1
|
Wang J, Ho M, Bunick CG. Chemical, Biochemical, and Structural Similarities and Differences of Dermatological cAMP Phosphodiesterase-IV Inhibitors. J Invest Dermatol 2024:S0022-202X(24)02885-9. [PMID: 39608668 DOI: 10.1016/j.jid.2024.10.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Roflumilast, the third phosphodiesterase-IV (PDE4) inhibitor approved for use in dermatology, is indicated for topical treatment of psoriasis, seborrheic dermatitis, and atopic dermatitis, whereas its 2 predecessors, apremilast and crisaborole, are indicated for oral treatment of psoriasis and topical treatment of atopic dermatitis, respectively. All 3 are rationally designed PDE4 inhibitors, but roflumilast is the most potent and effective among the 3, with in vitro inhibitory constant half-maximal inhibitory concentration value of 0.7 nM (roflumilast), 0.14 μM (apremilast), and 0.24 μM (crisaborole), representing differences of over 3 orders of magnitude. PDE4 is a cAMP (an intracellular secondary messenger) hydrolase consisting of at least 4 subtypes of exon-spliced isoforms, which are primarily expressed in immune cells for inflammatory response. PDE4 inhibition lengthens the duration of cAMP signals and increases cellular cAMP concentrations, generating anti-inflammatory effects. We examined the physicochemical principles that make PDE4 inhibitors effective and propose chemical modifications to improve them. Sequence alignment of the catalytic domains of all phosphodiesterases identified many previously unreported invariant residues. These residues bind 1 Zn and 1 Mg ion plus 5 structural water molecules for orienting an attacking μ-hydroxyl/μ-oxo anion and for stabilizing 2 nonbridging phosphate oxygen atoms. The arrangement of the 2 divalent metal ions in phosphodiesterases is not related to that of the classic mechanism for general phosphoryl transfer.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Minh Ho
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher G Bunick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. mBio 2024; 15:e0046524. [PMID: 39404354 PMCID: PMC11559089 DOI: 10.1128/mbio.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents that potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into phase 2a clinical trials. Previous cell culture-based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. Although both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect the direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor-mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR-induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared with the WT virus. By rationally modifying PIR, we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.IMPORTANCEAntiretroviral therapies save the lives of millions of people living with HIV (PLWH). However, the evolution of multi-drug-resistant viral phenotypes is a major clinical problem, and there are limited or no treatment options for heavily treatment-experienced PLWH. Allosteric HIV-1 integrase inhibitors (ALLINIs) are a novel class of antiretroviral compounds that work by a unique mechanism of binding to the non-catalytic site on the viral protein and inducing aberrant integrase multimerization. Accordingly, ALLINIs potently inhibit both wild-type HIV-1 and all drug-resistant viral phenotypes that have so far emerged against currently used therapies. Pirmitegravir, a highly potent and safe investigational ALLINI, is currently advancing through clinical trials. Here, we have elucidated the structural and mechanistic bases behind the emergence of HIV-1 integrase mutations in infected cells that confer resistance to pirmitegravir. In turn, our findings allowed us to rationally develop an improved ALLINI with substantially enhanced potency against the pirmitegravir-resistant virus.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R. Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Schemelev AN, Davydenko VS, Ostankova YV, Reingardt DE, Serikova EN, Zueva EB, Totolian AA. Involvement of Human Cellular Proteins and Structures in Realization of the HIV Life Cycle: A Comprehensive Review, 2024. Viruses 2024; 16:1682. [PMID: 39599797 PMCID: PMC11599013 DOI: 10.3390/v16111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a global health challenge, with over 38 million people infected by the end of 2022. HIV-1, the predominant strain, primarily targets and depletes CD4+ T cells, leading to immunodeficiency and subsequent vulnerability to opportunistic infections. Despite the progress made in antiretroviral therapy (ART), drug resistance and treatment-related toxicity necessitate novel therapeutic strategies. This review delves into the intricate interplay between HIV-1 and host cellular proteins throughout the viral life cycle, highlighting key host factors that facilitate viral entry, replication, integration, and immune evasion. A focus is placed on actual findings regarding the preintegration complex, nuclear import, and the role of cellular cofactors such as FEZ1, BICD2, and NPC components in viral transport and genome integration. Additionally, the mechanisms of immune evasion via HIV-1 proteins Nef and Vpu, and their interaction with host MHC molecules and interferon signaling pathways, are explored. By examining these host-virus interactions, this review underscores the importance of host-targeted therapies in complementing ART, with a particular emphasis on the potential of genetic research and host protein stability in developing innovative treatments for HIV/AIDS.
Collapse
Affiliation(s)
- Alexandr N. Schemelev
- St. Petersburg Pasteur Institute, St. Petersburg 197101, Russia; (V.S.D.); (Y.V.O.); (D.E.R.); (E.N.S.); (E.B.Z.); (A.A.T.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Espinoza JL, Phillips A, Prentice MB, Tan GS, Kamath PL, Lloyd KG, Dupont CL. Unveiling the microbial realm with VEBA 2.0: a modular bioinformatics suite for end-to-end genome-resolved prokaryotic, (micro)eukaryotic and viral multi-omics from either short- or long-read sequencing. Nucleic Acids Res 2024; 52:e63. [PMID: 38909293 DOI: 10.1093/nar/gkae528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
The microbiome is a complex community of microorganisms, encompassing prokaryotic (bacterial and archaeal), eukaryotic, and viral entities. This microbial ensemble plays a pivotal role in influencing the health and productivity of diverse ecosystems while shaping the web of life. However, many software suites developed to study microbiomes analyze only the prokaryotic community and provide limited to no support for viruses and microeukaryotes. Previously, we introduced the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite to address this critical gap in microbiome research by extending genome-resolved analysis beyond prokaryotes to encompass the understudied realms of eukaryotes and viruses. Here we present VEBA 2.0 with key updates including a comprehensive clustered microeukaryotic protein database, rapid genome/protein-level clustering, bioprospecting, non-coding/organelle gene modeling, genome-resolved taxonomic/pathway profiling, long-read support, and containerization. We demonstrate VEBA's versatile application through the analysis of diverse case studies including marine water, Siberian permafrost, and white-tailed deer lung tissues with the latter showcasing how to identify integrated viruses. VEBA represents a crucial advancement in microbiome research, offering a powerful and accessible software suite that bridges the gap between genomics and biotechnological solutions.
Collapse
Affiliation(s)
- Josh L Espinoza
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Allan Phillips
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Melanie B Prentice
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Gene S Tan
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME 04469, USA
| | - Karen G Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN 37917, USA
| | - Chris L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Li M, Li Z, Chen X, Cui Y, Engelman AN, Craigie R. HIV-1 Intasomes Assembled with Excess Integrase C-Terminal Domain Protein Facilitate Structural Studies by Cryo-EM and Reveal the Role of the Integrase C-Terminal Tail in HIV-1 Integration. Viruses 2024; 16:1166. [PMID: 39066328 PMCID: PMC11281638 DOI: 10.3390/v16071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Retroviral integration is mediated by intasome nucleoprotein complexes wherein a pair of viral DNA ends are bridged together by a multimer of integrase (IN). Atomic-resolution structures of HIV-1 intasomes provide detailed insights into the mechanism of integration and inhibition by clinical IN inhibitors. However, previously described HIV-1 intasomes are highly heterogeneous and have the tendency to form stacks, which is a limiting factor in determining high-resolution cryo-EM maps. We have assembled HIV-1 intasomes in the presence of excess IN C-terminal domain protein, which was readily incorporated into the intasomes. The purified intasomes were largely homogeneous and exhibited minimal stacking tendencies. The cryo-EM map resolution was further improved to 2.01 Å, which will greatly facilitate structural studies of IN inhibitor action and drug resistance mechanisms. The C-terminal 18 residues of HIV-1 IN, which are critical for virus replication and integration in vitro, have not been well resolved in previous intasome structures, and its function remains unclear. We show that the C-terminal tail participates in intasome assembly, resides within the intasome core, and forms a small alpha helix (residues 271-276). Mutations that disrupt alpha helix integrity impede IN activity in vitro and disrupt HIV-1 infection at the step of viral DNA integration.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (Z.L.); (A.N.E.)
