1
|
Evans L, Barral P. CD1 molecules: Beyond antigen presentation. Mol Immunol 2024; 170:1-8. [PMID: 38579449 PMCID: PMC11481681 DOI: 10.1016/j.molimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
CD1 molecules are well known for their role in binding and presenting lipid antigens to mediate the activation of CD1-restricted T cells. However, much less appreciated is the fact that CD1 molecules can have additional "unconventional" roles which impact the activation and functions of CD1-expressing cells, ultimately controlling tissue homeostasis as well as the progression of inflammatory and infectious diseases. Some of these roles are mediated by so-called reverse signalling, by which crosslinking of CD1 molecules at the cell surface initiates intracellular signalling. On the other hand, CD1 molecules can also control metabolic and inflammatory pathways in CD1-expressing cells through cell-intrinsic mechanisms independent of CD1 ligation. Here, we review the evidence for "unconventional" functions of CD1 molecules and the outcomes of such roles for health and disease.
Collapse
Affiliation(s)
- Lauren Evans
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Abstract
The repertoire of αβ T cell antigen receptors (TCRs) on mature T cells is selected in the thymus where it is rendered both self-tolerant and restricted to the recognition of major histocompatibility complex molecules presenting peptide antigens (pMHC). It remains unclear whether germline TCR sequences exhibit an inherent bias to interact with pMHC prior to selection. Here, we isolated TCR libraries from unselected thymocytes and upon reexpression of these random TCR repertoires in recipient T cell hybridomas, interrogated their reactivities to antigen-presenting cell lines. While these random TCR combinations could potentially have reacted with any surface molecule on the cell lines, the hybridomas were stimulated most frequently by pMHC ligands. The nature and CDR3 loop composition of the TCRβ chain played a dominant role in determining pMHC-reactivity. Replacing the germline regions of mouse TCRβ chains with those of other jawed vertebrates preserved reactivity to mouse pMHC. Finally, introducing the CD4 coreceptor into the hybridomas increased the proportion of cells that could respond to pMHC ligands. Thus, αβ TCRs display an intrinsic and evolutionary conserved bias for pMHC molecules in the absence of any selective pressure, which is further strengthened in the presence of coreceptors.
Collapse
|
4
|
Keller CW, Freigang S, Lünemann JD. Reciprocal Crosstalk between Dendritic Cells and Natural Killer T Cells: Mechanisms and Therapeutic Potential. Front Immunol 2017; 8:570. [PMID: 28596767 PMCID: PMC5442181 DOI: 10.3389/fimmu.2017.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer T cells carrying a highly conserved, semi-invariant T cell receptor (TCR) [invariant natural killer T (iNKT) cells] are a subset of unconventional T lymphocytes that recognize glycolipids presented by CD1d molecules. Although CD1d is expressed on a variety of hematopoietic and non-hematopoietic cells, dendritic cells (DCs) are key presenters of glycolipid antigen in vivo. When stimulated through their TCR, iNKT cells rapidly secrete copious amounts of cytokines and induce maturation of DCs, thereby facilitating coordinated stimulation of innate and adaptive immune responses. The bidirectional crosstalk between DCs and iNKT cells determines the functional outcome of iNKT cell-targeted responses and iNKT cell agonists are used and currently being evaluated as adjuvants to enhance the efficacy of antitumor immunotherapy. This review illustrates mechanistic underpinnings of reciprocal DCs and iNKT cell interactions and discusses how those can be harnessed for cancer therapy.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Stefan Freigang
- Institute of Pathology, Laboratory of Immunopathology, University of Bern, Bern, Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Onyiah JC, Colgan SP. Cytokine responses and epithelial function in the intestinal mucosa. Cell Mol Life Sci 2016; 73:4203-4212. [PMID: 27271753 PMCID: PMC5056122 DOI: 10.1007/s00018-016-2289-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
Abstract
Inflammatory diseases of mucosal organs are significantly influenced by the microenvironment in which they reside. Cytokines found within this microenvironment contribute significantly to endpoint functions of the mucosa. Studies dating back to the 1990s have revealed that epithelial cells are both a source as well as a target for numerous cytokines and that such signaling can substantially influence the outcome of mucosal disease, such as inflammatory bowel disease. Here, we will review literature regarding intestinal epithelial cells as sources and responders to cytokines found in the intestinal milieu. These studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.
Collapse
Affiliation(s)
- Joseph C Onyiah
- Department of Medicine, Veterans Administration Medical Center and the Mucosal Inflammation Program, University of Colorado School of Medicine, 12700 East 19th Ave. MS B-146, Aurora, CO, 80045, USA
| | - Sean P Colgan
- Department of Medicine, Veterans Administration Medical Center and the Mucosal Inflammation Program, University of Colorado School of Medicine, 12700 East 19th Ave. MS B-146, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Haworth KB, Arnold MA, Pierson CR, Leddon JL, Kurmashev DK, Swain HM, Hutzen BJ, Roberts RD, Cripe TP. Characterization of MHC Class I and β-2-Microglobulin Expression in Pediatric Solid Malignancies to Guide Selection of Immune-Based Therapeutic Trials. Pediatr Blood Cancer 2016; 63:618-26. [PMID: 26575538 DOI: 10.1002/pbc.25842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/24/2015] [Accepted: 10/18/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Over 10,000 US children are diagnosed with cancer yearly. Though outcomes have improved by optimizing conventional therapies, recent immunotherapeutic successes in adult cancers are emerging. Cytotoxic T lymphocytes (CTLs) are the primary executioners of adaptive antitumor immunity and require antigenic presentation in the context of major histocompatibility complex (MHC) class I and the associated β-2-microglobulin (B2M). Loss of MHC I expression is a common immune escape mechanism in adult malignancies, but pediatric cancers have not been thoroughly characterized. The essential nature of MHC I expression in CTL-mediated cell death may dictate the success of immunotherapies, which rely on eliciting an adaptive response. PROCEDURE We queried pediatric tumor microarray databases for MHC I and B2M gene expression. We detected MHC I in pediatric tumor cell lines by flow cytometry and characterized MHC I and B2M expression in patient samples by immunohistochemistry. To determine whether therapeutic approaches might enhance MHC I expression in selected models in vitro, we tested effects of exposure to IFN-γ and histone deacetylase inhibitors. RESULTS Pediatric tumors overall, as well as samples within select individual tumor subtypes, exhibit wide ranges of MHC I and B2M gene and protein expression. For most cell lines tested, MHC I was inducible in vitro. CONCLUSIONS MHC I and B2M expression vary among pediatric tumor types and should be evaluated as potential biomarkers, which might identify patients most likely to benefit from MHC I dependent immunotherapies. Modulation of MHC I expression may be a promising mechanism for enhancing MHC I dependent immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Kellie B Haworth
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Michael A Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio.,Division of Anatomy, The Ohio State University, Columbus, Ohio
| | - Jennifer L Leddon
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.,Immunobiology Graduate Training Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Dias K Kurmashev
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Hayley M Swain
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Brian J Hutzen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ryan D Roberts
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Timothy P Cripe
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
7
|
Li L, Dong M, Wang XG. The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator. Chin Med J (Engl) 2016; 129:448-55. [PMID: 26879019 PMCID: PMC4800846 DOI: 10.4103/0366-6999.176084] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This review focuses on the current knowledge on the implication and significance of beta 2 microglobulin (β2M), a conservative immune molecule in vertebrate. DATA SOURCES The data used in this review were obtained from PubMed up to October 2015. Terms of β2M, immune response, and infection were used in the search. STUDY SELECTIONS Articles related to β2M were retrieved and reviewed. Articles focusing on the characteristic and function of β2M were selected. The exclusion criteria of articles were that the studies on β2M-related molecules. RESULTS β2M is critical for the immune surveillance and modulation in vertebrate animals. The dysregulation of β2M is associated with multiple diseases, including endogenous and infectious diseases. β2M could directly participate in the development of cancer cells, and the level of β2M is deemed as a prognostic marker for several malignancies. It also involves in forming major histocompatibility complex (MHC class I or MHC I) or like heterodimers, covering from antigen presentation to immune homeostasis. CONCLUSIONS Based on the characteristic of β2M, it or its signaling pathway has been targeted as biomedical or therapeutic tools. Moreover, β2M is highly conserved among different species, and overall structures are virtually identical, implying the versatility of β2M on applications.
