1
|
Sommer C, Neuhaus V, Gogesch P, Flandre T, Dehmel S, Sewald K. Type 2 responses determine skin rash during recombinant interleukin-2 therapy. J Immunotoxicol 2024; 21:S48-S59. [PMID: 39655497 DOI: 10.1080/1547691x.2024.2343359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the organ most often affected by adverse drug reactions. Although these cutaneous adverse drug reactions (CADRs) often are mild, they represent a major burden for patients. One of the drugs inducing CADRs is aldesleukin, a recombinant interleukin-2 (recIL-2) originally approved to treat malignant melanoma and metastatic renal cell carcinoma which frequently led to skin rashes when applied in high doses for anti-cancer therapy. Skin rashes and other side effects, together with poor efficacy led to a drawback of the therapeutic, but modified recIL-2 molecules are on the rise to treat both cancer and inflammatory diseases such as autoimmunity. Still, pathophysiological mechanisms of recIL-2-induced skin rashes are not understood. In the study reported here, a hypothetical literature-based immune-related adverse outcome pathway (irAOP) was developed to identify possible key cells and molecules in recIL-2-induced skin rash. Using this approach, a hypothesis was formed that the induced immune response predominantly is Type 2-driven by T-helper and innate lymphoid cells, leading to the occurrence of cutaneous side effects during recIL-2 therapy. This paper further discusses mechanisms beyond the proposed irAOP which might add to the pathology but currently are less-studied. Together, this hypothetic irAOP forms a basis to clarify possible cellular and molecular interactions leading to recIL-2-induced skin rash. This might be used to adapt existing or develop new test systems to help predict and prevent cutaneous side effects in future IL-2-based or similar therapies.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | | | | | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| |
Collapse
|
2
|
Corsetti G, Pasini E, Scarabelli TM, Romano C, Singh A, Scarabelli CC, Dioguardi FS. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024; 16:2417. [PMID: 39125298 PMCID: PMC11313897 DOI: 10.3390/nu16152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE This paper aims to present a unique perspective that emphasizes the intricate interplay between energy, dietary proteins, and amino acid composition, underscoring their mutual dependence for health-related considerations. Energy and protein synthesis are fundamental to biological processes, crucial for the sustenance of life and the growth of organisms. METHODS AND RESULTS We explore the intricate relationship between energy metabolism, protein synthesis, regulatory mechanisms, protein sources, amino acid availability, and autophagy in order to elucidate how these elements collectively maintain cellular homeostasis. We underscore the vital role this dynamic interplay has in preserving cell life. CONCLUSIONS A deeper understanding of the link between energy and protein synthesis is essential to comprehend fundamental cellular processes. This insight could have a wide-ranging impact in several medical fields, such as nutrition, metabolism, and disease management.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Evasio Pasini
- Italian Association of Functional Medicine, 20855 Lesmo, Italy;
- Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy
| | | | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Arashpreet Singh
- School of Osteopathic Medicine, Campbell University, Lillington, NC 27546, USA;
| | | | | |
Collapse
|
3
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
4
|
Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation. Nat Commun 2022; 13:5174. [PMID: 36055998 PMCID: PMC9440129 DOI: 10.1038/s41467-022-32718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
CD4+ T cells are pivotal cells playing roles in the orchestration of humoral and cytotoxic immune responses. It is known that CD4+ T cell proliferation relies on autophagy, but identification of the autophagosomal cargo involved is missing. Here we create a transgenic mouse model, to enable direct mapping of the proteinaceous content of autophagosomes in primary cells by LC3 proximity labelling. Interleukin-7 receptor-α, a cytokine receptor mostly found in naïve and memory T cells, is reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy show increased interleukin-7 receptor-α surface expression, while no defect in internalisation is observed. Mechanistically, excessive surface interleukin-7 receptor-α sequestrates the common gamma chain, impairing the interleukin-2 receptor assembly and downstream signalling crucial for T cell proliferation. This study shows that key autophagy substrates can be reliably identified in this mouse model and help mechanistically unravel autophagy's contribution to healthy physiology and disease.
Collapse
|
5
|
Kogut MH, Genovese KJ, Byrd JA, Swaggerty CL, He H, Farnell Y, Arsenault RJ. Chicken-Specific Kinome Analysis of Early Host Immune Signaling Pathways in the Cecum of Newly Hatched Chickens Infected With Salmonella enterica Serovar Enteritidis. Front Cell Infect Microbiol 2022; 12:899395. [PMID: 35846741 PMCID: PMC9279939 DOI: 10.3389/fcimb.2022.899395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Poultry is a major source of human foodborne illness caused by broad host range Salmonella serovars (paratyphoid), and developing cost-effective, pre-harvest interventions to reduce these pathogens would be valuable to the industry and consumer. Host responses to infectious agents are often regulated through phosphorylation. However, proteomic mechanisms of Salmonella acute infection biology and host responses to the bacteria have been limited concentrating predominately on the genomic responses of the host to infection. Our recent development of chicken-specific peptide arrays for kinome analysis of host phosphorylation-based cellular signaling responses provided us with the opportunity to develop a more detailed understanding of the early (4-24 h post-infection) host-pathogen interactions during the initial colonization of the cecum by Salmonella. Using the chicken-specific kinomic immune peptide array, biological pathway analysis showed infection with S. Enteritidis increased signaling related to the innate immune response, relative to the non-infected control ceca. Notably, the acute innate immune signaling pathways were characterized by increased peptide phosphorylation (activation) of the Toll-like receptor and NOD-like receptor signaling pathways, the activation of the chemokine signaling pathway, and the activation of the apoptosis signaling pathways. In addition, Salmonella infection induced a dramatic alteration in the phosphorylation events of the JAK-STAT signaling pathway. Lastly, there is also significant activation of the T cell receptor signaling pathway demonstrating the initiation of the acquired immune response to Salmonella infection. Based on the individual phosphorylation events altered by the early Salmonella infection of the cecum, certain conclusions can be drawn: (1) Salmonella was recognized by both TLR and NOD receptors that initiated the innate immune response; (2) activation of the PPRs induced the production of chemokines CXCLi2 (IL-8) and cytokines IL-2, IL-6, IFN-α, and IFN-γ; (3) Salmonella infection targeted the JAK-STAT pathway as a means of evading the host response by targeting the dephosphorylation of JAK1 and TYK2 and STAT1,2,3,4, and 6; (4) apoptosis appears to be a host defense mechanism where the infection with Salmonella induced both the intrinsic and extrinsic apoptotic pathways; and (5) the T cell receptor signaling pathway activates the AP-1 and NF-κB transcription factor cascades, but not NFAT.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
- *Correspondence: Michael H. Kogut,
| | - Kenneth J. Genovese
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - J. Allen Byrd
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Haiqi He
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Yuhua Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
6
|
Abdulaali Abed T, Abdulla AA. Correlation of -475 IL-2 Promoter Gene Polymorphisms and the Levels of Serum IL-2 on the Risk of Multiple Sclerosis. Rep Biochem Mol Biol 2022; 11:83-88. [PMID: 35765522 PMCID: PMC9208566 DOI: 10.52547/rbmb.11.1.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/24/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND The aim of present study is to asset the IL-2 promoter gene (SNP -475) as a candidate gene for multiple sclerosis (MS) susceptibility. METHODS This study included 70 patients with relapsing - remitting multiple sclerosis (RRMS) and 50 healthy controls. Following the extraction of genomic DNA from peripheral blood, frequency of genotypes and alleles of SNP -475 was calculated using Restriction fragment length polymorphism-polymer chain reaction (RFLP-PCR) and then the results were analyzed statistically. RESULTS The results revealed the unusual ratio for the heterozygous (AT) was 1.6972 indicating that heterozygous patients were at higher risk of multiple sclerosis than wild homozygous (AA), and homomutant (TT). The results show protective role for - 475 IL-2 promoter among individuals with multiple sclerosis, (O.R: 0.4872; C.I. 95%: 0.1617- 1.4680) and (O.R: 0.9275; C.I. 95%: 0.2476 - 3.4745) for both AA and TT genotypes, respectively. CONCLUSION Our results showed that in this population of Iraqi patients, the AT genotype / A allele of -475 IL-2 promoter gene SNP may include attributed factors for MS predisposition.
