1
|
Scarciglia A, Catrambone V, Bianco M, Bonanno C, Toschi N, Valenza G. Age-Dependent Spatial Patterns of Brain Noise in fMRI Series. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039285 DOI: 10.1109/embc53108.2024.10782065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Functional Magnetic Resonance Imaging (fMRI) serves as a unique non-invasive tool for investigating brain function by analyzing blood oxygenation level-dependent (BOLD) series. These signals result from the complex interplay between deterministic and stochastic components underpinning biological brain activity. In this context, the quantification of the stochastic component, here defined as brain noise, is challenging without making assumptions on the deterministic dynamics. Leveraging on Approximate Entropy, in this study we present a methodological framework aimed to estimate intrinsic stochastic brain dynamics through fMRI data analysis without making assumption on the deterministic model. We estimated brain noise from fMRI series of 200 participants from the publicly available Cam-CAN dataset, aiming to quantify the amount of stochastic dynamics in different brain regions. Moreover, we hypothesize that a functional relationship exists between intrinsic brain noise and subject's age. Results indicate that a significant part - approximately 18% to 60% - of the fMRI signal power can be attributed to the intrinsic stochastic dynamics within the brain, and a linear augmentation is reported in association with the maturation process. These findings underscore the physiological importance of characterizing neural noise and its unique distributions across various brain regions.
Collapse
|
2
|
Mızrak HG, Dikmen M, Hanoğlu L, Şakul BU. Investigation of hemispheric asymmetry in Alzheimer's disease patients during resting state revealed BY fNIRS. Sci Rep 2024; 14:13454. [PMID: 38862632 PMCID: PMC11166983 DOI: 10.1038/s41598-024-62281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the gradual deterioration of brain structures and changes in hemispheric asymmetry. Meanwhile, healthy aging is associated with a decrease in functional hemispheric asymmetry. In this study, functional connectivity analysis was used to compare the functional hemispheric asymmetry in eyes-open resting-state fNIRS data of 16 healthy elderly controls (mean age: 60.4 years, MMSE (Mini-Mental State Examination): 27.3 ± 2.52) and 14 Alzheimer's patients (mean age: 73.8 years, MMSE: 22 ± 4.32). Increased interhemispheric functional connectivity was found in the premotor cortex, supplementary motor cortex, primary motor cortex, inferior parietal cortex, primary somatosensory cortex, and supramarginal gyrus in the control group compared to the AD group. The study revealed that the control group had stronger interhemispheric connectivity, leading to a more significant decrease in hemispheric asymmetry than the AD group. The results show that there is a difference in interhemispheric functional connections at rest between the Alzheimer's group and the control group, suggesting that functional hemispheric asymmetry continues in Alzheimer's patients.
Collapse
Affiliation(s)
- Hazel Gül Mızrak
- Department of Anatomy, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merve Dikmen
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
- Program of Electroneurophysiology, Vocational School of Health Services, Istanbul Medipol University, Istanbul, Turkey.
| | - Lütfü Hanoğlu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, Istanbul Medipol University Training and Research Hospital, Istanbul, Turkey
| | - Bayram Ufuk Şakul
- Department of Anatomy, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
3
|
Olesen MA, Pradenas E, Villavicencio-Tejo F, Porter GA, Johnson GVW, Quintanilla RA. Mitochondria-tau association promotes cognitive decline and hippocampal bioenergetic deficits during the aging. Free Radic Biol Med 2024; 217:141-156. [PMID: 38552927 DOI: 10.1016/j.freeradbiomed.2024.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Current studies indicate that pathological modifications of tau are associated with mitochondrial dysfunction, synaptic failure, and cognitive decline in neurological disorders and aging. We previously showed that caspase-3 cleaved tau, a relevant tau form in Alzheimer's disease (AD), affects mitochondrial bioenergetics, dynamics and synaptic plasticity by the opening of mitochondrial permeability transition pore (mPTP). Also, genetic ablation of tau promotes mitochondrial function boost and increased cognitive capacities in aging mice. However, the mechanisms and relevance of these alterations for the cognitive and mitochondrial abnormalities during aging, which is the primary risk factor for AD, has not been explored. Therefore, in this study we used aging C57BL/6 mice (2-15 and 28-month-old) to evaluate hippocampus-dependent cognitive performance and mitochondrial function. Behavioral tests revealed that aged mice (15 and 28-month-old) showed a reduced cognitive performance compared to young mice (2 month). Concomitantly, isolated hippocampal mitochondria of aged mice showed a significant decrease in bioenergetic-related functions including increases in reactive oxygen species (ROS), mitochondrial depolarization, ATP decreases, and calcium handling defects. Importantly, full-length and caspase-3 cleaved tau were preferentially present in mitochondrial fractions of 15 and 28-month-old mice. Also, aged mice (15 and 28-month-old) showed an increase in cyclophilin D (CypD), the principal regulator of mPTP opening, and a decrease in Opa-1 mitochondrial localization, indicating a possible defect in mitochondrial dynamics. Importantly, we corroborated these findings in immortalized cortical neurons expressing mitochondrial targeted full-length (GFP-T4-OMP25) and caspase-3 cleaved tau (GFP-T4C3-OMP25) which resulted in increased ROS levels and mitochondrial fragmentation, along with a decrease in Opa-1 protein expression. These results suggest that tau associates with mitochondria and this binding increases during aging. This connection may contribute to defects in mitochondrial bioenergetics and dynamics which later may conduce to cognitive decline present during aging.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Eugenia Pradenas
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, New York, USA
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, New York, USA
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Hoang KN, Huang Y, Fujiwara E, Malykhin N. Effects of healthy aging and mnemonic strategies on verbal memory performance across the adult lifespan: Mediating role of posterior hippocampus. Hippocampus 2024; 34:100-122. [PMID: 38145465 DOI: 10.1002/hipo.23592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
In this study, we aimed to understand the contributions of hippocampal anteroposterior subregions (head, body, tail) and subfields (cornu ammonis 1-3 [CA1-3], dentate gyrus [DG], and subiculum [Sub]) and encoding strategies to the age-related verbal memory decline. Healthy participants were administered the California Verbal Learning Test-II to evaluate verbal memory performance and encoding strategies and underwent 4.7 T magnetic resonance imaging brain scan with subsequent hippocampal subregions and subfields manual segmentation. While total hippocampal volume was not associated with verbal memory performance, we found the volumes of the posterior hippocampus (body) and Sub showed significant effects on verbal memory performance. Additionally, the age-related volume decline in hippocampal body volume contributed to lower use of semantic clustering, resulting in lower verbal memory performance. The effect of Sub on verbal memory was statistically independent of encoding strategies. While total CA1-3 and DG volumes did not show direct or indirect effects on verbal memory, exploratory analyses with DG and CA1-3 volumes within the hippocampal body subregion suggested an indirect effect of age-related volumetric reduction on verbal memory performance through semantic clustering. As semantic clustering is sensitive to age-related hippocampal volumetric decline but not to the direct effect of age, further investigation of mechanisms supporting semantic clustering can have implications for early detection of cognitive impairments and decline.
Collapse
Affiliation(s)
- Kim Ngan Hoang
- Neuroscience and Mental Health Institute, Edmonton, Canada
| | - Yushan Huang
- Neuroscience and Mental Health Institute, Edmonton, Canada
| | - Esther Fujiwara
- Neuroscience and Mental Health Institute, Edmonton, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Nikolai Malykhin
- Neuroscience and Mental Health Institute, Edmonton, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Aging Biomarker Consortium, Jia YJ, Wang J, Ren JR, Chan P, Chen S, Chen XC, Chhetri JK, Guo J, Guo Q, Jin L, Liu Q, Liu Q, Ma W, Mao Z, Song M, Song W, Tang Y, Wang D, Wang P, Xiong L, Ye K, Zhang J, Zhang W, Zhang X, Zhang Y, Zhang Z, Zhang Z, Zheng J, Liu GH, Eve Sun Y, Wang YJ, Pei G. A framework of biomarkers for brain aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2023; 2:lnad017. [PMID: 39872296 PMCID: PMC11749242 DOI: 10.1093/lifemedi/lnad017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 01/30/2025]
Abstract
China and the world are facing severe population aging and an increasing burden of age-related diseases. Aging of the brain causes major age-related brain diseases, such as neurodegenerative diseases and stroke. Identifying biomarkers for the effective assessment of brain aging and establishing a brain aging assessment system could facilitate the development of brain aging intervention strategies and the effective prevention and treatment of aging-related brain diseases. Thus, experts from the Aging Biomarker Consortium (ABC) have combined the latest research results and practical experience to recommend brain aging biomarkers and form an expert consensus, aiming to provide a basis for assessing the degree of brain aging and conducting brain-aging-related research with the ultimate goal of improving the brain health of elderly individuals in both China and the world.