Collapse
Affiliation(s)
- Ling Li
- Department of Food Quality and Safety, College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300384, China
- Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin 300384, China
| | - Mei Dong
- Department of Clinical Laboratory, Wangdu Hospital of Traditional Chinese Medicine, Baoding, Hebei 072450, China
| | - Xiao-Guang Wang
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado Denver, Aurora 80045, Colorado, USA
| |
Collapse
|
8
|
CD1d favors MHC neighborhood, GM1 ganglioside proximity and low detergent sensitive membrane regions on the surface of B lymphocytes. Biochim Biophys Acta Gen Subj 2014. [DOI: 10.1016/j.bbagen.2013.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Dowds CM, Kornell SC, Blumberg RS, Zeissig S. Lipid antigens in immunity. Biol Chem 2014; 395:61-81. [PMID: 23999493 PMCID: PMC4128234 DOI: 10.1515/hsz-2013-0220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity.
Collapse
Affiliation(s)
- C. Marie Dowds
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Sabin-Christin Kornell
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham
and Women’s Hospital, Harvard Medical School, 75 Francis Street,
Boston, MA 02115, USA
| | - Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| |
Collapse
|
10
|
Han J, Rho SB, Lee JY, Bae J, Park SH, Lee SJ, Lee SY, Ahn C, Kim JY, Chun T. Human cytomegalovirus (HCMV) US2 protein interacts with human CD1d (hCD1d) and down-regulates invariant NKT (iNKT) cell activity. Mol Cells 2013; 36:455-64. [PMID: 24213674 PMCID: PMC3887943 DOI: 10.1007/s10059-013-0221-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 02/06/2023] Open
Abstract
To avoid host immune surveillance, human cytomegalovirus (HCMV) encoded endoplasmic reticulum (ER)-membrane glycoprotein US2, which interferes with antigen presenting mechanism of Major histocompatibility complex (MHC) class Ia and class II molecules. However, not many attempts have been made to study the effect of HCMV US2 on the expression of MHC class Ib molecules. In this study, we examined the effect of HCMV US2 on the expression and function of human CD1d (hCD1d), which presents glycolipid antigens to invariant NKT (iNKT) cells. Our results clearly showed that the physiological interaction between ER lumenal domain of HCMV US2 and α3 domain of hCD1d was observed within ER. Compared with mature form of hCD1d, immature form of hCD1d is more susceptible to ubiquitin-dependent proteasomal degradation mediated by HCMV US2. Moreover, the ectopic expression of HCMV US2 leads to the down-modulation of iNKT cell activity without significant change of hCD1d expression. These results will advance our understanding of the function of HCMV US2 in immune evasive mechanisms against anti-viral immunity of iNKT cells.
Collapse
Affiliation(s)
- Jihye Han
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | - Jae Yeon Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Joonbeom Bae
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Se Ho Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | - Taehoon Chun
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
11
|
Girardi E, Zajonc DM. Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 2012; 250:167-79. [PMID: 23046129 PMCID: PMC3471380 DOI: 10.1111/j.1600-065x.2012.01166.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Together with peptides, T lymphocytes respond to hydrophobic molecules, mostly lipids, presented by the non-classical CD1 family (CD1a-e). These molecules have evolved complex and diverse binding grooves in order to survey different cellular compartments for self and exogenous antigens, which are then presented for recognition to T-cell receptors (TCRs) on the surface of T cells. In particular, most CD1d-presented antigens are recognized by a population of lymphocytes denominated natural killer T (NKT) cells, characterized by a strong immunomodulatory potential. Among NKT cells, two major subsets (type I and type II NKT cells) have been described, based on their TCR repertoire and antigen specificity. Here we review recent structural and biochemical studies that have shed light on the molecular details of CD1d-mediated antigen recognition by type I and II NKT cells, which are in many aspects distinct from what has been observed for peptide major histocompatibility complex-reactive TCRs.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- Antigens, CD1d/chemistry
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Binding Sites
- Epitopes
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lipids/chemistry
- Lipids/immunology
- Mice
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA, USA
| | | |
Collapse
|
12
|
Dai ZX, Zhang GH, Zhang XH, Zheng YT. Identification and characterization of a novel splice variant of rhesus macaque MHC IA. Mol Immunol 2012; 53:206-13. [PMID: 22947772 DOI: 10.1016/j.molimm.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
Abstract
Major histocompatibility complex class I (MHC I) molecules play a pivotal role in the immune recognition to intracellular pathogens. A number of important splice variants have already been characterized for these molecules in different species, suggesting their important roles in modulation of immune responses. In this study, we have identified and characterized a novel alternatively spliced form of rhesus macaque MHC IA (designated MHC IA-sv2) that lacks exons coding for the α2 and α3 domains. Despite lacking the α2 and α3 domains, MHC IA-sv2 is targeted to the cell surface, as a 23-kDa glycoprotein that is totally susceptible to endoglycosidase-H digestion and is reduced to 18kDa after deglycosylation with PNGase F. In contrast, the full-length MHC IA reaches the cell surface as a 43-kDa protein of form with complex-type N-glycosylation (endoglycosidase-H resistant). Moreover, we provide evidence here that MHC IA-sv2 can self-associate, forming homodimers, or associate with the fully mature MHC IA molecule, forming a heterodimeric structure in mammalian cells. These data demonstrate that the formation of heterodimers may have some functional implications in the fine tuning of MHC IA-mediated innate and adaptive immune responses.
Collapse
Affiliation(s)
- Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
| | | | | | | |
Collapse
|
13
|
Ryan SO, Cobb BA. Roles for major histocompatibility complex glycosylation in immune function. Semin Immunopathol 2012; 34:425-41. [PMID: 22461020 DOI: 10.1007/s00281-012-0309-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 03/05/2012] [Indexed: 12/22/2022]
Abstract
The major histocompatibility complex (MHC) glycoprotein family, also referred to as human leukocyte antigens, present endogenous and exogenous antigens to T lymphocytes for recognition and response. These molecules play a central role in enabling the immune system to distinguish self from non-self, which is the basis for protective immunity against pathogenic infections and disease while at the same time representing a serious obstacle for tissue transplantation. All known MHC family members, like the majority of secreted, cell surface, and other immune-related molecules, carry asparagine (N)-linked glycans. The immune system has evolved increasing complexity in higher-order organisms along with a more complex pattern of protein glycosylation, a relationship that may contribute to immune function beyond the early protein quality control events in the endoplasmic reticulum that are commonly known. The broad MHC family maintains peptide sequence motifs for glycosylation at sites that are highly conserved across evolution, suggesting importance, yet functional roles for these glycans remain largely elusive. In this review, we will summarize what is known about MHC glycosylation and provide new insight for additional functional roles for this glycoprotein modification in mediating immune responses.
Collapse
Affiliation(s)
- Sean O Ryan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
14
|
De Libero G, Mori L. Novel insights into lipid antigen presentation. Trends Immunol 2012; 33:103-11. [PMID: 22342205 DOI: 10.1016/j.it.2012.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 01/21/2023]
Abstract
T cells recognizing lipid antigens are present in large numbers in circulating blood. They exert multiple functions including immunoregulation, tumour surveillance and protection during infection. Here, we review the latest information on the mechanisms of lipid antigen presentation by CD1 molecules. Recent studies have provided insight into CD1 trafficking within the cell, lipid distribution and handling, CD1 maturation, lipid antigen processing and loading. The structural resolution of all human CD1 molecules has revealed unique features that correlate with function. Molecular mechanisms regulating CD1 expression and multiple evasion mechanisms evolved by viral and bacterial pathogens have been disclosed. With rapid progression, these studies have decoded lipid-specific immunity and have revealed the important immunological role of this type of antigen recognition.