Collapse
Affiliation(s)
| | - Anwar Ali Abdulla
- Department of Biology, College of Sciences, University of Babylon, Iraq.
| |
Collapse
|
7
|
Marchingo JM, Cantrell DA. Protein synthesis, degradation, and energy metabolism in T cell immunity. Cell Mol Immunol 2022; 19:303-315. [PMID: 34983947 PMCID: PMC8891282 DOI: 10.1038/s41423-021-00792-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
T cell activation, proliferation, and differentiation into effector and memory states involve massive remodeling of T cell size and molecular content and create a massive increase in demand for energy and amino acids. Protein synthesis is an energy- and resource-demanding process; as such, changes in T cell energy production are intrinsically linked to proteome remodeling. In this review, we discuss how protein synthesis and degradation change over the course of a T cell immune response and the crosstalk between these processes and T cell energy metabolism. We highlight how the use of high-resolution mass spectrometry to analyze T cell proteomes can improve our understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Julia M Marchingo
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Doreen A Cantrell
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
8
|
Park SJ, Choi SH, Cho YD, Kim JY, Cho HJ, Kim KH, Kim WY. Protective effects of pentoxifylline on T-cell viability under inflammatory conditions. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221120753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Pentoxifylline (PTX) reduces the levels of pro-inflammatory cytokines; however, its effects on immune system is not well understood. The aim of this study was to investigate the effect of PTX on T cells under inflammatory conditions in co-culture with THP-1-derived macrophages. Methods: Toll-like receptor 4 (TLR4) and macrophage migration inhibitory factor (MIF) levels were measured after addition of PTX to lipopolysaccharide (LPS)-stimulated differentiated THP-1 cells. T cell viability and MIF levels were measured after PTX was added to prostaglandin E2 (PGE2)-stimulated Jurkat T-cell leukemia line. Co-culture was conducted to determine the effect of LPS-stimulated differentiated THP-1 cells that are affected by PTX on Jurkat cells. To prevent the direct effects of LPS and PTX on Jurkat cells, LPS and PTX were washed from THP-1 cells before co-culture. T cell viability and interleukin-2 (IL-2) levels were determined in Jurkat cells. Results: Increase in the MIF concentration and TLR4 expression level in differentiated THP-1 cells stimulated with LPS were reversed after PTX addition. However, PTX did not improve T cell viability in PGE2–stimulated Jurkat cells. Co-culturing Jurkat cell and LPS-stimulated differentiated THP-1 cells resulted in a decreased viability of T cells. The addition of PTX restored T cell viability to normal control levels and IL-2 expression level in Jurkat cells. Conclusion: LPS-stimulated THP-1-derived macrophages reduced the T cell viability under inflammation. However, PTX restored T cells viability and IL-2 back to normal levels. Therefore, the immunomodulatory action of PTX may be mediated by macrophage-T cell interactions.
Collapse
Affiliation(s)
- Sung-Joon Park
- Department of Emergency Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Sung-Hyuk Choi
- Department of Emergency Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Young-Duck Cho
- Department of Emergency Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Jung-Youn Kim
- Department of Emergency Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Han-Jin Cho
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan, Kyunggi-do, Korea
| | - Kyung-Hwan Kim
- Department of Emergency Medicine, Inje University Ilsanbaik Hospital, Ilsan, Kyunggi-do, Korea
| | - Won-Young Kim
- Department of Emergency Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
9
|
Choi H, Lee Y, Hur G, Lee SE, Cho HI, Sohn HJ, Cho BS, Kim HJ, Kim TG. γδ T cells cultured with artificial antigen-presenting cells and IL-2 show long-term proliferation and enhanced effector functions compared with γδ T cells cultured with only IL-2 after stimulation with zoledronic acid. Cytotherapy 2021; 23:908-917. [PMID: 34312069 DOI: 10.1016/j.jcyt.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AIMS Immunotherapeutic approaches using γδ T cells have emerged as the function of γδ T cells in tumor surveillance and clearance has been discovered. In vitro expansion methods of γ9δ2 T cells have been based on phosphoantigens and cytokines, but expansion methods using feeder cells to generate larger numbers of γδ T cells have also been studied recently. However, there are no studies that directly compare γδ T cells cultured with phosphoantigens with those cultured with feeder cells. Therefore, this study aimed to compare the expansion, characteristics and effector functions of γδ T cells stimulated with K562-based artificial antigen-presenting cells (aAPCs) (aAPC-γδ T cells) and γδ T cells stimulated with only zoledronic acid (ZA) (ZA-γδ T cells). METHODS Peripheral blood mononuclear cells were stimulated with ZA for 7 days, and aAPC-γδ T cells were stimulated weekly with K562-based aAPCs expressing CD32, CD80, CD83, 4-1BBL, CD40L and CD70, whereas ZA-γδ T cells were stimulated with only IL-2. Cultured γδ T cells were analyzed by flow cytometry for the expression of co-stimulatory molecules, activating receptors and checkpoint inhibitors. Differentially expressed gene (DEG) analysis was also performed to determine the difference in gene expression between aAPC-γδ T cells and ZA-γδ T cells. In vitro cytotoxicity assay was performed with calcein AM release assay, and in vivo anti-tumor effect was compared using a U937 xenograft model. RESULTS Fold expansion on day 21 was 690.7 ± 413.1 for ZA-γδ T cells and 1415.2 ± 1016.8 for aAPC- γδ T cells. Moreover, aAPC-γδ T cells showed continuous growth, whereas ZA-γδ T cells showed a decline in growth after day 21. The T-cell receptor Vγ9+δ2+ percentages (mean ± standard deviation) on day 21 were 90.0 ± 2.7% and 87.0 ± 4.5% for ZA-γδ T cells and aAPC-γδ T cells, respectively. CD25 and CD86 expression was significantly higher in aAPC-γδ T cells. In DEG analysis, aAPC-γδ T cells and ZA-γδ T cells formed distinct clusters, and aAPC-γδ T cells showed upregulation of genes associated with metabolism and cytokine pathways. In vitro cytotoxicity revealed superior anti-tumor effects of aAPC-γδ T cells compared with ZA-γδ T cells on Daudi, Raji and U937 cell lines. In addition, in the U937 xenograft model, aAPC-γδ T-cell treatment increased survival, and a higher frequency of aAPC-γδ T cells was shown in bone marrow compared with ZA-γδ T cells. CONCLUSIONS Overall, this study demonstrates that aAPC-γδ T cells show long-term proliferation, enhanced activation and anti-tumor effects compared with ZA-γδ T cells and provides a basis for using aAPC-γδ T cells in further studies, including clinical applications and genetic engineering of γδ T cells.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Yunkyung Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Gaeun Hur
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Eun Lee
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Il Cho
- R&D Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Hyun-Jung Sohn
- Translational and Clinical Division, ViGenCell Inc, Seoul, Republic of Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Safinia N, Vaikunthanathan T, Lechler RI, Sanchez‐Fueyo A, Lombardi G. Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance? Eur J Immunol 2021; 51:2373-2386. [PMID: 34375446 PMCID: PMC10015994 DOI: 10.1002/eji.202048875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver disease. Breakthroughs in surgical practice and immunosuppression have seen considerable advancements in survival after transplantation. However, the intricate management of immunosuppressive regimens, balancing desired immunological quiescence while minimizing toxicity has proven challenging. Diminishing improvements in long-term morbidity and mortality have been inextricably linked with the protracted use of these medications. As such, there is now enormous interest to devise protocols that will allow us to minimize or completely withdraw immunosuppressants after transplantation. Immunosuppression withdrawal trials have proved the reality of tolerance following liver transplantation, however, without intervention will only occur after several years at the risk of potential cumulative immunosuppression-related morbidity. Focus has now been directed at accelerating this phenomenon through tolerance-inducing strategies. In this regard, efforts have seen the use of regulatory cell immunotherapy. Here we focus particularly on regulatory T cells, discussing preclinical data that propagated several clinical trials of adoptive cell therapy in liver transplantation. Furthermore, we describe efforts to further optimize the specificity and survival of regulatory cell therapy guided by concurrent immunomonitoring studies and the development of novel technologies including chimeric antigen receptors and co-administration of low-dose IL-2.
Collapse
Affiliation(s)
- Niloufar Safinia
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Robert Ian Lechler
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Giovanna Lombardi
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| |
Collapse
|
11
|
Stein MC, Braun F, Krebs CF, Bunders MJ. Kidney organoid systems for studies of immune-mediated kidney diseases: challenges and opportunities. Cell Tissue Res 2021; 385:457-473. [PMID: 34309728 PMCID: PMC8310776 DOI: 10.1007/s00441-021-03499-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
Acute and chronic kidney diseases are major contributors to morbidity and mortality in the global population. Many nephropathies are considered to be immune-mediated with dysregulated immune responses playing an important role in the pathogenesis. At present, targeted approaches for many kidney diseases are still lacking, as the underlying mechanisms remain insufficiently understood. With the recent development of organoids—a three-dimensional, multicellular culture system, which recapitulates important aspects of human tissues—new opportunities to investigate interactions between renal cells and immune cells in the pathogenesis of kidney diseases arise. To date, kidney organoid systems, which reflect the structure and closer resemble critical aspects of the organ, have been established. Here, we highlight the recent advances in the development of kidney organoid models, including pluripotent stem cell-derived kidney organoids and primary epithelial cell-based tubuloids. The employment and further required advances of current organoid models are discussed to investigate the role of the immune system in renal tissue development, regeneration, and inflammation to identify targets for the development of novel therapeutic approaches of immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Melissa C Stein
- Research Department Virus Immunology, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Madeleine J Bunders
- Research Department Virus Immunology, Leibniz-Institute for Experimental Virology, Hamburg, Germany.