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei 230601, China;
| | - Yanxiang Cui
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (Z.L.); (A.N.E.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Chagas BCA, Zhou X, Guerrero M, Ilina TV, Ishima R. Interplay between protease and reverse transcriptase dimerization in a model HIV-1 polyprotein. Protein Sci 2024; 33:e5080. [PMID: 38896002 PMCID: PMC11187873 DOI: 10.1002/pro.5080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
The Gag-Pol polyprotein in human immunodeficiency virus type I (HIV-1) encodes enzymes that are essential for virus replication: protease (PR), reverse transcriptase (RT), and integrase (IN). The mature forms of PR, RT and IN are homodimer, heterodimer and tetramer, respectively. The precise mechanism underlying the formation of dimer or tetramer is not yet understood. Here, to gain insight into the dimerization of PR and RT in the precursor, we prepared a model precursor, PR-RT, incorporating an inactivating mutation at the PR active site, D25A, and including two residues in the p6* region, fused to a SUMO-tag, at the N-terminus of the PR region. We also prepared two mutants of PR-RT containing a dimer dissociation mutation either in the PR region, PR(T26A)-RT, or in the RT region, PR-RT(W401A). Size exclusion chromatography showed both monomer and dimer fractions in PR-RT and PR(T26A)-RT, but only monomer in PR-RT(W401A). SEC experiments of PR-RT in the presence of protease inhibitor, darunavir, significantly enhanced the dimerization. Additionally, SEC results suggest an estimated PR-RT dimer dissociation constant that is higher than that of the mature RT heterodimer, p66/p51, but slightly lower than the premature RT homodimer, p66/p66. Reverse transcriptase assays and RT maturation assays were performed as tools to assess the effects of the PR dimer-interface on these functions. Our results consistently indicate that the RT dimer-interface plays a crucial role in the dimerization in PR-RT, whereas the PR dimer-interface has a lesser role.
Collapse
Affiliation(s)
| | - Xiaohong Zhou
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Michel Guerrero
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tatiana V. Ilina
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Rieko Ishima
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Grandgenett DP, Engelman AN. Brief Histories of Retroviral Integration Research and Associated International Conferences. Viruses 2024; 16:604. [PMID: 38675945 PMCID: PMC11054761 DOI: 10.3390/v16040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.
Collapse
Affiliation(s)
- Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Hao M, Imamichi T, Chang W. Modeling and Analysis of HIV-1 Pol Polyprotein as a Case Study for Predicting Large Polyprotein Structures. Int J Mol Sci 2024; 25:1809. [PMID: 38339086 PMCID: PMC10855158 DOI: 10.3390/ijms25031809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV). HIV protease, reverse transcriptase, and integrase are targets of current drugs to treat the disease. However, anti-viral drug-resistant strains have emerged quickly due to the high mutation rate of the virus, leading to the demand for the development of new drugs. One attractive target is Gag-Pol polyprotein, which plays a key role in the life cycle of HIV. Recently, we found that a combination of M50I and V151I mutations in HIV-1 integrase can suppress virus release and inhibit the initiation of Gag-Pol autoprocessing and maturation without interfering with the dimerization of Gag-Pol. Additional mutations in integrase or RNase H domain in reverse transcriptase can compensate for the defect. However, the molecular mechanism is unknown. There is no tertiary structure of the full-length HIV-1 Pol protein available for further study. Therefore, we developed a workflow to predict the tertiary structure of HIV-1 NL4.3 Pol polyprotein. The modeled structure has comparable quality compared with the recently published partial HIV-1 Pol structure (PDB ID: 7SJX). Our HIV-1 NL4.3 Pol dimer model is the first full-length Pol tertiary structure. It can provide a structural platform for studying the autoprocessing mechanism of HIV-1 Pol and for developing new potent drugs. Moreover, the workflow can be used to predict other large protein structures that cannot be resolved via conventional experimental methods.
Collapse
Affiliation(s)
| | | | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (M.H.); (T.I.)
| |
Collapse
|
9
|
Jing T, Shan Z, Dinh T, Biswas A, Jang S, Greenwood J, Li M, Zhang Z, Gray G, Shin HJ, Zhou B, Passos D, Aiyer S, Li Z, Craigie R, Engelman AN, Kvaratskhelia M, Lyumkis D. Oligomeric HIV-1 Integrase Structures Reveal Functional Plasticity for Intasome Assembly and RNA Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577436. [PMID: 38328132 PMCID: PMC10849644 DOI: 10.1101/2024.01.26.577436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Integrase (IN) performs dual essential roles during HIV-1 replication. During ingress, IN functions within an oligomeric "intasome" assembly to catalyze viral DNA integration into host chromatin. During late stages of infection, tetrameric IN binds viral RNA and orchestrates the condensation of ribonucleoprotein complexes into the capsid core. The molecular architectures of HIV-1 IN assemblies that mediate these distinct events remain unknown. Furthermore, the tetramer is an important antiviral target for allosteric IN inhibitors. Here, we determined cryo-EM structures of wildtype HIV-1 IN tetramers and intasome hexadecamers. Our structures unveil a remarkable plasticity that leverages IN C-terminal domains and abutting linkers to assemble functionally distinct oligomeric forms. Alteration of a newly recognized conserved interface revealed that both IN functions track with tetramerization in vitro and during HIV-1 infection. Collectively, our findings reveal how IN plasticity orchestrates its diverse molecular functions, suggest a working model for IN-viral RNA binding, and provide atomic blueprints for allosteric IN inhibitor development.
Collapse
Affiliation(s)
- Tao Jing
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Zelin Shan
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tung Dinh
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Avik Biswas
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Juliet Greenwood
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive Diseases, Bethesda, MD, 20892, USA
| | - Zeyuan Zhang
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gennavieve Gray
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Hye Jeong Shin
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Bo Zhou
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dario Passos
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sriram Aiyer
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Zhen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive Diseases, Bethesda, MD, 20892, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577387. [PMID: 38328097 PMCID: PMC10849636 DOI: 10.1101/2024.01.26.577387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents which potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into Phase 2a clinical trials. Previous cell culture based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. While both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared to the WT virus. By rationally modifying PIR we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Borgelt L, Wu P. Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. ACS Chem Biol 2023; 18:2101-2113. [PMID: 37382390 PMCID: PMC10594538 DOI: 10.1021/acschembio.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Ribonucleases (RNases) cleave and process RNAs, thereby regulating the biogenesis, metabolism, and degradation of coding and noncoding RNAs. Thus, small molecules targeting RNases have the potential to perturb RNA biology, and RNases have been studied as therapeutic targets of antibiotics, antivirals, and agents for autoimmune diseases and cancers. Additionally, the recent advances in chemically induced proximity approaches have led to the discovery of bifunctional molecules that target RNases to achieve RNA degradation or inhibit RNA processing. Here, we summarize the efforts that have been made to discover small-molecule inhibitors and activators targeting bacterial, viral, and human RNases. We also highlight the emerging examples of RNase-targeting bifunctional molecules and discuss the trends in developing such molecules for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max
Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
| | | |
Collapse
|
12
|
Tocco G, Canton S, Laus A, Caboni P, Le Grice SFJ, Tramontano E, Esposito F. Dihydroxyphenyl- and Heteroaromatic-Based Thienopyrimidinones to Tackle HIV-1 LEDGF/p75-Dependent IN Activity. Molecules 2023; 28:6700. [PMID: 37764476 PMCID: PMC10537185 DOI: 10.3390/molecules28186700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).
Collapse
Affiliation(s)
- Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Serena Canton
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Antonio Laus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Stuart F. J. Le Grice
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA;
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.C.); (A.L.); (P.C.); (E.T.); (F.E.)
| |
Collapse
|
13
|
Renzi G, Carta F, Supuran CT. The Integrase: An Overview of a Key Player Enzyme in the Antiviral Scenario. Int J Mol Sci 2023; 24:12187. [PMID: 37569561 PMCID: PMC10419282 DOI: 10.3390/ijms241512187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Integration of a desossiribonucleic acid (DNA) copy of the viral ribonucleic acid (RNA) into host genomes is a fundamental step in the replication cycle of all retroviruses. The highly conserved virus-encoded Integrase enzyme (IN; EC 2.7.7.49) catalyzes such a process by means of two consecutive reactions named 3'-processing (3-P) and strand transfer (ST). The Authors report and discuss the major discoveries and advances which mainly contributed to the development of Human Immunodeficiency Virus (HIV) -IN targeted inhibitors for therapeutic applications. All the knowledge accumulated over the years continues to serve as a valuable resource for the design and development of effective antiretroviral drugs.
Collapse
Affiliation(s)
| | - Fabrizio Carta
- Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA) Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (G.R.); (C.T.S.)
| | | |
Collapse
|
14
|
Bonnard D, Le Rouzic E, Singer MR, Yu Z, Le Strat F, Batisse C, Batisse J, Amadori C, Chasset S, Pye VE, Emiliani S, Ledoussal B, Ruff M, Moreau F, Cherepanov P, Benarous R. Biological and Structural Analyses of New Potent Allosteric Inhibitors of HIV-1 Integrase. Antimicrob Agents Chemother 2023; 67:e0046223. [PMID: 37310224 PMCID: PMC10353390 DOI: 10.1128/aac.00462-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.