Collapse
|
15
|
Zhu Y, Zhang W, Veerapen N, Besra G, Cresswell P. Calreticulin controls the rate of assembly of CD1d molecules in the endoplasmic reticulum. J Biol Chem 2010; 285:38283-92. [PMID: 20861015 PMCID: PMC2992262 DOI: 10.1074/jbc.m110.170530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD1d is an MHC class I-like molecule comprised of a transmembrane glycoprotein (heavy chain) associated with β2-microglobulin (β2m) that presents lipid antigens to NKT cells. Initial folding of the heavy chain involves its glycan-dependent association with calreticulin (CRT), calnexin (CNX), and the thiol oxidoreductase ERp57, and is followed by assembly with β2m to form the heterodimer. Here we show that in CRT-deficient cells CD1d heavy chains convert to β2m-associated dimers at an accelerated rate, indicating faster folding of the heavy chain, while the rate of intracellular transport after assembly is unaffected. Unlike the situation with MHC class I molecules, antigen presentation by CD1d is not impaired in the absence of CRT. Instead, there are elevated levels of stable and functional CD1d on the surface of CRT-deficient cells. Association of the heavy chains with the ER chaperones Grp94 and Bip is observed in the absence of CRT, and these may replace CRT in mediating CD1d folding and assembly. ER retention of free CD1d heavy chains is impaired in CRT-deficient cells, allowing their escape and subsequent expression on the plasma membrane. However, these free heavy chains are rapidly internalized and degraded in lysosomes, indicating that β2m association is required for the exceptional resistance of CD1d to lysosomal degradation that is normally observed.
Collapse
Affiliation(s)
- Yajuan Zhu
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | |
Collapse
|
16
|
CD1d, a sentinel molecule bridging innate and adaptive immunity, is downregulated by the human papillomavirus (HPV) E5 protein: a possible mechanism for immune evasion by HPV. J Virol 2010; 84:11614-23. [PMID: 20810727 DOI: 10.1128/jvi.01053-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD1d and CD1d-restricted natural killer T (NKT) cells serve as a natural bridge between innate and adaptive immune responses to microbes. CD1d downregulation is utilized by a variety of microbes to evade immune detection. We demonstrate here that CD1d is downregulated in human papillomavirus (HPV)-positive cells in vivo and in vitro. CD1d immunoreactivity was strong in HPV-negative normal cervical epithelium but absent in HPV16-positive CIN1 and HPV6-positive condyloma lesions. We used two cell lines for in vitro assay; one was stably CD1d-transfected cells established from an HPV-negative cervical cancer cell line, C33A (C33A/CD1d), and the other was normal human vaginal keratinocyte bearing endogenous CD1d (Vag). Flow cytometry revealed that cell surface CD1d was downregulated in both C33A/CD1d and Vag cells stably transfected with HPV6 E5 and HPV16 E5. Although the steady-state levels of CD1d protein decreased in both E5-expressing cell lines compared to empty retrovirus-infected cells, CD1d mRNA levels were not affected. Confocal microscopy demonstrated that residual CD1d was not trafficked to the E5-expressing cell surface but colocalized with E5 near the endoplasmic reticulum (ER). In the ER, E5 interacted with calnexin, an ER chaperone known to mediate folding of CD1d. CD1d protein levels were rescued by the proteasome inhibitor, MG132, indicating a role for proteasome-mediated degradation in HPV-associated CD1d downregulation. Taken together, our data suggest that E5 targets CD1d to the cytosolic proteolytic pathway by inhibiting calnexin-related CD1d trafficking. Finally, CD1d-mediated production of interleukin-12 from the C33A/CD1d cells was abrogated in both E5-expressing cell lines. Decreased CD1d expression in the presence of HPV E5 may help HPV-infected cells evade protective immunological surveillance.
Collapse
|
17
|
Response of porcine intestinal in vitro organ culture tissues following exposure to Lactobacillus plantarum JC1 and Salmonella enterica serovar Typhimurium SL1344. Appl Environ Microbiol 2010; 76:6645-57. [PMID: 20639369 DOI: 10.1128/aem.03115-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of novel intervention strategies for the control of zoonoses caused by bacteria such as Salmonella spp. in livestock requires appropriate experimental models to assess their suitability. Here, a novel porcine intestinal in vitro organ culture (IVOC) model utilizing cell crown (CC) technology (CCIVOC) (Scaffdex) was developed. The CCIVOC model was employed to investigate the characteristics of association of S. enterica serovar Typhimurium strain SL1344 with porcine intestinal tissue following exposure to a Lactobacillus plantarum strain. The association of bacteria to host cells was examined by light microscopy and electron microscopy (EM) after appropriate treatments and staining, while changes in the proteome of porcine jejunal tissues were investigated using quantitative label-free proteomics. Exposure of porcine intestinal mucosal tissues to L. plantarum JC1 did not reduce the numbers of S. Typhimurium bacteria associating to the tissues but was associated with significant (P < 0.005) reductions in the percentages of areas of intestinal IVOC tissues giving positive staining results for acidic mucins. Conversely, the quantity of neutrally charged mucins present within the goblet cells of the IVOC tissues increased significantly (P < 0.05). In addition, tubulin-α was expressed at high levels following inoculation of jejunal IVOC tissues with L. plantarum. Although L. plantarum JC1 did not reduce the association of S. Typhimurium strain SL1344 to the jejunal IVOC tissues, detection of increased acidic mucin secretion, host cytoskeletal rearrangements, and proteins involved in the porcine immune response demonstrated that this strain of L. plantarum may contribute to protecting the pig from infections by S. Typhimurium or other pathogens.
Collapse
|
18
|
Pichavant M, Matangkasombut P, Dekruyff RH, Umetsu DT. Natural killer T cells regulate the development of asthma. Expert Rev Clin Immunol 2010; 5:251-60. [PMID: 20477003 DOI: 10.1586/eci.09.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in mice, monkeys and humans suggest that invariant natural killer (iNK) T cells play a very important role in the pathogenesis of asthma, a heterogeneous disease associated with airway inflammation and airway hyper-reactivity. The requirement for iNK T cells in multiple mouse models of asthma is novel and surprising, challenging the prevailing dogma that CD4(+) T cells responding to environmental allergens are the key cell type in asthma. In this article, we examine the recent studies of iNK T cells and asthma, and discuss how different subsets of NK T cells function in different forms of asthma, including forms that are independent of adaptive immunity and Th2 cells. Together, these studies suggest that iNK T cells, which can interact with many other cell types including Th2 cells, eosinophils and neutrophils, provide a unifying pathogenic mechanism for many distinct forms of asthma.
Collapse
Affiliation(s)
- Muriel Pichavant
- Division of Immunology and Allergy, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
19
|
Liu J, Shaji D, Cho S, Du W, Gervay-Hague J, Brutkiewicz RR. A threonine-based targeting signal in the human CD1d cytoplasmic tail controls its functional expression. THE JOURNAL OF IMMUNOLOGY 2010; 184:4973-81. [PMID: 20368272 DOI: 10.4049/jimmunol.0901448] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD1d molecules are MHC class I-like molecules that present lipids to a unique subpopulation of T cells called NKT cells. The cytoplasmic tail of human CD1d possesses a tyrosine-based endosomal targeting motif (YXXZ). As such, these molecules traffic through the endocytic pathway, where it is believed that they are loaded with the antigenic lipid that stimulates NKT cells. In the current study, it was found that the T322 residue in the human CD1d tail is a major signal controlling transport to the cell surface and thus its functional expression. Mimicking the phosphorylation of this residue or removal of the entire cytoplasmic tail negates its ability to regulate CD1d trafficking, resulting in lysosomal targeting and degradation. These results demonstrate an important role of a heretofore unknown signal in the cytoplasmic tail of CD1d that may have relevance to other type I integral membrane proteins that traverse through the endocytic pathway.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
20
|
Umetsu DT, Dekruyff RH. Natural killer T cells are important in the pathogenesis of asthma: the many pathways to asthma. J Allergy Clin Immunol 2010; 125:975-9. [PMID: 20338622 DOI: 10.1016/j.jaci.2010.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/06/2010] [Accepted: 02/02/2010] [Indexed: 01/22/2023]
Abstract
The pathogenesis of bronchial asthma, a complex trait associated with a number of environmental factors (eg, allergens, infection, air pollution, exercise, and obesity), involves multiple cell types and several distinct cellular and molecular pathways. These pathways include adaptive and innate immunity and involve T(H)2 cells, mast cells, basophils, eosinophils, neutrophils, airway epithelial cells, and subsets of a newly described cell type called natural killer T (NKT) cells. A role for subsets of NKT cells in asthma has been suggested by extensive studies in animal models of asthma induced with allergen, viral infection, ozone exposure, or bacterial components, suggesting that NKT cells function in concert with T(H)2 cells or independently of adaptive immunity in causing airway hyperreactivity. The clinical relevance of NKT cells in human asthma is supported by the observation that NKT cells are present in the lungs of some patients with asthma, particularly patients with severe, poorly controlled asthma, although additional research is required to more precisely define the specific role of NKT cells in human asthma. These studies of NKT cells greatly expand our understanding of possible mechanisms that drive the development of asthma, particularly in the case of asthma associated with neutrophils, viral infection, and air pollution.
