1
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024:10.1007/s00775-024-02076-8. [PMID: 39424709 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
2
|
Castillo R, Van Kuiken BE, Weyhermüller T, DeBeer S. Experimentally Assessing the Electronic Structure and Spin-State Energetics in MnFe Dimers Using 1s3p Resonant Inelastic X-ray Scattering. Inorg Chem 2024; 63:18468-18483. [PMID: 39282749 PMCID: PMC11445731 DOI: 10.1021/acs.inorgchem.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
The synergistic interaction between Mn and Fe centers is investigated via a comprehensive analysis of full 1s3p resonant inelastic X-ray scattering (RIXS) planes at both the Fe and Mn K-edges in a series of homo- and heterometallic molecular systems. Deconvolution of the experimental two-dimensional 1s3p RIXS maps provides insights into the modulation of metal-ligand covalency and variations in the metal multiplet structure induced by subtle electronic structural differences imposed by the presence of the second metal. These modulations in the electronic structure are key toward understanding the reactivity of biological systems with active sites that require heterometallic centers, including MnFe purple acid phosphatases and MnFe ribonucleotide reductases. Herein, we demonstrate the capabilities of 1s3p RIXS to provide information on the excited state energetics in both element- and spin-selective fashion. The contributing excited states are identified and isolated by their multiplicity and π- and σ-contributions, building a conceptual bridge between the electronic structures of metal centers and their reactivity. The ability of the presented 1s3p RIXS methodology to address fundamental questions in transition metal catalysis reactivity is highlighted.
Collapse
Affiliation(s)
- Rebeca
G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | | | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
3
|
Liu B, Wang T, Qiu D, Yan X, Liu Y, Mergny JL, Zhang X, Monchaud D, Ju H, Zhou J. Arginine-Modified Hemin Enhances G-Quadruplex DNAzyme Peroxidase Activity for High Sensitivity Detection. Anal Chem 2024; 96:14590-14597. [PMID: 39183481 DOI: 10.1021/acs.analchem.4c03013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hemin/G-quadruplex (hG4) complexes are frequently used as artificial peroxidase-like enzymatic systems (termed G4 DNAzymes) in many biosensing applications, in spite of a rather low efficiency, notably in terms of detection limits. To tackle this issue, we report herein a strategy in which hemin is chemically modified with the amino acids found in the active site of parent horseradish peroxidase (HRP), with the aim of recreating an environment conducive to high catalytic activity. When hemin is conjugated with a single arginine, it associates with G4 to create an arginine-hemin/G4 (R-hG4) DNAzyme that exhibits improved catalytic performances, characterized by kinetic analysis and DFT calculations. The practical relevance of this system was demonstrated with the implementation of biosensing assays enabling the chemiluminescent detection of G4-containing DNA and colorimetry detection of the flap endonuclease 1 (FEN1) enzyme with a high efficiency and sensitivity. Our results thus provide a guide for future enzyme engineering campaigns to create ever more efficient peroxidase-mimicking DNA-based systems.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, Université de Bourgogne, 21078 Dijon, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Qiu D, He F, Liu Y, Zhou Z, Yang Y, Long Z, Chen Q, Chen D, Wei S, Mao X, Zhang X, Mergny J, Monchaud D, Ju H, Zhou J. A Cost-Effective Hemin-Based Artificial Enzyme Allows for Practical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402237. [PMID: 38924304 PMCID: PMC11348135 DOI: 10.1002/advs.202402237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Nanomaterials excel in mimicking the structure and function of natural enzymes while being far more interesting in terms of structural stability, functional versatility, recyclability, and large-scale preparation. Herein, the story assembles hemin, histidine analogs, and G-quadruplex DNA in a catalytically competent supramolecular assembly referred to as assembly-activated hemin enzyme (AA-heminzyme). The catalytic properties of AA-heminzyme are investigated both in silico (by molecular docking and quantum chemical calculations) and in vitro (notably through a systematic comparison with its natural counterpart horseradish peroxidase, HRP). It is found that this artificial system is not only as efficient as HRP to oxidize various substrates (with a turnover number kcat of 115 s-1) but also more practically convenient (displaying better thermal stability, recoverability, and editability) and more economically viable, with a catalytic cost amounting to <10% of that of HRP. The strategic interest of AA-heminzyme is further demonstrated for both industrial wastewater remediation and biomarker detection (notably glutathione, for which the cost is decreased by 98% as compared to commercial kits).
Collapse
Affiliation(s)
- Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Fangni He
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Zhaoxi Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yuqin Yang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Zhongwen Long
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Qianqian Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
- Laboratoire d'Optique et Biosciences (LOB)Ecole PolytechniqueCNRSINSERMInstitut Polytechnique de ParisPalaiseau91120France
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFCDijon21078France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| |
Collapse
|
5
|
Kanehira Y, Kogikoski S, Titov E, Tapio K, Mostafa A, Bald I. Watching a Single Enzyme at Work Using Single-Molecule Surface-Enhanced Raman Scattering and DNA Origami-Based Plasmonic Antennas. ACS NANO 2024; 18:20191-20200. [PMID: 39074854 PMCID: PMC11308918 DOI: 10.1021/acsnano.4c03384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
The detection of a single-enzyme catalytic reaction by surfaced-enhanced Raman scattering (SERS) is presented by utilizing DNA origami-based plasmonic antennas. A single horseradish peroxidase (HRP) was accommodated on a DNA origami nanofork plasmonic antenna (DONA) containing gold nanoparticles, enabling the tracing of single-molecule SERS signals during the peroxide reduction reaction. This allows monitoring of the structure of a single enzymatic catalytic center and products under suitable liquid conditions. Herein, we demonstrate the chemical changes of HRP and the appearance of tetramethylbenzidine (TMB), which works as a hydrogen donor before and after the catalytic reaction. The results show that the iron in HRP adopts Fe4+ and low spin states with the introduction of H2O2, indicating compound-I formation. Density functional theory (DFT) calculations were performed for later catalytic steps to rationalize the experimental Raman/SERS spectra. The presented data provide several possibilities for tracking single biomolecules in situ during a chemical reaction and further developing plasmon-enhanced biocatalysis.
Collapse
Affiliation(s)
- Yuya Kanehira
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Sergio Kogikoski
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Evgenii Titov
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Kosti Tapio
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Amr Mostafa
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
- Dynamics
of Molecules and Clusters Department, J.
Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
6
|
Zhong F, Reik ME, Ragusa MJ, Pletneva EV. The structure of the diheme cytochrome c 4 from Neisseria gonorrhoeae reveals multiple contributors to tuning reduction potentials. J Inorg Biochem 2024; 253:112496. [PMID: 38330683 PMCID: PMC11034767 DOI: 10.1016/j.jinorgbio.2024.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cytochrome c4 (c4) is a diheme protein implicated as an electron donor to cbb3 oxidases in multiple pathogenic bacteria. Despite its prevalence, understanding of how specific structural features of c4 optimize its function is lacking. The human pathogen Neisseria gonorrhoeae (Ng) thrives in low oxygen environments owing to the activity of its cbb3 oxidase. Herein, we report characterization of Ng c4. Spectroelectrochemistry experiments of the wild-type (WT) protein have shown that the two Met/His-ligated hemes differ in potentials by ∼100 mV, and studies of the two His/His-ligated variants provided unambiguous assignment of heme A from the N-terminal domain of the protein as the high-potential heme. The crystal structure of the WT protein at 2.45 Å resolution has revealed that the two hemes differ in their solvent accessibility. In particular, interactions made by residues His57 and Ser59 in Loop1 near the axial ligand Met63 contribute to the tight enclosure of heme A, working together with the surface charge, to raise the reduction potential of the heme iron in this domain. The structure reveals a prominent positively-charged patch, which encompasses surfaces of both domains. In contrast to prior findings with c4 from Pseudomonas stutzeri, the interdomain interface of Ng c4 contributes minimally to the values of the heme iron potentials in the two domains. Analyses of the heme solvent accessibility, interface properties, and surface charges offer insights into the interplay of these structural elements in tuning redox properties of c4 and other multiheme proteins.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Morgan E Reik
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
7
|
Cellini A, Shankar MK, Nimmrich A, Hunt LA, Monrroy L, Mutisya J, Furrer A, Beale EV, Carrillo M, Malla TN, Maj P, Vrhovac L, Dworkowski F, Cirelli C, Johnson PJM, Ozerov D, Stojković EA, Hammarström L, Bacellar C, Standfuss J, Maj M, Schmidt M, Weinert T, Ihalainen JA, Wahlgren WY, Westenhoff S. Directed ultrafast conformational changes accompany electron transfer in a photolyase as resolved by serial crystallography. Nat Chem 2024; 16:624-632. [PMID: 38225270 PMCID: PMC10997514 DOI: 10.1038/s41557-023-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
Charge-transfer reactions in proteins are important for life, such as in photolyases which repair DNA, but the role of structural dynamics remains unclear. Here, using femtosecond X-ray crystallography, we report the structural changes that take place while electrons transfer along a chain of four conserved tryptophans in the Drosophila melanogaster (6-4) photolyase. At femto- and picosecond delays, photoreduction of the flavin by the first tryptophan causes directed structural responses at a key asparagine, at a conserved salt bridge, and by rearrangements of nearby water molecules. We detect charge-induced structural changes close to the second tryptophan from 1 ps to 20 ps, identifying a nearby methionine as an active participant in the redox chain, and from 20 ps around the fourth tryptophan. The photolyase undergoes highly directed and carefully timed adaptations of its structure. This questions the validity of the linear solvent response approximation in Marcus theory and indicates that evolution has optimized fast protein fluctuations for optimal charge transfer.
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Madan Kumar Shankar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Leigh Anna Hunt
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Leonardo Monrroy
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jennifer Mutisya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Piotr Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Janne A Ihalainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Xie Y, Sun F, Chang K, Li G, Song Z, Huang J, Cheng X, Zhuang G, Kuang Q. Axially Coordinated Gold Nanoclusters Tailoring Fe-N-C Nanozymes for Enhanced Oxidase-Like Specificity and Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306911. [PMID: 38196300 PMCID: PMC10953587 DOI: 10.1002/advs.202306911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/05/2023] [Indexed: 01/11/2024]
Abstract
Metal-organic frameworks (MOF) derived nitrogen-doped carbon-supported monodisperse Fe (Fe-N-C) catalysts are intensively studied, but great challenges remain in understanding the relationship between the coordination structure and the performance of Fe-N-C nanozymes. Herein, a novel nanocluster ligand-bridging strategy is proposed for constructing Fe-S1 N4 structures with axially coordinated S and Au nanoclusters on ZIF-8 derived Fe-N-C (labeled Aux /Fe-S1 N4 -C). The axial Au nanoclusters facilitate electron transfer to Fe active sites, utilizing the bridging ligand S as a medium, thereby enhancing the oxygen adsorption capacity of composite nanozymes. Compared to Fe-N-C, Aux /Fe-S1 N4 -C exhibits high oxidase-like specificity and activity, and holds great potential for detecting acetylcholinesterase activity with a detection limit of 5.1 µU mL-1 , surpassing most reported nanozymes.
Collapse
Affiliation(s)
- Yameng Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Fuli Sun
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310032China
| | - Kuan Chang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Zhijia Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Jiayu Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiqing Cheng
- School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghai201418China
| | - Guilin Zhuang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310032China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
9
|
Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Nat Rev Chem 2024; 8:106-119. [PMID: 38200220 DOI: 10.1038/s41570-023-00565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and H2O2 for C-H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper-peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.
Collapse
Affiliation(s)
- Alessia Munzone
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France.
| |
Collapse
|
10
|
Guo Z, Zhou L, Chen X, Song Q. Carbon-coated copper nanocrystals with enhanced peroxidase-like activity for sensitive colorimetric determination of 2,4-dinitrophenylhydrazine. Mikrochim Acta 2023; 191:37. [PMID: 38110783 DOI: 10.1007/s00604-023-06127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
Carbon-coated copper nanocrystals (CuNCs) with peroxidase-like activity were hydrothermally prepared by using copper acetate, citric acid (CA) and histidine (His) as the precursors. Various shaped CuNCs, including urchin-like, slab-like and spherical appearance were facilely prepared by addition of different amount of NaNO2 in the precursor solutions. When 3,3',5,5'-tetramethylbenzidine (TMB) was used as the substrate, the CuNCs with urchin-like appearance have greatest peroxidase-like activity and their Michaelis-Menten constant (Km) and the maximum rate constant (νmax) are respectively 8.8 and 1.2 times higher than that obtained from horseradish peroxidase (HRP). The production of reactive oxygen species (ROS) was confirmed by radical quenching and electron spin resonance (ESR) tests. Subsequent studies have found that the CuNCs catalyzed color reaction of TMB can be selectively quenched by the environmental pollutant 2,4-dinitrophenylhydrazine (2,4-DNPH). Thus a new colorimetric method for the determination of 2,4-DNPH with a linear range of 0.60-20 µM was developed and a limit of detection (LOD) as low as 0.166 µM was achieved. The results obtained not only reveal the tunability of the peroxidase-like activity of Cu-based nanomaterials, but also provide a new method for the sensitive determination of environmental contaminate.