Collapse
Affiliation(s)
| | | | - Matthew R. Singer
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | - Zhe Yu
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Claire Batisse
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | - Julien Batisse
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | - Céline Amadori
- Biodim, Romainville, France
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | | | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
| | | | | | - Marc Ruff
- IGBMC, INSERM, CNRS, Université de Strasbourg, Illkirch, France
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, London, United Kingdom
| | | |
Collapse
|
15
|
Alalmaie A, Diaf S, Khashan R. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system. J Genet Eng Biotechnol 2023; 21:60. [PMID: 37191877 DOI: 10.1186/s43141-023-00507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
CRISPR-Cas9 is a popular gene-editing tool that allows researchers to introduce double-strand breaks to edit parts of the genome. CRISPR-Cas9 system is used more than other gene-editing tools because it is simple and easy to customize. However, Cas9 may produce unintended double-strand breaks in DNA, leading to off-target effects. There have been many improvements in the CRISPR-Cas system to control the off-target effect and improve the efficiency. The presence of a nuclease-deficient CRISPR-Cas system in several bacterial Tn7-like transposons inspires researchers to repurpose to direct the insertion of Tn7-like transposons instead of cleaving the target DNA, which will eventually limit the risk of off-target effects. Two transposon-encoded CRISPR-Cas systems have been experimentally confirmed. The first system, found in Tn7 like-transposon (Tn6677), is associated with the variant type I-F CRISPR-Cas system. The second one, found in Tn7 like-transposon (Tn5053), is related to the variant type V-K CRISPR-Cas system. This review describes the molecular and structural mechanisms of DNA targeting by the transposon-encoded type I-F CRISPR-Cas system, from assembly around the CRISPR-RNA (crRNA) to the initiation of transposition.
Collapse
Affiliation(s)
- Amnah Alalmaie
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Saousen Diaf
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Raed Khashan
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Long Island University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
16
|
Yuldasheva GA, Argirova R, Ilin AI. Molecular Modeling of the Anti-HIV Activity Mechanism of Iodine-Containing Drugs Armenicum and FS-1. ACS OMEGA 2023; 8:8617-8624. [PMID: 36910923 PMCID: PMC9996613 DOI: 10.1021/acsomega.2c07720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Drugs Armenicum and FS-1 are a solution of ionic nanostructured complexes of α-dextrin. In the active centers of these drugs, located inside the dextrin helix, molecular iodine has such an electronic form that minimizes toxic effects in the human body, so these drugs can be used for parenteral and oral administration. On the human lymphoblastoid cell line MT-2, the effect of the antiviral action of FS-1 against HIV-1 was established. Literature data on the results of treatment of people with HIV infection with Armenicum are presented. The mechanism of anti-HIV action of drugs Armenicum and FS-1 was proposed by the molecular modeling method. Using the DFT/B3PW91/6-31G** approach, it was shown that LiI(Cl)I2 active center drugs of Armenicum and FS-1 can be segregated from the dextrin helix and can form a complex with the ACT nucleotide triplet, which is part of a specific fragment of viral DNA that binds to the active center of integrase. The formation of this complex is a key moment in the mechanism of anti-HIV drug action. Molecular iodine and lithium halide, which are part of the active complexes, inhibit the active center of the catalytic domain of the integrase. A new nucleoprotein complex is created that destroys the nucleoprotein preintegration complex (PIC) and inhibits the HIV DNA and the active center of the catalytic domain, while a new N-I bond appears in the viral DNA in the cytosine pyrimidine cycle.
Collapse
Affiliation(s)
| | - Radka Argirova
- Clinical
Laboratory Tokuda Hospital, Street 51B Nikola I. Vaptsarov Boulevard, Lozenets, Sofia 1407, Bulgaria
| | | |
Collapse
|
17
|
Eilers G, Gupta K, Allen A, Montermoso S, Murali H, Sharp R, Hwang Y, Bushman FD, Van Duyne G. Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. PLoS Pathog 2023; 19:e1011097. [PMID: 36867659 PMCID: PMC10016701 DOI: 10.1371/journal.ppat.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/15/2023] [Accepted: 01/03/2023] [Indexed: 03/04/2023] Open
Abstract
HIV integrase (IN) inserts viral DNA into the host genome and is the target of the strand transfer inhibitors (STIs), a class of small molecules currently in clinical use. Another potent class of antivirals is the allosteric inhibitors of integrase, or ALLINIs. ALLINIs promote IN aggregation by stabilizing an interaction between the catalytic core domain (CCD) and carboxy-terminal domain (CTD) that undermines viral particle formation in late replication. Ongoing challenges with inhibitor potency, toxicity, and viral resistance motivate research to understand their mechanism. Here, we report a 2.93 Å X-ray crystal structure of the minimal ternary complex between CCD, CTD, and the ALLINI BI-224436. This structure reveals an asymmetric ternary complex with a prominent network of π-mediated interactions that suggest specific avenues for future ALLINI development and optimization.
Collapse
Affiliation(s)
- Grant Eilers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Audrey Allen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hemma Murali
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Singer MR, Dinh T, Levintov L, Annamalai AS, Rey JS, Briganti L, Cook NJ, Pye VE, Taylor IA, Kim K, Engelman AN, Kim B, Perilla JR, Kvaratskhelia M, Cherepanov P. The Drug-Induced Interface That Drives HIV-1 Integrase Hypermultimerization and Loss of Function. mBio 2023; 14:e0356022. [PMID: 36744954 PMCID: PMC9973045 DOI: 10.1128/mbio.03560-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing the aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, namely, BI-D and the drug candidate Pirmitegravir. The structures reveal atomistic details of the ALLINI-induced interface between the HIV-1 IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the IN CCD dimer, the compounds act as molecular glue by engaging a triad of invariant HIV-1 IN CTD residues, namely, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The drug-induced interface involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail region. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of Pirmitegravir. Our results explain the mechanism of the ALLINI-induced condensation of HIV-1 IN and provide a reliable template for the rational development of this series of antiretrovirals through the optimization of their key contacts with the viral target. IMPORTANCE Despite the remarkable success of combination antiretroviral therapy, HIV-1 remains among the major causes of human suffering and loss of life in poor and developing nations. To prevail in this drawn-out battle with the pandemic, it is essential to continue developing advanced antiviral agents to fight drug resistant HIV-1 variants. Allosteric integrase inhibitors (ALLINIs) are an emerging class of HIV-1 antagonists that are orthogonal to the current antiretroviral drugs. These small molecules act as highly specific molecular glue, which triggers the aggregation of HIV-1 integrase. In this work, we present high-resolution crystal structures that reveal the crucial interactions made by two potent ALLINIs, namely, BI-D and Pirmitegravir, with HIV-1 integrase. Our results explain the mechanism of drug action and will inform the development of this promising class of small molecules for future use in antiretroviral regimens.
Collapse
Affiliation(s)
- Matthew R. Singer
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tung Dinh
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nicola J. Cook
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Valerie E. Pye
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Baek Kim
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
IS481EU Shows a New Connection between Eukaryotic and Prokaryotic DNA Transposons. BIOLOGY 2023; 12:biology12030365. [PMID: 36979057 PMCID: PMC10045372 DOI: 10.3390/biology12030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
DDD/E transposase gene is the most abundant gene in nature and many DNA transposons in all three domains of life use it for their transposition. A substantial number of eukaryotic DNA transposons show similarity to prokaryotic insertion sequences (ISs). The presence of IS481-like DNA transposons was indicated in the genome of Trichomonas vaginalis. Here, we surveyed IS481-like eukaryotic sequences using a bioinformatics approach and report a group of eukaryotic IS481-like DNA transposons, designated IS481EU, from parabasalids including T. vaginalis. The lengths of target site duplications (TSDs) of IS481EU are around 4 bps, around 15 bps, or around 25 bps, and strikingly, these discrete lengths of TSDs can be observed even in a single IS481EU family. Phylogenetic analysis indicated the close relationships of IS481EU with some of the prokaryotic IS481 family members. IS481EU was not well separated from IS3EU/GingerRoot in the phylogenetic analysis, but was distinct from other eukaryotic DNA transposons including Ginger1 and Ginger2. The unique characteristics of IS481EU in protein sequences and the distribution of TSD lengths support its placement as a new superfamily of eukaryotic DNA transposons.