Collapse
Affiliation(s)
- Dale T Umetsu
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
21
|
Abstract
The gastrointestinal tract allows the residence of an almost enumerable number of bacteria. To maintain homeostasis, the mucosal immune system must remain tolerant to the commensal microbiota and eradicate pathogenic bacteria. Aberrant interactions between the mucosal immune cells and the microbiota have been implicated in the pathogenesis of inflammatory disorders, such as inflammatory bowel disease (IBD). In this review, we discuss the role of natural killer T cells (NKT cells) in intestinal immunology. NKT cells are a subset of non-conventional T cells recognizing endogenous and/or exogenous glycolipid antigens when presented by the major histocompatibility complex (MHC) class I-like antigen-presenting molecules CD1d and MR1. Upon T-cell receptor (TCR) engagement, NKT cells can rapidly produce various cytokines that have important roles in mucosal immunity. Our understanding of NKT-cell-mediated pathways including the identification of specific antigens is expanding. This knowledge will facilitate the development of NKT cell-based interventions and immune therapies for human intestinal diseases.
Collapse
Affiliation(s)
- S Middendorp
- Department of Pediatric Gastroenterology and Laboratory of Pediatrics, Erasmus MC Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
22
|
Abstract
A crucial role has been suggested for invariant natural killer T cells (iNKT) in regulating the development of asthma, a complex and heterogeneous disease characterized by airway inflammation and airway hyperreactivity (AHR). iNKT cells constitute a unique subset of T cells responding to endogenous and exogenous lipid antigens, rapidly secreting a large amount of cytokines, which amplify both innate and adaptive immunity. Herein, we review recent studies showing a requirement for iNKT cells in various models of asthma in mice and monkeys as well as studies in human patients. Surprisingly, in several different murine models of asthma, distinct subsets of iNKT cells were required, suggesting that iNKT cells serve as a common critical pathogenic element for many different forms of asthma. The importance of iNKT cells in both allergic and non-allergic forms of asthma, which are independent of adaptive immunity and associated with airway neutrophils, may explain situations previously found to be incompatible with the Th2 paradigm of asthma.
Collapse
|
23
|
Kim HY, Pichavant M, Matangkasombut P, Koh YI, Savage PB, DeKruyff RH, Umetsu DT. The development of airway hyperreactivity in T-bet-deficient mice requires CD1d-restricted NKT cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3252-61. [PMID: 19234223 DOI: 10.4049/jimmunol.0803339] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T-bet(-/-) mice have been shown to have a profound deficiency in the ability to generate invariant NKT (iNKT) cells in the periphery due to a halt in terminal maturation, but despite this deficiency, T-bet(-/-) mice develop spontaneous airway hyperreactivity (AHR) and airway inflammation. Because in some situations the development of AHR requires the presence of iNKT cells, we sought to more clearly understand how AHR develops in T-bet(-/-) mice by examining T-bet(-/-) mice in several distinct mouse models of asthma, including spontaneous, OVA-induced and alpha-galactosylceramide (alpha-GalCer)-induced AHR. Surprisingly, we found that administration of alpha-GalCer, which very specifically activates iNKT cells, greatly increased the AHR response in the T-bet(-/-) mice. Moreover, in T-bet(-/-) mice, spontaneous AHR as well as AHR induced with OVA or alpha-GalCer were all eliminated by blocking CD1d, the restricting element of iNKT cells, using an anti-CD1d-blocking mAb. Although the number of the iNKT cells in T-bet(-/-) mice was reduced compared with that in wild-type mice, the remaining iNKT cells produced primarily IL-4 and IL-13, and only minimal amounts of IFN-gamma. We conclude therefore that the AHR that develops in T-bet(-/-) mice is dependent on the presence of iNKT cells, and that whereas T-bet(-/-) have reduced numbers of iNKT cells, these are sufficient for the development of AHR.
Collapse
Affiliation(s)
- Hye Young Kim
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Nieuwenhuis EES, Matsumoto T, Lindenbergh D, Willemsen R, Kaser A, Simons-Oosterhuis Y, Brugman S, Yamaguchi K, Ishikawa H, Aiba Y, Koga Y, Samsom JN, Oshima K, Kikuchi M, Escher JC, Hattori M, Onderdonk AB, Blumberg RS. Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J Clin Invest 2009; 119:1241-50. [PMID: 19349688 PMCID: PMC2673876 DOI: 10.1172/jci36509] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 02/18/2009] [Indexed: 01/02/2023] Open
Abstract
The accumulation of certain species of bacteria in the intestine is involved in both tissue homeostasis and immune-mediated pathologies. The host mechanisms involved in controlling intestinal colonization with commensal bacteria are poorly understood. We observed that under specific pathogen-free or germ-free conditions, intragastric administration of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, or Lactobacillus gasseri resulted in increased colonization of the small intestine and bacterial translocation in mice lacking Cd1d, an MHC class I-like molecule, compared with WT mice. In contrast, activation of Cd1d-restricted T cells (NKT cells) with alpha-galactosylceramide caused diminished intestinal colonization with the same bacterial strains. We also found prominent differences in the composition of intestinal microbiota, including increased adherent bacteria, in Cd1d-/- mice in comparison to WT mice under specific pathogen-free conditions. Germ-free Cd1d-/- mice exhibited a defect in Paneth cell granule ultrastructure and ability to degranulate after bacterial colonization. In vitro, NKT cells were shown to induce the release of lysozyme from intestinal crypts. Together, these data support a role for Cd1d in regulating intestinal colonization through mechanisms that include the control of Paneth cell function.
Collapse
Affiliation(s)
- Edward E S Nieuwenhuis
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Koh YI, Kim HY, Meyer EH, Pichavant M, Akbari O, Yasumi T, Savage PB, DeKruyff RH, Umetsu DT. Activation of nonclassical CD1d-restricted NK T cells induces airway hyperreactivity in beta 2-microglobulin-deficient mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:4560-4569. [PMID: 18802058 DOI: 10.4049/jimmunol.181.7.4560] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic asthma is characterized by Th2-driven eosinophilic airway inflammation and by a central feature called airway hyperreactivity (AHR), development of which requires the presence of classical type I invariant NK T (iNKT) cells. Allergen-induced AHR, however, develops in beta(2)-microglobulin (beta(2)m)(-/-) mice, which lack classical iNKT cells, suggesting that in some situations iNKT cells may be dispensable for the development of AHR. In contrast, our studies now suggest that a CD1d-restricted, NK1.1(+) noninvariant TCR NKT cell population is present in beta(2)m(-/-) mice and is responsible for the development of AHR but not for Th2 responses. Furthermore, treatment of beta(2)m(-/-) mice with anti-CD1d mAb or anti-NK1.1 mAb unexpectedly abolished allergen-induced AHR. The CD1-restricted NKT cells in these mice, which failed to respond to alpha-galactosylceramide and which therefore were not classical type I iNKT cells, appear to represent an NKT cell subset restricted by a beta(2)m-independent form of CD1d. These results indicate that, although classical type I iNKT cells are normally required for the development of AHR, under different circumstances other NKT cell subsets, including nonclassical NKT cells, may substitute for classical iNKT cells and induce AHR.