Collapse
Affiliation(s)
| | - Yu-Juan Jia
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jun-Rong Ren
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Chun Chen
- Department of Neurology, Union Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Junhong Guo
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, School of Medicine, Shanghai 200092, China
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenlin Ma
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory, Wenzhou, Zhejiang 325035, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Difei Wang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University, Shanghai 200434, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yunwu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Key Laboratory of Ageing and Brain Disease, Chongqing 400042, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Koshino H, Osaka M, Shimokawa T, Kaneda M, Taniguchi S, Minamoto T, Yaoi K, Azuma M, Higo K, Osaka N. Cooperation and competition between the default mode network and frontal parietal network in the elderly. Front Psychol 2023; 14:1140399. [PMID: 37275713 PMCID: PMC10237017 DOI: 10.3389/fpsyg.2023.1140399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
Recent research has shown that the Default Mode Network (DMN) typically exhibits increased activation during processing of social and personal information but shows deactivation during working memory (WM) tasks. Previously, we reported the Frontal Parietal Network (FPN) and DMN showed coactivation during task preparation whereas the DMN exhibited deactivation during task execution in working memory tasks. Aging research has shown that older adults exhibited decreased functional connectivity in the DMN relative to younger adults. Here, we investigated whether age-related cognitive decline is related to a reduced relationship between the FPN and DMN using a working memory task during the execution period. First, we replicated our previous finding that the FPN and DMN showed coactivation during the preparation period, whereas the DMN showed deactivation during the execution period. The older adults showed reduced DMN activity during task preparation and reduced deactivation during task execution; however, they exhibited a higher magnitude of activation in the FPN than the young individuals during task execution. Functional connectivity analyses showed that the elderly group, compared to the young group, showed weaker correlations within the FPN and the DMN, weaker positive correlations between the FPN and DMN during task preparation, and weaker negative correlations between the FPN and DMN during execution. The results suggest that cognitive decline in the older adults might be related to reduced connectivity within the DMN as well as between the FPN and DMN.
Collapse
Affiliation(s)
- Hideya Koshino
- Department of Psychology, California State University, San Bernardino, CA, United States
| | - Mariko Osaka
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Tetsuya Shimokawa
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Mizuki Kaneda
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Seira Taniguchi
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Takehiro Minamoto
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Ken Yaoi
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Miyuki Azuma
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Katsuki Higo
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Naoyuki Osaka
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Yu SF, Wang NN, Hu QL, Dang P, Chang S, Huang XY, Su R, Li H, Zhou J, Ma HL, Liu M, Zhang DL. Neurodynamics of awareness detection in Tibetan immigrants: evidence from EEG analysis. Neuroscience 2023; 522:69-80. [PMID: 37164304 DOI: 10.1016/j.neuroscience.2023.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
The psychological effects of long-term exposure to high-altitude environments have attracted great attention. These effects are usually attributed to the diminished cognitive resources due to high-altitude exposure. This study employed electroencephalography (EEG) to investigate the effects of exposure duration on awareness detection tasks. Neither reaction time nor accuracy showed the direct effects of the exposure duration, so did the model indexes obtained from drift diffusion model analysis. However, event-related potentials (ERP) analysis revealed that exposure duration was associated with changes in the visual awareness negativity (VAN) and the late positivity (LP) components, which in turn affected reaction time. Specifically, longer exposure durations were associated with lower VAN and higher LP, resulting in shorter reaction times and greater drift rate. In contrast to previous studies, the reverse relationship between VAN and LP may reflect a compensatory response to the reduced cognitive resources caused by high-altitude exposure. Additionally, increased LP and shorter reaction times with exposure duration may reflect a resistance to the high-altitude environment. We also conducted time-frequency analysis and found that theta power did not vary with exposure duration, suggesting that the reduction in cognitive resources remains stable in these individuals over time. Overall, our study provides new insights into the dynamic effects of high-altitude environments on awareness detection in the presence of reduced cognitive resources.
Collapse
Affiliation(s)
- Si-Fang Yu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Nian-Nian Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China; Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa/Guangzhou, China
| | - Quan-Ling Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Peng Dang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa/Guangzhou, China
| | - Shuai Chang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiao-Yan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa/Guangzhou, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa/Guangzhou, China
| | - Jing Zhou
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa/Guangzhou, China.
| | - Ming Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China; Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa/Guangzhou, China
| | - De-Long Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China; Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa/Guangzhou, China.
| |
Collapse
|
8
|
Bourbon-Teles J, Jorge L, Canário N, Martins R, Santana I, Castelo-Branco M. Associations between cortical β-amyloid burden, fornix microstructure and cognitive processing of faces, places, bodies and other visual objects in early Alzheimer's disease. Hippocampus 2023; 33:112-124. [PMID: 36578233 DOI: 10.1002/hipo.23493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/10/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Using two imaging modalities, that is, Pittsburgh compound B (PiB) positron emission tomography (PET) and diffusion tensor imaging (DTI) the present study tested associations between cortical amyloid-beta (Aβ) burden and fornix microstructural changes with cognitive deficits in early Alzheimer's disease (AD), namely deficits in working memory (1-back) processing of visual object categories (faces, places, objects, bodies and verbal material). Second, we examined cortical Aβ associations with fornix microstructure. Seventeen early AD patients and 17 healthy-matched controls were included. Constrained spherical deconvolution-based tractography was used to segment the fornix and a control tract the central branch of the superior longitudinal fasciculus (CB-SLF) previously implicated in working memory processes. Standard uptake value ratios (SUVR) of Aβ were extracted from 45 cortical/subcortical regions from the AAL atlas and subject to principal component analysis for data reduction. Patients exhibited (i) impairments in cognitive performance (ii) reductions in fornix fractional anisotropy (FA) and (iii) increases in a component that loaded highly on cortical Aβ. There were no group differences in CB-SLF FA and in a component loading highly on subcortical Aβ. Partial correlation analysis in the patient group showed (i) positive associations between fornix FA and performance for all the visual object categories and (ii) a negative association between the cortical Aβ component and performance for the object categories but not for the remaining classes of visual stimuli. A subsequent analysis showed a positive association between overall cognition (performance across distinct 1-back task conditions) with fornix FA but no association with cortical Aβ burden, in keeping with influential accounts on early onset AD. This indicates that the fornix degenerates early in AD and contributes to deficits in working memory processing of visual object categories; though it is also important to acknowledge the importance of prospective longitudinal studies with larger samples. Overall, the effect sizes of fornical degeneration on visual working memory appeared stronger than the ones related to amyloid burden.
Collapse
Affiliation(s)
- José Bourbon-Teles
- HEI-Lab, Lusófona University, Lisbon, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Coimbra University Hospital, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Yang Y, Wang D, Hou W, Li H. Cognitive Decline Associated with Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:25-46. [PMID: 37418204 DOI: 10.1007/978-981-99-1627-6_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive decline is one of the most distinct signs of aging, and age-related cognitive decline is a heterogeneous issue varying in different cognitive domains and has significant differences among older adults. Identifying characteristics of cognitive aging is the basis of cognitive disease for early-detection and healthy aging promotion. In the current chapter, age-related decline of main cognitive domains, including sensory perception, memory, attention, executive function, language, reasoning, and space navigation ability are introduced respectively. From these aspects of cognition, we focus on the age-related effects, age-related cognitive diseases, and possible mechanisms of cognitive aging.
Collapse
Affiliation(s)
- Yiru Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Wenjie Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - He Li
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
López Pérez D, Bokde ALW, Kerskens CM. Complexity analysis of heartbeat-related signals in brain MRI time series as a potential biomarker for ageing and cognitive performance. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 232:123-133. [PMID: 36910259 PMCID: PMC9988766 DOI: 10.1140/epjs/s11734-022-00696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
Getting older affects both the structure of the brain and some cognitive capabilities. Until now, magnetic resonance imaging (MRI) approaches have been unable to give a coherent reflection of the cognitive declines. It shows the limitation of the contrast mechanisms used in most MRI investigations, which are indirect measures of brain activities depending on multiple physiological and cognitive variables. However, MRI signals may contain information of brain activity beyond these commonly used signals caused by the neurovascular response. Here, we apply a zero-spin echo (ZSE) weighted MRI sequence, which can detect heartbeat-evoked signals (HES). Remarkably, these MRI signals have properties only known from electrophysiology. We investigated the complexity of the HES arising from this sequence in two age groups; young (18-29 years) and old (over 65 years). While comparing young and old participants, we show that the complexity of the HES decreases with age, where the stability and chaoticity of these HES are particularly sensitive to age. However, we also found individual differences which were independent of age. Complexity measures were related to scores from different cognitive batteries and showed that higher complexity may be related to better cognitive performance. These findings underpin the affinity of the HES to electrophysiological signals. The profound sensitivity of these changes in complexity shows the potential of HES for understanding brain dynamics that need to be tested in more extensive and diverse populations with clinical relevance for all neurovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1140/epjs/s11734-022-00696-2.