Collapse
Affiliation(s)
- Zhanghong Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lin Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuan Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Costa GJ, Liang R. Understanding the Multifaceted Mechanism of Compound I Formation in Unspecific Peroxygenases through Multiscale Simulations. J Phys Chem B 2023; 127:8809-8824. [PMID: 37796883 DOI: 10.1021/acs.jpcb.3c04589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Unspecific peroxygenases (UPOs) can selectively oxyfunctionalize unactivated hydrocarbons by using peroxides under mild conditions. They circumvent the oxygen dilemma faced by cytochrome P450s and exhibit greater stability than the latter. As such, they hold great potential for industrial applications. A thorough understanding of their catalysis is needed to improve their catalytic performance. However, it remains elusive how UPOs effectively convert peroxide to Compound I (CpdI), the principal oxidizing intermediate in the catalytic cycle. Previous computational studies of this process primarily focused on heme peroxidases and P450s, which have significant differences in the active site from UPOs. Additionally, the roles of peroxide unbinding in the kinetics of CpdI formation, which is essential for interpreting existing experiments, have been understudied. Moreover, there has been a lack of free energy characterizations with explicit sampling of protein and hydration dynamics, which is critical for understanding the thermodynamics of the proton transport (PT) events involved in CpdI formation. To bridge these gaps, we employed multiscale simulations to comprehensively characterize the CpdI formation in wild-type UPO from Agrocybe aegerita (AaeUPO). Extensive free energy and potential energy calculations were performed in a quantum mechanics/molecular mechanics setting. Our results indicate that substrate-binding dehydrates the active site, impeding the PT from H2O2 to a nearby catalytic base (Glu196). Furthermore, the PT is coupled with considerable hydrogen bond network rearrangements near the active site, facilitating subsequent O-O bond cleavage. Finally, large unbinding free energy barriers kinetically stabilize H2O2 at the active site. These findings reveal a delicate balance among PT, hydration dynamics, hydrogen bond rearrangement, and cosubstrate unbinding, which collectively enable efficient CpdI formation. Our simulation results are consistent with kinetic measurements and offer new insights into the CpdI formation mechanism at atomic-level details, which can potentially aid the design of next-generation biocatalysts for sustainable chemical transformations of feedstocks.
Collapse
Affiliation(s)
- Gustavo J Costa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
12
|
Yi J, Deng Q, Liu Z, Wang H, Liu X, Ren J, Qu X. Nanozyme-Based Supramolecular Self-Assembly As an Artificial Host Defense System For Treatment of Bacterial Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301096. [PMID: 37066737 DOI: 10.1002/smll.202301096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The proper functioning of host defense system (HDS) is the key to combating bacterial infection in biological organisms. However, the delicate HDS may be dysfunctional or dysregulated, resulting in persistent infection, tissue damage, or delayed wound healing. Herein, a powerful artificial "host defense system" (aHDS) is designed and constructed for treatment of bacterial infections. First, the aHDS can quickly trap the bacteria by electrostatic interactions. Next, the system can be stimulated to produce large amounts of cytotoxic reactive oxygen species (ROS) and exert strong antibacterial effects, which can further regulate the immune microenvironment, leading to macrophage polarization from M0 to pro-inflammatory phenotype (M1) for synergistic bacteria killing. At the later stages, the system can exhibit excellent antioxidant enzyme-like activities to reprogram the M1 macrophage to anti-inflammatory phenotype (M2) for accelerating wound healing. This powerful aHDS can effectively combat the bacteria and avoid excessive inflammatory responses for the treatment of bacteria-infected wounds.
Collapse
Affiliation(s)
- Jiadai Yi
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Qingqing Deng
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Zhenqi Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Huan Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xuemeng Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
13
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Zhou J, Wang Z, Bian H, Jiang Y, Zhang R, Wang X. Structure of the Green Heme Isolated from Allylbenzene-Modified Chloroperoxidase: A Novel Heme Architecture Implicating the Mechanisms of CPO Inactivation and Epoxidation. Comput Struct Biotechnol J 2023; 21:2365-2372. [PMID: 37066123 PMCID: PMC10090953 DOI: 10.1016/j.csbj.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The chemical identification of the modified heme (the green heme) during chloroperoxidase catalyzed epoxidation of allylbenzene remains unestablished due to its high instability within the protein matrix, the absence of paramagnetically shifted signals, and the difficulty in obtaining crystals of the modified enzyme. We have established the unambiguous structure of the modified prosthetic heme group, which was extracted from the protein matrix using 2D NMR spectroscopy and LC-MS spectrometry. The modified heme was isolated as a µ-oxo dimer that can be quantitatively converted to the corresponding monomer. The depolymerized green heme displayed characteristic NMR signatures of iron porphyrin complexes, but no Nuclear Overhauser Effect was observable to assist in signal assignment. An alternative strategy was applied by removing the iron center of the green heme, resulting in a stable demetallated green porphyrin species. Complete assignment of all the NMR resonances in the demetallated green heme allowed us to establish the molecular architecture of the modified species as a novel N-alkylated heme. Decisive space correlations between the propyl protons of allylbenzene and the γ meso proton coupled with clear dipolar connectivities between the propyl-2H of the substrate and the β proton in the side chain of the propionic acid at carbon-6 of the porphyrin ring, clearly indicate that allylbenzene was covalently attached to the nitrogen atom of the pyrrole ring III of the prosthetic heme. In this study, the mechanism of green CPO formation and its relation to CPO catalyzed chiral transformations are also discussed. It is concluded that the double-phenyl clamp formed by two phenylalanine residues at the distal heme pocket plays a critical role in fine-tuning substrate orientation that determines the outcome of CPO catalyzed epoxidation of substituted styrenes.
Collapse
Affiliation(s)
- Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Zhonghua Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, Guangxi 530006, PR China
| | - Yucheng Jiang
- School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, PR China
| | - Rui Zhang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
- Corresponding author.
| |
Collapse
|
15
|
Sarkar S, Shah Tuglak Khan F, Guchhait T, Rath SP. Binuclear complexes with single M-F-M bridge (M: Fe, Mn, and Cu): A critical analysis of the impact of fluoride for isoelectronic hydroxide substitution. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Salgar S, Bolívar BE, Flanagan JM, Anum SJ, Bouchier-Hayes L. The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Transl Res 2023; 252:34-44. [PMID: 36041706 DOI: 10.1016/j.trsl.2022.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
Overactive inflammatory responses are central to the pathophysiology of many hemolytic conditions including sickle cell disease. Excessive hemolysis leads to elevated serum levels of heme due to saturation of heme scavenging mechanisms. Extracellular heme has been shown to activate the NLRP3 inflammasome, leading to activation of caspase-1 and release of pro-inflammatory cytokines IL-1β and IL-18. Heme also activates the non-canonical inflammasome pathway, which may contribute to NLRP3 inflammasome formation and leads to pyroptosis, a type of inflammatory cell death. Some clinical studies indicate there is a benefit to blocking the NLRP3 inflammasome pathway in patients with sickle cell disease and other hemolytic conditions. However, a thorough understanding of the mechanisms of heme-induced inflammasome activation is needed to fully leverage this pathway for clinical benefit. This review will explore the mechanisms of heme-induced NLRP3 inflammasome activation and the role of this pathway in hemolytic conditions including sickle cell disease.