Collapse
Affiliation(s)
- Youngil I Koh
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115.,Department of Internal Medicine, Division of Allergy and Asthma, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, South Korea
| | - Hye Young Kim
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Everett H Meyer
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Muriel Pichavant
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Omid Akbari
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Takahiro Yasumi
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Rosemarie H DeKruyff
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Dale T Umetsu
- Division of Immunology and Allergy, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Kaser A, Hava DL, Dougan SK, Chen Z, Zeissig S, Brenner MB, Blumberg RS. Microsomal triglyceride transfer protein regulates endogenous and exogenous antigen presentation by group 1 CD1 molecules. Eur J Immunol 2008; 38:2351-9. [PMID: 18624350 PMCID: PMC4132950 DOI: 10.1002/eji.200738102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lipid antigens are presented to T cells by the non-polymorphic MHC class I-related CD1 molecules. Microsomal triglyceride transfer protein (MTP) is an endoplasmic reticulum (ER)-resident chaperone that has been shown to lipidate the group 2 CD1 molecule CD1d and thus to regulate its function. We now report that MTP also regulates the function of group 1 CD1 molecules CD1a, CD1b, and CD1c. Pharmacological inhibition of MTP in monocyte-derived dendritic cells and lymphoblastoid B cell lines transfected with group 1 CD1 resulted in a substantial decrease in endogenous self lipid antigen presentation to several CD1-restricted T cell lines. Silencing MTP expression in CD1c-transfected HeLa cells similarly resulted in decreased self reactivity. Unexpectedly, inhibition of ER-resident MTP, which was confirmed by confocal microscopy, also markedly decreased presentation of exogenous, endosomally loaded, mycobacterial lipid antigens by CD1a and CD1c to T cells. Thus, these studies indicate that MTP, despite its ER localization, regulates endogenous as well as exogenous lipid antigen presentation, and suggest a broad role for MTP in the regulation of CD1 antigen presentation.
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - David L. Hava
- Division of Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Stephanie K. Dougan
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Zhangguo Chen
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sebastian Zeissig
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael B. Brenner
- Division of Rheumatology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Ulanova M, Torebring M, Porcelli SA, Bengtsson U, Magnusson J, Magnusson O, Lin XP, Hanson LÅ, Telemo E. Expression of CD1d in the Duodenum of Patients with Cow's Milk Hypersensitivity. Scand J Immunol 2008. [DOI: 10.1111/j.1365-3083.2000.00811.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Shimamoto M, Ueno Y, Tanaka S, Onitake T, Hanaoka R, Yoshioka K, Hatakeyama T, Chayama K. Selective decrease in colonic CD56(+) T and CD161(+) T cells in the inflamed mucosa of patients with ulcerative colitis. World J Gastroenterol 2008; 13:5995-6002. [PMID: 18023089 PMCID: PMC4250880 DOI: 10.3748/wjg.v13.45.5995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of local colonic mucosal NK receptor-positive T (NKR(+) T) cells in the regulation of intestinal inflammation, we analyzed the population and function of these cells in ulcerative colitis (UC). METHODS Colonic mucosal tissues were obtained from colonoscopic biopsies of the descending colon from 96 patients with UC (51 endoscopically uninflamed, 45 inflamed) and 18 normal controls. Endoscopic appearance and histologic score at the biopsied site were determined by Matts' classification. A single cell suspension was prepared from each biopsy by collagenase digestion. Two NKR(+) T cell subsets, CD56(+) (CD56(+)CD3(+)) T cells and CD161(+) (CD161(+)CD3(+)) T cells, were detected by flow cytometric analysis. Intracellular cytokine analysis for anti-inflammatory cytokine interleukin-10 (IL-10) was performed by in vitro stimulation with phorbol-myristate-acetate (PMA) and ionomycin. RESULTS CD56(+) T cells and CD161(+) T cells are present in the normal human colon and account for 6.7% and 21.3% of all mononuclear cells, respectively. The populations of both CD56(+) T cells and CD161(+) T cells were decreased significantly in the inflamed mucosa of UC. In contrast, the frequency of conventional T cells (CD56(-)CD3(+) cells and CD161(-)CD3(+) cells) was similar among the patient and control groups. The populations of NKR(+) T cells were correlated inversely with the severity of inflammation, which was classified according to the endoscopic and histologic Matts' criteria. Interestingly, approximately 4% of mucosal NKR(+) T cells expressing IL-10 were detected by in vitro stimulation with PMA and ionomycin. CONCLUSION Selective reduction in the population of colonic mucosal NKR(+) T cells may contribute to the development of intestinal inflammation in UC.
Collapse
Affiliation(s)
- Masaru Shimamoto
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rees LEN, Pazmany L, Gutowska-Owsiak D, Inman CF, Phillips A, Stokes CR, Johnston N, Koufman JA, Postma G, Bailey M, Birchall MA. The mucosal immune response to laryngopharyngeal reflux. Am J Respir Crit Care Med 2008; 177:1187-93. [PMID: 18323539 DOI: 10.1164/rccm.200706-895oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Laryngopharyngeal reflux (LPR) affects up to 20% of Western populations. Although individual morbidity is usually moderate, treatment costs are high and there are associations with other diseases, including laryngeal cancer. To date, there have been no studies of the mucosal immune response to this common inflammatory disease. OBJECTIVES To determine the mucosal immune response to LPR. METHODS We performed a prospective immunologic study of laryngeal biopsies from patients with LPR and control subjects (n = 12 and 11, respectively), and of primary laryngeal epithelial cells in vitro. MEASUREMENTS AND MAIN RESULTS Quantitative multiple-color immunofluorescence, using antibodies for lymphocytes (CD4, CD8, CD3, CD79, CD161), granulocytes (CD68, EMBP), monocytic cells (CD68, major histocompatibility complex [MHC] class II), and classical and nonclassical MHC (I, II, beta(2)-microglobulin, CD1d). Univariate and multivariate analysis and colocalization measurements were applied. There was an increase in percentage area of mucosal CD8(+) cells in the epithelium (P < 0.005), whereas other leukocyte and granulocyte antigens were unchanged. Although epithelial MHC class I and II expression was unchanged by reflux, expression of the nonclassical MHC molecule CD1d increased (P < 0.05, luminal layers). In vitro, laryngeal epithelial cells constitutively expressed CD1d. CD1d and MHC I expression were inversely related in all subjects, in a pattern which appears to be unique to the upper airway. Colocalization of natural killer T (NKT) cells with CD1d increased in patients (P < 0.01). CONCLUSIONS These data indicate a role for the CD1d-NKT cell axis in response to LPR in humans. This represents a useful target for novel diagnostics and treatments in this common condition.
Collapse
Affiliation(s)
- Louisa E N Rees
- Laryngeal Research Group, University of Bristol, Langford House, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tourne S, Maitre B, Collmann A, Layre E, Mariotti S, Signorino-Gelo F, Loch C, Salamero J, Gilleron M, Angénieux C, Cazenave JP, Mori L, Hanau D, Puzo G, De Libero G, de la Salle H. Cutting Edge: A Naturally Occurring Mutation in CD1e Impairs Lipid Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2008; 180:3642-6. [DOI: 10.4049/jimmunol.180.6.3642] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Wingender G, Kronenberg M. Role of NKT cells in the digestive system. IV. The role of canonical natural killer T cells in mucosal immunity and inflammation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1-8. [PMID: 17947447 DOI: 10.1152/ajpgi.00437.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lymphocytes that combine features of T cells and natural killer (NK) cells are named natural killer T (NKT) cells. The majority of NKT cells in mice bear highly conserved invariant Valpha chains, and to date two populations of such canonical NKT cells are known in mice: those that express Valpha14 and those that express Valpha7.2. Both populations are selected by nonpolymorphic major histocompatibility complex class I-like antigen-presenting molecules expressed by hematopoietic cells in the thymus: CD1d for Valpha14-expressing NKT cells and MR1 for those cells expressing Valpha7.2. The more intensely studied Valpha14 NKT cells have been implicated in diverse immune reactions, including immune regulation and inflammation in the intestine; the Valpha7.2 expressing cells are most frequently found in the lamina propria. In humans, populations of canonical NKT cells are found to be highly similar in terms of the expression of homologous, invariant T cell antigen-receptor alpha-chains, specificity, and function, although their frequency differs from those in the mouse. In this review, we will focus on the role of both of these canonical NKT cell populations in the mucosal tissues of the intestine.
Collapse
Affiliation(s)
- Gerhard Wingender
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92037, USA
| | | |
Collapse
|
32
|
Abstract
The classic concept of self-non-self discrimination by the immune system focused on the recognition of fragments from proteins presented by classical MHC molecules. However, the discovery of MHC-class-I-like CD1 antigen-presentation molecules now explains how the immune system also recognizes the abundant and diverse universe of lipid-containing antigens. The CD1 molecules bind and present amphipathic lipid antigens for recognition by T-cell receptors. Here, we outline the recent advances in our understanding of how the processes of CD1 assembly, trafficking, lipid-antigen binding and T-cell activation are achieved and the new insights into how lipid antigens differentially elicit CD1-restricted innate and adaptive T-cell responses.