Collapse
Affiliation(s)
- David López Pérez
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
- Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Arun L. W. Bokde
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
11
|
Fabiani M, Asnakew BA, Bowie DC, Chism SM, Clements GM, Gardner JC, Islam SS, Rubenstein SL, Gratton G. A healthy mind in a healthy body: Effects of arteriosclerosis and other risk factors on cognitive aging and dementia. THE PSYCHOLOGY OF LEARNING AND MOTIVATION 2022; 77:69-123. [PMID: 37139101 PMCID: PMC10153623 DOI: 10.1016/bs.plm.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this review we start from the assumption that, to fully understand cognitive aging, it is important to embrace a holistic view, integrating changes in bodily, brain, and cognitive functions. This broad view can help explain individual differences in aging trajectories and could ultimately enable prevention and remediation strategies. As the title of this review suggests, we claim that there are not only indirect but also direct effects of various organ systems on the brain, creating cascades of phenomena that strongly contribute to age-related cognitive decline. Here we focus primarily on the cerebrovascular system, because of its direct effects on brain health and close connections with the development and progression of Alzheimer's Disease and other types of dementia. We start by reviewing the main cognitive changes that are often observed in normally aging older adults, as well as the brain systems that support them. Second, we provide a brief overview of the cerebrovascular system and its known effects on brain anatomy and function, with a focus on aging. Third, we review genetic and lifestyle risk factors that may affect the cerebrovascular system and ultimately contribute to cognitive decline. Lastly, we discuss this evidence, review limitations, and point out avenues for additional research and clinical intervention.
Collapse
Affiliation(s)
- Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Bethlehem A. Asnakew
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Daniel C. Bowie
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sydney M. Chism
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Grace M. Clements
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Jennie C. Gardner
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Samia S. Islam
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Samantha L. Rubenstein
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
12
|
Wang H, Liu J, Bordes MC, Chopra D, Reece GP, Markey MK, Hoffman AS. The role of psychosocial factors in patients' recollections of breast reconstruction options discussed with their surgeons. Sci Rep 2022; 12:7485. [PMID: 35523931 PMCID: PMC9076612 DOI: 10.1038/s41598-022-11478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
A patient's comprehension and memory of conversations with their providers plays an important role in their healthcare. Adult breast cancer patients whose legal sex was female and who underwent treatment at the Center for Reconstructive Surgery at The University of Texas MD Anderson Cancer Center were asked to indicate which breast reconstruction procedures they discussed with their surgeon. We focused on the three most frequent responses: (a) participants who remembered discussing implant-based, tissue-based, and combination procedures; (b) participants who remembered only an implant-based option being discussed; and (c) participants who remember only a tissue-based option being discussed. We used multinomial logistic regression models to explore the psychosocial factors associated with patients' recollections of their breast reconstruction options after discussions with their reconstructive surgeons, controlling for medical factors that impact surgical decision-making. Our analyses identified body mass index, body image investment, and body image as statistically significantly associated with the reconstructive options that a participant recalls discussing with their surgeon. Our findings highlight body image investment and body image as important psychological factors that may influence what patients remember from consultations about breast reconstruction options.
Collapse
Affiliation(s)
- Haoqi Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Liu
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Catherine Bordes
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deepti Chopra
- Department of Psychiatry, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory P Reece
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mia K Markey
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aubri S Hoffman
- The Value Institute for Health and Care at Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg. B, StopZ1600, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
The age-related effect on electrophysiological correlates of successful episodic memory encoding supports the hypothesis of a deficit in self-initiated encoding processes in aging. Neurosci Lett 2022; 781:136676. [DOI: 10.1016/j.neulet.2022.136676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022]
|
14
|
Medial prefrontal and occipito-temporal activity at encoding determines enhanced recognition of threatening faces after 1.5 years. Brain Struct Funct 2022; 227:1655-1672. [PMID: 35174416 DOI: 10.1007/s00429-022-02462-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Studies demonstrated that faces with threatening emotional expressions are better remembered than non-threatening faces. However, whether this memory advantage persists over years and which neural systems underlie such an effect remains unknown. Here, we employed an individual difference approach to examine whether the neural activity during incidental encoding was associated with differential recognition of faces with emotional expressions (angry, fearful, happy, sad and neutral) after a retention interval of > 1.5 years (N = 89). Behaviorally, we found a better recognition for threatening (angry, fearful) versus non-threatening (happy and neutral) faces after a delay of > 1.5 years, which was driven by forgetting of non-threatening faces compared with immediate recognition after encoding. Multivariate principal component analysis (PCA) on the behavioral responses further confirmed the discriminative recognition performance between threatening and non-threatening faces. A voxel-wise whole-brain analysis on the concomitantly acquired functional magnetic resonance imaging (fMRI) data during incidental encoding revealed that neural activity in bilateral inferior occipital gyrus (IOG) and ventromedial prefrontal/orbitofrontal cortex (vmPFC/OFC) was associated with the individual differences in the discriminative emotional face recognition performance measured by an innovative behavioral pattern similarity analysis (BPSA). The left fusiform face area (FFA) was additionally determined using a regionally focused analysis. Overall, the present study provides evidence that threatening facial expressions lead to persistent face recognition over periods of > 1.5 years, and that differential encoding-related activity in the medial prefrontal cortex and occipito-temporal cortex may underlie this effect.
Collapse
|
15
|
Tagliabue CF, Varesio G, Mazza V. Inter- and Intra-Hemispheric Age-Related Remodeling in Visuo-Spatial Working Memory. Front Aging Neurosci 2022; 13:807907. [PMID: 35111040 PMCID: PMC8803153 DOI: 10.3389/fnagi.2021.807907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) studies investigating visuo-spatial working memory (vWM) in aging typically adopt an event-related potential (ERP) analysis approach that has shed light on the age-related changes during item retention and retrieval. However, this approach does not fully enable a detailed description of the time course of the neural dynamics related to aging. The most frequent age-related changes in brain activity have been described by two influential models of neurocognitive aging, the Hemispheric Asymmetry Reduction in Older Adults (HAROLD) and the Posterior-Anterior Shift in Aging (PASA). These models posit that older adults tend to recruit additional brain areas (bilateral as predicted by HAROLD and anterior as predicted by PASA) when performing several cognitive tasks. We tested younger (N = 36) and older adults (N = 35) in a typical vWM task (delayed match-to-sample) where participants have to retain items and then compare them to a sample. Through a data-driven whole scalp EEG analysis we aimed at characterizing the temporal dynamics of the age-related activations predicted by the two models, both across and within different stages of stimulus processing. Behaviorally, younger outperformed older adults. The EEG analysis showed that older adults engaged supplementary bilateral posterior and frontal sites when processing different levels of memory load, in line with both HAROLD and PASA-like activations. Interestingly, these age-related supplementary activations dynamically developed over time. Indeed, they varied across different stages of stimulus processing, with HAROLD-like modulations being mainly present during item retention, and PASA-like activity during both retention and retrieval. Overall, the present results suggest that age-related neural changes are not a phenomenon indiscriminately present throughout all levels of cognitive processing.
Collapse
|
16
|
Lesion-behaviour mapping reveals multifactorial neurocognitive processes in recognition memory for unfamiliar faces. Neuropsychologia 2021; 163:108078. [PMID: 34743937 DOI: 10.1016/j.neuropsychologia.2021.108078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Face recognition abilities, which play a critical role in social interactions, involve face processing and identifying familiar faces, but also remembering one-off encounters with previously unfamiliar faces. Previous functional imaging and lesion studies have found evidence for temporal, frontal, and parietal contributions to episodic recognition memory for previously unfamiliar faces. However, the functional contributions of these regions remain unclear. We, therefore, conducted a systematic group analysis of this memory function using lesion-behavior mapping. 95 first-event stroke patients (53 with right- and 42 with left-hemisphere damage) in the sub-acute phase performed the Wechsler Memory Scale (WMS-III) face recognition memory subtest. We analyzed their performance relative to 75 healthy controls, using signal detection measures. To identify brain lesions specifically implicated in face recognition deficits, we used voxel-based lesion-behavior mapping (VLBM; an analysis comparing the performance of participants with and without damage affecting a given voxel). Behavioral analysis disclosed a pronounced impairment in the performance of patients with right hemisphere damage. Frontal damage was associated with an increased amount of false alarms (i.e., failed rejection of new face items) and overly liberal criterion setting, without affecting the recognition of studied faces. In contrast, parietal damage was associated with impaired recognition of studied faces, which was more pronounced in immediate than in delayed retrieval. These findings suggest the existence of multifactorial neurocognitive processes in recognition memory for unfamiliar faces.
Collapse
|
17
|
Mossad O, Nent E, Woltemate S, Folschweiller S, Buescher JM, Schnepf D, Erny D, Staeheli P, Bartos M, Szalay A, Stecher B, Vital M, Sauer JF, Lämmermann T, Prinz M, Blank T. Microbiota-dependent increase in δ-valerobetaine alters neuronal function and is responsible for age-related cognitive decline. NATURE AGING 2021; 1:1127-1136. [PMID: 37117525 DOI: 10.1038/s43587-021-00141-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 10/25/2021] [Indexed: 04/30/2023]
Abstract
Understanding the physiological origins of age-related cognitive decline is of critical importance given the rising age of the world's population1. Previous work in animal models has established a strong link between cognitive performance and the microbiota2-5, and it is known that the microbiome undergoes profound remodeling in older adults6. Despite growing evidence for the association between age-related cognitive decline and changes in the gut microbiome, the mechanisms underlying such interactions between the brain and the gut are poorly understood. Here, using fecal microbiota transplantation (FMT), we demonstrate that age-related remodeling of the gut microbiota leads to decline in cognitive function in mice and that this impairment can be rescued by transplantation of microbiota from young animals. Moreover, using a metabolomic approach, we found elevated concentrations of δ-valerobetaine, a gut microbiota-derived metabolite, in the blood and brain of aged mice and older adults. We then demonstrated that δ-valerobetaine is deleterious to learning and memory processes in mice. At the neuronal level, we showed that δ-valerobetaine modulates inhibitory synaptic transmission and neuronal network activity. Finally, we identified specific bacterial taxa that significantly correlate with δ-valerobetaine levels in the brain. Based on our findings, we propose that δ-valerobetaine contributes to microbiota-driven brain aging and that the associated mechanisms represent a promising target for countering age-related cognitive decline.