Collapse
Affiliation(s)
- Suruchi Salgar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Beatriz E Bolívar
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jonathan M Flanagan
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Shaniqua J Anum
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
17
|
Abedanzadeh S, Karimi B, Moosavi-Movahedi Z, Pourshiani O, Badiei A, Moosavi-Movahedi AA. Artificial metalloenzyme with peroxidase-like activity based on periodic mesoporous organosilica with ionic-liquid framework. MICROPOROUS AND MESOPOROUS MATERIALS 2023; 348:112384. [DOI: 10.1016/j.micromeso.2022.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
18
|
Kardam V, Kalita S, Dubey KD. Computations reveal a crucial role of an aromatic dyad in the catalytic function of plant cytochrome P450 mint superfamily. J Inorg Biochem 2022; 237:111990. [PMID: 36115330 DOI: 10.1016/j.jinorgbio.2022.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023]
Abstract
Enzymes are highly specific for their native functions, however with advances in bioengineering tools such as directed evolution, several enzymes are being repurposed for the secondary function of contemporary significance(Khersonsky and Tawfik, 2010 [1]). Due to the functional versatility, the Cytochrome P450 (CYP450) superfamily has become the ideal scaffold for such bioengineering. In the current study, using MD (molecular dynamics) simulations and hybrid QM/MM (Quantum mechanics/molecular mechanics) calculations, we have studied the mechanism of spontaneous emergence of a secondary function due to a single site mutation in two plant CYP450 enzymes from the mint family. The MD simulations of WT (wild type) CYP71D18 and CYP71D13 enzymes and their variants show a crucial gating mechanism by aromatic dyad formed by Phe121 and Phe363 which regulates the substrate recognition. The QM/MM calculations reveal that the hydroxylation reactions at C3 and C6 positions in WT CYP71D18 and CYP71D13 enzymes as well as their variants follow a hydrogen atom transfer (HAT) followed by a single electron transfer (SET) mechanism, which is different from the typical rebound mechanism shown by most of the CYP450 enzymes.
Collapse
Affiliation(s)
- Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Surajit Kalita
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
19
|
Yang X, Hu J, Wu L, Hou H, Liang S, Yang J. Cooperation of multiple active species generated in hydrogen peroxide activation by iron porphyrin for phenolic pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120097. [PMID: 36089136 DOI: 10.1016/j.envpol.2022.120097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The narrow acid pH range and the nonselectivity of the dominant •OH limit the Fenton systems to remediate the organic wastewater. Inspired by the role of heme in physiological processes, we employed iron porphyrin as a novel homogeneous catalyst to address this issue. Multiple active species are identified during the activation of H2O2, including high-valent iron porphyrin ((por)Fe(IV)) species ((por)Fe(IV)-OH, (por)+•Fe(IV)=O) and oxygen-centered radicals (•OH, HO2•/•O2-), as well as atomic hydrogen (*H) and carbon-centered radicals. With the cooperation of these active species, the degradation of pollutants could be resistant to the interference of concomitant ions and proceed over a wide pH range. This cooperative behavior is further verified by intermediates identified from bisphenol A degradation. Specifically, the presence of *H could facilitate the cleavage of the C-C bond and the addition of unsaturated or aromatic molecules. (Por)+•Fe(IV)=O could hydroxylate substrates with an oxygen rebound mechanism. Hydrogen atom abstraction of contaminants could be performed by (por)Fe(IV)-OH to form desaturated products by attacking oxygen-centered radicals. The ecotoxicity of bisphenol A could be significantly decreased through degradation. This study would provide a new approach to wastewater treatment and shed light on the interaction between metalloporphyrin and peroxide in an aqueous solution.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Longsheng Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
20
|
Lukas J, Družeta I, Kühl T. Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts. Biol Chem 2022; 403:1099-1105. [PMID: 36257922 DOI: 10.1515/hsz-2022-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Fe(III) heme is known to possess low catalytic activity when exposed to hydrogen peroxide and a reducing substrate. Efficient non-covalently linked Fe(III) heme-peptide complexes may represent suitable alternatives as a new group of green catalysts. Here, we evaluated a set of heme-peptide complexes by determination of their peroxidase-like activity and the kinetics of the catalytic conversion in both, the soluble and the immobilized state. We show the impact of peptide length on binding of the peptides to Fe(III) heme and the catalytic activity. Immobilization of the peptide onto a polymer support maintains the catalytic performance of the Fe(III) heme-peptide complex. This study thus opens up a new perspective with regard to the development of heterogeneous biocatalysts with a peroxidase-like activity.
Collapse
Affiliation(s)
- Joey Lukas
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
21
|
Wu C, Wu Y, He X, Hong R, Lee H, Feng K, Ping‐Yu Chen P. Modeling Heme Peroxidase: Heme Saddling Facilitates Reactions with Hyperperoxides To Form High‐Valent Fe
IV
‐Oxo Species. Chemistry 2022; 28:e202201139. [DOI: 10.1002/chem.202201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chang‐Quan Wu
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Yi‐Wen Wu
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Xuan‐Han He
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Ruo‐Ting Hong
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Hao‐Chien Lee
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Kang‐Yen Feng
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Peter Ping‐Yu Chen
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| |
Collapse
|
22
|
Lin J, Lin K, Huang L, Jiang Y, Ding X, Luo W, Samorodov AV, Pavlov VN, Liang G, Qian J, Wang Y. Heme induces inflammatory injury by directly binding to the complex of myeloid differentiation protein 2 and toll-like receptor 4. Toxicol Lett 2022; 370:15-23. [PMID: 36115635 DOI: 10.1016/j.toxlet.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Heme, as an essential component of hemoproteins, is a prosthetic co-factor found in many cells, which is essential for physiologically vital oxygen transport. However, extracellular or circulatory heme is cytotoxic and triggers inflammation. Although the proinflammatory role of heme has been reported to be associated with Toll-like receptor 4 (TLR4) signaling, the exact mechanism remains unknown. Here, we show that heme promotes TLR4 signaling and inflammation via directly physically interacting with TLR4 and its adaptor protein myeloid differentiation protein 2 (MD2). Genetic loss of MD2 ameliorates heme-induced inflammation and inflammatory cytokine production in the spleen of MD2 knockout (MD2-/-) mice. Using mouse macrophage RAW 264.7 cell line, we show that heme induces TLR4 dimerization and MD2/TLR4/MyD88 activation by physically interacting with TLR4 and MD2 in vitro. Genetic loss of MD2 inhibits heme-induced inflammation and MAPK/NF-κB pathway in mouse primary macrophages extracted from MD2-/- mice. Furthermore, pharmacological inhibition of MD2 by L6H9 ameliorates heme-induced inflammation in macrophages. These findings demonstrate that heme causes inflammation by directly binding to MD2/TLR4 complex, leading to activation of TLR4/MAPK/NF-κB signaling pathway and production of downstream effectors of inflammation.