Collapse
Affiliation(s)
- Duarte C Barral
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Zeissig S, Kaser A, Dougan SK, Nieuwenhuis EES, Blumberg RS. Role of NKT cells in the digestive system. III. Role of NKT cells in intestinal immunity. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1101-5. [PMID: 17717040 DOI: 10.1152/ajpgi.00342.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Natural killer T (NKT) cells are a small subset of unconventional T cells that recognize lipid antigens presented by the nonclassical major histocompatibility complex (MHC) class I molecule CD1d. NKT cells are involved in the host response to a variety of microbial pathogens and likely commensals. In the intestine, invariant and noninvariant NKT cells can be found among intraepithelial lymphocytes and in the lamina propria. Activation of intestinal NKT cells by CD1d-expressing intestinal epithelial cells and professional antigen-presenting cells may contribute to induction of oral tolerance and protection from mucosal infections. On the other hand, sustained and uncontrolled activation of NKT cells may play a pivotal role in the pathogenesis of inflammatory bowel disease. Here we review the current literature on intestinal NKT cells and their function in the intestine in health and disease.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Div. of Gastroenterology, Dept. of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Thorn 14, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
34
|
van Dieren JM, van der Woude CJ, Kuipers EJ, Escher JC, Samsom JN, Blumberg RS, Nieuwenhuis EES. Roles of CD1d-restricted NKT cells in the intestine. Inflamm Bowel Dis 2007; 13:1146-52. [PMID: 17476670 DOI: 10.1002/ibd.20164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Natural killer T (NKT) cells are a subset of lymphocytes that express cell surface molecules of both conventional T cells and natural killer cells and share the features of both innate and adaptive immune cells. NKT cells have been proposed to make both protective and pathogenic contributions to inflammatory bowel diseases (IBD). On the one hand, recent studies have shown that these cells are involved in the maintenance of mucosal homeostasis. On the other, NKT cells were shown to play a pathogenic role in human ulcerative colitis. Similar contrasting data have been generated in murine models of IBD. Whether the apparent differences in NKT response patterns depend on variations in NKT antigens and/or on the presence of specific subsets of mucosal NKT cells remains to be elucidated. In this article we review the current literature on intestinal NKT cells and their roles in IBD pathogenesis. Specifically, the nomenclature, NKT antigens, and immune mechanisms of NKT cells within the intestinal mucosa are discussed.
Collapse
Affiliation(s)
- Jolanda M van Dieren
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, and Department of Pediatric Gastroenterology, Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Dougan SK, Kaser A, Blumberg RS. CD1 expression on antigen-presenting cells. Curr Top Microbiol Immunol 2007; 314:113-41. [PMID: 17593659 DOI: 10.1007/978-3-540-69511-0_5] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD1 proteins present self and microbial glycolipids to CD 1-restricted T cells, or in the case of CD1d, to NKT cells. The CD1 family in humans consists of group I proteins CDla, CDlb, CDlc, and CDle and the group II protein CDld. Rodents express only CDld, but as CD1d is broadly expressed and traffics to all endosomal compartments, this single CD1 family member is thereby able to acquire antigens in many subcellular compartments. A complete understanding of the CD 1 family requires an appreciation of which cells express CD1 and how CD1 contributes to the unique function of each cell type. While group I CD 1 expression is limited to thymocytes and professional APCs, CD1d has a wider tissue distribution and can be found on many nonhematopoietic cells. The expression and regulation of CD1 are presented here with particular emphasis on the function of CD1 in thymocytes, B cells, monocytes and macrophages, dendritic cells (DCs), and intestinal epithelial cells (IECs). Altered expression of CD 1 in cancer, autoimmunity, and infectious disease is well documented, and the implication of CD 1 expression in these diseases is discussed.
Collapse
Affiliation(s)
- S K Dougan
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital,75 Francis St, Thorn 1415, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Sugita M, Barral DC, Brenner MB. Pathways of CD1 and lipid antigen delivery, trafficking, processing, loading, and presentation. Curr Top Microbiol Immunol 2007; 314:143-64. [PMID: 17593660 DOI: 10.1007/978-3-540-69511-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific T cell responses to a variety of self and microbial lipids depend on proper assembly and intracellular trafficking of CD 1 molecules that intersect with and load processed lipid antigens. These pathways involve unique membrane trafficking and chaperones that are distinct from those utilized for major histocompatibility complex (MHC)-mediated presentation of peptide antigens, and thus define unique lipid antigen presentation pathways. Furthermore, recent studies have identified components of lipid metabolism that participate in lipid delivery, uptake, processing and loading onto CD1 molecules. Defects in these pathways result in impaired T cell development and function, underscoring their critical role in the lipid-specific T cell immune responses.
Collapse
Affiliation(s)
- M Sugita
- Division of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
37
|
Kenna T, O’Brien M, Hogan AE, Exley MA, Porcelli SA, Hegarty JE, O’Farrelly C, Doherty DG. CD1 expression and CD1-restricted T cell activity in normal and tumour-bearing human liver. Cancer Immunol Immunother 2007; 56:563-72. [PMID: 16924493 PMCID: PMC11030703 DOI: 10.1007/s00262-006-0215-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 07/25/2006] [Indexed: 12/21/2022]
Abstract
CD1d-restricted natural killer T (NKT) cells expressing invariant Valpha14Jalpha18 T cell receptor alpha-chains are abundant in murine liver and are implicated in the control of malignancy, infection and autoimmunity. Invariant NKT cells have potent anti-metastatic effects in mice and phase I clinical trials involving their homologues in humans are ongoing. However, invariant NKT cells are less abundant in human liver ( approximately 0.5% of hepatic T cells) than in murine liver (up to 50%) and it is not known if other hepatic T cells are CD1-restricted. We have examined expression of CD1a, CD1b, CD1c and CD1d mRNA and protein in human liver and evaluated the reactivity of mononuclear cells (MNC) from histologically normal and tumour-bearing human liver specimens against these CD1 isoforms. Messenger RNA for all CD1 isotypes was detectable in all liver samples. CD1c and CD1d were expressed at the protein level by hepatic MNC. CD1d, only, was detectable at the cell surface, but CD1c and CD1d were found at an intracellular location in significant numbers of liver MNC. CD1b was not expressed by MNC from healthy livers but was detectable within MNC in all tumour samples tested. Hepatic T cells exhibited reactivity against C1R cells expressing transfected CD1c and CD1d, but neither CD1a nor CD1b. These cells secreted interferon-gamma (IFN-gamma) but not interleukin-4 (IL-4) upon stimulation. In contrast, similar numbers of peripheral T cells released 13- and 16-fold less IFN-gamma in response to CD1c and CD1d, respectively. CD1c and CD1d expression and T cell reactivity were not altered in tumour-bearing liver specimens compared to histologically normal livers. These data suggest that, in addition to invariant CD1d-restricted NKT cells, autoreactive T cells that recognise CD1c and CD1d and release inflammatory cytokines are abundant in human liver.