Collapse
Affiliation(s)
- Omar Mossad
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Elisa Nent
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Shani Folschweiller
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute of Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute of Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Bärbel Stecher
- Max-von-Pettenkofer Institute, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Jonas F Sauer
- Institute of Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Quantifying Age-Related Changes in Brain and Behavior: A Longitudinal versus Cross-Sectional Approach. eNeuro 2021; 8:ENEURO.0273-21.2021. [PMID: 34281979 PMCID: PMC8354716 DOI: 10.1523/eneuro.0273-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Cross-sectional versus longitudinal comparisons of age-related change have often revealed differing results. In the current study, we used within-subject task-based fMRI to investigate changes in voxel-based activations and behavioral performance across the life span in the Reference Ability Neural Network cohort, at both baseline and 5 year follow-up. We analyzed fMRI data from between 127 and 159 participants (20–80 years) on a battery of tests relating to each of four cognitive reference abilities. We applied a Gaussian age kernel to capture continuous change across the life span using a 5 year sliding window centered on each age in our participant sample, with a subsequent division into young, middle, and old age brackets. This method was applied separately to both cross-sectional approximations of change and real longitudinal changes adopting a comparative approach. We then focused on longitudinal measurements of neural change to identify regions expressing peak changes and fluctuations of sign change across our sample. Our results revealed several regions expressing divergence between cross-sectional and longitudinal measurements in each domain and age bracket; behavioral comparisons between measurements showed differences in change curves for all four domains, with processing speed displaying the steepest declines. In the longitudinal change measurement, we found lack of support for age-related frontal increases across analysis types, instead finding more posterior regions displaying peak increases in activation, particularly in the old age bracket. Our findings encourage greater focus on longitudinal measurements of age-related changes, which display appreciable differences from cross-sectional approximations.
Collapse
|
19
|
Bourbon-Teles J, Jorge L, Canário N, Castelo-Branco M. Structural impairments in hippocampal and occipitotemporal networks specifically contribute to decline in place and face category processing but not to other visual object categories in healthy aging. Brain Behav 2021; 11:e02127. [PMID: 34184829 PMCID: PMC8413757 DOI: 10.1002/brb3.2127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Functional neuroimaging studies have identified a set of nodes in the occipital-temporal cortex that preferentially respond to faces in comparison with other visual objects. By contrast, the processing of places seems to rely on parahippocampal cortex and structures heavily implicated in memory (e.g., the hippocampus). It has been suggested that human aging leads to decreased neural specialization of core face and place processing areas and impairments in face and place perception. METHODS Using mediation analysis, we tested the potential contribution of micro- and macrostructure within the hippocampal and occipitotemporal systems to age-associated effects in face and place category processing (as measured by 1-back working memory tasks) in 55 healthy adults (age range 23-79 years). To test for specific contributions of the studied structures to face/place processing, we also studied a distinct tract (i.e., the anterior thalamic radiation [ATR]) and cognitive performance for other visual object categories (objects, bodies, and verbal material). Constrained spherical deconvolution-based tractography was used to reconstruct the fornix, the inferior longitudinal fasciculus (ILF), and the ATR. Hippocampal volumetric measures were segmented from FSL-FIRST toolbox. RESULTS It was found that age associates with (a) decreases in fractional anisotropy (FA) in the fornix, in right ILF (but not left ILF), and in the ATR (b) reduced volume in the right and left hippocampus and (c) decline in visual object category processing. Importantly, mediation analysis showed that micro- and macrostructural impairments in the fornix and right hippocampus, respectively, associated with age-dependent decline in place processing. Alternatively, microstructural impairments in right hemispheric ILF associated with age-dependent decline in face processing. There were no other mediator effects of micro- and macrostructural variables on age-cognition relationships. CONCLUSION Together, the findings support specific contributions of the fornix and right hippocampus in visuospatial scene processing and of the long-range right hemispheric occipitotemporal network in face category processing.
Collapse
Affiliation(s)
- José Bourbon-Teles
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Abstract
The hippocampus and underlying cortices are highly susceptible to pathologic change with increasing age. Using an associative face-scene (Face-Place) encoding task designed to target these regions, we investigated activation and connectivity patterns in cognitively normal older adults. Functional MRI scans were collected in 210 older participants (mean age = 76.4 yrs) in the Baltimore Longitudinal Study of Aging (BLSA). Brain activation patterns were examined during encoding of novel Face-Place pairs. Functional connectivity of the hippocampus was also examined during encoding, with seed regions placed along the longitudinal axis in the head, body and tail of the structure. In the temporal lobe, task activation patterns included coverage of the hippocampus and underlying ventral temporal cortices. Extensive activation was also seen in frontal, parietal and occipital lobes of the brain. Functional connectivity analyses during overall encoding showed that the head of the hippocampus was connected to frontal and anterior/middle temporal regions, the body with frontal, widespread temporal and occipital regions, and the tail with posterior temporal and occipital cortical regions. Connectivity limited to encoding of subsequently remembered stimuli showed a similar pattern for the hippocampal body, but differing patterns for the head and tail regions. These results show that the Face-Place task produces activation along the occipitotemporal visual pathway including medial temporal areas. The connectivity results also show that patterns of functional connectivity vary throughout the anterior-posterior extent of the hippocampus during memory encoding. As these patterns include regions vulnerable to pathologic change in early stages of Alzheimer's disease, continued longitudinal assessment of these individuals can provide valuable information regarding changes in brain-behavior relationships that may occur with advancing age and the onset of cognitive decline.
Collapse
|
21
|
Deng L, Stanley ML, Monge ZA, Wing EA, Geib BR, Davis SW, Cabeza R. Age-Related Compensatory Reconfiguration of PFC Connections during Episodic Memory Retrieval. Cereb Cortex 2021; 31:717-730. [PMID: 32710101 DOI: 10.1093/cercor/bhaa192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/14/2022] Open
Abstract
During demanding cognitive tasks, older adults (OAs) frequently show greater prefrontal cortex (PFC) activity than younger adults (YAs). This age-related increase in PFC activity is often associated with enhanced cognitive performance, suggesting functional compensation. However, the brain is a complex network of interconnected regions, and it is unclear how network connectivity of PFC regions differs for OAs versus YAs. To investigate this, we examined the age-related difference on the functional brain networks mediating episodic memory retrieval. YAs and OAs participants encoded and recalled visual scenes, and age-related differences in network topology during memory retrieval were investigated as a function of memory performance. We measured both changes in functional integration and reconfiguration in connectivity patterns. The study yielded three main findings. First, PFC regions were more functionally integrated with the rest of the brain network in OAs. Critically, this age-related increase in PFC integration was associated with better retrieval performance. Second, PFC regions showed stronger performance-related reconfiguration of connectivity patterns in OAs. Finally, the PFC reconfiguration increases in OAs tracked reconfiguration reductions in the medial temporal lobe (MTL)-a core episodic memory region, suggesting that PFC connectivity in OAs may be compensating for MTL deficits.
Collapse
Affiliation(s)
- Lifu Deng
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Mathew L Stanley
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Zachary A Monge
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Erik A Wing
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.,The Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Benjamin R Geib
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Simon W Davis
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Neurology, Duke University, Durham, NC 27710, USA
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Delli Pizzi S, Granzotto A, Bomba M, Frazzini V, Onofrj M, Sensi SL. Acting Before; A Combined Strategy to Counteract the Onset and Progression of Dementia. Curr Alzheimer Res 2020; 17:790-804. [PMID: 33272186 DOI: 10.2174/1567205017666201203085524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Brain aging and aging-related neurodegenerative disorders are posing a significant challenge for health systems worldwide. To date, most of the therapeutic efforts aimed at counteracting dementiarelated behavioral and cognitive impairment have been focused on addressing putative determinants of the disease, such as β-amyloid or tau. In contrast, relatively little attention has been paid to pharmacological interventions aimed at restoring or promoting the synaptic plasticity of the aging brain. The review will explore and discuss the most recent molecular, structural/functional, and behavioral evidence that supports the use of non-pharmacological approaches as well as cognitive-enhancing drugs to counteract brain aging and early-stage dementia.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Alberto Granzotto
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Manuela Bomba
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Valerio Frazzini
- AP-HP, Epilepsy Unit, Pitie-Salpetriere Hospital and Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, Sorbonne Universite), Pitie-Salpetriere Hospital, Paris, France
| | - Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| |
Collapse
|
23
|
Scalici F, Carlesimo GA, Santangelo V, Barban F, Macaluso E, Caltagirone C, Costa A. Does Cue Focality Modulate Age-related Performance in Prospective Memory? An fMRI Investigation. Exp Aging Res 2020; 47:1-20. [DOI: 10.1080/0361073x.2020.1839310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Francesco Scalici
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni Augusto Carlesimo
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Valerio Santangelo
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy
| | - Francesco Barban
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Emiliano Macaluso
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- ImpAct Team, Lyon Neuroscience Research Center, Lyon, France
| | - Carlo Caltagirone
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alberto Costa
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Psychology Department, Niccolò Cusano University, Rome, Italy
| |
Collapse
|
24
|
Interaction between Cognitive Reserve and Biomarkers in Alzheimer Disease. Int J Mol Sci 2020; 21:ijms21176279. [PMID: 32872643 PMCID: PMC7503751 DOI: 10.3390/ijms21176279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 12/22/2022] Open
Abstract
Patients with comparable degree of neuropathology could show different cognitive impairments. This could be explained with the concept of cognitive reserve (CR), which includes a passive and an active component. In particular, CR is used to explain the gap between tissue damage and clinical symptoms that has been observed in dementia and, in particular, in patients affected by Alzheimer disease (AD). Different studies confirm brain neuroplasticity. Our preliminary study demonstrated that AD patients with high education showed a CR inversely associated with glucose uptake measured in fluorodeoxyglucose positron emission tomography (FDG-PET), whereas the inverse correlation was observed in AD patients with low education. In other words, our findings suggest that CR compensates the neurodegeneration and allows the maintenance of patients’ cognitive performance. Best understanding of the concept of CR could lead to interventions to slow cognitive aging or reduce the risk of dementia.