| |
Collapse
|
12
|
Mazidi M, Shekoohi N, Katsiki N, Rakowski M, Mikhailidis DP, Banach M. Serum anti-inflammatory and inflammatory markers have no causal impact on telomere length: a Mendelian randomization study. Arch Med Sci 2021; 17:739-751. [PMID: 34025845 PMCID: PMC8130476 DOI: 10.5114/aoms/119965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The relationship between inflammatory and anti-inflammatory markers and telomere length (TL), a biological index of aging, is still poorly understood. By applying a 2-sample Mendelian randomization (MR), we investigated the causal associations between adiponectin, bilirubin, C-reactive protein (CRP), leptin, and serum uric acid (SUA) with TL. MATERIAL AND METHODS MR was implemented by using summary-level data from the largest ever genome-wide association studies (GWAS) conducted on our interested exposure and TL. Inverse variance weighted method (IVW), weighted median (WM)-based method, MR-Egger, MR-Robust Adjusted Profile Score (RAPS), and MR-Pleiotropy RESidual Sum and Outlier (PRESSO) were applied. Sensitivity analysis was conducted using the leave-one-out method. RESULTS With regard to adiponectin, CRP, leptin, and SUA levels, we found no effect on TL for all 4 types of tests (all p > 0.108). Results of the MR-Egger (p = 0.892) and IVW (p = 0.124) showed that bilirubin had no effect on telomere maintenance, whereas the results of the WM (p = 0.030) and RAPS (p = 0.022) were negative, with higher bilirubin concentrations linked to shorter TL. There was a low likelihood of heterogeneity for all the estimations, except for bilirubin (IVW p = 0.026, MR Egger p = 0.018). MR-PRESSO highlighted no outlier. For all the estimations, we observed negligible intercepts that were indicative of low likelihood of the pleiotropy (all p > 0.161). The results of leave-one-out method demonstrated that the links are not driven because of single nucleotide polymorphisms (SNPs). CONCLUSIONS Our results highlight that neither the anti-inflammatory nor pro-inflammatory markers tested have any significant causal effect on TL. The casual role of bilirubin on TL still needs to be investigated.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital, Strand, London, UK
| | - Niloofar Shekoohi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Niki Katsiki
- Second Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Michal Rakowski
- Polish Lipid Association (PoLA) & Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
13
|
Bruellman R, Llorente C. A Perspective Of Intestinal Immune-Microbiome Interactions In Alcohol-Associated Liver Disease. Int J Biol Sci 2021; 17:307-327. [PMID: 33390852 PMCID: PMC7757023 DOI: 10.7150/ijbs.53589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Uncovering the intricacies of the gut microbiome and how it interacts with the host immune system has opened up pathways in the search for the treatment of disease conditions. Alcohol-associated liver disease is a major cause of death worldwide. Research has shed light on the breakdown of the protective gut barriers, translocation of gut microbes to the liver and inflammatory immune response to microbes all contributing to alcohol-associated liver disease. This knowledge has opened up avenues for alternative therapies to alleviate alcohol-associated liver disease based on the interaction of the commensal gut microbiome as a key player in the regulation of the immune response. This review describes the relevance of the intestinal immune system, the gut microbiota, and specialized and non-specialized intestinal cells in the regulation of intestinal homeostasis. It also reflects how these components are altered during alcohol-associated liver disease and discusses new approaches for potential future therapies in alcohol-associated liver disease.
Collapse
Affiliation(s)
- Ryan Bruellman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Albarrán-Tamayo F, Murillo-Ortiz B, González Amaro R, López Briones S. Both in vitro T cell proliferation and telomere length are decreased, but CD25 expression and IL-2 production are not affected in aged men. Arch Med Sci 2021; 17:775-784. [PMID: 34025848 PMCID: PMC8130486 DOI: 10.5114/aoms.2019.87593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/03/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Aging is a natural process involving dysfunction of multiple organs and is characterized by increased susceptibility to infections, cancer and autoimmune diseases. The functionality of the immune system depends on the capacity of lymphocytes to proliferate in response to antigenic challenges, and telomere length has an important role regulating the number of cell divisions. The aim of this study was to determine the possible relationship between telomere length, interleukin 2 (IL-2) production, CD25 expression and proliferation of peripheral blood mononuclear cells (PBMCs) in aged men. MATERIAL AND METHODS Telomere length was measured by RT-PCR in PBMCs from young and aged men. IL-2 production and CD25 expression were determined by ELISA and flow cytometry, respectively. Cell proliferation was measured by CFSE dilution assays upon in vitro stimulation with concanavalin A (Con A). RESULTS PBMCs from aged men showed a shorter telomere length and a reduced capacity to proliferate in vitro, compared to young men. In contrast, no significant differences in the level of CD25 expression on T lymphocytes, and in vitro production of IL-2 were detected in both groups. In addition, no significant correlation was detected between levels of CD25 expression, IL-2 production, cell proliferation, and telomere length in aged men. CONCLUSIONS In aged men the telomere length shortening and the reduced T cell proliferation are not related to the capacity of IL-2 production and CD25 expression on T lymphocytes.
Collapse
Affiliation(s)
| | - Blanca Murillo-Ortiz
- Unidad de Investigación en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) No. 1 Bajío, Instituto Mexicano del Seguro Social (IMSS), León, Guanajuato, México
| | - Roberto González Amaro
- Departamento de Inmunología, Escuela de Medicina, Universidad Autónoma de San Luís Potosí, San Luís Potosí, México
| | - Sergio López Briones
- Departamento de Medicina y Nutrición, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato, México
| |
Collapse
|
15
|
Costa Del Amo P, Debebe B, Razavi-Mohseni M, Nakaoka S, Worth A, Wallace D, Beverley P, Macallan D, Asquith B. The Rules of Human T Cell Fate in vivo. Front Immunol 2020; 11:573. [PMID: 32322253 PMCID: PMC7156550 DOI: 10.3389/fimmu.2020.00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 12/05/2022] Open
Abstract
The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naïve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naïve and memory T cell dynamics and was also able to predict the independent dataset.
Collapse
Affiliation(s)
- Pedro Costa Del Amo
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Bisrat Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Shinji Nakaoka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Andrew Worth
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Diana Wallace
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Peter Beverley
- TB Research Centre, National Heart and Lung Research Institute, Imperial College London, London, United Kingdom
| | - Derek Macallan
- Institute for Infection and Immunity, St. George's Hospital, University of London, London, United Kingdom
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Daneshpour H, Youk H. Modeling cell-cell communication for immune systems across space and time. ACTA ACUST UNITED AC 2019; 18:44-52. [PMID: 31922054 PMCID: PMC6941841 DOI: 10.1016/j.coisb.2019.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Communicating is crucial for cells to coordinate their behaviors. Immunological processes, involving diverse cytokines and cell types, are ideal for developing frameworks for modeling coordinated behaviors of cells. Here, we review recent studies that combine modeling and experiments to reveal how immune systems use autocrine, paracrine, and juxtacrine signals to achieve behaviors such as controlling population densities and hair regenerations. We explain that models are useful because one can computationally vary numerous parameters, in experimentally infeasible ways, to evaluate alternate immunological responses. For each model, we focus on the length-scales and time-scales involved and explain why integrating multiple length-scales and time-scales in a model remain challenging. We suggest promising modeling strategies for meeting this challenge and their practical consequences.
Collapse
Affiliation(s)
- Hirad Daneshpour
- Kavli Institute of Nanoscience, the Netherlands.,Department of Bionanoscience, Delft University of Technology, Delft, 2629HZ, the Netherlands
| | - Hyun Youk
- Kavli Institute of Nanoscience, the Netherlands.,Department of Bionanoscience, Delft University of Technology, Delft, 2629HZ, the Netherlands.,CIFAR, CIFAR Azrieli Global Scholars Program, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
17
|
Miura JT, Zager JS. Neo-DREAM study investigating Daromun for the treatment of clinical stage IIIB/C melanoma. Future Oncol 2019; 15:3665-3674. [PMID: 31538818 DOI: 10.2217/fon-2019-0433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High-risk resectable melanoma poses therapeutic challenges as this subgroup remains most vulnerable for disease recurrence. Immunotherapy has established its efficacy in cases of advanced melanoma, and now is actively being investigated in the multimodal management of resectable disease. Daromun, an intralesional immunocytokine, has emerged as a unique immunotherapy in its ability to preferentially target tumor cells, resulting in direct destruction, while generating a bystander effect that leads to a distant treatment effect. On the basis of its mechanism of action, there is growing interest in delivering immune-based therapies in a neoadjuvant setting. In this review, the neo-DREAM study, a Phase III trial comparing the safety and efficacy of neoadjuvant Daromun for resectable stage IIIB/C melanoma will be described. Clinical Trial Registration Number: NCT03567889.