Collapse
|
20
|
Shree A, Sinha M, Verma PK. BAR domain is essential for early endosomal trafficking and dynamics in Ascochyta rabiei. 3 Biotech 2023; 13:49. [PMID: 36685317 PMCID: PMC9845463 DOI: 10.1007/s13205-022-03451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Ascochyta blight disease is a devastating disease caused by the fungal pathogen Ascochyta rabiei that threatens chickpea production around the globe. Endocytic mechanism has a significant role in fungal growth and virulence. The underlying biology of biogenesis of central component of endocytosis viz Rab5 vesicles, is not completely understood. The involvement of F-BAR domain containing protein (ArF-BAR) in various cellular processes that collectively make ArF-BAR as an important virulence determinant. Here, we report that ArF-BAR is involved in biogenesis and motility of early endosome. In the absence of ArF-BAR gene (Δarf-bar), fungal mutants exhibited reduced number of EGFP coated ArRab5 vesicles, along with the considerable reduction in their dynamics. Here, we show that ArF-BAR interacts with clathrin light chain (ArCLC), specifically with its F-BAR domain. These findings suggests the novel role of ArF-BAR in biogenesis and dynamics of early endosome. Additionally, ArF-BAR is involved in clathrin-mediated mechanism of endocytosis which is required for host infection and disease development. Identification of this pathway offers new impending targets for disease intervention in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03451-5.
Collapse
Affiliation(s)
- Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Manisha Sinha
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
21
|
Johnson MM, Jones CE, Clark DN. The Effect of Treatment-Associated Mutations on HIV Replication and Transmission Cycles. Viruses 2022; 15:107. [PMID: 36680147 PMCID: PMC9861436 DOI: 10.3390/v15010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
HIV/AIDS mortality has been decreasing over the last decade. While promising, this decrease correlated directly with increased use of antiretroviral drugs. As a natural consequence of its high mutation rate, treatments provide selection pressure that promotes the natural selection of escape mutants. Individuals may acquire drug-naive strains, or those that have already mutated due to treatment. Even within a host, mutation affects HIV tropism, where initial infection begins with R5-tropic virus, but the clinical transition to AIDS correlates with mutations that lead to an X4-tropic switch. Furthermore, the high mutation rate of HIV has spelled failure for all attempts at an effective vaccine. Pre-exposure drugs are currently the most effective drug-based preventatives, but their effectiveness is also threatened by viral mutation. From attachment and entry to assembly and release, the steps in the replication cycle are also discussed to describe the drug mechanisms and mutations that arise due to those drugs. Revealing the patterns of HIV-1 mutations, their effects, and the coordinated attempt to understand and control them will lead to effective use of current preventative measures and treatment options, as well as the development of new ones.
Collapse
Affiliation(s)
- Madison M. Johnson
- Department of Microbiology, Weber State University, Ogden, UT 84408, USA
| | | | | |
Collapse
|
22
|
Rocchi C, Louvat C, Miele AE, Batisse J, Guillon C, Ballut L, Lener D, Negroni M, Ruff M, Gouet P, Fiorini F. The HIV-1 Integrase C-Terminal Domain Induces TAR RNA Structural Changes Promoting Tat Binding. Int J Mol Sci 2022; 23:13742. [PMID: 36430221 PMCID: PMC9692563 DOI: 10.3390/ijms232213742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Recent evidence indicates that the HIV-1 Integrase (IN) binds the viral genomic RNA (gRNA), playing a critical role in the morphogenesis of the viral particle and in the stability of the gRNA once in the host cell. By combining biophysical, molecular biology, and biochemical approaches, we found that the 18-residues flexible C-terminal tail of IN acts as a sensor of the peculiar apical structure of the trans-activation response element RNA (TAR), interacting with its hexaloop. We show that the binding of the whole IN C-terminal domain modifies TAR structure, exposing critical nucleotides. These modifications favour the subsequent binding of the HIV transcriptional trans-activator Tat to TAR, finally displacing IN from TAR. Based on these results, we propose that IN assists the binding of Tat to TAR RNA. This working model provides a mechanistic sketch accounting for the emerging role of IN in the early stages of proviral transcription and could help in the design of anti-HIV-1 therapeutics against this new target of the viral infectious cycle.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Camille Louvat
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Adriana Erica Miele
- Institute of Analytical Sciences, UMR 5280 CNRS UCBL University of Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Julien Batisse
- Chromatin Stability and DNA Mobility, Department of Integrated Structural Biology, IGBMC, CNRS, UMR 7104—Inserm U 158, University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Christophe Guillon
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Daniela Lener
- RNA Architecture and Reactivity, IBMC, CNRS, UPR 9002, University of Strasbourg, 2, Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Matteo Negroni
- RNA Architecture and Reactivity, IBMC, CNRS, UPR 9002, University of Strasbourg, 2, Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Marc Ruff
- Chromatin Stability and DNA Mobility, Department of Integrated Structural Biology, IGBMC, CNRS, UMR 7104—Inserm U 158, University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| |
Collapse
|
23
|
Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int J Mol Sci 2022; 23:ijms232012341. [PMID: 36293197 PMCID: PMC9603942 DOI: 10.3390/ijms232012341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.
Collapse
|
24
|
Troyano-Hernáez P, Reinosa R, Holguín A. Genetic Diversity and Low Therapeutic Impact of Variant-Specific Markers in HIV-1 Pol Proteins. Front Microbiol 2022; 13:866705. [PMID: 35910645 PMCID: PMC9330395 DOI: 10.3389/fmicb.2022.866705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of new HIV-1 variants pose a challenge for the effectiveness of antiretrovirals (ARV) targeting Pol proteins. During viral evolution, non-synonymous mutations have fixed along the viral genome, leading to amino acid (aa) changes that can be variant-specific (V-markers). Those V-markers fixed in positions associated with drug resistance mutations (DRM), or R-markers, can impact drug susceptibility and resistance pathways. All available HIV-1 Pol sequences from ARV-naïve subjects were downloaded from the United States Los Alamos HIV Sequence Database, selecting 59,733 protease (PR), 6,437 retrotranscriptase (RT), and 6,059 integrase (IN) complete sequences ascribed to the four HIV-1 groups and group M subtypes and circulating recombinant forms (CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio), we inferred the consensus sequences for each Pol protein and HIV-1 variant to analyze the aa conservation in Pol. We analyzed the Wu–Kabat protein variability coefficient (WK) in PR, RT, and IN group M to study the susceptibility of each site to evolutionary replacements. We identified as V-markers the variant-specific aa changes present in >75% of the sequences in variants with >5 available sequences, considering R-markers those V-markers that corresponded to DRM according to the IAS-USA2019 and Stanford-Database 9.0. The mean aa conservation of HIV-1 and group M consensus was 82.60%/93.11% in PR, 88.81%/94.07% in RT, and 90.98%/96.02% in IN. The median group M WK was 10 in PR, 4 in RT, and 5 in IN. The residues involved in binding or catalytic sites showed a variability <0.5%. We identified 106 V-markers: 31 in PR, 28 in RT, and 47 in IN, present in 11, 12, and 13 variants, respectively. Among them, eight (7.5%) were R-markers, present in five variants, being minor DRM with little potential effect on ARV susceptibility. We present a thorough analysis of Pol variability among all HIV-1 variants circulating to date. The relatively high aa conservation observed in Pol proteins across HIV-1 variants highlights their critical role in the viral cycle. However, further studies are needed to understand the V-markers’ impact on the Pol proteins structure, viral cycle, or treatment strategies, and periodic variability surveillance studies are also required to understand PR, RT, and IN evolution.
Collapse
|
25
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
26
|
Engelman AN, Kvaratskhelia M. Multimodal Functionalities of HIV-1 Integrase. Viruses 2022; 14:926. [PMID: 35632668 PMCID: PMC9144474 DOI: 10.3390/v14050926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Ding L, Huang H, Lu F, Lu J, Zhou X, Zhang Y, Cai M. Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature. J Ind Microbiol Biotechnol 2022; 49:kuab073. [PMID: 34661657 PMCID: PMC9113092 DOI: 10.1093/jimb/kuab073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Polar regions are rich in microbial and product resources. Geomyces sp. WNF-15A is an Antarctic psy chrotrophic filamentous fungus producing high quality red pigment with potential for industrial use. However, efficient biosynthesis of red pigment can only realize at low temperature, which brings difficult control and high cost for the large-scale fermentation. This study aims to develop transposon insertion mutation method to improve cell growth and red pigment production adaptive to normal temperature. Genetic manipulation system of this fungus was firstly developed by antibiotic marker screening, protoplast preparation and transformation optimization, by which transformation efficiency of ∼50% was finally achieved. Then transposable insertion systems were established using Helitron, Fot1, and Impala transposons. The transposition efficiency reached 11.9%, 9.4%, and 4.6%, respectively. Mutant MP1 achieved the highest red pigment production (OD520 of 39) at 14°C, which was 40% higher than the wild-type strain. Mutant MP14 reached a maximum red pigment production (OD520 of 14.8) at 20°C, which was about twofold of the wild-type strain. Mutants MP2 and MP10 broke the repression mechanism of red pigment biosynthesis in the wild-type and allowed production at 25°C. For cell growth, eight mutants grew remarkably better (12%∼30% biomass higher) than the wild-type at 25°C. This study established an efficient genetic manipulation and transposon insertion mutation platform for polar filamentous fungus. It provides reference for genetic breeding of psychrotrophic fungi from polar and other regions.