Collapse
|
25
|
Chen K, Azeez A, Chen DY, Biswal BB. Resting-State Functional Connectivity: Signal Origins and Analytic Methods. Neuroimaging Clin N Am 2020; 30:15-23. [PMID: 31759568 DOI: 10.1016/j.nic.2019.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resting state functional connectivity (RSFC) has been widely studied in functional magnetic resonance imaging (fMRI) and is observed by a significant temporal correlation of spontaneous low-frequency signal fluctuations (SLFs) both within and across hemispheres during rest. Different hypotheses of RSFC include the biophysical origin hypothesis and cognitive origin hypothesis, which show that the role of SLFs and RSFC is still not completely understood. Furthermore, RSFC and age studies have shown an "age-related compensation" phenomenon. RSFC data analysis methods include time domain analysis, seed-based correlation, regional homogeneity, and principal and independent component analyses. Despite advances in RSFC, the authors also discuss challenges and limitations, ranging from head motion to methodological limitations.
Collapse
Affiliation(s)
- Kai Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Azeezat Azeez
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA
| | - Donna Y Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA.
| |
Collapse
|
26
|
Examining brain maturation during adolescence using graph Laplacian learning based Fourier transform. J Neurosci Methods 2020; 338:108649. [PMID: 32165231 DOI: 10.1016/j.jneumeth.2020.108649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/21/2020] [Accepted: 02/23/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Longitudinal neuroimaging studies have demonstrated that adolescence is a crucial developmental period of continued brain growth and change. Motivated by both achievements in graph signal processing and recent evidence that some brain areas act as hubs connecting functionally specialized systems, we propose an approach to detect these regions from a spectral analysis perspective. In particular, as the human brain undergoes substantial development throughout adolescence, we evaluate functional network difference among age groups from functional magnetic resonance imaging (fMRI) measurements. NEW METHODS We treated these measurements as graph signals defined on the parcellated functional brain regions and proposed a graph Laplacian learning based Fourier transform (GLFT) to transform the original graph signals into the frequency domain. Eigen-analysis was conducted afterwards to study the behaviors of the corresponding brain regions, which enabled the characterization of brain maturation. RESULT We first evaluated our method on the synthetic data and then applied it to resting state and task fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) dataset, comprised of normally developing adolescents from 8 to 22 years of age. The method provided an accuracy of 94.9% in distinguishing different adolescent stages and we detected 13 hubs from resting state fMRI and 16 hubs from task fMRI related to brain maturation. COMPARISON WITH EXISTING METHODS The proposed GLFT demonstrated its superiority over conventional graph Fourier transform and alternative graph Fourier transform with high predictive power. CONCLUSION The method provides a powerful approach for extracting brain connectivity patterns and identifying hub regions.
Collapse
|
27
|
Thomas BP, Tarumi T, Sheng M, Tseng B, Womack KB, Cullum CM, Rypma B, Zhang R, Lu H. Brain Perfusion Change in Patients with Mild Cognitive Impairment After 12 Months of Aerobic Exercise Training. J Alzheimers Dis 2020; 75:617-631. [PMID: 32310162 PMCID: PMC8062932 DOI: 10.3233/jad-190977] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aerobic exercise (AE) has recently received increasing attention in the prevention of Alzheimer's disease (AD). There is some evidence that it can improve neurocognitive function in elderly individuals. However, the mechanism of these improvements is not completely understood. In this prospective clinical trial, thirty amnestic mild cognitive impairment participants were enrolled into two groups and underwent 12 months of intervention. One group (n = 15) performed AE training (8M/7F, age = 66.4 years), whereas the other (n = 15) performed stretch training (8M/7F, age = 66.1 years) as a control intervention. Both groups performed 25-30 minutes training, 3 times per week. Frequency and duration were gradually increased over time. Twelve-month AE training improved cardiorespiratory fitness (p = 0.04) and memory function (p = 0.004). Cerebral blood flow (CBF) was measured at pre- and post-training using pseudo-continuous-arterial-spin-labeling MRI. Relative to the stretch group, the AE group displayed a training-related increase in CBF in the anterior cingulate cortex (p = 0.016). Furthermore, across individuals, the extent of memory improvement was associated with CBF increases in anterior cingulate cortex and adjacent prefrontal cortex (voxel-wise p < 0.05). In contrast, AE resulted in a decrease in CBF of the posterior cingulate cortex, when compared to the stretch group (p = 0.01). These results suggest that salutary effects of AE in AD may be mediated by redistribution of blood flow and neural activity in AD-sensitive regions of brain.
Collapse
Affiliation(s)
- Binu P. Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Min Sheng
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Tseng
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Kyle B. Womack
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C. Munro Cullum
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Liechti C, Caviezel MP, Müller S, Reichert CF, Calabrese P, Linnemann C, Melcher T, Leyhe T. Correlation Between Hippocampal Volume and Autobiographical Memory Depending on Retrieval Frequency in Healthy Individuals and Patients with Alzheimer's Disease. J Alzheimers Dis 2019; 72:1341-1352. [PMID: 31743996 DOI: 10.3233/jad-190047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hippocampus plays an indispensable role in episodic memory, particularly during the consolidation process. However, its precise role in retrieval of episodic memory is still ambiguous. In this study, we investigated the correlation of hippocampal morphometry and the performance in an autobiographical memory task in 27 healthy controls and 24 patients suffering from Alzheimer's disease (AD). Most importantly, correlations were defined separately and comparatively for memory contents with different retrieval frequency in the past. In healthy subjects, memory performance for seldom retrieved autobiographical events was significantly associated with gray matter density in the bilateral hippocampus, whereas this correlation was not present for events with high retrieval frequency. This pattern of findings confirms that retrieval frequency plays a critical role in the consolidation of episodic autobiographical memories, thereby making them more independent of the hippocampal system. In AD patients, on the other hand, successful memory retrieval appeared to be related to hippocampal morphometry irrespective of the contents' retrieval frequency, comprising events with high retrieval frequency, too. The observed differences between patients and control subjects suggest that AD-related neurodegeneration not only impairs the function, but also decreases the functional specialization of the hippocampal memory system, which, thus, may be considered as marker for AD.
Collapse
Affiliation(s)
- Caroline Liechti
- University of Basel, Centre of Old Age Psychiatry, Psychiatric University Hospital, Basel, Switzerland.,University of Basel, Geriatric Psychiatry, University Department of Geriatric Medicine FELIX PLATTER, Basel, Switzerland
| | - Marco P Caviezel
- University of Basel, Centre of Old Age Psychiatry, Psychiatric University Hospital, Basel, Switzerland
| | - Stephan Müller
- Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany
| | - Carolin F Reichert
- University of Basel, Centre of Old Age Psychiatry, Psychiatric University Hospital, Basel, Switzerland
| | - Pasquale Calabrese
- University of Basel, Neuropsychology and Behavioural Neurology Unit, Basel, Switzerland
| | - Christoph Linnemann
- University of Basel, Centre of Old Age Psychiatry, Psychiatric University Hospital, Basel, Switzerland
| | - Tobias Melcher
- University of Basel, Centre of Old Age Psychiatry, Psychiatric University Hospital, Basel, Switzerland
| | - Thomas Leyhe
- University of Basel, Centre of Old Age Psychiatry, Psychiatric University Hospital, Basel, Switzerland.,University of Basel, Geriatric Psychiatry, University Department of Geriatric Medicine FELIX PLATTER, Basel, Switzerland
| |
Collapse
|
29
|
Kosmidis S, Polyzos A, Harvey L, Youssef M, Denny CA, Dranovsky A, Kandel ER. RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss. Cell Rep 2019; 25:959-973.e6. [PMID: 30355501 PMCID: PMC7725275 DOI: 10.1016/j.celrep.2018.09.077] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Precisely deciphering the molecular mechanisms of age-related memory loss is crucial to create appropriate therapeutic interventions. We have previously shown that the histone-binding protein RbAp48/Rbbp4 is a molecular determinant of Age-Related Memory Loss. By exploring how this protein regulates the genomic landscape of the hippocampal circuit, we find that RbAp48 controls the expression of BDNF and GPR158 proteins, both critical components of osteocalcin (OCN) signaling in the mouse hippocampus. We show that inhibition of RbAp48 in the hippocampal formation inhibits OCN's beneficial functions in cognition and causes deficits in discrimination memory. In turn, disruption of OCN/GPR158 signaling leads to the downregulation of RbAp48 protein, mimicking the discrimination memory deficits observed in the aged hippocampus. We also show that activation of the OCN/GPR158 pathway increases the expression of RbAp48 in the aged dentate gyrus and rescues age-related memory loss.