Collapse
Affiliation(s)
- John T Miura
- Departments of Cutaneous Oncology & Sarcoma, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Surgery, University of South Florida School of Medicine, Tampa FL, USA
| | - Jonathan S Zager
- Departments of Cutaneous Oncology & Sarcoma, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Surgery, University of South Florida School of Medicine, Tampa FL, USA
| |
Collapse
|
18
|
Araújo CRR, de Melo Silva T, dos Santos MG, Ottoni MHF, de Souza Fagundes EM, de Sousa Fontoura H, de Melo GEBA, de Carvalho Alcântara AF. Anti-inflammatory and cytotoxic activities of the extracts, fractions, and chemical constituents isolated from Luehea ochrophylla Mart. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:284. [PMID: 31660940 PMCID: PMC6819536 DOI: 10.1186/s12906-019-2701-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/09/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Stem bark of Luehea ochrophylla (L. ochrophylla) is used by the traditional Brazilian medicine for treatment of rheumatic diseases and tumors. This study aimed to investigate inhibition of acute and chronic inflammations and cytotoxic activity of extracts, fractions, and isolated compounds from L. ochrophylla. METHODS Hexane (HE) and ethanol (EE) extracts obtained from stem bark of L. ochrophylla were submitted to chromatographic fractionation. In order to test acute inflammation, experimental model of impact injury was used, followed by transdermal application of gels using phonophoresis. Histological analysis was based on scores assigned by the capacity of decreasing the lesion. To evaluate the effect EE and fractions on cell proliferation, human lymphocytes were stimulated with phytohemagglutinin and analyzed using flow cytometry. Proliferation was measured using VPD 450 staining and the calculated proliferative index (PI). The cytotoxic activity was evaluated using MTT colorimetric method against MDA-MB-231, MCF-7, HCT-116, and Vero cells. GraphPad Prism Version 5 was used for statistical analysis. RESULTS HE and EE provided friedelin, β-friedelinol, lupeol, mixture of lupeol and pseudotaraxasterol, β-sitosterol, betulinic acid, mixture of lupeol and taraxasterol, (-)-epicatechin, β-sitosterol-3-O-β-D-glucopyranoside, and (+)-epicatechin-(4β-8)-epicatechin. HE, ethyl acetate fraction (AF), betulinic acid, and β-sitosterol promoted regeneration of muscle fibers caused by muscle injury. AF significantly (p < 0.05) reduced the lymphocyte proliferation index (1.36 for cultures stimulated with PHA, 0.7 for untreated cultures and 0.12 for cultures stimulated with PHA and treated with AF 25 μg/mL and AF 50 μg/mL, respectively). β-Sitosterol-3-O-β-D-glucopyranoside exhibited high cytotoxic activity (IC50 = 1.279 μg/mL) against HCT-116 cell line. CONCLUSION These results suggest that extracts, fractions, and chemical constituents from L. ochrophylla decreases inflammatory processes generated by muscle injury. The anti-inflammatory activity may be justified by high inhibition of T cell proliferation. These extracts, fractions, and chemical constituents from L. ochrophylla may be useful as a therapeutic agent against rheumatic diseases. Moreover, chemical constituents from L. ochrophylla show potent cytotoxic activity against colon and rectal carcinomas.
Collapse
Affiliation(s)
- Clináscia Rodrigues Rocha Araújo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal do Norte de Minas Gerais, Januária, Brazil
| | - Thiago de Melo Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Elaine Maria de Souza Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
19
|
Tian AP, Yin YK, Yu L, Yang BY, Li N, Li JY, Bian ZM, Hu SY, Weng CX, Feng L. Low-Frequency Sonophoresis of Chinese Medicine Formula Improves Efficacy of Malignant Pleural Effusion Treatment. Chin J Integr Med 2019; 26:263-269. [DOI: 10.1007/s11655-019-3167-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 10/26/2022]
|
20
|
Abstract
The discovery of interleukin-2 (IL-2) changed the molecular understanding of how the immune system is controlled. IL-2 is a pleiotropic cytokine, and dissecting the signaling pathways that allow IL-2 to control the differentiation and homeostasis of both pro- and anti-inflammatory T cells is fundamental to determining the molecular details of immune regulation. The IL-2 receptor couples to JAK tyrosine kinases and activates the STAT5 transcription factors. However, IL-2 does much more than control transcriptional programs; it is a key regulator of T cell metabolic programs. The development of global phosphoproteomic approaches has expanded the understanding of IL-2 signaling further, revealing the diversity of phosphoproteins that may be influenced by IL-2 in T cells. However, it is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.
Collapse
Affiliation(s)
- Sarah H Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
21
|
Kanellopoulos AJ. Incidence and management of symptomatic dry eye related to LASIK for myopia, with topical cyclosporine A. Clin Ophthalmol 2019; 13:545-552. [PMID: 30988596 PMCID: PMC6438263 DOI: 10.2147/opth.s188521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose To evaluate the incidence of transient dry eye associated with LASIK for myopia and the efficacy of topical cyclosporine A administration. Methods Group A was formed from 145 (82 female, 63 male) eyes that developed clinically significant dry eye within 1 month post-LASIK and were subjected to cyclosporine A treatment. A “non-symptomatic for dry eye” and age- and gender-matched group (group B) was formed from the same pool of patients to serve as control. Schirmer’s, tear film break-up time (TBUT) and Ocular Surface Disease Index (OSDI) questionnaire were evaluated. Central corneal epithelial thickness (CET) and topographic epithelial thickness variability (TVT) were evaluated as quantitative dry eye objective markers. Subjective patient survey was also assessed. Results Mean age was 39.7±6.2 years for the female and 47.67±9.5 years for the male patients, in group A. Schirmer’s test mean preoperative value was 8.4±3.1 mm; and 4.5±3.6 mm at 1 month post-LASIK. Statistically significant decrease from 1 month post-LASIK baseline was found at 12 months (8.2±2.1 mm; P=0.02). Mean preoperative TBUT value was 7.5±2.5 seconds, 6.5±3.1 seconds at 1 month postoperatively, and 7.6±2.0 seconds at 12 months postoperatively, statistically significant to baseline (P=0.04). Preoperatively, CET was 52.37±3.40 µm and TTV was 1.24±0.57 µm, 59.87±3.89 µm, and 2.74±0.57 µm at 1 month post-LASIK respectively and at 12 months, 55.42±2.75 µm and 1.39±0.96 µm. The differences in CET between 12 months post-LASIK vs baseline were statistically significant (P=0.007). The mean preoperative OSDI scores were 11.47±9.97 for group A and 11.79±10.31 for group B (P=0.782), which changed to 23.03±10.17 and 15.13±9.49 at 12 months postoperatively (P<0.05), respectively. Following commencement of cyclosporine A treatment in group A, statistically significant improvement was noted, greater than the one in group B, in all metrics at the 12-month examination in comparison to the 1-month baseline. Conclusion Topical cyclosporine A treatment is an effective alternative in the management of LASIK for myopia-related transient dry eye. Optical coherence tomography epithelial mapping may provide an objective benchmark in diagnosing and monitoring this significant disorder and its correlation with visual symptoms.
Collapse
|
22
|
Serum concentrations of selected proinflammatory cytokines in children with alopecia areata. Postepy Dermatol Alergol 2019; 36:63-69. [PMID: 30858781 PMCID: PMC6409873 DOI: 10.5114/ada.2019.82826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/26/2017] [Indexed: 11/21/2022] Open
Abstract
Introduction Alopecia areata (AA) is considered an autoimmune disorder characterized by patchy loss of hair from the scalp and other body parts. Many patients develop the disease in childhood. Aim To answer the question whether abnormal production of some proinflammatory cytokines (IL-2, IL-6, IL-15, IL-17A and IFNγ) in children with AA may facilitate the development or progression of the disease. Material and methods The study group consisted of 42 children with AA, the control group – 37 healthy children. Peripheral venous blood samples were collected from patients with AA and healthy controls and the concentrations of serum cytokines, namely IL-2, IL-6, IL-15, IL-17A, IFN-γ were determined quantitatively by ELISA method. Results The serum IL-6, IL-15, IL-17A and IFNγ levels were significantly increased in patients with AA compared with control subjects (p < 0.05). The serum IL-15 level was found to be increased when the total duration of AA was increased (q = 0.30; p = 0.05). The serum cytokine level of IL-17A was found to be decreased when duration of the current episode was longer than 2 years (p < 0.05), but the correlation between IL-17A serum level and duration of the current episode was not confirmed in the Spearman test (q = –0.06; p = 0.68). The serum IL-17A level was found to be significantly decreased when the thyroiditis was present (q = –2.378; p < 0.05). Conclusions The increased levels of serum IL-6, IL-15, IL-17A and IFNγ in children suggest imbalance in the serum proinflammatory cytokines production in AA.
Collapse
|
23
|
Evolving Role of Vitamin D in Immune-Mediated Disease and Its Implications in Autoimmune Hepatitis. Dig Dis Sci 2019; 64:324-344. [PMID: 30370494 DOI: 10.1007/s10620-018-5351-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Vitamin D has immunomodulatory, anti-inflammatory, antioxidant, and anti-fibrotic actions that may impact on the occurrence and outcome of immune-mediated disease. The goals of this review are to describe the nature of these expanded roles, examine the implications of vitamin D deficiency in autoimmune hepatitis, and identify opportunities for future investigation. Abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Vitamin D receptors are expressed on the principal cell populations involved in the innate and adaptive immune responses. Macrophages and dendritic cells can produce 1,25-dihydroxyvitamin D within the microenvironment. This active form of vitamin D can inhibit immune cell proliferation, promote an anti-inflammatory cytokine profile, expand regulatory T cells, enhance glucocorticoid actions, increase glutathione production, and inhibit hepatic stellate cells. Vitamin D deficiency has been commonly present in patients with immune-mediated liver and non-liver diseases, and it has been associated with histological severity, advanced hepatic fibrosis, and non-response to conventional glucocorticoid therapy in autoimmune hepatitis. Vitamin D analogues with high potency, low calcemic effects, and independence from hepatic hydroxylation are possible interventions. In conclusion, vitamin D has properties that could ameliorate immune-mediated disease, and vitamin D deficiency has been a common finding in immune-mediated liver and non-liver diseases, including autoimmune hepatitis. Loss of vitamin D-dependent homeostatic mechanisms may promote disease progression. Vitamin D analogues that are independent of hepatic hydroxylation constitute an investigational opportunity to supplement current management of autoimmune hepatitis.