Collapse
Affiliation(s)
- Lulu Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hezhou Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengning Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangshan Zhou
- China Resources Angde Biotech Pharma Co., Ltd., 78 E-jiao Street, Liaocheng, Shandong 252299, China
- China Resources Biopharmaceutical Co., Ltd., 1301-84 Sightseeing Road, Shenzhen 518110, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Abstract
A hallmark of retroviral replication is establishment of the proviral state, wherein a DNA copy of the viral RNA genome is stably incorporated into a host cell chromosome. Integrase is the viral enzyme responsible for the catalytic steps involved in this process, and integrase strand transfer inhibitors are widely used to treat people living with HIV. Over the past decade, a series of X-ray crystallography and cryogenic electron microscopy studies have revealed the structural basis of retroviral DNA integration. A variable number of integrase molecules congregate on viral DNA ends to assemble a conserved intasome core machine that facilitates integration. The structures additionally informed on the modes of integrase inhibitor action and the means by which HIV acquires drug resistance. Recent years have witnessed the development of allosteric integrase inhibitors, a highly promising class of small molecules that antagonize viral morphogenesis. In this Review, we explore recent insights into the organization and mechanism of the retroviral integration machinery and highlight open questions as well as new directions in the field.
Collapse
|
29
|
Advances in the development of HIV integrase strand transfer inhibitors. Eur J Med Chem 2021; 225:113787. [PMID: 34425310 DOI: 10.1016/j.ejmech.2021.113787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
HIV-1 integrase (IN) is a key enzyme in viral replication that catalyzes the covalent integration of viral cDNA into the host genome. Currently, five HIV-1 IN strand transfer inhibitors (INSTIs) are approved for clinical use. These drugs represent an important addition to the armamentarium for antiretroviral therapy. This review briefly illustrates the development history of INSTIs. The characteristics of the currently approved INSTIs, as well as their future perspectives, are critically discussed.
Collapse
|
30
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
31
|
Yang J, Hao M, Khan MA, Rehman MT, Highbarger HC, Chen Q, Goswami S, Sherman BT, Rehm CA, Dewar RL, Chang W, Imamichi T. A Combination of M50I and V151I Polymorphic Mutations in HIV-1 Subtype B Integrase Results in Defects in Autoprocessing. Viruses 2021; 13:2331. [PMID: 34835137 PMCID: PMC8625782 DOI: 10.3390/v13112331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
We have recently reported that a recombinant HIV-1NL4.3 containing Met-to-Ile change at codon 50 of integrase (IN) (IN:M50I) exhibits suppression of the virus release below 0.5% of WT HIV, and the released viral particles are replication-incompetent due to defects in Gag/GagPol processing by inhibition of the initiation of autoprocessing of GagPol polyproteins in the virions and leads to replication-incompetent viruses. The coexisting Ser-to-Asn change at codon 17 of IN or Asn-to-Ser mutation at codon 79 of RNaseH (RH) compensated the defective IN:M50I phenotype, suggesting that both IN and RH regulate an HIV infectability. In the current study, to elucidate a distribution of the three mutations during anti-retroviral therapy among patients, we performed a population analysis using 529 plasma virus RNA sequences obtained through the MiSeq. The result demonstrated that 14 plasma HIVs contained IN:M50I without the compensatory mutations. Comparing the sequences of the 14 viruses with that of the defective virus illustrated that only Val-to-Ile change at codon 151 of IN (IN:V151I) existed in the recombinant virus. This IN:V151I is known as a polymorphic mutation and was derived from HIVNL4.3 backbone. A back-mutation at 151 from Ile-to-Val in the defective virus recovered HIV replication capability, and Western Blotting assay displayed that the back-mutation restored Gag/GagPol processing in viral particles. These results demonstrate that a combination of IN:M50I and IN:V151I mutations, but not IN:M50I alone, produces a defective virus.
Collapse
Affiliation(s)
- Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Muhammad A. Khan
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Muhammad T. Rehman
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Helene C. Highbarger
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Catherine A. Rehm
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA;
| | - Robin L. Dewar
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| |
Collapse
|
32
|
Imamichi T, Bernbaum JG, Laverdure S, Yang J, Chen Q, Highbarger H, Hao M, Sui H, Dewar R, Chang W, Lane HC. Natural Occurring Polymorphisms in HIV-1 Integrase and RNase H Regulate Viral Release and Autoprocessing. J Virol 2021; 95:e0132321. [PMID: 34523971 PMCID: PMC8577372 DOI: 10.1128/jvi.01323-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, a genome-wide association study using plasma HIV RNA from antiretroviral therapy-naive patients reported that 14 naturally occurring nonsynonymous single-nucleotide polymorphisms (SNPs) in HIV derived from antiretrovirus drug-naive patients were associated with virus load (VL). Those SNPs were detected in reverse transcriptase, RNase H, integrase, envelope, and Nef. However, the impact of each mutation on viral fitness was not investigated. Here, we constructed a series of HIV variants encoding each SNP and examined their replicative abilities. An HIV variant containing a Met-to-Ile change at codon 50 in integrase [HIV(IN:M50I)] was found as an impaired virus. Despite the mutation being in integrase, the virus release was significantly suppressed (P < 0.001). Transmission electron microscopy analysis revealed that abnormal bud accumulation on the plasma membrane and the released virus particles retained immature forms. Western blot analysis demonstrated a defect in autoprocessing of GagPol and Gag polyproteins' autoprocessing in the HIV(IN:M50I) particles, although Förster resonance energy transfer (FRET) assay displayed that GagPol containing IN:M50I forms a homodimer with a similar efficiency with GagPol (wild type). The impaired maturation and replication were rescued by two other VL-associated SNPs, Ser-to-Asn change at codon 17 of integrase and Asn-to-Ser change at codon 79 of RNase H. These data demonstrate that Gag and GagPol assembly, virus release, and autoprocessing are regulated by not only integrase but also RNase H. IMPORTANCE Nascent HIV-1 is a noninfectious viral particle. Cleaving Gag and GagPol polyproteins in the particle by mature HIV protease (PR), the nascent virus becomes an infectious virus. PR is initially translated as an inactive embedded enzyme in a GagPol polyprotein. The embedded PR in homodimerized GagPol polyproteins catalyzes a proteolytic reaction to release the mature PR. This excision step by self-cleavage is called autoprocessing. Here, during the evaluation of the roles of naturally emerging nonsynonymous SNPs in HIV RNA, we found that autoprocessing is inhibited by Met-to-Ile change at codon 50 in integrase GagPol. Other coexisting SNPs, Ser-to-Asn change at codon 17 in integrase or Asn-to-Ser mutation at codon 79 in RNase H, recovered this defect, suggesting that autoprocessing is regulated by not only integrase but also RNase H in GagPol polyprotein.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - John G. Bernbaum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Helene Highbarger
- Virus Isolation and Serology Laboratory, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Robin Dewar
- Virus Isolation and Serology Laboratory, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Directorate, Frederick National Laboratory, Frederick, Maryland, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Mahboubi-Rabbani M, Abbasi M, Hajimahdi Z, Zarghi A. HIV-1 Reverse Transcriptase/Integrase Dual Inhibitors: A Review of Recent Advances and Structure-activity Relationship Studies. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:333-369. [PMID: 34567166 PMCID: PMC8457747 DOI: 10.22037/ijpr.2021.115446.15370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The significant threat to humanity is HIV infection, and it is uncertain whether a definitive treatment or a safe HIV vaccine is. HIV-1 is continually evolving and resistant to commonly used HIV-resistant medications, presenting significant obstacles to HIV infection management. The drug resistance adds to the need for new anti-HIV drugs; it chooses ingenious approaches to fight the emerging virus. Highly Active Antiretroviral Therapy (HAART), a multi-target approach for specific therapies, has proved effective in AIDS treatment. Therefore, it is a dynamic system with high prescription tension, increased risk of medication reactions, and adverse effects, leading to poor compliance with patients. In the HIV-1 lifecycle, two critical enzymes with high structural and functional analogies are reverse transcriptase (RT) and integrase (IN), which can be interpreted as druggable targets for modern dual-purpose inhibitors. Designed multifunctional ligand (DML) is a new technique that recruited many targets to be achieved by one chemical individual. A single chemical entity that acts for multiple purposes can be much more successful than a complex multidrug program. The production of these multifunctional ligands as antiretroviral drugs is valued with the advantage that the viral-replication process may end in two or more phases. This analysis will discuss the RT-IN dual-inhibitory scaffolds' developments documented so far.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Tabasi M, Nombela I, Janssens J, Lahousse AP, Christ F, Debyser Z. Role of Transportin-SR2 in HIV-1 Nuclear Import. Viruses 2021; 13:829. [PMID: 34064404 PMCID: PMC8147801 DOI: 10.3390/v13050829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The HIV replication cycle depends on the interaction of viral proteins with proteins of the host. Unraveling host-pathogen interactions during the infection is of great importance for understanding the pathogenesis and the development of antiviral therapies. To date HIV uncoating and nuclear import are the most debated steps of the HIV-1 replication cycle. Despite numerous studies during past decades, there is still much controversy with respect to the identity and the role of viral and host factors involved in these processes. In this review, we provide a comprehensive overview on the role of transportin-SR2 as a host cell factor during active nuclear transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (M.T.); (I.N.); (J.J.); (A.P.L.); (F.C.)