Collapse
Affiliation(s)
- Jianjun Lin
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Ke Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Xiaoxiao Ding
- Department of pharmacy, the People' s Hospital of Beilun District , Ningbo, Zhejiang 315807, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yi Wang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
23
|
Chelating Metal Ions in a Metal-Organic Framework for Constructing a Biomimetic Catalyst Through Post-modification. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhou Z, He W, Chao H, Wang H, Su P, Song J, Yang Y. Insertion of Hemin into Metal-Organic Frameworks: Mimicking Natural Peroxidase Microenvironment for the Rapid Ultrasensitive Detection of Uranium. Anal Chem 2022; 94:6833-6841. [PMID: 35482423 DOI: 10.1021/acs.analchem.2c00661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constructing enzyme-like active sites in mimic enzyme systems is critical for achieving catalytic performances comparable to natural enzymes and can shed light on the natural development of enzymes. In this study, we described a specific hemin-based mimetic enzyme, which was facilely synthesized by the assembly of zeolitic imidazolate framework-l (ZIF-l) and hemin. The obtained hemin-based mimetic enzyme (denoted as ZIF-l-hemin) displayed enhanced peroxidase activity compared to free hemin in solution. Such excellent activity originated from the ZIF-l framework mimicking the active site cavity microenvironment of horseradish peroxidase in terms of axially coordinated histidine and distal histidine. Additionally, the constructed peroxidase mimetic was extremely resistant to a variety of severe circumstances that would normally denature natural enzymes. These characteristics made ZIF-l-hemin a potential platform for the colorimetric sensor of uranium (UO22+) with wide linear ranges (0.25-40 μM) and low limits of detection (0.079 μM). Moreover, the detection mechanism demonstrated that the coordination of uranyl ion with imidazole of ZIF-l-hemin reduced the catalytic efficiency of ZIF-l-hemin. The current work not only proposed a novel approach for fabricating artificial peroxidase but also offered facile colorimetric methods for selective radionuclide detection.
Collapse
Affiliation(s)
- Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenting He
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hao Chao
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Han Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
25
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
26
|
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, School of Natural Science, Shiv Nadar University Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University, Edmond. J. Safra Campus, Givat Ram, Jerusalem 9190400, Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, School of Natural Science, Shiv Nadar University Delhi-NCR, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
27
|
Oohora K, Tomoda H, Hayashi T. Reactivity of Myoglobin Reconstituted with Cobalt Corrole toward Hydrogen Peroxide. Int J Mol Sci 2022; 23:ijms23094829. [PMID: 35563217 PMCID: PMC9104730 DOI: 10.3390/ijms23094829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
The protein matrix of natural metalloenzymes regulates the reactivity of metal complexes to establish unique catalysts. We describe the incorporation of a cobalt complex of corrole (CoCor), a trianionic porphyrinoid metal ligand, into an apo-form of myoglobin to provide a reconstituted protein (rMb(CoCor)). This protein was characterized by UV-vis, EPR, and mass spectroscopic measurements. The reaction of rMb(CoCor) with hydrogen peroxide promotes an irreversible oxidation of the CoCor cofactor, whereas the same reaction in the presence of a phenol derivative yields the cation radical form of CoCor. Detailed kinetic investigations indicate the formation of a transient hydroperoxo complex of rMb(CoCor) which promotes the oxidation of the phenol derivatives. This mechanism is significantly different for native heme-dependent peroxidases, which generate a metal-oxo species as an active intermediate in a reaction with hydrogen peroxide. The present findings of unique reactivity will contribute to further design of artificial metalloenzymes.
Collapse
|
28
|
Zhang H, Song R, Guo F, Chai L, Wang W, Zeng J, Yu H, Ji L. Using Physical Organic Chemistry Knowledge to Predict Unusual Metabolites of Synthetic Phenolic Antioxidants by Cytochrome P450. Chem Res Toxicol 2022; 35:840-848. [PMID: 35416036 DOI: 10.1021/acs.chemrestox.2c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotransformation, especially by human CYP450 enzymes, plays a crucial role in regulating the toxicity of organic compounds in organisms, but is poorly understood for most emerging pollutants, as their numerous "unusual" biotransformation reactions cannot retrieve examples from the textbooks. Therefore, in order to predict the unknown metabolites with altering toxicological profiles, there is a realistic need to develop efficient methods to reveal the "unusual" metabolic mechanism of emerging pollutants. Combining experimental work with computational predictions has been widely accepted as an effective approach in studying complex metabolic reactions; however, the full quantum chemical computations may not be easily accessible for most environmentalists. Alternatively, this work practiced using the concepts from physical organic chemistry for studying the interrelationships between structure and reactivity of organic molecules, to reveal the "unusual" metabolic mechanism of synthetic phenolic antioxidants catalyzed by CYP450, for which the simple pencil-and-paper and property-computation methods based on physical organic chemistry were performed. The phenol-coupling product of butylated hydroxyanisole (BHA) (based on spin aromatic delocalization) and ipso-addition quinol metabolite of butylated hydroxytoluene (BHT) (based on hyperconjugative effect) were predicted as two "unusual" metabolites, which were further confirmed by our in vitro analysis. We hope this easily handled approach will promote environmentalists to attach importance to physical organic chemistry, with an eye to being able to use the knowledge gained to efficiently predict the fates of substantial unknown synthesized organic compounds in the future.
Collapse
Affiliation(s)
- Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Fangjie Guo
- School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lihong Chai
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 81377 Munich, Germany
| | - Wuwei Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Jingyi Zeng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| |
Collapse
|
29
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
30
|
Hoog T, Pawlak M, Aufdembrink L, Bachan B, Galles M, Bense N, Adamala K, Engelhart A. Switchable DNA-based Peroxidases Controlled by a Chaotropic Ion. Chembiochem 2022; 23:e202200090. [PMID: 35245408 PMCID: PMC9310614 DOI: 10.1002/cbic.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Here we demonstrate a switchable DNA electron transfer catalyst, enabled by selective destabilization of secondary structure by a denaturant, perchlorate. The system is comprised of two strands, one of which can be selectively switched between a G-quadruplex and duplex or single-stranded conformations. In the G-quadruplex state, it binds hemin, enabling peroxidase activity. This switching ability arises from our finding that perchlorate, a chaotropic Hofmeister ion, selectively destabilizes duplex over G-quadruplex DNA. By varying perchlorate concentration, we show that the DNA structure can be switched between states that do and do not catalyze electron transfer catalysis. State switching can be achieved in three ways: thermally, by dilution, or by concentration.