Collapse
Affiliation(s)
- Stylianos Kosmidis
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Alexandros Polyzos
- Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lucas Harvey
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Mary Youssef
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032, USA
| | - Alex Dranovsky
- New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
30
|
Wu X, Guo T, Tan T, Zhang W, Qin S, Fan J, Luo J. Superior emotional regulating effects of creative cognitive reappraisal. Neuroimage 2019; 200:540-551. [DOI: 10.1016/j.neuroimage.2019.06.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022] Open
|
31
|
Mok RM, O'Donoghue MC, Myers NE, Drazich EHS, Nobre AC. Neural markers of category-based selective working memory in aging. Neuroimage 2019; 194:163-173. [PMID: 30905834 PMCID: PMC6547047 DOI: 10.1016/j.neuroimage.2019.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/30/2019] [Accepted: 03/16/2019] [Indexed: 01/15/2023] Open
Abstract
Working memory (WM) is essential for normal cognitive function, but shows marked decline in aging. The importance of selective attention in guiding WM performance is increasingly recognized. Studies so far are inconclusive about the ability to use selective attention during WM in aging. To investigate the neural mechanisms supporting selective attention in WM in aging, we tested a large group of older adults using functional magnetic resonance imaging whilst they performed a category-based (faces/houses) selective-WM task. Older adults were able to use attention to encode targets and suppress distractors to reach high levels of task performance. A subsequent, surprise recognition-memory task showed strong consequences of selective attention. Attended items in the relevant category were recognized significantly better than items in the ignored category. Neural measures also showed reliable markers of selective attention during WM. Purported control regions including the dorsolateral and inferior prefrontal and anterior cingulate cortex were reliably recruited for attention to both categories. Activation levels in category-sensitive visual cortex showed reliable modulation according to attentional demands, and positively correlated with subsequent memory measures of attention and WM span. Psychophysiological interaction analyses showed that activity in category-sensitive areas were coupled with non-sensory cortex known to be involved in cognitive control and memory processing, including regions in the prefrontal cortex and hippocampus. In summary, we found that older adults were able to recruit a network of brain regions involved in top-down attention during selective WM, and individual differences in attentional control corresponded to the degree of attention-related modulation in the brain.
Collapse
Affiliation(s)
- Robert M Mok
- Department of Experimental Psychology, University of Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK; Department of Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK.
| | - M Clare O'Donoghue
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK
| | - Nicholas E Myers
- Department of Experimental Psychology, University of Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK
| | - Erin H S Drazich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK.
| |
Collapse
|
32
|
Abstract
Healthy aging is associated with numerous deficits in cognitive function, which have been attributed to changes within the prefrontal cortex (PFC). This chapter summarizes some of the most prominent cognitive changes associated with age-related alterations in the anatomy and physiology of the PFC. Specifically, aging of the PFC results in deficient aspects of cognitive control, including sustained attention, selective attention, inhibitory control, working memory, and multitasking abilities. Yet, not all cognitive functions associated with the PFC exhibit age-related declines, such as arithmetic, comprehension, emotion perception, and emotional control. Moreover, not all older adults exhibit declines in cognition. Multiple life-course and lifestyle factors, as well as genetics, play a role in the trajectory of cognitive performance across the life span. Thus many adults retain cognitive function well into advanced age. Moreover, the brain remains plastic throughout life and there is increasing evidence that most age-related declines in cognition can be remediated by various methods such as physical exercise, cognitive training, or noninvasive brain stimulation. Overall, because cognitive aging is associated with numerous life-course and lifestyle factors, successful aging likely begins in early life, while maintaining cognition or remediating declines is a life-long process.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States; Neuroscape, University of California San Francisco, San Francisco, CA, United States
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States; Departments of Physiology and Psychiatry, University of California San Francisco, San Francisco, CA, United States; Neuroscape, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
33
|
Ma H, Huang X, Liu M, Ma H, Zhang D. Aging of stimulus-driven and goal-directed attentional processes in young immigrants with long-term high altitude exposure in Tibet: An ERP study. Sci Rep 2018; 8:17417. [PMID: 30479363 PMCID: PMC6258680 DOI: 10.1038/s41598-018-34706-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/19/2018] [Indexed: 11/09/2022] Open
Abstract
High altitude (HA) exposure reduces the behavioral response to visual attention and the neural basis is still largely unclear. The present study explored the stimulus-driven and goal-directed factors that are hidden within this attentional behavior impairment via a visual search paradigm in young immigrants in Tibet by recording event-related potential (ERPs). We found that HA explosure significantly slowed the stimulus-driven behaviors instead of the goal-directed behaviors. Furthermore, the P1, N1, and P3 amplitudes collectively indicated the poor efficiency of entire attention behaviors, in which the P3 magnitude of resources allocation was negatively correlated with the attentional behavior response. And the P3 scalp distribution suggested a compensation for insufficient resources of sensory processing only in the goal-directed behaviors. Together, the present study made the point on how stimulus-driven and goal-directed attentional behaviors changed as a result of chronic HA environment exposure, which is similar to aging.
Collapse
Affiliation(s)
- Hailin Ma
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou, 510631/Lhasa 850012, China.,Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Xiaoyan Huang
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou, 510631/Lhasa 850012, China
| | - Ming Liu
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou, 510631/Lhasa 850012, China.,Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Huifang Ma
- College of Management, Tianjin University, Tianjin, China
| | - Delong Zhang
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou, 510631/Lhasa 850012, China. .,Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China. .,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
34
|
The effect of polypharmacy on prefrontal cortex activation during single and dual task walking in community dwelling older adults. Pharmacol Res 2018; 139:113-119. [PMID: 30408573 DOI: 10.1016/j.phrs.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Polypharmacy, defined as the use of 5 or more medications is associated with multiple adverse outcomes in older adults, including falls and slow gait velocity. However, the relationship between polypharmacy and cortical control of locomotion has not been reported. The purpose of this study was to examine the relationship between polypharmacy and activation patterns in the prefrontal cortex (PFC), a brain region involved in higher order control of locomotion during attention-demanding conditions. METHODS Using Functional Near Infrared Spectroscopy (fNIRS) to quantify PFC oxygenated hemoglobin (HbO2) levels, we performed a cross sectional analysis of 325 community dwelling adults age ≥65 years, and examined HbO2 levels during single tasks (Single-Task-Walk (STW), (talking, cognitive interference (Alpha)) and Dual-Task Walk (DTW)). RESULTS The prevalence of polypharmacy was 33% (n = 104) amongst the 325 participants (mean age 76.4 ± 6.7 years, 56% women). Among the 221 participants with no polypharmacy there was an increase in HbO2 levels from STW to DTW (estimate = -0.625; p = <0.001) and from Alpha to DTW (estimate=-0.079; p = 0.031). Polypharmacy status, however, moderated the change in HbO2 levels comparing the two single tasks to the dual-task walking condition. Specifically, the presence of polypharmacy was associated with an attenuated increase in HbO2 levels from STW to DTW (estimate = 0.149; p = 0.027) and with a decline in HbO2 levels from Alpha to DTW (estimate = 0.169; p = 0.009) after adjustments for potential confounders including medical comorbidities and the use of high-risk medications. CONCLUSION The results of this study further support the need for clinicians to reduce polypharmacy in older adults, given its significant association with the PFC hemodynamic response during attention-demanding locomotion.
Collapse
|
35
|
Ma H, Li X, Liu M, Ma H, Zhang D. Mental Rotation Effect on Adult Immigrants with Long-term Exposure to High Altitude in Tibet: An ERP Study. Neuroscience 2018; 386:339-350. [PMID: 30049664 DOI: 10.1016/j.neuroscience.2018.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 11/25/2022]
Abstract
Human spatial manipulation ability is sensitive to high-altitude (HA) environment. The present study aimed to investigate the electrophysiological basis of spatial manipulation ability on adult immigrants with long-term HA exposure using the mental rotation (MR) task and the ERP approach. Toward this end, we explored the MR effect in individuals who immigrated to HA areas for three years compared with individuals who lived in low altitude areas. We found that the reaction time related to the MR effect was significantly slower in the HA group than that of the low-altitude group. The ERP component analysis further indicated that the rotation-related negativity (RRN) amplitude was highly corresponding to the MR effect in each group, the RRN amplitude was significantly larger in the HA group than the low-altitude group related to each rotation angle condition. The brain topographical map further showed that only the right hemisphere regions instead of the bilateral hemisphere regions involved into the MR effect in the HA group, which was different to the low-altitude group. Together, these findings might collectively suggest that the mental resource was insufficient as a result of HA exposure which can be reflected on the RRN amplitude, which may help understanding the neural basis of spatial ability change from the long-term HA exposure.