Collapse
Affiliation(s)
- Tony Kenna
- Education and Research Centre, St. Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
- Present Address: Centre for Immunology & Cancer Research, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Margaret O’Brien
- Education and Research Centre, St. Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Andrew E. Hogan
- Institute of Immunology and Department of Biology, National University of Ireland, Maynooth, Maynooth, Co. Kildare Ireland
| | - Mark A. Exley
- Cancer Biology Program, Hematology and Oncology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY USA
| | - John E. Hegarty
- Liver Unit, St. Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Cliona O’Farrelly
- Education and Research Centre, St. Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Derek G. Doherty
- Institute of Immunology and Department of Biology, National University of Ireland, Maynooth, Maynooth, Co. Kildare Ireland
| |
Collapse
|
38
|
Perera L, Shao L, Patel A, Evans K, Meresse B, Blumberg R, Geraghty D, Groh V, Spies T, Jabri B, Mayer L. Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm Bowel Dis 2007; 13:298-307. [PMID: 17238179 DOI: 10.1002/ibd.20026] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well recognized that the nature of the immune response is different in the intestinal tract than in peripheral lymphoid organs. The immunologic tone of the gut-associated lymphoid tissue is one of suppression rather than active immunity, distinguishing pathogens from normal flora. Failure to control mucosal immune responses may lead to inflammatory diseases such as Crohn's disease (CD) and ulcerative colitis (UC) and celiac disease. It has been suggested that this normally immunosuppressed state may relate to unique antigen-presenting cells and unique T-cell populations. The intestinal epithelial cell (IEC) has been proposed to act as a nonprofessional antigen-presenting cell (APC). Previous studies have suggested that antigens presented by IECs result in the activation a CD8(+) regulatory T-cell subset in a nonclassical MHC I molecule restricted manner. We therefore analyzed the expression of nonclassical MHC I molecules by normal IECs and compared this to those expressed by inflammatory bowel disease (IBD) IECs. Normal surface IEC from the colon and, to a much lesser extent, the small bowel express nonclassical MHC I molecules on their surface. In contrast, mRNA is expressed in all intestinal epithelial cells. Surface IEC express CD1d, MICA/B, and HLA-E protein. In contrast, crypt IECs express less or no nonclassical MHC I molecules but do express mRNA for these molecules. Furthermore, the regulation of expression of distinct nonclassical class I molecules is different depending on the molecule analyzed. Interestingly, IECs derived from patients with UC fail to express any nonclassical MHC I molecules (protein and HLA-E mRNA). IECs from CD patients express HLA-E and MICA/B comparable to that seen in normal controls but fail to express CD1d. Thus, in UC there may be a failure to activate any nonclassical MHC I molecule restricted regulatory T cells that may result in unopposed active inflammatory responses. In CD only the CD1d-regulated T cells would be affected.
Collapse
Affiliation(s)
- Lilani Perera
- Immunobiology Center, Mount Sinai Medical Center, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kawana K, Quayle AJ, Ficarra M, Ibana JA, Shen L, Kawana Y, Yang H, Marrero L, Yavagal S, Greene SJ, Zhang YX, Pyles RB, Blumberg RS, Schust DJ. CD1d degradation in Chlamydia trachomatis-infected epithelial cells is the result of both cellular and chlamydial proteasomal activity. J Biol Chem 2007; 282:7368-75. [PMID: 17215251 DOI: 10.1074/jbc.m610754200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that can persist in the urogenital tract. Mechanisms by which C. trachomatis evades clearance by host innate immune responses are poorly described. CD1d is MHC-like, is expressed by epithelial cells, and can signal innate immune responses by NK and NKT cells. Here we demonstrate that C. trachomatis infection down-regulates surface-expressed CD1d in human penile urethral epithelial cells through proteasomal degradation. A chlamydial proteasome-like activity factor (CPAF) interacts with the CD1d heavy chain, and CPAF-associated CD1d heavy chain is then ubiquitinated and directed along two distinct proteolytic pathways. The degradation of immature glycosylated CD1d was blocked by the proteasome inhibitor lactacystin but not by MG132, indicating that degradation was not via the conventional proteasome. In contrast, the degradation of non-glycosylated CD1d was blocked by lactacystin and MG132, consistent with conventional cellular cytosolic degradation of N-linked glycoproteins. Immunofluorescent microscopy confirmed the interruption of CD1d trafficking to the cell surface, and the dislocation of CD1d heavy chains into both the cellular cytosol and the chlamydial inclusion along with cytosolic CPAF. C. trachomatis targeted CD1d toward two distinct proteolytic pathways. Decreased CD1d surface expression may help C. trachomatis evade detection by innate immune cells and may promote C. trachomatis persistence.
Collapse
Affiliation(s)
- Kei Kawana
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kajikawa M, Baba T, Tomaru U, Watanabe Y, Koganei S, Tsuji-Kawahara S, Matsumoto N, Yamamoto K, Miyazawa M, Maenaka K, Ishizu A, Kasahara M. MHC Class I-Like MILL Molecules Are β2-Microglobulin-Associated, GPI-Anchored Glycoproteins That Do Not Require TAP for Cell Surface Expression. THE JOURNAL OF IMMUNOLOGY 2006; 177:3108-15. [PMID: 16920948 DOI: 10.4049/jimmunol.177.5.3108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MILL (MHC class I-like located near the leukocyte receptor complex) is a family of MHC class I-like molecules encoded outside the MHC, which displays the highest sequence similarity to human MICA/B molecules among known class I molecules. In the present study, we show that the two members of the mouse MILL family, MILL1 and MILL2, are GPI-anchored glycoproteins associated with beta2-microglobulin (beta2m) and that cell surface expression of MILL1 or MILL2 does not require functional TAP molecules. MILL1 and MILL2 molecules expressed in bacteria could be refolded in the presence of beta2m, without adding any peptides. Hence, neither MILL1 nor MILL2 is likely to be involved in the presentation of peptides. Immunohistochemical analysis revealed that MILL1 is expressed in a subpopulation of thymic medullary epithelial cells and a restricted region of inner root sheaths in hair follicles. The present study provides additional evidence that MILL is a class I family distinct from MICA/B.
Collapse
Affiliation(s)
- Mizuho Kajikawa
- Department of Biosystems Science, School of Advanced Sciences, Graduate University for Advanced Studies (Sokendai), Hayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fishelevich R, Malanina A, Luzina I, Atamas S, Smyth MJ, Porcelli SA, Gaspari AA. Ceramide-Dependent Regulation of Human Epidermal Keratinocyte CD1d Expression during Terminal Differentiation. THE JOURNAL OF IMMUNOLOGY 2006; 176:2590-9. [PMID: 16456021 DOI: 10.4049/jimmunol.176.4.2590] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human keratinocytes (KC), when cultured under conditions to remain undifferentiated or to terminally differentiate, changed their cellular distribution of CD1d. As studied by confocal microscopy, undifferentiated KC had a pool of cytoplasmic CD1d, whereas after terminal differentiation, this molecule localized in the cell membrane, which recapitulates CD1d expression in vivo. A comparison of undifferentiated and differentiated cultured KC did not reveal any differences in the association with beta(2)-microglobulin, invariant chain of class II MHC, or patterns of glycosylation, suggesting that these biochemical properties are not regulating the cellular distribution of CD1d. Time-course studies of CD1d gene expression indicated that KC slowly increased gene expression with CaCl(2)-induced terminal differentiation. Increased CD1d gene expression was dependent on ceramide synthesis, because fumonisin B1, a ceramide synthetase inhibitor, blocked the increase in CD1d gene expression during terminal differentiation. Similarly, exogenous ceramide or the ceramidase inhibitor, B13, induced CD1d gene expression by undifferentiated, but not terminally differentiated, KC. A protein kinase C-zeta (PKC-zeta) inhibitor (a pseudosubstrate oligopeptide), but not a PKC-alphabeta inhibitor, significantly decreased CD1d gene expression by undifferentiated or ceramide-stimulated cultured, undifferentiated KC. As expected, downstream signaling events of PKC-zeta (JNK phosphorylation and NF-kappaBeta accumulation in the nucleus) were also attenuated. The calcineurin phosphatase inhibitor cyclosporine A, which blocks KC terminal differentiation, also blocked CD1d gene expression by cultured KC. In conclusion, this novel function of cellular ceramides extends the importance of this class of biologically active lipids beyond that of terminal differentiation and barrier function in normal human skin.
Collapse
Affiliation(s)
- Rita Fishelevich
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hava DL, Brigl M, van den Elzen P, Zajonc DM, Wilson IA, Brenner MB. CD1 assembly and the formation of CD1–antigen complexes. Curr Opin Immunol 2005; 17:88-94. [PMID: 15653316 DOI: 10.1016/j.coi.2004.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The CD1 antigen presentation system presents lipid antigens to effector T cells, which have diverse roles in antimicrobial responses, antitumor immunity and in regulating the balance between tolerance and autoimmunity. The trafficking of CD1 molecules and lipid antigens facilitates their intersection and binding in specific intracellular compartments. Recent studies have now identified unexpected accessory molecules that are critical to CD1 assembly and lipid loading. The atomic structures of CD1-antigen complexes have defined both the orientation of polar headgroups between the alpha1 and alpha2 helices of CD1 and the manner in which distinct CD1 isoforms bind a range of lipids that have different lengths and numbers of hydrocarbon chains.