Collapse
Affiliation(s)
- Tanner Hoog
- University of Minnesota Twin Cities: University of Minnesota Twin Cities, Genetics, Cell Biology, and Development, UNITED STATES
| | - Matthew Pawlak
- University of Minnesota, Genetics, Cell Biology, and Development, UNITED STATES
| | - Lauren Aufdembrink
- University of Minnesota, Genetics, Cell Biology, and Development, UNITED STATES
| | - Benjamin Bachan
- University of Minnesota, Genetics, Cell Biology, and Development, UNITED STATES
| | - Matthew Galles
- NASA Langley, Structural Acoustics Branch, UNITED STATES
| | - Nicholas Bense
- NASA John H Glenn Research Center, NASA Glenn, UNITED STATES
| | - Katarzyna Adamala
- University of Minnesota, Genetics, Cell Biology, and Development, UNITED STATES
| | - Aaron Engelhart
- University of Minnesota, Department of Genetics, Cell Biology, and Development, MCB 5-130, 420 Washington Avenue SE, 55455, Minneapolis, UNITED STATES
| |
Collapse
|
31
|
Nakajima Y, Momotake A, Suzuki A, Neya S, Yamamoto Y. Nature of a H 2O Molecule Confined in the Hydrophobic Interface between the Heme and G-Quartet Planes in a Heme-DNA Complex. Biochemistry 2022; 61:523-534. [PMID: 35230084 DOI: 10.1021/acs.biochem.1c00751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heme binds selectively to the 3'-terminal G-quartet of all parallel G-quadruplex DNAs to form stable heme-DNA complexes. Interestingly, the heme-DNA complexes exhibit various spectroscopic and functional properties similar to those of hemoproteins. Since the nature of the axial ligands is crucial in determining the physicochemical properties of heme, identification and characterization of the axial ligands in a heme-DNA complex are essential to elucidate the structure-function relationship in the complex. NMR studies of a complex possessing a low-spin ferric heme with a water molecule (H2O) and cyanide ion (CN-) as the axial ligands allowed detailed characterization of the physicochemical nature of the axial H2O ligand. We found that the in-plane asymmetry of the heme electronic structure of the complex is not largely affected by the axial H2O coordination, indicating that the H2O confined in the hydrophobic interface between the heme and G-quartet planes of the complex rotates about the coordination bond with respect to the heme. The effect of the hydrogen(H)/deuterium(D) isotope replacement of the axial H2O on the heme electronic structure was manifested in the isotope shifts of paramagnetically shifted heme methyl proton signals of the complex in such a manner that three resolved peaks associated with axial H2O, HDO, and D2O were observed for each of the heme methyl proton signals. These findings provide not only the basis for an understanding of the nature of the unique axial H2O but also an insight into the molecular mechanism responsible for the control of the heme reactivity in the heme-DNA complex.
Collapse
Affiliation(s)
- Yusuke Nakajima
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Akihiro Suzuki
- Department of Materials Engineering, National Institute of Technology, Nagaoka College, Nagaoka 940-8532, Japan
| | - Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba 260-8675, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
32
|
Chai L, Zhang H, Guo F, Song R, Yu H, Ji L. Computational Investigation of the Bisphenolic Drug Metabolism by Cytochrome P450: What Factors Favor Intramolecular Phenol Coupling. Chem Res Toxicol 2022; 35:440-449. [PMID: 35230092 DOI: 10.1021/acs.chemrestox.1c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intramolecular phenol coupling reactions of alkaloids can lead to active metabolites catalyzed by the mammalian cytochrome P450 enzyme (P450); however, the mechanistic knowledge of such an "unusual" process is lacking. This work performs density functional theory computations to reveal the P450-mediated metabolic pathway leading from R-reticuline to the morphine precursor salutaridine by exploring possible intramolecular phenol coupling mechanisms involving diradical coupling, radical addition, and electron transfer. The computed results show that the outer-sphere electron transfer with a high barrier (>20.0 kcal/mol) is unlikely to happen. However, for inter-sphere intramolecular phenol coupling, it reveals that intramolecular phenol coupling of R-reticuline proceeds via the diradical mechanism consecutively by compound I and protonated compound II of P450 rather than the radical addition mechanism. The existence of a much higher radical rebound barrier than that of H-abstraction in the quartet high-spin state can endow the R-reticuline phenoxy radical with a sufficient lifetime to enable intramolecular phenol coupling, while the H-abstraction/radical rebound mode with a negligible rebound barrier leading to phenol hydroxylation can only happen in the doublet low-spin state. Therefore, the ratio [coupling]/[hydroxylation] can be approximately reflected by the relative yield of the high-spin and low-spin H-abstraction by P450, which thus can provide a theoretical ratio of 16:1 for R-reticuline, which is in accordance with previous experimental results. Especially, the high rebound barrier of the phenoxy radical derived from the weak electron-donating ability of the phenoxy radical is revealed as an intrinsic nature. Therefore, the revealed intramolecular phenol coupling mechanism can be potentially extended to several other bisphenolic drugs to infer groups of unexpected metabolites in organisms.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.,College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Munich 81377, Germany
| | - Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fangjie Guo
- School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.,College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
33
|
Jin H, Ye D, Shen L, Fu R, Tang Y, Jung JCY, Zhao H, Zhang J. Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Anal Chem 2022; 94:1499-1509. [PMID: 35014271 DOI: 10.1021/acs.analchem.1c04496] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanozymes are a kind of nanomaterial mimicking enzyme catalytic activity, which has aroused extensive interest in the fields of biosensors, biomedicine, and climate and ecosystems management. However, due to the complexity of structures and composition of nanozymes, atomic scale active centers have been extensively investigated, which helps with in-depth understanding of the nature of the biocatalysis. Single atom nanozymes (SANs) cannot only significantly enhance the activity of nanozymes but also effectively improve the selectivity of nanozymes owing to the characteristics of simple and adjustable coordination environment and have been becoming the brightest star in the nanozyme spectrum. The SANs based sensors have also been widely investigated due to their definite structural features, which can be helpful to study the catalytic mechanism and provide ways to improve catalytic activity. This perspective presents a comprehensive understanding on the advances and challenges on SANs based sensors. The catalytic mechanisms of SANs and then the sensing application from the perspectives of sensing technology and sensor construction are thoroughly analyzed. Finally, the major challenges, potential future research directions, and prospects for further research on SANs based sensors are also proposed.
Collapse
Affiliation(s)
- Huan Jin
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lihua Shen
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ruixue Fu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
34
|
Singha A, Mittra K, Dey A. Synthetic heme dioxygen adducts: electronic structure and reactivity. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Water oxidation and oxygen reduction reactions: A mechanistic perspective. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Mohammed TP, Sankaralingam M. Reactivities of high valent manganese-oxo porphyrins in aqueous medium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Sarkar AR, Pal S, Sarkar AK, Jana NR. Hemin-based cell therapy via nanoparticle-assisted uptake, intracellular reactive oxygen species generation and autophagy induction. NEW J CHEM 2022. [DOI: 10.1039/d2nj02966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A hemin-based colloidal nanoparticle is designed that offers an iron-based Fenton reaction inside the cell and induces cellular autophagy via oxidative stress.
Collapse
Affiliation(s)
- Abu Raihan Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| | - Suman Pal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| | - Nikhil R. Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| |
Collapse
|
38
|
Structure-function characterization of the mono- and diheme forms of MhuD, a noncanonical heme oxygenase from Mycobacterium tuberculosis. J Biol Chem 2021; 298:101475. [PMID: 34883099 PMCID: PMC8801480 DOI: 10.1016/j.jbc.2021.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
MhuD is a noncanonical heme oxygenase (HO) from Mycobacterium tuberculosis (Mtb) that catalyzes unique heme degradation chemistry distinct from canonical HOs, generating mycobilin products without releasing carbon monoxide. Its crucial role in the Mtb heme uptake pathway has identified MhuD as an auspicious drug target. MhuD is capable of binding either one or two hemes within a single active site, but only the monoheme form was previously reported to be enzymatically active. Here we employed resonance Raman (rR) spectroscopy to examine several factors proposed to impact the reactivity of mono- and diheme MhuD, including heme ruffling, heme pocket hydrophobicity, and amino acid–heme interactions. We determined that the distal heme in the diheme MhuD active site has negligible effects on both the planarity of the His-coordinated heme macrocycle and the strength of the Fe-NHis linkage relative to the monoheme form. Our rR studies using isotopically labeled hemes unveiled unexpected biomolecular dynamics for the process of heme binding that converts MhuD from mono- to diheme form, where the second incoming heme replaces the first as the His75-coordinated heme. Ferrous CO-ligated diheme MhuD was found to exhibit multiple Fe-C-O conformers, one of which contains catalytically predisposed H-bonding interactions with the distal Asn7 residue identical to those in the monoheme form, implying that it is also enzymatically active. This was substantiated by activity assays and MS product analysis that confirmed the diheme form also degrades heme to mycobilins, redefining MhuD’s functional paradigm and further expanding our understanding of its role in Mtb physiology.