Collapse
Affiliation(s)
- Hailin Ma
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou 510631/Lhasa 850012, China; Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Xiaoyan Li
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou 510631/Lhasa 850012, China
| | - Ming Liu
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou 510631/Lhasa 850012, China; Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Huifang Ma
- College of Management, Tianjin University, Tianjin, China
| | - Delong Zhang
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou 510631/Lhasa 850012, China; Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
36
|
Blasiman RN, Was CA. Why Is Working Memory Performance Unstable? A Review of 21 Factors. EUROPES JOURNAL OF PSYCHOLOGY 2018; 14:188-231. [PMID: 29899806 PMCID: PMC5973525 DOI: 10.5964/ejop.v14i1.1472] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023]
Abstract
In this paper, we systematically reviewed twenty-one factors that have been shown to either vary with or influence performance on working memory (WM) tasks. Specifically, we review previous work on the influence of intelligence, gender, age, personality, mental illnesses/medical conditions, dieting, craving, stress/anxiety, emotion/motivation, stereotype threat, temperature, mindfulness training, practice, bilingualism, musical training, altitude/hypoxia, sleep, exercise, diet, psychoactive substances, and brain stimulation on WM performance. In addition to a review of the literature, we suggest several frameworks for classifying these factors, identify shared mechanisms between several variables, and suggest areas requiring further investigation. This review critically examines the breadth of research investigating WM while synthesizing the results across related subfields in psychology.
Collapse
|
37
|
Heikkilä J, Fagerlund P, Tiippana K. Semantically Congruent Visual Information Can Improve Auditory Recognition Memory in Older Adults. Multisens Res 2018; 31:213-225. [DOI: 10.1163/22134808-00002602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
Abstract
In the course of normal aging, memory functions show signs of impairment. Studies of memory in the elderly have previously focused on a single sensory modality, although multisensory encoding has been shown to improve memory performance in children and young adults. In this study, we investigated how audiovisual encoding affects auditory recognition memory in older (mean age 71 years) and younger (mean age 23 years) adults. Participants memorized auditory stimuli (sounds, spoken words) presented either alone or with semantically congruent visual stimuli (pictures, text) during encoding. Subsequent recognition memory performance of auditory stimuli was better for stimuli initially presented together with visual stimuli than for auditory stimuli presented alone during encoding. This facilitation was observed both in older and younger participants, while the overall memory performance was poorer in older participants. However, the pattern of facilitation was influenced by age. When encoding spoken words, the gain was greater for older adults. When encoding sounds, the gain was greater for younger adults. These findings show that semantically congruent audiovisual encoding improves memory performance in late adulthood, particularly for auditory verbal material.
Collapse
Affiliation(s)
- Jenni Heikkilä
- Department of Psychology and Logopedics, Faculty of Medicine, P.O. Box 9, 00014 University of Helsinki, Finland
| | - Petra Fagerlund
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Helsinki, Finland
| | - Kaisa Tiippana
- Department of Psychology and Logopedics, Faculty of Medicine, P.O. Box 9, 00014 University of Helsinki, Finland
| |
Collapse
|
38
|
Sellami A, Al Abed AS, Brayda-Bruno L, Etchamendy N, Valério S, Oulé M, Pantaléon L, Lamothe V, Potier M, Bernard K, Jabourian M, Herry C, Mons N, Piazza PV, Eichenbaum H, Marighetto A. Temporal binding function of dorsal CA1 is critical for declarative memory formation. Proc Natl Acad Sci U S A 2017; 114:10262-10267. [PMID: 28874586 PMCID: PMC5617244 DOI: 10.1073/pnas.1619657114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.
Collapse
Affiliation(s)
- Azza Sellami
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Alice Shaam Al Abed
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Laurent Brayda-Bruno
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Nicole Etchamendy
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Stéphane Valério
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Marie Oulé
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Laura Pantaléon
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Valérie Lamothe
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Mylène Potier
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Katy Bernard
- Institut de Recherche Internationale Servier, 92150 Suresnes, France
| | - Maritza Jabourian
- Institut de Recherche Internationale Servier, 92150 Suresnes, France
| | - Cyril Herry
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Nicole Mons
- Université de Bordeaux, F-33000 Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, CNRS, F-33600 Pessac, France
| | - Pier-Vincenzo Piazza
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | | | - Aline Marighetto
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, INSERM, F-33000 Bordeaux, France;
- Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
39
|
Holtzer R, Schoen C, Demetriou E, Mahoney JR, Izzetoglu M, Wang C, Verghese J. Stress and gender effects on prefrontal cortex oxygenation levels assessed during single and dual-task walking conditions. Eur J Neurosci 2017; 45:660-670. [PMID: 28028863 DOI: 10.1111/ejn.13518] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
The ability to walk is critical for functional independence and wellbeing. The pre-frontal cortex (PFC) plays a key role in cognitive control of locomotion, notably under attention-demanding conditions. Factors that influence brain responses to cognitive demands of locomotion, however, are poorly understood. Herein, we evaluated the individual and combined effects of gender and perceived stress on stride velocity and PFC Oxygenated Hemoglobin (HbO2 ) assessed during single and dual-task walking conditions. The experimental paradigm included Normal Walk (NW); Cognitive Interference (Alpha); and Walk-While-Talk (WWT) tasks. An instrumented walkway was used to assess stride velocity in NW and WWT conditions. Functional Near-Infrared-Spectroscopy (fNIRS) was used to quantify PFC HbO2 levels during NW, Alpha and WWT. Perceived task-related stress was evaluated with a single 11-point scale item. Participants were community residing older adults (age = 76.8 ± 6.7 years; %female = 56). Results revealed that higher perceived stress was associated with greater decline in stride velocity from single to dual-task conditions among men. Three-way interactions revealed that gender moderated the effect of perceived stress on changes in HbO2 levels comparing WWT to NW and Alpha. Attenuation in the increase in HbO2 levels, in high compared to low perceived stress levels, from the two single task conditions to WWT was observed only in men. Thus, older men may be more vulnerable to the effect of perceived stress on the change in PFC oxygenation levels across walking conditions that vary in terms of cognitive demands. These findings confer important implications for assessment and treatment of individuals at risk of mobility impairments.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, 1225 Morris Park Avenue, Van Etten, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, NY, USA
| | - Chelsea Schoen
- Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, NY, USA
| | - Eleni Demetriou
- Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, NY, USA
| | - Jeannette R Mahoney
- Department of Neurology, 1225 Morris Park Avenue, Van Etten, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Meltem Izzetoglu
- Drexel University School of Biomedical Engineering, Philadelphia, PA, USA
| | - Cuiling Wang
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joe Verghese
- Department of Neurology, 1225 Morris Park Avenue, Van Etten, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
40
|
Helder EJ, Zuverza-Chavarria V, Whitman RD. Executive functioning and lateralized semantic priming in older adults. COGENT PSYCHOLOGY 2016. [DOI: 10.1080/23311908.2016.1182687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Emily J. Helder
- Calvin College, Department of Psychology, Wayne State University, 3201 Burton SE, Grand Rapids, MI 49546, USA
| | | | - R. Douglas Whitman
- Department of Psychology, Wayne State University, College of Education, 441 Education Building, Detroit, MI 48202, USA
| |
Collapse
|
41
|
Sugiura M. Functional neuroimaging of normal aging: Declining brain, adapting brain. Ageing Res Rev 2016; 30:61-72. [PMID: 26988858 DOI: 10.1016/j.arr.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Early functional neuroimaging research on normal aging brain has been dominated by the interest in cognitive decline. In this framework the age-related compensatory recruitment of prefrontal cortex, in terms of executive system or reduced lateralization, has been established. Further details on these compensatory mechanisms and the findings reflecting cognitive decline, however, remain the matter of intensive investigations. Studies in another framework where age-related neural alteration is considered adaptation to the environmental change are recently burgeoning and appear largely categorized into three domains. The age-related increase in activation of the sensorimotor network may reflect the alteration of the peripheral sensorimotor systems. The increased susceptibility of the network for the mental-state inference to the socioemotional significance may be explained by the age-related motivational shift due to the altered social perception. The age-related change in activation of the self-referential network may be relevant to the focused positive self-concept of elderly driven by a similar motivational shift. Across the domains, the concept of the self and internal model may provide the theoretical bases of this adaptation framework. These two frameworks complement each other to provide a comprehensive view of the normal aging brain.