Collapse
|
24
|
Diener C, Hart M, Alansary D, Poth V, Walch-Rückheim B, Menegatti J, Grässer F, Fehlmann T, Rheinheimer S, Niemeyer BA, Lenhof HP, Keller A, Meese E. Modulation of intracellular calcium signaling by microRNA-34a-5p. Cell Death Dis 2018; 9:1008. [PMID: 30262862 PMCID: PMC6160487 DOI: 10.1038/s41419-018-1050-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Adjusting intracellular calcium signaling is an important feature in the regulation of immune cell function and survival. Here we show that miR-34a-5p, a small non-coding RNA that is deregulated in many common diseases, is a regulator of store-operated Ca2+ entry (SOCE) and calcineurin signaling. Upon miR-34a-5p overexpression, we observed both a decreased depletion of ER calcium content and a decreased Ca2+ influx through Ca2+ release-activated Ca2+ channels. Based on an in silico target prediction we identified multiple miR-34a-5p target genes within both pathways that are implicated in the balance between T-cell activation and apoptosis including ITPR2, CAMLG, STIM1, ORAI3, RCAN1, PPP3R1, and NFATC4. Functional analysis revealed a decrease in Ca2+ activated calcineurin pathway activity measured by a reduced IL-2 secretion due to miR-34a-5p overexpression. Impacting SOCE and/or downstream calcineurin/NFAT signaling by miR-34a-5p offers a possible future approach to manipulate immune cells for clinical interventions.
Collapse
Affiliation(s)
- Caroline Diener
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Vanessa Poth
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Jennifer Menegatti
- Institute of Virology and Center of Human and Molecular Biology, Medical School, Saarland University, 66421, Homburg, Germany
| | - Friedrich Grässer
- Institute of Virology and Center of Human and Molecular Biology, Medical School, Saarland University, 66421, Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | | | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
25
|
Abstract
Problem-solving strategies in immunology currently utilize a series of ad hoc, qualitative variations on a foundation of Burnet's formulation of clonal selection theory. These modifications, including versions of two-signal theory, describe how signals regulate lymphocytes to make important decisions governing self-tolerance and changes to their effector and memory states. These theories are useful but are proving inadequate to explain the observable genesis and control of heterogeneity in cell types, the nonlinear passage of cell fate trajectories and how the input from multiple environmental signals can be integrated at different times and strengths. Here, I argue for a paradigm change to place immune theory on a firmer philosophical and quantitative foundation to resolve these difficulties. This change rejects the notion of identical cell subsets and substitutes the concept of a cell as comprised of autonomous functional mechanical components subject to stochastic variations in construction and operation. The theory aims to explain immunity in terms of cell population dynamics, dictated by the operation of cell machinery, such as randomizing elements, division counters, and fate timers. The effect of communicating signals alone and in combination within this system is determined with a cellular calculus. A series of models developed with these principles can resolve logical cell fate and signaling paradoxes and offer a reinterpretation for how self-non-self discrimination and immune response class are controlled.
Collapse
Affiliation(s)
- Philip D. Hodgkin
- Immunology DivisionThe Walter & Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
- Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
26
|
Yokoyama Y, Iwasaki T, Kitano S, Satake A, Nomura S, Furukawa T, Matsui K, Sano H. IL-2-Anti-IL-2 Monoclonal Antibody Immune Complexes Inhibit Collagen-Induced Arthritis by Augmenting Regulatory T Cell Functions. THE JOURNAL OF IMMUNOLOGY 2018; 201:1899-1906. [PMID: 30143591 DOI: 10.4049/jimmunol.1701502] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
IL-2 induces regulatory T cells (Tregs) and reduces disease severity, such as in graft-versus-host disease and systemic lupus erythematosus. To investigate the regulatory network of IL-2 in rheumatoid arthritis, we examined the effects of IL-2-anti-IL-2 mAb immune complexes (IL-2ICs) in a rheumatoid arthritis model of collagen-induced arthritis (CIA). CIA was induced in male DBA/1 mice by two immunizations with type II collagen at 3-wk intervals. IL-2ICs were prepared by mixing 5 μg of an anti-IL-2 mAb (clone JES6-1D) with 1 μg of mouse IL-2 and were injected i.p. every day for 3 d. Mouse paws were scored for arthritis using a macroscopic scoring system. Th1, Th2, Th17, and Tregs were analyzed by flow cytometry. Joint histopathology was examined by H&E and immunohistochemical staining. Treg functions were examined by studying in vitro suppression using flow cytometry. IL-2IC administration effectively elicited a 1.6-fold expansion of CD4+Foxp3+ Tregs in peripheral blood cells relative to that found in control mice. IL-2IC treatment significantly inhibited arthritis in CIA mice. Histopathological examination of joints revealed inhibited synovial cell proliferation and IL-17, IL-6, and TNF-α levels but increased Foxp3+ Tregs after IL-2IC treatment. Flow cytometric examination of spleen cells revealed reduced IFN-γ- and IL-17-producing cells and increased IL-10-producing Tregs after IL-2IC treatment. The suppressive activities of CD4+CD25+ Tregs induced by IL-2ICs were stronger than those in untreated mice. IL-2ICs inhibited arthritis by augmenting not only Treg numbers but also Treg functions, which play regulatory roles in autoimmune arthritis.
Collapse
Affiliation(s)
- Yuichi Yokoyama
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tsuyoshi Iwasaki
- Department of Pharmacotherapy, School of Pharmacy, Hyogo University of Health Sciences, Chuo-ku, Kobe, Hyogo 650-8530, Japan; and
| | - Sachie Kitano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Atsushi Satake
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka 573-1191, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka 573-1191, Japan
| | - Tetsuya Furukawa
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kiyoshi Matsui
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hajime Sano
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
27
|
Miura JT, Zager JS. Intralesional therapy as a treatment for locoregionally metastatic melanoma. Expert Rev Anticancer Ther 2018; 18:399-408. [PMID: 29466885 DOI: 10.1080/14737140.2018.1444482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The emergence of novel intralesional therapies have dramatically changed the treatment landscape for melanoma. The heterogeneous presentation of melanoma continues to pose challenges for clinicians, especially when dealing with advanced locoregional disease. Intralesional therapies have the benefit of causing local tumor destruction, while minimizing systemic toxicity. Moreover, the integration of immunotherapeutic agents into intralesional compounds has resulted in the additional benefit of a bystander effect, whereby untreated distant lesions also derive a benefit from treatment. Intralesional therapy has assumed an important role in the management of unresectable, locoregional disease for melanoma. Areas covered: Multiple intralesional agents have been studied over the years, with only a few demonstrating promising results. This review will provide an overview of the different intralesional agents for melanoma. Mechanisms of action, clinical efficacy, and side effects will be the primary focus. Expert commentary: Treatment options for advanced melanoma continue to evolve. Attractive new therapies delivered by an intralesional route has demonstrated promising results, with minimal side effects. The ideal treatment strategy for melanoma will remain a multimodal approach; intralesional therapy provides an additional tool in the treatment armamentarium for melanoma.
Collapse
Affiliation(s)
- John T Miura
- a Departments of Cutaneous Oncology and Sarcoma, Moffitt Cancer Center , University of South Florida School of Medicine , Tampa , FL , USA
| | - Jonathan S Zager
- a Departments of Cutaneous Oncology and Sarcoma, Moffitt Cancer Center , University of South Florida School of Medicine , Tampa , FL , USA
| |
Collapse
|
28
|
Smith GA, Taunton J, Weiss A. IL-2Rβ abundance differentially tunes IL-2 signaling dynamics in CD4 + and CD8 + T cells. Sci Signal 2017; 10:10/510/eaan4931. [PMID: 29259099 DOI: 10.1126/scisignal.aan4931] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interleukin-2 (IL-2) stimulates both activated CD4+ and CD8+ T cells to proliferate. IL-2 signals through an identical receptor complex and promotes the same dose-dependent phosphorylation of the canonical transcription factor STAT5 in both cell types. Despite this, CD8+ T cells enter the S phase earlier and proliferate to a greater extent than do CD4+ T cells in response to IL-2. We identified distinct IL-2 signaling dynamics in CD4+ and CD8+ T cells. In IL-2-stimulated CD8+ T cells, STAT5 phosphorylation increased rapidly and was sustained for 6 hours. In contrast, CD4+ T cells had a biphasic response, with maxima at 15 min and 2 to 4 hours after stimulation. Both cell types required vesicular trafficking, but only CD4+ T cells required new protein synthesis to maintain high phosphorylation of STAT5. Two subunits of the IL-2 receptor, IL-2Rβ and IL-2Rγ, were twice as abundant in CD8+ T cells than in CD4+ T cells. Reduction of IL-2Rβ abundance by 50% was sufficient to convert CD8+ T cells to a CD4+ T cell-like signaling pattern and delay S phase entry. These results suggest that the larger pool of IL-2Rβ chains in CD8+ T cells is required to sustain IL-2 signaling and contributes to the quantitatively greater proliferative response to IL-2 relative to that of CD4+ T cells. This cell type-specific difference in IL-2Rβ abundance appears to tune responses, potentially preventing extensive, autoimmune proliferation of CD4+ T cells, while still enabling sufficient proliferation of CD8+ T cells to control viral infections.