| |
Collapse
|
35
|
Gupta K, Allen A, Giraldo C, Eilers G, Sharp R, Hwang Y, Murali H, Cruz K, Janmey P, Bushman F, Van Duyne GD. Allosteric HIV Integrase Inhibitors Promote Formation of Inactive Branched Polymers via Homomeric Carboxy-Terminal Domain Interactions. Structure 2021; 29:213-225.e5. [PMID: 33357410 PMCID: PMC7935764 DOI: 10.1016/j.str.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The major effect of allosteric HIV integrase (IN) inhibitors (ALLINIs) is observed during virion maturation, where ALLINI treatment interrupts IN-RNA interactions via drug-induced IN aggregation, leading to the formation of aberrant virions. To understand the structural changes that accompany drug-induced aggregation, we determined the soft matter properties of ALLINI-induced IN aggregates. Using small-angle neutron scattering, SEM, and rheology, we have discovered that the higher-order aggregates induced by ALLINIs have the characteristics of weak three-dimensional gels with a fractal-like character. Their formation is inhibited by the host factor LEDGF/p75, as well as ex vivo resistance substitutions. Mutagenesis and biophysical analyses reveal that homomeric carboxy-terminal domain interactions are required to achieve the branched-polymer nature of the ALLINI-induced aggregates. These studies provide key insight into the mechanisms of ALLINI action and resistance in the context of the crowded virion environment where ALLINIs exert their effect.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Audrey Allen
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Carolina Giraldo
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Grant Eilers
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Robert Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Young Hwang
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | - Hemma Murali
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA
| | - Katrina Cruz
- Department of Physiology, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Paul Janmey
- Department of Physiology, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6383, USA
| | - Frederic Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 426 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | - Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, 809C Stellar-Chance Building, 422 Curie Boulevard, Philadelphia, PA 19105-6059, USA.
| |
Collapse
|
36
|
Ghanim GE, Rio DC, Teixeira FK. Mechanism and regulation of P element transposition. Open Biol 2020; 10:200244. [PMID: 33352068 PMCID: PMC7776569 DOI: 10.1098/rsob.200244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/26/2020] [Indexed: 12/05/2022] Open
Abstract
P elements were first discovered in the fruit fly Drosophila melanogaster as the causative agents of a syndrome of aberrant genetic traits called hybrid dysgenesis. This occurs when P element-carrying males mate with females that lack P elements and results in progeny displaying sterility, mutations and chromosomal rearrangements. Since then numerous genetic, developmental, biochemical and structural studies have culminated in a deep understanding of P element transposition: from the cellular regulation and repression of transposition to the mechanistic details of the transposase nucleoprotein complex. Recent studies have revealed how piwi-interacting small RNA pathways can act to control splicing of the P element pre-mRNA to modulate transposase production in the germline. A recent cryo-electron microscopy structure of the P element transpososome reveals an unusual DNA architecture at the transposon termini and shows that the bound GTP cofactor functions to position the transposon ends within the transposase active site. Genome sequencing efforts have shown that there are P element transposase-homologous genes (called THAP9) in other animal genomes, including humans. This review highlights recent and previous studies, which together have led to new insights, and surveys our current understanding of the biology, biochemistry, mechanism and regulation of P element transposition.
Collapse
Affiliation(s)
- George E. Ghanim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Donald C. Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
37
|
Kim J, Lee GE, Shin CG. Foamy Virus Integrase in Development of Viral Vector for Gene Therapy. J Microbiol Biotechnol 2020; 30:1273-1281. [PMID: 32699199 PMCID: PMC9728412 DOI: 10.4014/jmb.2003.03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.
Collapse
Affiliation(s)
- Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ga-Eun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3067 Fax: +82-31-675-3108 E-mail:
| |
Collapse
|
38
|
A Conformational Escape Reaction of HIV-1 against an Allosteric Integrase Inhibitor. J Virol 2020; 94:JVI.00486-20. [PMID: 32611758 DOI: 10.1128/jvi.00486-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
HIV-1 often acquires drug-resistant mutations in spite of the benefits of antiretroviral therapy (ART). HIV-1 integrase (IN) is essential for the concerted integration of HIV-1 DNA into the host genome. IN further contributes to HIV-1 RNA binding, which is required for HIV-1 maturation. Non-catalytic-site integrase inhibitors (NCINIs) have been developed as allosteric IN inhibitors, which perform anti-HIV-1 activity by a multimodal mode of action such as inhibition of the IN-lens epithelium-derived growth factor (LEDGF)/p75 interaction in the early stage and disruption of functional IN multimerization in the late stage of HIV-1 replication. Here, we show that IN undergoes an adaptable conformational change to escape from NCINIs. We observed that NCINI-resistant HIV-1 variants have accumulated 4 amino acid mutations by passage 26 (P26) in the IN-encoding region. We employed high-performance liquid chromatography (HPLC), thermal stability assays, and X-ray crystallographic analysis to show that some amino acid mutations affect the stability and/or dimerization interface of the IN catalytic core domains (CCDs), potentially resulting in the severely decreased multimerization of full-length IN proteins (IN undermultimerization). This undermultimerized IN via NCINI-related mutations was stabilized by HIV-1 RNA and restored to the same level as that of wild-type HIV-1 in viral particles. Recombinant HIV-1 clones with IN undermultimerization propagated similarly to wild-type HIV-1. Our study revealed that HIV-1 can eventually counteract NCINI-induced IN overmultimerization by IN undermultimerization as one of the escape mechanisms. Our findings provide information on the understanding of IN multimerization with or without HIV-1 RNA and may influence the development of anti-HIV-1 strategies.IMPORTANCE Understanding the mechanism of HIV-1 resistance to anti-HIV-1 drugs could lead to the development of novel drugs with increased efficiency, resulting in more effective ART. ART composed of more potent and long-acting anti-HIV-1 drugs can greatly improve drug adherence and also provide HIV-1 prevention such as preexposure prophylaxis. NCINIs with a multimodal mode of action exert potent anti-HIV-1 effects through IN overmultimerization during HIV-1 maturation. However, HIV-1 can acquire some mutations that cause IN undermultimerization to alleviate NCINI-induced IN overmultimerization. This undermultimerized IN was efficiently stabilized by HIV-1 RNA and restored to the same level as that of wild-type HIV-1. Our findings revealed that HIV-1 eventually acquires such a conformational escape reaction to overcome the unique NCINI actions. The investigation into drug-resistant mutations associated with HIV-1 protein multimerization may facilitate the elucidation of its molecular mechanism and functional multimerization, allowing us to develop more potent anti-HIV-1 drugs and unique treatment strategies.
Collapse
|
39
|
Sugiyama S, Iwaki T, Tamura Y, Tomita K, Matsuoka E, Arita S, Seki T, Yoshinaga T, Kawasuji T. Discovery of novel integrase-LEDGF/p75 allosteric inhibitors based on a benzene scaffold. Bioorg Med Chem 2020; 28:115643. [PMID: 32773094 DOI: 10.1016/j.bmc.2020.115643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 11/17/2022]
Abstract
We report herein the discovery of novel integrase-LEDGF/p75 allosteric inhibitors (INLAIs) based on a benzene scaffold 3. This scaffold can extend substituents from the C1 position unlike the common pyridine scaffolds 2. Structure-activity relationship studies showed that the sulfonamide linker at the C1 position was important for the antiviral activity. Interaction between sulfonamide and Q95 was observed by X-ray crystallography. Compound 31h showed more potent antiviral activity (EC50 (NL432) = 3.9 nM) than BI-224436 (EC50 (NL432) = 56 nM), suggesting the potential of the newly designed scaffold 3.