Collapse
Affiliation(s)
- David L Hava
- Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
Neutra MR, Kraehenbuhl JP. Cellular and Molecular Basis for Antigen Transport Across Epithelial Barriers. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50011-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
44
|
Swann J, Crowe NY, Hayakawa Y, Godfrey DI, Smyth MJ. Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunol Cell Biol 2004; 82:323-31. [PMID: 15186264 DOI: 10.1111/j.0818-9641.2004.01254.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An understanding of the complex interactions occurring between tumours and the immune system is a prerequisite for the rational design of effective cancer immunotherapies. To date, attention has focused mainly on the role the adaptive immune system plays in controlling tumourigenesis, with conventional T cells, which recognize peptide antigens presented by classical MHC molecules, coming under close scrutiny. Accumulating reports now suggest that an additional T-cell subset, known as CD1d-restricted natural killer T (NKT) cells, also plays a pivotal role in modulating antitumour responses. Found in both humans and mice, CD1d-restricted NKT cells are a highly specialized cell type that, in contrast to conventional T cells, recognize lipid/glycolipid antigens presented by the non-classical MHC molecule CD1d. Several features of NKT cells, including their ability to rapidly produce large quantities of cytokines upon primary stimulation, make them ideal targets for developing anticancer immunotherapies. This intriguing cell type is the focus of this review.
Collapse
Affiliation(s)
- Jeremy Swann
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria 3002, Australia
| | | | | | | | | |
Collapse
|
45
|
Kaser A, Nieuwenhuis EES, Strober W, Mayer L, Fuss I, Colgan S, Blumberg RS. Natural Killer T Cells in Mucosal Homeostasis. Ann N Y Acad Sci 2004; 1029:154-68. [PMID: 15681754 DOI: 10.1196/annals.1309.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mucosal-associated lymphoid tissues (MALT), including the gut-associated lymphoid tissues, are a tightly regulated environment. In fact, it might be stated that on the basis of studies from animal models of inflammatory bowel disease (IBD), the major means of peripheral regulation of immune responses in the intestine is not necessarily from processes such as deletion or anergy, but more likely from the controls imposed upon responses due to the activities of a variety of regulatory subsets of cells. One type of regulatory cellular subset that has recently gained attention is the subset of T cells that are associated with CD1d-restricted responses. Recently, CD1d-restricted T cells have been increasingly appreciated to play a significant role in mucosal tissues of the intestine and lung, for example. Insights from these studies have clearly elevated these cells to particular importance in the regulation of a variety of infectious and inflammatory conditions, such as those associated with idiopathic IBD. In this review, we focus on recent observations on the characteristics of CD1d-restricted pathways in mucosal compartments, after a brief introduction into the biology of CD1d and CD1d-restricted T cells.
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
This review summarizes the major features of CD1 genes and proteins, the patterns of intracellular trafficking of CD1 molecules, and how they sample different intracellular compartments for self- and foreign lipids. We describe how lipid antigens bind to CD1 molecules with their alkyl chains buried in hydrophobic pockets and expose their polar lipid headgroup whose fine structure is recognized by the TCR of CD1-restricted T cells. CD1-restricted T cells carry out effector, helper, and adjuvant-like functions and interact with other cell types including macrophages, dendritic cells, NK cells, T cells, and B cells, thereby contributing to both innate and adaptive immune responses. Insights gained from mice and humans now delineate the extensive range of diseases in which CD1-restricted T cells play important roles and reveal differences in the role of CD1a, CD1b, and CD1c in contrast to CD1d. Invariant TCR alpha chains, self-lipid reactivity, and rapid effector responses empower a subset of CD1d-restricted T cells (NKT cells) to have unique effector functions without counterpart among MHC-restricted T cells. This review describes the function of CD1-restricted T cells in antimicrobial responses, antitumor immunity, and in regulating the balance between tolerance and autoimmunity.
Collapse
Affiliation(s)
- Manfred Brigl
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
47
|
Swann J, Crowe NY, Hayakawa Y, Godfrey DI, Smyth MJ. Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunol Cell Biol 2004. [DOI: 10.1111/j.1440-1711.2004.01254.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Colgan SP, Pitman RS, Nagaishi T, Mizoguchi A, Mizoguchi E, Mayer LF, Shao L, Sartor RB, Subjeck JR, Blumberg RS. Intestinal heat shock protein 110 regulates expression of CD1d on intestinal epithelial cells. J Clin Invest 2003. [DOI: 10.1172/jci200317241] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Colgan SP, Pitman RS, Nagaishi T, Mizoguchi A, Mizoguchi E, Mayer LF, Shao L, Sartor RB, Subjeck JR, Blumberg RS. Intestinal heat shock protein 110 regulates expression of CD1d on intestinal epithelial cells. J Clin Invest 2003; 112:745-54. [PMID: 12952923 PMCID: PMC182184 DOI: 10.1172/jci17241] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CD1d is expressed on the surface of professional and nonprofessional APCs, including intestinal epithelial cells (IECs), for a role in the presentation of glycolipid-based antigens to subsets of T cells. The mechanisms that regulate CD1d expression in any cell type are unknown. To investigate the possibility that expression of CD1d is influenced by exogenous factors present within the intestinal lumen, CD1d expression was analyzed in several IEC lines after culturing in the presence of lumenal contents (LC) of the normal human intestine. Exposure of the colon-derived cell lines T84, HT-29, and Caco-2 to soluble LC resulted in a marked induction of CD1d expression as determined by RT-PCR, confocal microscopy, cell surface ELISA, and Western blot analysis. Similarly, exposure of human IECs to LC isolated from mice bred in both specific pathogen-free and germfree conditions also resulted in the induction of CD1d expression, with the maximum CD1d-inducing activity observed in the small intestine. Biochemical and biophysical characterization of the human CD1d-inducing activity identified heat shock protein 110 (Hsp110) as a major functional component of the LC that contributes to CD1d surface regulation, and immunolocalization studies revealed Hsp110 expression in subsets of human IECs in vivo. These data support the presence of a novel autocrine pathway of CD1d regulation by Hsp110.
Collapse
Affiliation(s)
- Sean P Colgan
- Center for Experimental Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
van de Wal Y, Corazza N, Allez M, Mayer LF, Iijima H, Ryan M, Cornwall S, Kaiserlian D, Hershberg R, Koezuka Y, Colgan SP, Blumberg RS. Delineation of a CD1d-restricted antigen presentation pathway associated with human and mouse intestinal epithelial cells. Gastroenterology 2003; 124:1420-31. [PMID: 12730881 DOI: 10.1016/s0016-5085(03)00219-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS CD1d, a major histocompatibility complex (MHC) class I-related molecule that is responsible for the presentation of glycolipid antigens to subsets of natural killer T (NK-T) cells, is expressed by intestinal epithelial cells (IECs). However, CD1d-restricted antigen presentation has not yet been examined on IECs. METHODS A mouse intestinal epithelial cell line (MODE-K), a human epithelial cell line (T84), T84 cells transfected with CD1d and/or MHC class II, and freshly isolated human IECs were examined for their ability to present model glycolipid antigens to NK-T cells as defined by interleukin (IL)-2 or IL-4 secretion. RESULTS MODE-K and freshly isolated human IECs exhibited dose-dependent, CD1d-restricted presentation of the functional glycolipid antigen, alpha-galactosylceramide (alpha GalCer), to the mouse NK-T cell hybridoma, DN32.D3. The human IEC line, T84, mainly presented alpha GalCer when transfected with human CD1d. Presentation of alpha GalCer by CD1d-transfected T84 cells (T84d) to DN32.D3 cells was greater along the basal surface in comparison with the apical surface. Induction of the MHC class II antigen presentation machinery by cotransfecting T84d with the MHC class I transactivator (CIITA) did not alter this polarity of presentation. Neither MODE-K nor T84 cells transfected with CD1d, CD1d plus CIITA, or CD1d plus HLA-DR were able to present glycolipid antigens requiring intracellular processing. The MODE-K cell line could also present alpha GalCer to primary mouse NK-T cells. CONCLUSIONS CD1d is expressed functionally on IECs with a polarity of presentation (basal > apical) predicting a role in presentation of mucosal glycolipid antigens to local CD1d-restricted T cells.
Collapse
Affiliation(s)
- Yvonne van de Wal
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|