Collapse
Affiliation(s)
- Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.,Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
29
|
Álvaro-Blanco J, Urso K, Chiodo Y, Martín-Cortázar C, Kourani O, Arco PGD, Rodríguez-Martínez M, Calonge E, Alcamí J, Redondo JM, Iglesias T, Campanero MR. MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter. Nucleic Acids Res 2017; 45:9960-9975. [PMID: 28973440 PMCID: PMC5622404 DOI: 10.1093/nar/gkx641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/13/2017] [Indexed: 12/27/2022] Open
Abstract
Most E2F-binding sites repress transcription through the recruitment of Retinoblastoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression.
Collapse
Affiliation(s)
- Josué Álvaro-Blanco
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Katia Urso
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Pablo Gómez-Del Arco
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biología Molecular, Cantoblanco, Madrid 28049, Spain.,CIBERCV, Spain
| | - María Rodríguez-Martínez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Esther Calonge
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - Juan Miguel Redondo
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERCV, Spain
| |
Collapse
|
30
|
Yang PM, Du JL, Wang GNK, Chia JS, Hsu WB, Pu PC, Sun A, Chiang CP, Wang WB. The Chinese Herbal Mixture Tien-Hsien Liquid Augments the Anticancer Immunity in Tumor Cell-Vaccinated Mice. Integr Cancer Ther 2017; 16:319-328. [PMID: 27252074 PMCID: PMC5759942 DOI: 10.1177/1534735416651492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The Chinese herbal mixture, Tien-Hsien liquid (THL), has been used as an anticancer dietary supplement for more than 20 years. Our previous studies have shown that THL can modulate immune responseand inhibit tumor growth. In this study, we further evaluated the effect of THL on anticancer immune response in mice vaccinated with γ-ray-irradiated tumor cells. METHODS The antitumor effect of THL was determined in mice vaccinated with low-tumorigenic CT-26-low colon cancer cells or γ-ray-irradiated high-tumorigenic CT-26-high colon cancer cells. The number of natural killer (NK) cells and T lymphocytes in the spleen was analyzed by flow cytometry. The tumor-killing activities of NK cells and cytotoxic T lymphocytes (CTLs) were analyzed by flow cytometry using YAC-1 and CT-26-high cells, respectively, as target cells. The levels of IFN-γ, IL-2, and TNF-α were determined by ELISA. RESULTS THL suppressed the growth of CT-26-high tumor in mice previously vaccinated with low-tumorigenic CT-26-low cells or γ-irradiated CT-26-high cells. THL increased the populations of NK cells and CD4+ T lymphocytes in the spleen and enhanced the tumor-killing activities of NK cells and CTL in mice vaccinated with γ-irradiated CT-26-high cells. THL increased the production of IFN-γ, IL-2, and TNF-α in mice vaccinated with γ-irradiated CT-26-high cells. CONCLUSION THL can enhance the antitumor immune responses in mice vaccinated with killed tumor cells. These results suggest that THL may be used as a complementary medicine for cancer patients previously treated with killed tumor cell vaccines, radiotherapy, or chemotherapy.
Collapse
Affiliation(s)
- Pei-Ming Yang
- College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jia-Ling Du
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Jean-San Chia
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Bin Hsu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pin-Ching Pu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Andy Sun
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Chiang
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Won-Bo Wang
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Borken F, Markwart R, Requardt RP, Schubert K, Spacek M, Verner M, Rückriem S, Scherag A, Oehmichen F, Brunkhorst FM, Rubio I. Chronic Critical Illness from Sepsis Is Associated with an Enhanced TCR Response. THE JOURNAL OF IMMUNOLOGY 2017; 198:4781-4791. [DOI: 10.4049/jimmunol.1700142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
|
32
|
Andrada E, Liébana R, Merida I. Diacylglycerol Kinase ζ Limits Cytokine-dependent Expansion of CD8 + T Cells with Broad Antitumor Capacity. EBioMedicine 2017; 19:39-48. [PMID: 28438506 PMCID: PMC5440620 DOI: 10.1016/j.ebiom.2017.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/03/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 and -15 drive expansion/differentiation of cytotoxic CD8+ T cells that eliminate targets via antigen-independent killing. This property is clinically relevant for the improvement of T cell-based antitumor therapies. Diacylglycerol kinase α and ζ (DGKα/ζ) metabolize the diacylglycerol generated following antigen recognition by T lymphocytes. Enhanced expression of these two lipid kinases in tumor-infiltrating CD8+ T cells promotes a hyporesponsive state that contributes to tumor immune escape. Inhibition of these two enzymes might thus be of interest for potentiating conventional antigen-directed tumor elimination. In this study, we sought to characterize the contribution of DGKα and ζ to antigen-independent cytotoxic functions of CD8+ T cells. Analysis of DGKζ-deficient mice showed an increase in bystander memory-like CD8+ T cell populations not observed in DGKα-deficient mice. We demonstrate that DGKζ limits cytokine responses in an antigen-independent manner. Cytokine-specific expansion of DGKζ-deficient CD8+ T cells promoted enhanced differentiation of innate-like cytotoxic cells in vitro, and correlated with the more potent in vivo anti-tumor responses of DGKζ-deficient mice engrafted with the murine A20 lymphoma. Our studies reveal a isoform-specific function for DGKζ downstream of IL-2/IL-15-mediated expansion of innate-like cytotoxic T cells, Pharmacological manipulation of DGKζ activity is of therapeutic interest for cytokine-directed anti-tumor treatments. DGKζ, a well-characterized negative regulator of TCR signals, also limits IL-2/15 function. DGKζ impairs cytokine-induced differentiation of cytotoxic T cell populations with innate-like ability to kill targets. As a result, DGKζ-deficient mice demonstrate enhanced rejection of implanted B cell lymphoma compared to wild type mice. Targeting DGKζ activity might be of interest to enhance cytokine-mediated antitumor therapies.
The immune system defends the body from foreign invaders. In cancer, tumors disguise as self-body cells and evade immune attack. For this reason it is important to identify the mechanism that stop T lymphocytes from recognize and destroy tumors. In this study we investigate the role of Diacylglycerol kinase zeta (DGKζ) as an inhibitor of antitumor T cell functions. We demonstrate that lymphoma cells injected in mice genetically modified to lack DGKζ expression develop smaller tumors that resolve more rapidly than those grown in normal mice. Our studies suggest that inhibition of DGKζ could help to reinforce the antitumor capacity of immune T lymphocytes.
Collapse
Affiliation(s)
- Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049 Madrid, Spain.
| |
Collapse
|
33
|
Mesenchymal stromal cells inhibit CD25 expression via the mTOR pathway to potentiate T-cell suppression. Cell Death Dis 2017; 8:e2632. [PMID: 28230853 PMCID: PMC5386489 DOI: 10.1038/cddis.2017.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells (MSCs) are known to suppress T-cell activation and proliferation. Several studies have reported that MSCs suppress CD25 expression in T cells. However, the molecular mechanism underlying MSC-mediated suppression of CD25 expression has not been fully examined. Here, we investigated the mTOR pathway, which is involved in CD25 expression in T cells. We showed that MSCs inhibited CD25 expression, which was restored in the presence of an inducible nitric oxide synthase (iNOS) inhibitor. Since CD25 mRNA expression was not inhibited, we focused on determining whether MSCs modulated components of the mTOR pathway in T cells. MSCs increased the phosphorylation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK) and decreased the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). In addition, the expression of 4E-BP1 increased dramatically in the presence of MSCs. An m7GTP pull-down assay showed increased binding of 4E-BP1 to the 5' cap-binding eukaryotic translation initiation factor 4E (eIF4E) complex in the presence of MSCs, which resulted in inhibition of mRNA translation. Treatment with 4EGI-1, a synthetic inhibitor of mRNA translation, also reduced CD25 expression in T cells. Polysome analysis confirmed decreased CD25 mRNA in the polysome-rich fraction in the presence of MSCs. Taken together, our results showed that nitric oxide, produced by MSCs, inhibits CD25 translation through regulation of the LKB1-AMPK-mTOR pathway to suppress T cells.