Collapse
|
42
|
Devitt AL, Schacter DL. False memories with age: Neural and cognitive underpinnings. Neuropsychologia 2016; 91:346-359. [PMID: 27592332 DOI: 10.1016/j.neuropsychologia.2016.08.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 11/30/2022]
Abstract
As we age we become increasingly susceptible to memory distortions and inaccuracies. Over the past decade numerous neuroimaging studies have attempted to illuminate the neural underpinnings of aging and false memory. Here we review these studies, and link their findings with those concerning the cognitive properties of age-related changes in memory accuracy. Collectively this evidence points towards a prominent role for age-related declines in medial temporal and prefrontal brain areas, and corresponding impairments in associative binding and strategic monitoring. A resulting cascade of cognitive changes contributes to the heightened vulnerability to false memories with age, including reduced recollective ability, a reliance on gist information and familiarity-based monitoring mechanisms, as well as a reduced ability to inhibit irrelevant information and erroneous binding of features between memory traces. We consider both theoretical and applied implications of research on aging and false memories, as well as questions remaining to be addressed in future research.
Collapse
|
43
|
|
44
|
Manuel AL, Schnider A. Effect of prefrontal and parietal tDCS on learning and recognition of verbal and non-verbal material. Clin Neurophysiol 2016; 127:2592-8. [DOI: 10.1016/j.clinph.2016.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022]
|
45
|
Kensinger EA, Gutchess AH. Cognitive Aging in a Social and Affective Context: Advances Over the Past 50 Years. J Gerontol B Psychol Sci Soc Sci 2016; 72:61-70. [DOI: 10.1093/geronb/gbw056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/27/2016] [Indexed: 11/14/2022] Open
|
46
|
Zhong JY, Moffat SD. Age-Related Differences in Associative Learning of Landmarks and Heading Directions in a Virtual Navigation Task. Front Aging Neurosci 2016; 8:122. [PMID: 27303290 PMCID: PMC4882336 DOI: 10.3389/fnagi.2016.00122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
Previous studies have showed that spatial memory declines with age but have not clarified the relevance of different landmark cues for specifying heading directions among different age groups. This study examined differences between younger, middle-aged and older adults in route learning and memory tasks after they navigated a virtual maze that contained: (a) critical landmarks that were located at decision points (i.e., intersections) and (b) non-critical landmarks that were located at non-decision points (i.e., the sides of the route). Participants were given a recognition memory test for critical and non-critical landmarks and also given a landmark-direction associative learning task. Compared to younger adults, older adults committed more navigation errors during route learning and were poorer at associating the correct heading directions with both critical and non-critical landmarks. Notably, older adults exhibited a landmark-direction associative memory deficit at decision points; this was the first finding to show that an associative memory deficit exist among older adults in a navigational context for landmarks that are pertinent for reaching a goal, and suggest that older adults may expend more cognitive resources on the encoding of landmark/object features than on the binding of landmark and directional information. This study is also the first to show that older adults did not have a tendency to process non-critical landmarks, which were regarded as distractors/irrelevant cues for specifying the directions to reach the goal, to an equivalent or larger extent than younger adults. We explain this finding in view of the low number of non-critical cues in our virtual maze (relative to a real-world urban environment) that might not have evoked older adults’ usual tendency toward processing or encoding distractors. We explain the age differences in navigational and cognitive performance with regards to functional and structural changes in the hippocampus and parahippocampus, and recommend further investigations into the functional connectivity between the prefrontal cortex and hippocampus for a better understanding of the landmark-direction associative learning among the elderly. Finally, it is hoped that the current behavioral findings will facilitate efforts to identify the neural markers of Alzheimer’s disease, a disease that commonly involves navigational deficits.
Collapse
Affiliation(s)
- Jimmy Y Zhong
- School of Psychology, Georgia Institute of Technology Atlanta, GA, USA
| | - Scott D Moffat
- School of Psychology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
47
|
Wu X, Jung RE, Zhang H. Neural underpinnings of divergent production of rules in numerical analogical reasoning. Biol Psychol 2016; 117:170-178. [DOI: 10.1016/j.biopsycho.2016.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 02/09/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
48
|
Saverino C, Fatima Z, Sarraf S, Oder A, Strother SC, Grady CL. The Associative Memory Deficit in Aging Is Related to Reduced Selectivity of Brain Activity during Encoding. J Cogn Neurosci 2016; 28:1331-44. [PMID: 27082043 DOI: 10.1162/jocn_a_00970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity or dedifferentiation has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used fMRI to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole-brain patterns of activation that predicted item versus associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared with young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory.
Collapse
Affiliation(s)
- Cristina Saverino
- University Health Network Toronto Rehabilitation Institute.,Rotman Research Institute at Baycrest, Toronto, Ontario, Canada.,University of Toronto
| | - Zainab Fatima
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada.,University of Toronto
| | - Saman Sarraf
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
| | - Anita Oder
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
| | - Stephen C Strother
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada.,University of Toronto
| | - Cheryl L Grady
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada.,University of Toronto
| |
Collapse
|
49
|
Beaulieu K, Beland P, Pinard M, Handfield G, Handfield N, Goffaux P, Corriveau H, Léonard G. Effect of pulsed electromagnetic field therapy on experimental pain: A double-blind, randomized study in healthy young adults. Electromagn Biol Med 2016; 35:237-44. [PMID: 27014804 DOI: 10.3109/15368378.2015.1075409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies suggested that pulsed electromagnetic field (PEMF) therapy can decrease pain. To date, however, it remains difficult to determine whether the analgesic effect observed in patients are attributable to a direct effect of PEMF on pain or to an indirect effect of PEMF on inflammation and healing. In the present study, we used an experimental pain paradigm to evaluate the direct effect of PEMF on pain intensity, pain unpleasantness, and temporal summation of pain. Twenty-four healthy subjects (mean age 22 ± 2 years; 9 males) participated in the experiment. Both real and sham PEMF were administered to every participant using a randomized, double-blind, cross-over design. For each visit, PEMF was applied for 10 minutes on the right forearm using a portable device. Experimental pain was evoked before (baseline) and after PEMF with a 9 cm(2) Pelletier-type thermode, applied on the right forearm (120 s stimulation; temperature individually adjusted to produce moderate baseline pain). Pain intensity and unpleasantness were evaluated using a 0-100 numerical pain rating scale. Temporal summation was evaluated by comparing pain intensity ratings obtained at the end of tonic nociceptive stimulation (120 s) with pain intensity ratings obtained after 60 s of stimulation. When compared to baseline, there was no change in pain intensity and unpleasantness following the application of real or sham PEMF. PEMF did not affect temporal summation. The present observations suggest that PEMF does not directly influence heat pain perception in healthy individuals.
Collapse
Affiliation(s)
- Karen Beaulieu
- a École de réadaptation de l'Université de Sherbrooke , Sherbrooke , Canada.,b Clinique de physiothérapie Physio Atlas , Sherbrooke , Canada
| | - Patricia Beland
- a École de réadaptation de l'Université de Sherbrooke , Sherbrooke , Canada
| | - Marilee Pinard
- a École de réadaptation de l'Université de Sherbrooke , Sherbrooke , Canada
| | - Guilène Handfield
- c Centre et services de conditionnement cellulaires , Beloeil , Canada
| | - Nicole Handfield
- c Centre et services de conditionnement cellulaires , Beloeil , Canada
| | - Philippe Goffaux
- a École de réadaptation de l'Université de Sherbrooke , Sherbrooke , Canada.,d Centre de recherche du Centre hospitalier universitaire de Sherbrooke , Sherbrooke , Canada
| | - Hélène Corriveau
- a École de réadaptation de l'Université de Sherbrooke , Sherbrooke , Canada.,e Centre de recherche sur le vieillissement , Centre de santé et de services sociaux - Institut universitaire de gériatrie de Sherbrooke , Sherbrooke , Canada
| | - Guillaume Léonard
- a École de réadaptation de l'Université de Sherbrooke , Sherbrooke , Canada.,b Clinique de physiothérapie Physio Atlas , Sherbrooke , Canada.,e Centre de recherche sur le vieillissement , Centre de santé et de services sociaux - Institut universitaire de gériatrie de Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
50
|
Tromp D, Dufour A, Lithfous S, Pebayle T, Després O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res Rev 2015; 24:232-62. [PMID: 26318058 DOI: 10.1016/j.arr.2015.08.006] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022]
Abstract
Age-related cognitive changes often include difficulties in retrieving memories, particularly those that rely on personal experiences within their temporal and spatial contexts (i.e., episodic memories). This decline may vary depending on the studied phase (i.e., encoding, storage or retrieval), according to inter-individual differences, and whether we are talking about normal or pathological (e.g., Alzheimer disease; AD) aging. Such cognitive changes are associated with different structural and functional alterations in the human neural network that underpins episodic memory. The prefrontal cortex is the first structure to be affected by age, followed by the medial temporal lobe (MTL), the parietal cortex and the cerebellum. In AD, however, the modifications occur mainly in the MTL (hippocampus and adjacent structures) before spreading to the neocortex. In this review, we will present results that attempt to characterize normal and pathological cognitive aging at multiple levels by integrating structural, behavioral, inter-individual and neuroimaging measures of episodic memory.
Collapse
Affiliation(s)
- D Tromp
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France.
| | - A Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France; Centre d'Investigations Neurocognitives et Neurophysiologiques (CI2N - UMS 3489 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - S Lithfous
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - T Pebayle
- Centre d'Investigations Neurocognitives et Neurophysiologiques (CI2N - UMS 3489 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France
| | - O Després
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA - UMR 7364 - CNRS/UDS) - 21 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|