Collapse
|
39
|
Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants (Basel) 2021; 10:antiox10121872. [PMID: 34942976 PMCID: PMC8698694 DOI: 10.3390/antiox10121872] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities. Regardless of the numerous approaches employed currently and in development to treat malaria, concerningly, there has been increasing development of resistance by Plasmodium falciparum, which can be connected to the ability of the parasites to manage the oxidative stress from ROS produced under steady or treatment states. ROS generation has remained the mainstay in enforcing the antiparasitic activity of most conventional antimalarials. However, a combination of conventional drugs with ROS-generating ability and newer drugs that exploit vital metabolic pathways, such antioxidant machinery, could be the way forward in effective malaria control.
Collapse
|
40
|
Zhang J, Xu Q, Pei W, Cai L, Yu X, Jiang H, Chen J. Self-assembled recombinant camel serum albumin nanoparticles-encapsulated hemin with peroxidase-like activity for colorimetric detection of hydrogen peroxide and glucose. Int J Biol Macromol 2021; 193:2103-2112. [PMID: 34793815 DOI: 10.1016/j.ijbiomac.2021.11.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
The construction of enzyme mimics using protein protection layers possesses advantages of high biocompatibility and superior catalytic activity, which is desirable for biomedical applications including diseases diagnosis. Here, from E. coli expression system, recombinant protein of camel serum albumin (rCSA) from Camelus bactrianus was successfully obtained to encapsulate hemin via the self-assemble method without additional toxic organic reagents. As compared with that of horseradish peroxidase, the produced rCSA-hemin nanoparticles exhibited enhanced enzyme-mimicking activity and stability under harsh experimental conditions. Additionally, the steady-state kinetic analysis of rCSA-hemin in the solution revealed its higher affinity to the substrates. Therefore, a colorimetric detection method of H2O2 and glucose was constructed with a linear range of 2.5-500 μM with an LOD of 2.39 and 2.42 μM, respectively, which was also applied for the determination of glucose in the serum samples with satisfying recovery ratio ranging from 101.1% to 112.1%. The constructed camel protein-derived nanozyme system of remarkable stability holds promising potentials for the versatile biomedical uses.
Collapse
Affiliation(s)
- Jiarong Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Qilan Xu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Wei Pei
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Ling Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyu Yu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Jin Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
41
|
Kalita S, Shaik S, Dubey KD. MD simulations and QM/MM calculations reveal the key mechanistic elements which are responsible for the efficient C-H amination reaction performed by a bioengineered P450 enzyme. Chem Sci 2021; 12:14507-14518. [PMID: 34881002 PMCID: PMC8580044 DOI: 10.1039/d1sc03489h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
An enzyme which is capable of catalyzing C–H amination reactions is considered to be a dream tool for chemists due to its pharmaceutical potential and greener approach. Recently, the Arnold group achieved this feat using an engineered CYP411 enzyme, which further undergoes a random directed evolution which increases its efficiency and selectivity. The present study provides mechanistic insight and the root cause of the success of these mutations to enhance the reactivity and selectivity of the mutant enzyme. This is achieved by means of comprehensive MD simulations and hybrid QM/MM calculations. The study shows that the efficient C–H amination by the engineered CYP411 is a combined outcome of electronic and steric effects. The mutation of the axial cysteine ligand to serine relays electron density to the Fe ion in the heme, and thereby enhances the bonding capability of the heme-iron to the nitrogen atom of the tosyl azide. In comparison, the native cysteine-ligated P450 cannot bind the tosyl azide. Additionally, the A78V and A82L mutations in P411 provide ‘bulk’ to the active site which increases the enantioselectivity via a steric effect. At the same time, the QM/MM calculations elucidate the C–H amination by the iron nitrenoid, revealing a mechanism analogous to Compound I in the native C–H hydroxylation by P450. Computer simulation method reveals the mechanism of C–H amination reaction due to a single site mutation.![]()
Collapse
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, School of Natural Sciences, Shiv Nadar University Dadri, Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus Givat Ram Jerusalem 9140401 Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, School of Natural Sciences, Shiv Nadar University Dadri, Gautam Buddha Nagar Uttar Pradesh 201314 India
| |
Collapse
|
42
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
43
|
Gallio A, Fung SSP, Cammack-Najera A, Hudson AJ, Raven EL. Understanding the Logistics for the Distribution of Heme in Cells. JACS AU 2021; 1:1541-1555. [PMID: 34723258 PMCID: PMC8549057 DOI: 10.1021/jacsau.1c00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Heme is essential for the survival of virtually all living systems-from bacteria, fungi, and yeast, through plants to animals. No eukaryote has been identified that can survive without heme. There are thousands of different proteins that require heme in order to function properly, and these are responsible for processes such as oxygen transport, electron transfer, oxidative stress response, respiration, and catalysis. Further to this, in the past few years, heme has been shown to have an important regulatory role in cells, in processes such as transcription, regulation of the circadian clock, and the gating of ion channels. To act in a regulatory capacity, heme needs to move from its place of synthesis (in mitochondria) to other locations in cells. But while there is detailed information on how the heme lifecycle begins (heme synthesis), and how it ends (heme degradation), what happens in between is largely a mystery. Here we summarize recent information on the quantification of heme in cells, and we present a discussion of a mechanistic framework that could meet the logistical challenge of heme distribution.