Collapse
|
34
|
Małaczewska J, Wójcik R, Kaczorek E, Rękawek W, Siwicki AK. Commercial gold nanocolloid inhibits synthesis of IL-2 and proliferation of porcine T lymphocytes. Res Vet Sci 2017; 110:4-11. [DOI: 10.1016/j.rvsc.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/12/2016] [Accepted: 10/22/2016] [Indexed: 01/05/2023]
|
35
|
Kwak SH, Kang JA, Kim M, Lee SD, Park JH, Park SG, Ko H, Kim YC. Discovery and structure–activity relationship studies of quinolinone derivatives as potent IL-2 suppressive agents. Bioorg Med Chem 2016; 24:5357-5367. [DOI: 10.1016/j.bmc.2016.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/20/2022]
|
36
|
Weng J, Moriarty KE, Baio FE, Chu F, Kim SD, He J, Jie Z, Xie X, Ma W, Qian J, Zhang L, Yang J, Yi Q, Neelapu SS, Kwak LW. IL-15 enhances the antitumor effect of human antigen-specific CD8 + T cells by cellular senescence delay. Oncoimmunology 2016; 5:e1237327. [PMID: 28123872 DOI: 10.1080/2162402x.2016.1237327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 01/08/2023] Open
Abstract
Optimal expansion protocols for adoptive human T-cell therapy often include interleukin (IL)-15; however, the mechanism by which IL-15 improves the in vivo antitumor effect of T cells remains to be elucidated. Using human T cells generated from HLA-A2+ donors against novel T-cell epitopes derived from the human U266 myeloma cell line Ig light chain V-region (idiotype) as a model, we found that T cells cultured with IL-15 provided superior resistance to tumor growth in vivo, compared with IL-2, after adoptive transfer into immunodeficient hosts. This effect of IL-15 was associated with delayed/reversed senescence in tumor antigen-specific memory CD8+ T cells mediated through downregulation of P21WAF1, P16INK4a, and P53 expression. Compared to IL-2, IL-15 stimulation dramatically activated JAK3-STAT5 signaling and inhibited the expression of DNA damage genes. Thus, our study elucidates a new mechanism for IL-15 in the regulation of STAT signaling pathways and CD8+ T-cell senescence.
Collapse
Affiliation(s)
- Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kelsey E Moriarty
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Flavio Egidio Baio
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Fuliang Chu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Sung-Doo Kim
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jin He
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Wencai Ma
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jianfei Qian
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Liang Zhang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jing Yang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Qing Yi
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Larry W Kwak
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
37
|
Kogut MH, Swaggerty CL, Byrd JA, Selvaraj R, Arsenault RJ. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection. Int J Mol Sci 2016; 17:ijms17081207. [PMID: 27472318 PMCID: PMC5000605 DOI: 10.3390/ijms17081207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4-14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - Christina L Swaggerty
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - James Allen Byrd
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - Ramesh Selvaraj
- Ohio Agricultural Research Center, The Ohio State University, Wooster, OH 44691, USA.
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
38
|
Complexation of the barium cation with cyclosporin A: an experimental and theoretical study. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Doğaner BA, Yan LK, Youk H. Autocrine Signaling and Quorum Sensing: Extreme Ends of a Common Spectrum. Trends Cell Biol 2016; 26:262-271. [DOI: 10.1016/j.tcb.2015.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
|
40
|
Böhm MRR, Schallenberg M, Brockhaus K, Melkonyan H, Thanos S. The pro-inflammatory role of high-mobility group box 1 protein (HMGB-1) in photoreceptors and retinal explants exposed to elevated pressure. J Transl Med 2016; 96:409-27. [PMID: 26779828 DOI: 10.1038/labinvest.2015.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/04/2023] Open
Abstract
To determine the role of high-mobility group box 1 protein (HMGB-1) in cellular and tissue models of elevated pressure-induced neurodegeneration, regeneration, and inflammation. Mouse retinal photoreceptor-derived cells (661W) and retinal explants were incubated either under elevated pressure or in the presence of recombinant HMGB-1 (rHMGB-1) to investigate the mechanisms of response of photoreceptors. Immunohistochemistry, western blotting, and the quantitative real-time PCR were used to examine the expression levels of immunological factors (eg, HMGB-1, receptor for advanced glycation end products (RAGE)), Toll-like receptors 2 and 4 (TLR-2, TLR-4), apoptosis-related factors (eg, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad)) as well as cytokine expression (eg, tumor necrosis factor alpha (TNF-α), interleukin (IL)-4, IL-6, and vascular endothelial growth factor (VEGF)). The data revealed increased the expression of HMGB-1 and its receptors RAGE, TLR-2, and TLR-4, and TNF-α as well as pro-apoptotic factors (eg, Bad) as well as apoptosis in 661W cells exposed to elevated pressure. Co-cultivation of 661W cells with rHMGB-1 increased the expression levels of pro-apoptotic Bad and cleaved Caspase-3 resulting in apoptosis. Cytokine array studies revealed an increased release of TNF-α, IL-4, IL-6, and VEGF after incubation of 661W cells with rHMGB-1. Upregulation of HMGB-1, TLR-2, and RAGE as well as anti-apoptotic Bcl-2 expression levels was found in the retinal explants exposed to rHMGB-1 or elevated pressure. The results suggest that HMGB-1 promotes an inflammatory response and mediates apoptosis in the pathology of photoreceptors and retinal homeostasis. HMGB-1 may have a key role in ongoing damage of retinal cells under conditions of elevated intraocular pressure.
Collapse
Affiliation(s)
- Michael R R Böhm
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany.,Department of Ophthalmology, St Franziskus Hospital Münster, Münster, Germany
| | - Maurice Schallenberg
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany.,Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Katrin Brockhaus
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany.,Cluster of Excellence 'Cells in Motion, CiM', Münster, Germany
| |
Collapse
|
41
|
Smith GA, Uchida K, Weiss A, Taunton J. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat Chem Biol 2016; 12:373-9. [PMID: 27018889 PMCID: PMC4837022 DOI: 10.1038/nchembio.2056] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022]
Abstract
To drive lymphocyte proliferation and differentiation, common γ-chain (γc) cytokine receptors require hours to days of sustained stimulation. JAK1 and JAK3 kinases are found together in all γc-receptor complexes, but how their respective catalytic activities contribute to signaling over time is not known. Here we dissect the temporal requirements for JAK3 kinase activity with a selective covalent inhibitor (JAK3i). By monitoring phosphorylation of the transcription factor STAT5 over 20 h in CD4(+) T cells stimulated with interleukin 2 (IL-2), we document a second wave of signaling that is much more sensitive to JAK3i than the first wave. Selective inhibition of this second wave is sufficient to block cyclin expression and entry to S phase. An inhibitor-resistant JAK3 mutant (C905S) rescued all effects of JAK3i in isolated T cells and in mice. Our chemical genetic toolkit elucidates a biphasic requirement for JAK3 kinase activity in IL-2-driven T cell proliferation and will find broad utility in studies of γc-receptor signaling.
Collapse
Affiliation(s)
- Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.,Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kenji Uchida
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
42
|
Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Das P, Nandi SK, Kundu SC. Potential of non-mulberry silk protein fibroin blended and grafted poly(Є-caprolactone) nanofibrous matrices for in vivo bone regeneration. Colloids Surf B Biointerfaces 2016; 143:431-439. [PMID: 27037780 DOI: 10.1016/j.colsurfb.2016.03.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
An in vivo investigation is conducted to evaluate effectiveness of poly(Є-caprolactone) (PCL) nanofibrous matrices, with non-mulberry silk fibroin (NSF) (from Antheraea mylitta) inclusion, for bone tissue engineering. Inclusion is achieved by either blending NSF with PCL prior to electrospinning substrates or by grafting NSF onto electrospun PCL substrates. Proceeding from our previous in vitro results, showing that NSF grafted matrices have an edge when it comes to aiding cellular adhesion and proliferation, animal trials using rabbits are planned. As this is first in vivo trial of nanofibrous scaffolds with silk fibroin from A. mylitta, aim is to both evaluate the grafted and blended scaffolds independently and compare the method of silk fibroin introduction into the nanofibrous structures. The scaffolds are implanted at bone defect site in distal metaphysis region of the rabbits' femur. Host tissue immuno-compatibility of implants is assessed from measurements of IL-2, IL-6 and TNF-α level through 4 weeks after implantation. Barring an initial inflammatory response, IL-2, IL-6 and TNF-α levels fall back at baseline values in 2 or 4 weeks, thus confirming long term compatibility. Substantial interfacial bonding strength between grafts and host bone is evidenced from mechanical push-out test. Formation of bone tissue for both implant varieties is confirmed using histological and radiological examinations along with fluorochrome labelling and scanning electron microscopy. Significantly better bone formation is observed for NSF grafted matrices. The cumulative results from in vivo tests indicate suitability of NSF grafted PCL nanofibrous matrix as an ECM for bone repair and regrowth.
Collapse
Affiliation(s)
- Promita Bhattacharjee
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Debasis Bhattacharya
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Piyali Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea
| |
Collapse
|
43
|
Gautam R, Singh M, Gautam S, Rawat JK, Saraf SA, Kaithwas G. Rutin attenuates intestinal toxicity induced by Methotrexate linked with anti-oxidative and anti-inflammatory effects. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:99. [PMID: 26965456 PMCID: PMC4785621 DOI: 10.1186/s12906-016-1069-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/26/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Methotrexate (MTX) is recognized as an anti-metabolite in cancer chemotherapy and is associated with various toxicities assigned to inflammation and oxidative stress. Rutin has been reported to have significant anti-inflammatory, antioxidant along with antiulcer properties. The present study was undertaken to corroborate the effect of rutin against MTX induced intestinal toxicity in experimental animals. METHOD Six groups of rats (n = 6) were dosed with normal saline (3 ml/kg,i.p.); MTX (2.5 mg/kg,i.p.); rutin (50 and 100 mg/kg,i.p.); rutin + MTX (50 mg/kg + 2.5 mg/kg,i.p.); rutin + MTX (100 mg/kg + 2.5 mg/kg,i.p.) for seven consecutive days and sacrificed on eighth day. The intestinal contents were scrutinized physiologically (pH, total acidity, free acidity, CMDI), biochemically (TBARS, protein carbonyl, SOD, catalase and GSH) and for immunoregulatory cytokines (IL-2, IL-4 and IL-10). RESULTS AND DISCUSSION The administration of rutin demonstrated significant protection against intestinal lesions damaged by MTX. The treatment with rutin elicited noticeable inhibition of free acidity (26.20%), total acidity (22.05%) and CMDI (1.16%) in the experimental animals similar to control. In MTX treated toxic group, the levels of oxidative markers and immunoregulatory cytokines significantly increased in comparison to control, which was subsequently restored after rutin treatment. Rutin also demonstrated 75.63, 81.00 and 80.43% inhibition of cyclooxygenase-1 and 2, and 15-lipoxygenase respectively. CONCLUSION The positive modulation of MTX toxicity could be attributed to the free radical scavenging and anti-inflammatory (dual inhibition of arachidonic acid pathways) potential of rutin.