Collapse
Affiliation(s)
- Shuichi Sugiyama
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Tsutomu Iwaki
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yoshinori Tamura
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kenji Tomita
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Eriko Matsuoka
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shuhei Arita
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Takahiro Seki
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tomokazu Yoshinaga
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Takashi Kawasuji
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, 1-1, Futabacho, 3-chome, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
40
|
Influence of the amino-terminal sequence on the structure and function of HIV integrase. Retrovirology 2020; 17:28. [PMID: 32867805 PMCID: PMC7457537 DOI: 10.1186/s12977-020-00537-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Antiretroviral therapy (ART) can mitigate the morbidity and mortality caused by the human immunodeficiency virus (HIV). Successful development of ART can be accelerated by accurate structural and biochemical data on targets and their responses to inhibitors. One important ART target, HIV integrase (IN), has historically been studied in vitro in a modified form adapted to bacterial overexpression, with a methionine or a longer fusion protein sequence at the N-terminus. In contrast, IN present in viral particles is produced by proteolytic cleavage of the Pol polyprotein, which leaves a phenylalanine at the N-terminus (IN 1F). Inspection of available structures suggested that added residues on the N-terminus might disrupt proper protein folding and formation of multimeric complexes. Results We purified HIV-1 IN 1F1–212 and solved its structure at 2.4 Å resolution, which showed extension of an N-terminal helix compared to the published structure of IN1–212. Full-length IN 1F showed increased in vitro catalytic activity in assays of coupled joining of the two viral DNA ends compared to two IN variants containing additional N-terminal residues. IN 1F was also altered in its sensitivity to inhibitors, showing decreased sensitivity to the strand-transfer inhibitor raltegravir and increased sensitivity to allosteric integrase inhibitors. In solution, IN 1F exists as monomers and dimers, in contrast to other IN preparations which exist as higher-order oligomers. Conclusions The structural, biochemical, and biophysical characterization of IN 1F reveals the conformation of the native HIV-1 IN N-terminus and accompanying unique biochemical and biophysical properties. IN 1F thus represents an improved reagent for use in integration reactions in vitro and the development of antiretroviral agents.
Collapse
|
41
|
Nilavar NM, Paranjape AM, Raghavan SC. Biochemical activity of RAGs is impeded by Dolutegravir, an HIV integrase inhibitor. Cell Death Discov 2020; 6:50. [PMID: 32566255 PMCID: PMC7293277 DOI: 10.1038/s41420-020-0281-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/26/2020] [Accepted: 04/22/2020] [Indexed: 02/03/2023] Open
Abstract
HIV is a retrovirus that infects CD4+ T lymphocytes in human beings and causes immunodeficiency. In the recent years, various therapies have been developed against HIV, including targeting the HIV specific protein, integrase, responsible for integration of HIV cDNA into host DNA. Although, integrase is specific to HIV, it has functional and structural similarity with RAG1, one of the partner proteins associated with V(D)J recombination, a process by which immune diversity is generated in humans. Currently, there are three HIV integrase inhibitors: Elvitegravir, Dolutegravir, and Raltegravir, in the market which have been approved by the FDA (USA). All three drugs are used in anti-retroviral therapy (ART). Previously, we showed that amongst the HIV inhibitors, Elvitegravir could significantly decrease B cell maturation in vivo and inhibit the physiological activities of RAGs in vitro, unlike Raltegravir. In the present study, we address the effect of second-generation integrase inhibitor, Dolutegravir on RAG activities. Binding and nicking studies showed that, Dolutegravir could decrease the binding efficiency of RAG1 domains and cleavage on DNA substrates, but not as considerably as Elvitegravir. Thus, we show that although the integrase inhibitors such as Elvitegravir show an affinity towards RAG1, the newer molecules may have lesser side-effects.
Collapse
Affiliation(s)
- Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| | - Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
42
|
McDaniel YZ, Wang D, Love RP, Adolph MB, Mohammadzadeh N, Chelico L, Mansky LM. Deamination hotspots among APOBEC3 family members are defined by both target site sequence context and ssDNA secondary structure. Nucleic Acids Res 2020; 48:1353-1371. [PMID: 31943071 PMCID: PMC7026630 DOI: 10.1093/nar/gkz1164] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
The human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, A3) family member proteins can deaminate cytosines in single-strand (ss) DNA, which restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons, and other viruses such as hepatitis B virus, but can cause a mutator phenotype in many cancers. While structural information exists for several A3 proteins, the precise details regarding deamination target selection are not fully understood. Here, we report the first parallel, comparative analysis of site selection of A3 deamination using six of the seven purified A3 member enzymes, oligonucleotides having 5'TC3' or 5'CT3' dinucleotide target sites, and different flanking bases within diverse DNA secondary structures. A3A, A3F and A3H were observed to have strong preferences toward the TC target flanked by A or T, while all examined A3 proteins did not show a preference for a TC target flanked by a G. We observed that the TC target was strongly preferred in ssDNA regions rather than dsDNA, loop or bulge regions, with flanking bases influencing the degree of preference. CT was also shown to be a potential deamination target. Taken together, our observations provide new insights into A3 enzyme target site selection and how A3 mutagenesis impacts mutation rates.
Collapse
Affiliation(s)
- Yumeng Z McDaniel
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Dake Wang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nazanin Mohammadzadeh
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Louis M Mansky
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
43
|
Li M, Chen X, Wang H, Jurado KA, Engelman AN, Craigie R. A Peptide Derived from Lens Epithelium-Derived Growth Factor Stimulates HIV-1 DNA Integration and Facilitates Intasome Structural Studies. J Mol Biol 2020; 432:2055-2066. [PMID: 32061936 PMCID: PMC7350280 DOI: 10.1016/j.jmb.2020.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/26/2023]
Abstract
The low solubility and aggregation properties of HIV-1 integrase (IN) are major obstacles for biochemical and structural studies. The lens epithelium-derived growth factor (LEDGF) is a cellular factor that binds IN and tethers preintegration complexes to chromatin before integration. The LEDGF also stimulates HIV-1 IN DNA strand transfer activity and improves its solubility in vitro. We show that these properties are conferred by a short peptide spanning residues 178 to 197 of the LEDGF that encompasses its AT-hook DNA-binding elements. The peptide stimulates HIV-1 IN activity both in trans and in cis. Fusion of the peptide to either the N- or C-terminus of IN results in maximal stimulation of concerted integration activity and greatly improves the solubility of the protein and nucleoprotein complexes of IN with viral DNA ends (intasomes). High-resolution structures of HIV-1 intasomes are required to understand the mechanism of IN strand transfer inhibitors (INSTIs), which are front-line drugs for the treatment of HIV-1, and how the virus can develop resistance to INSTIs. We have previously determined the structure of the HIV-1 strand transfer complex intasome. The improved biophysical properties of intasomes assembled with LEDGF peptide fusion IN have enabled us to determine the structure of the cleaved synaptic complex intasome, which is the direct target of INSTIs.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, USA
| | - Xuemin Chen
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, USA
| | - Huaibin Wang
- NIH Multi-Institute Cryo-EM Facility, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kellie A Jurado
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, USA.
| |
Collapse
|
44
|
Sirous H, Fassihi A, Brogi S, Campiani G, Christ F, Debyser Z, Gemma S, Butini S, Chemi G, Grillo A, Zabihollahi R, Aghasadeghi MR, Saghaie L, Memarian HR. Synthesis, Molecular Modelling and Biological Studies of 3-hydroxypyrane- 4-one and 3-hydroxy-pyridine-4-one Derivatives as HIV-1 Integrase Inhibitors. Med Chem 2019; 15:755-770. [PMID: 30569867 DOI: 10.2174/1573406415666181219113225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Despite the progress in the discovery of antiretroviral compounds for treating HIV-1 infection by targeting HIV integrase (IN), a promising and well-known drug target against HIV-1, there is a growing need to increase the armamentarium against HIV, for avoiding the drug resistance issue. OBJECTIVE To develop novel HIV-1 IN inhibitors, a series of 3-hydroxy-pyrane-4-one (HP) and 3- hydroxy-pyridine-4-one (HPO) derivatives have been rationally designed and synthesized. METHODS To provide a significant characterization of the novel compounds, in-depth computational analysis was performed using a novel HIV-1 IN/DNA binary 3D-model for investigating the binding mode of the newly conceived molecules in complex with IN. The 3D-model was generated using the proto-type foamy virus (PFV) DNA as a structural template, positioning the viral polydesoxyribonucleic chain into the HIV-1 IN homology model. Moreover, a series of in vitro tests were performed including HIV-1 activity inhibition, HIV-1 IN activity inhibition, HIV-1 IN strand transfer activity inhibition and cellular toxicity. RESULTS Bioassay results indicated that most of HP analogues including HPa, HPb, HPc, HPd, HPe and HPg, showed favorable inhibitory activities against HIV-1-IN in the low micromolar range. Particularly halogenated derivatives (HPb and HPd) offered the best biological activities in terms of reduced toxicity and optimum inhibitory activities against HIV-1 IN and HIV-1 in cell culture. CONCLUSION Halogenated derivatives, HPb and HPd, displayed the most promising anti-HIV profile, paving the way to the optimization of the presented scaffolds for developing new effective antiviral agents.