Collapse
Affiliation(s)
- Andrea
E. Gallio
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Simon S.-P. Fung
- Department
of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Ana Cammack-Najera
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Andrew J. Hudson
- Department
of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Emma L. Raven
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
44
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
45
|
Xu W, Song W, Kang Y, Jiao L, Wu Y, Chen Y, Cai X, Zheng L, Gu W, Zhu C. Axial Ligand-Engineered Single-Atom Catalysts with Boosted Enzyme-Like Activity for Sensitive Immunoassay. Anal Chem 2021; 93:12758-12766. [PMID: 34476936 DOI: 10.1021/acs.analchem.1c02842] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inspired by the key role of the coordination environment in the catalytic activity of enzymes, a rational design of the coordination structure of active sites at the atom scale is expected to develop high-performance enzyme-like catalysts. Here, we design a simple model system involving pentacoordinated and tetracoordinated Fe-N-C single-atom catalysts (named NG-Heme and G-Heme, respectively) to investigate structure-activity relationships. NG-Heme with axial ligand-engineered Fe sites exhibits superior enzyme-like activity to G-Heme, achieving the goal of vivid mimicking of the active sites of peroxidase. Experiments and theoretical studies reveal that the enhanced intrinsic catalytic activity originates from the "push effect" of the additional axial ligand, which can strengthen the interaction between the active site and the intermediate. Based on the outstanding catalytic activity, an NG-Heme-linked immunosorbent assay was constructed for colorimetric detection of carcinoembryonic antigen, exhibiting satisfactory sensitivity and feasibility in the analysis of clinical samples.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China
| | - Yikun Kang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaoli Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
46
|
Wang T, Bi X, Wang L, Liu M, Yu WW, Zhu Z, Sui N. Biomimetic design of graphdiyne supported hemin for enhanced peroxidase-like activity. J Colloid Interface Sci 2021; 607:470-478. [PMID: 34509729 DOI: 10.1016/j.jcis.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Effective electronic interactions between molecular catalysts and supports are critical for heterogeneous enzyme mimics, yet they are frequently neglected in most catalyst designs. Taking the enzyme mimics of hemin immobilized on graphdiyne (Hemin-GDY) as an example, we explicate for the first time the underlying role of GDY as a co-catalyst. Based on the robust conjugation between GDY and hemin, the delocalized π-electrons in GDY act as a ligand for Fe ions so that the orbital interactions including electron transport from GDY → Fe can induce the formation of an electron-rich Fe center and an electron-deficient π-electron conjugated system. This mechanism was validated by electron paramagnetic resonance (EPR), Raman spectroscopy, and DFT calculations. Moreover, both EPR spetra and Lineweaver-Burk plots revealed that Hemin-GDY could efficiently catalyze the decomposition of hydrogen peroxide (H2O2) to produce hydroxyl radical (•OH) and superoxide anion (O2•-) by a ping-pong type catalytic mechanism, and particularly, the catalytic activity was increased by 2.3-fold comparing to that of hemin immobilized on graphene (Hemin-GR). In addition, Hemin-GDY with the exceptional activity and stability was demonstrated for efficient catalytic degradation of organic pollutants under acidic conditions. Collectively, this work provides a theoretical basis for the design of GDY supported catalysts and renders great promises of the GDY based enzyme mimics.
Collapse
Affiliation(s)
- Tao Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xuelong Bi
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Manhong Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - William W Yu
- Department of Chemistry and Physics, Louisiana State University Shreveport, Shreveport, LA 71115, USA
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
47
|
Khan FST, Samanta D, Chandel D, Shah SJ, Rath SP. Heme-Heme Interactions in Diheme Cytochromes: Effect of Mixed-Axial Ligation on the Electronic Structure and Electrochemical Properties. Inorg Chem 2021; 60:12870-12882. [PMID: 34370470 DOI: 10.1021/acs.inorgchem.1c01215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diheme cytochromes, the simplest members in the multiheme family, play substantial biochemical roles in enzymatic catalysis as well as in electron transfer. A series of diiron(III) porphyrin dimers have been synthesized as active site analogues of diheme cytochromes. The complexes contain six-coordinated iron(III) having thiophenol and imidazole at the fifth and sixth coordination sites, respectively. The iron centers in the complexes have been found to be in a low-spin state, as confirmed through solid-state Mössbauer and electron paramagnetic resonance (EPR) spectroscopic investigations. Mössbauer quadrupole splitting of complexes having mixed ligands is substantially larger than that observed when both axial ligands are the same. Rhombic types of EPR spectra with narrow separation between gx, gy, and gz clearly distinguish heme thiolate coordination compared to bis(imidazole)-ligated low-spin heme centers. The redox potential in diheme cytochromes has been found to be tuned by interheme interactions along with the nature of axial ligands. The effect of mixed-axial ligation within the diiron(III) porphyrin dimers is demonstrated by a positive shift in the Fe(III)/Fe(II) redox couple upon thiophenolate coordination compared to their bis(imidazole) analogues. The pKa of the imidazole also decides the extent of the shift for the Fe(III)/Fe(II) couple, while the potential of the mixed-ligated diiron(III) porphyrin dimer is more positive compared to their monomeric analogue. A variation of around 1.1 V for the Fe(III)/Fe(II) redox potential in the diiron(III) porphyrin dimer can be achieved with the combined effect of axial ligation and a metal spin state, while such a large variation in the redox potential, compared to their monomeric analogues, is attributed to the heme-heme interactions observed in dihemes. Moreover, theoretical calculations also support the experimental shifts in the redox potential values.
Collapse
Affiliation(s)
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
48
|
Gil‐Sepulcre M, Garrido‐Barros P, Oldengott J, Funes‐Ardoiz I, Bofill R, Sala X, Benet‐Buchholz J, Llobet A. Consecutive Ligand‐Based Electron Transfer in New Molecular Copper‐Based Water Oxidation Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marcos Gil‐Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Pablo Garrido‐Barros
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Jan Oldengott
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Ignacio Funes‐Ardoiz
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departamento de Química Centro de Investigación en Síntesis Química (CISQ) Universitad de La Rioja 26006 Logroño Spain
| | - Roger Bofill
- Departament de Química Universitat Autònoma de Barcelona Cerdanyola del Valles 08193 Barcelona Spain
| | - Xavier Sala
- Departament de Química Universitat Autònoma de Barcelona Cerdanyola del Valles 08193 Barcelona Spain
| | - Jordi Benet‐Buchholz
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Universitat Autònoma de Barcelona Cerdanyola del Valles 08193 Barcelona Spain
| |
Collapse
|
49
|
Araki H, Hagiwara S, Shinomiya R, Momotake A, Kotani H, Kojima T, Ochiai T, Shimada N, Maruyama A, Yamamoto Y. A cationic copolymer as a cocatalyst for a peroxidase-mimicking heme-DNAzyme. Biomater Sci 2021; 9:6142-6152. [PMID: 34346413 DOI: 10.1039/d1bm00949d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme binds to a parallel-stranded G-quadruplex DNA to form a peroxidase-mimicking heme-DNAzyme. An interpolyelectrolyte complex between the heme-DNAzyme and a cationic copolymer possessing protonated amino groups was characterized and the peroxidase activity of the complex was evaluated to elucidate the effect of the polymer on the catalytic activity of the heme-DNAzyme. We found that the catalytic activity of the heme-DNAzyme is enhanced through the formation of the interpolyelectrolyte complex due to the general acid catalysis of protonated amino groups of the polymer, enhancing the formation of the iron(iv)oxo porphyrin π-cation radical intermediate known as Compound I. This finding indicates that the polymer with protonated amino groups can act as a cocatalyst for the heme-DNAzyme in the oxidation catalysis. We also found that the enhancement of the activity of the heme-DNAzyme by the polymer depends on the local heme environment such as the negative charge density in the proximity of the heme and substrate accessibility to the heme. These findings provide novel insights as to molecular design of the heme-DNAzyme for enhancing its catalytic activity.
Collapse
Affiliation(s)
- Haruka Araki
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Shota Hagiwara
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Ryosuke Shinomiya
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Takuro Ochiai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
50
|
|