Collapse
Affiliation(s)
- Raju Gautam
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, U. P, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, U. P, India
| | - Swetlana Gautam
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, U. P, India
| | - Jitendra Kumar Rawat
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, U. P, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, U. P, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, U. P, India.
| |
Collapse
|
44
|
Review: The Lacrimal Gland and Its Role in Dry Eye. J Ophthalmol 2016; 2016:7542929. [PMID: 27042343 PMCID: PMC4793137 DOI: 10.1155/2016/7542929] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/04/2016] [Indexed: 01/15/2023] Open
Abstract
The human tear film is a 3-layered coating of the surface of the eye and a loss, or reduction, in any layer of this film may result in a syndrome of blurry vision and burning pain of the eyes known as dry eye. The lacrimal gland and accessory glands provide multiple components to the tear film, most notably the aqueous. Dysfunction of these glands results in the loss of aqueous and other products required in ocular surface maintenance and health resulting in dry eye and the potential for significant surface pathology. In this paper, we have reviewed products of the lacrimal gland, diseases known to affect the gland, and historical and emerging dry eye therapies targeting lacrimal gland dysfunction.
Collapse
|
45
|
Makrlík E, Böhm S, Vaňura P. Interaction of the divalent lead cation with cyclosporin A: an experimental and theoretical study. Struct Chem 2016. [DOI: 10.1007/s11224-015-0729-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Hildebrand D, Heeg K, Kubatzky KF. Pasteurella multocida Toxin Manipulates T Cell Differentiation. Front Microbiol 2015; 6:1273. [PMID: 26635744 PMCID: PMC4652077 DOI: 10.3389/fmicb.2015.01273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022] Open
Abstract
Pasteurella multocida causes various diseases in a broad range of wild and domestic animals. Toxigenic strains of the serotypes A and D produce an AB protein toxin named Pasteurella multocida toxin (PMT). PMT constitutively activates the heterotrimeric G protein subunits Gαq, Gα13, and Gαi through deamidation of a glutamine residue, which results in cytoskeletal rearrangements as well as increased proliferation and survival of the host cell. In human monocytes, PMT alters the lipopolysaccharide (LPS)-induced activation toward a phenotype that suppresses T cell activation. Here we describe that the toxin also modulates CD4-positive T helper (Th) cells directly. PMT amplifies the expansion of Th cells through enhanced cell cycle progression and suppression of apoptosis and manipulates the differentiation of Th subclasses through activation of Signal Transducers and Activators of Transcription (STAT) family members and induction of subtype-specific master transcription factors. A large population of toxin-treated T cells is double-positive for Foxp3 and RORγt, the transcription factors expressed by Treg and Th17 cells, respectively. This suggests that these cells could have the potential to turn into Th17 cells or suppressive Treg cells. However, in terms of function, the PMT-differentiated cells behave as inflammatory Th17 cells that produce IL-17 and trigger T cell proliferation.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg Heidelberg, Germany
| | - Klaus Heeg
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg Heidelberg, Germany
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg Heidelberg, Germany
| |
Collapse
|
47
|
Zhang J, Huang X, Lu B, Zhang C, Cai Z. Can apical periodontitis affect serum levels of CRP, IL-2, and IL-6 as well as induce pathological changes in remote organs? Clin Oral Investig 2015; 20:1617-24. [DOI: 10.1007/s00784-015-1646-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023]
|
48
|
|
49
|
Knobloch J, Chikosi SJ, Yanik S, Rupp J, Jungck D, Koch A. A systemic defect in Toll-like receptor 4 signaling increases lipopolysaccharide-induced suppression of IL-2-dependent T-cell proliferation in COPD. Am J Physiol Lung Cell Mol Physiol 2015; 310:L24-39. [PMID: 26498252 DOI: 10.1152/ajplung.00367.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 10/21/2015] [Indexed: 02/06/2023] Open
Abstract
The susceptibility to bacterial infections is increased in chronic obstructive pulmonary disease (COPD). This promotes exacerbations. IL-2 triggers CD4(+)/Th1-cell proliferation, which is important for infection defense. Bacterial endotoxin (LPS) activates MyD88/IRAK and TRIF/IKKε/TBK1 pathways via Toll-like receptor-4 (TLR4) in Th1 cells. Systemic defects in TLR pathways in CD4(+)/Th1 cells cause an impairment of IL-2-dependent immune responses to bacterial infections in COPD. Peripheral blood CD4(+) T cells of never smokers, smokers without COPD, and smokers with COPD (each n = 10) were ex vivo activated towards Th1 and stimulated with LPS. IL-2, MyD88, and TRIF expression, and cell proliferation was analyzed by ELISA, quantitative RT-PCR, and bromodeoxyuridine (BrdU) and trypan blue staining comparative among the cohorts. IL-2 release from activated T cells was increased in COPD vs. smokers and never smokers. LPS reduced IL-2 expression and T-cell proliferation. These effects were increased in COPD vs. never smokers and inversely correlated with FEV1 (%predicted). The MyD88/TRIF ratio was decreased in Th1 cells of COPD. The suppression of IL-2 by LPS was abolished by MyD88/IRAK blockade in never smokers but by TRIF/IKKε/TBK1 blockade in COPD. Moxifloxacin restored IL-2 expression and T-cell proliferation in the presence of LPS by blocking p38 MAPK. The increased IL-2 release from Th1 cells in COPD might contribute to airway inflammation in disease exacerbations. A switch from MyD88/IRAK to TRIF/IKKε/TBK1 signaling amplifies the suppression of IL-2-dependent proliferation of CD4(+) T cells by LPS in COPD. This molecular pathology is of systemic origin, might impair adaptive immune responses, and could explain the increased susceptibility to bacterial infections in COPD. Targeting TLR4-downstream signaling, for example, with moxifloxacin, might reduce exacerbation rates.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany; and
| | - Sarah-Jane Chikosi
- Medical Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany; and
| | - Sarah Yanik
- Medical Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany; and
| | - Jan Rupp
- Department of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - David Jungck
- Medical Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany; and
| | - Andrea Koch
- Medical Clinic III for Pneumology, Allergology, Sleep and Respiratory Medicine, Bergmannsheil University Hospital, Bochum, Germany; and
| |
Collapse
|
50
|
Sarkar S, Hewison M, Studzinski GP, Li YC, Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit Rev Clin Lab Sci 2015; 53:132-45. [PMID: 26479950 DOI: 10.3109/10408363.2015.1094443] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of vitamin D receptor (VDR) expression in immune cells has opened up a new area of research into immunoregulation by vitamin D, a niche that is distinct from its classical role in skeletal health. Today, about three decades since this discovery, numerous cellular and molecular targets of vitamin D in the immune system have been delineated. Moreover, strong clinical associations between vitamin D status and the incidence/severity of many immune-regulated disorders (e.g. infectious diseases, cancers and autoimmunity) have prompted the idea of using vitamin D supplementation to manipulate disease outcome. While much is known about the effects of vitamin D on innate immune responses and helper T (T(H)) cell immunity, there has been relatively limited progress on the frontier of cytotoxic T lymphocyte (CTL) immunity--an arm of host cellular adaptive immunity that is crucial for the control of such intracellular pathogens as human immunodeficiency virus (HIV), tuberculosis (TB), malaria, and hepatitis C virus (HCV). In this review, we discuss the strong historical and clinical link between vitamin D and infectious diseases that involves cytotoxic T lymphocyte (CTL) immunity, present our current understanding as well as critical knowledge gaps in the realm of vitamin D regulation of host CTL responses, and highlight potential regulatory connections between vitamin D and effector and memory CD8 T cell differentiation events during infections.
Collapse
Affiliation(s)
- Surojit Sarkar
- a Department of Pediatrics, Division of Hematology and Oncology , University of Washington School of Medicine , Seattle , WA , USA .,b Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA
| | - Martin Hewison
- c Centre for Endocrinology, Diabetes and Metabolism (CEDAM), The University of Birmingham , Birmingham , UK
| | - George P Studzinski
- d Department of Pathology and Laboratory Medicine , Rutgers New Jersey Medical School , Newark , NJ , USA , and
| | - Yan Chun Li
- e Department of Medicine, Division of Biological Sciences , The University of Chicago , Chicago , IL , USA
| | - Vandana Kalia
- a Department of Pediatrics, Division of Hematology and Oncology , University of Washington School of Medicine , Seattle , WA , USA .,b Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA
| |
Collapse
|