Collapse
Affiliation(s)
- Hajar Sirous
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran.,Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Simone Brogi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy.,Department of Pharmacy, DoE Department of Excellence 2018-2022, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Frauke Christ
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Hamid R Memarian
- Department of Chemistry, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
45
|
Tramontano E, Corona A, Menéndez-Arias L. Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res 2019; 171:104613. [PMID: 31550450 DOI: 10.1016/j.antiviral.2019.104613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022]
Abstract
Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.
Collapse
Affiliation(s)
- Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
46
|
Engelman AN. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J Biol Chem 2019; 294:15137-15157. [PMID: 31467082 DOI: 10.1074/jbc.rev119.006901] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral inhibitors that are used to manage HIV infection/AIDS predominantly target three enzymes required for virus replication: reverse transcriptase, protease, and integrase. Although integrase inhibitors were the last among this group to be approved for treating people living with HIV, they have since risen to the forefront of treatment options. Integrase strand transfer inhibitors (INSTIs) are now recommended components of frontline and drug-switch antiretroviral therapy formulations. Integrase catalyzes two successive magnesium-dependent polynucleotidyl transferase reactions, 3' processing and strand transfer, and INSTIs tightly bind the divalent metal ions and viral DNA end after 3' processing, displacing from the integrase active site the DNA 3'-hydroxyl group that is required for strand transfer activity. Although second-generation INSTIs present higher barriers to the development of viral drug resistance than first-generation compounds, the mechanisms underlying these superior barrier profiles are incompletely understood. A separate class of HIV-1 integrase inhibitors, the allosteric integrase inhibitors (ALLINIs), engage integrase distal from the enzyme active site, namely at the binding site for the cellular cofactor lens epithelium-derived growth factor (LEDGF)/p75 that helps to guide integration into host genes. ALLINIs inhibit HIV-1 replication by inducing integrase hypermultimerization, which precludes integrase binding to genomic RNA and perturbs the morphogenesis of new viral particles. Although not yet approved for human use, ALLINIs provide important probes that can be used to investigate the link between HIV-1 integrase and viral particle morphogenesis. Herein, I review the mechanisms of retroviral integration as well as the promises and challenges of using integrase inhibitors for HIV/AIDS management.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
47
|
Structural Insights on Retroviral DNA Integration: Learning from Foamy Viruses. Viruses 2019; 11:v11090770. [PMID: 31443391 PMCID: PMC6784120 DOI: 10.3390/v11090770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Foamy viruses (FV) are retroviruses belonging to the Spumaretrovirinae subfamily. They are non-pathogenic viruses endemic in several mammalian hosts like non-human primates, felines, bovines, and equines. Retroviral DNA integration is a mandatory step and constitutes a prime target for antiretroviral therapy. This activity, conserved among retroviruses and long terminal repeat (LTR) retrotransposons, involves a viral nucleoprotein complex called intasome. In the last decade, a plethora of structural insights on retroviral DNA integration arose from the study of FV. Here, we review the biochemistry and the structural features of the FV integration apparatus and will also discuss the mechanism of action of strand transfer inhibitors.
Collapse
|
48
|
Sirous H, Chemi G, Gemma S, Butini S, Debyser Z, Christ F, Saghaie L, Brogi S, Fassihi A, Campiani G, Brindisi M. Identification of Novel 3-Hydroxy-pyran-4-One Derivatives as Potent HIV-1 Integrase Inhibitors Using in silico Structure-Based Combinatorial Library Design Approach. Front Chem 2019; 7:574. [PMID: 31457006 PMCID: PMC6700280 DOI: 10.3389/fchem.2019.00574] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
We describe herein the development and experimental validation of a computational protocol for optimizing a series of 3-hydroxy-pyran-4-one derivatives as HIV integrase inhibitors (HIV INIs). Starting from a previously developed micromolar inhibitors of HIV integrase (HIV IN), we performed an in-depth investigation based on an in silico structure-based combinatorial library designing approach. This method allowed us to combine a combinatorial library design and side chain hopping with Quantum Polarized Ligand Docking (QPLD) studies and Molecular Dynamics (MD) simulation. The combinatorial library design allowed the identification of the best decorations for our promising scaffold. The resulting compounds were assessed by the mentioned QPLD methodology using a homology model of full-length binary HIV IN/DNA for retrieving the best performing compounds acting as HIV INIs. Along with the prediction of physico-chemical properties, we were able to select a limited number of drug-like compounds potentially displaying potent HIV IN inhibition. From this final set, based on the synthetic accessibility, we further shortlisted three representative compounds for the synthesis. The compounds were experimentally assessed in vitro for evaluating overall HIV-1 IN inhibition, HIV-1 IN strand transfer activity inhibition, HIV-1 activity inhibition and cellular toxicity. Gratifyingly, all of them showed relevant inhibitory activity in the in vitro tests along with no toxicity. Among them HPCAR-28 represents the most promising compound as potential anti-HIV agent, showing inhibitory activity against HIV IN in the low nanomolar range, comparable to that found for Raltegravir, and relevant potency in inhibiting HIV-1 replication and HIV-1 IN strand transfer activity. In summary, our results outline HPCAR-28 as a useful optimized hit for the potential treatment of HIV-1 infection by targeting HIV IN.
Collapse
Affiliation(s)
- Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Zeger Debyser
- Molecular Medicine, K.U. Leuven and IRC KULAK, Leuven, Belgium
| | - Frauke Christ
- Molecular Medicine, K.U. Leuven and IRC KULAK, Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Naples Federico II, Naples, Italy
| |
Collapse
|
49
|
Park JH, Yun JH, Shi Y, Han J, Li X, Jin Z, Kim T, Park J, Park S, Liu H, Lee W. Non-Cryogenic Structure and Dynamics of HIV-1 Integrase Catalytic Core Domain by X-ray Free-Electron Lasers. Int J Mol Sci 2019; 20:E1943. [PMID: 31010024 PMCID: PMC6514806 DOI: 10.3390/ijms20081943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 integrase (HIV-1 IN) is an enzyme produced by the HIV-1 virus that integrates genetic material of the virus into the DNA of infected human cells. HIV-1 IN acts as a key component of the Retroviral Pre-Integration Complex (PIC). Protein dynamics could play an important role during the catalysis of HIV-1 IN; however, this process has not yet been fully elucidated. X-ray free electron laser (XFEL) together with nuclear magnetic resonance (NMR) could provide information regarding the dynamics during this catalysis reaction. Here, we report the non-cryogenic crystal structure of HIV-1 IN catalytic core domain at 2.5 Å using microcrystals in XFELs. Compared to the cryogenic structure at 2.1 Å using conventional synchrotron crystallography, there was a good agreement between the two structures, except for a catalytic triad formed by Asp64, Asp116, and Glu152 (DDE) and the lens epithelium-derived growth factor binding sites. The helix III region of the 140-153 residues near the active site and the DDE triad show a higher dynamic profile in the non-cryogenic structure, which is comparable to dynamics data obtained from NMR spectroscopy in solution state.
Collapse
Affiliation(s)
- Jae-Hyun Park
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Ji-Hye Yun
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Yingchen Shi
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Jeongmin Han
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Zeyu Jin
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Taehee Kim
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jaehyun Park
- Pohang Accelerator Laboratory, Pohang 37673, Korea.
| | - Sehan Park
- Pohang Accelerator Laboratory, Pohang 37673, Korea.
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China.
| | - Weontae Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
50
|
Siwe-Noundou X, Musyoka TM, Moses V, Ndinteh DT, Mnkandhla D, Hoppe H, Tastan Bishop Ö, Krause RWM. Anti-HIV-1 integrase potency of methylgallate from Alchornea cordifolia using in vitro and in silico approaches. Sci Rep 2019; 9:4718. [PMID: 30886338 PMCID: PMC6423119 DOI: 10.1038/s41598-019-41403-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC50 = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.
Collapse
Affiliation(s)
- Xavier Siwe-Noundou
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| | - Thommas M Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Vuyani Moses
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Derek T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Dumisani Mnkandhla
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| | - Rui W M Krause
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|