSF) LTR but not of the HIV(IIIB) LTR specifically bound protein in nuclear extracts of newborn brain tested in electrophoretic mobility shift assays. No specific protein binding was observed to this region in liver or HeLa cell nuclear extracts. This suggests the presence of a newly identified transcription factor involved in regulation of HIV-1 gene expression in the CNS.
Collapse
Affiliation(s)
- J Kurth
- Division of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|