1
|
Ran M, Bao J, Li B, Shi Y, Yang W, Meng X, Chen J, Wei J, Long M, Li T, Li C, Pan G, Zhou Z. Microsporidian Nosema bombycis secretes serine protease inhibitor to suppress host cell apoptosis via Caspase BmICE. PLoS Pathog 2025; 21:e1012373. [PMID: 39775776 PMCID: PMC11741654 DOI: 10.1371/journal.ppat.1012373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/17/2025] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Microsporidia are a group of intracellular pathogens that actively manipulate host cell biological processes to facilitate their intracellular niche. Apoptosis is an important defense mechanism by which host cell control intracellular pathogens. Microsporidia modulating host cell apoptosis has been reported previously, however the molecular mechanism is not yet clear. In this report, we describe that the microsporidia Nosema bombycis inhibits apoptosis of Bombyx mori cells through a secreted protein NbSPN14, which is a serine protease inhibitor (Serpin). An immunofluorescent assay demonstrated that upon infection with N. bombycis, NbSPN14 was initially found in the B. mori cell cytoplasm and then became enriched in the host cell nucleus. Overexpression and RNA-interference (RNAi) of NbSPN14 in B. mori' embryo cell confirmed that NbSPN14 inhibited host cells apoptosis. Immunofluorescent and Co-IP assays verified the co-localization and interaction of NbSPN14 with the BmICE, the Caspase 3 homolog in B. mori. Knocking out of BmICE or mutating the BmICE-interacting P1 site of NbSPN14, eliminated the localization of NbSPN14 into the host nucleus and prevented the apoptosis-inhibiting effect of NbSPN14, which also proved that the interaction between BmICE and NbSPN14 occurred in host cytoplasm and the NbSPN14 translocation into host cell nucleus depends on BmICE. These data elucidate that N. bombycis secretory protein NbSPN14 inhibits host cell apoptosis by directly inhibiting the Caspase protease BmICE, which provides an important insight for understanding pathogen-host interactions and a potential therapeutic target for N. bombycis proliferation.
Collapse
Affiliation(s)
- Maoshuang Ran
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Boning Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yulian Shi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wenxin Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Junhong Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing, China
| |
Collapse
|
2
|
Mercau ME, Patwa S, Bhat KPL, Ghosh S, Rothlin CV. Cell death in development, maintenance, and diseases of the nervous system. Semin Immunopathol 2022; 44:725-738. [PMID: 35508671 DOI: 10.1007/s00281-022-00938-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Cell death, be it of neurons or glial cells, marks the development of the nervous system. Albeit relatively less so than in tissues such as the gut, cell death is also a feature of nervous system homeostasis-especially in context of adult neurogenesis. Finally, cell death is commonplace in acute brain injuries, chronic neurodegenerative diseases, and in some central nervous system tumors such as glioblastoma. Recent studies are enumerating the various molecular modalities involved in the execution of cells. Intimately linked with cell death are mechanisms of disposal that remove the dead cell and bring about a tissue-level response. Heretofore, the association between these methods of dying and physiological or pathological responses has remained nebulous. It is envisioned that careful cartography of death and disposal may reveal novel understandings of disease states and chart new therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Maria E Mercau
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Siraj Patwa
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA. .,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Dai H, Meng XW, Ye K, Jia J, Kaufmann SH. Therapeutics targeting BCL2 family proteins. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:197-260. [DOI: 10.1016/b978-0-12-814208-0.00007-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Wan P, Su W, Zhang Y, Li Z, Deng C, Li J, Jiang N, Huang S, Long E, Zhuo Y. LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ 2020; 27:176-191. [PMID: 31127201 PMCID: PMC7206022 DOI: 10.1038/s41418-019-0351-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a common pathology when the blood supply to an organ was disrupted and then restored. During the reperfusion process, inflammation and tissue injury were triggered, which were mediated by immunocytes and cytokines. However, the mechanisms initiating I/R-induced inflammation and driving immunocytes activation remained largely unknown. In this study, we identified long non-coding RNA (lncRNA)-H19 as the key onset of I/R-induced inflammation. We found that I/R increased lncRNA-H19 expression to significantly promote NLRP3/6 inflammasome imbalance and resulted in microglial pyroptosis, cytokines overproduction, and neuronal death. These damages were effectively inhibited by lncRNA-H19 knockout. Specifically, lncRNA-H19 functioned via sponging miR-21 to facilitate PDCD4 expression and formed a competing endogenous RNA network (ceRNET) in ischemic cascade. LncRNA H19/miR-21/PDCD4 ceRNET can directly regulate I/R-induced sterile inflammation and neuronal lesion in vivo. We thus propose that lncRNA-H19 is a previously unknown danger signals in the molecular and immunological pathways of I/R injury, and pharmacological approaches to inhibit H19 seem likely to become treatment modalities for patients in the near future based on these mechanistic findings.
Collapse
Affiliation(s)
- Peixing Wan
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China ,0000000086837370grid.214458.eDepartment of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann arbor, MI 48109 USA
| | - Wenru Su
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Yingying Zhang
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Zhidong Li
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Caibin Deng
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Jinmiao Li
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Nan Jiang
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Siyu Huang
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Erping Long
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Yehong Zhuo
- 0000 0001 2360 039Xgrid.12981.33State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| |
Collapse
|
5
|
Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 2019; 20:19-33. [PMID: 30467385 DOI: 10.1038/s41583-018-0093-1] [Citation(s) in RCA: 612] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis is crucial for the normal development of the nervous system, whereas neurons in the adult CNS are relatively resistant to this form of cell death. However, under pathological conditions, upregulation of death receptor family ligands, such as tumour necrosis factor (TNF), can sensitize cells in the CNS to apoptosis and a form of regulated necrotic cell death known as necroptosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). Necroptosis promotes further cell death and neuroinflammation in the pathogenesis of several neurodegenerative diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease and Alzheimer disease. In this Review, we outline the evidence implicating necroptosis in these neurological diseases and suggest that targeting RIPK1 might help to inhibit multiple cell death pathways and ameliorate neuroinflammation.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Palak Amin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Of Molecules and Mechanisms. J Neurosci 2019; 40:81-88. [PMID: 31630114 DOI: 10.1523/jneurosci.0743-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior. Less flashy, but arguably as important are the myriad investigations uncovering the actions of single molecules, macromolecular structures, and integrated machines that serve as the basis for constructing cellular and signaling pathways identified in wide-scale gene or RNA studies and for feeding data into informational networks used in systems biology. This review follows the pathways that were opened in neuroscience by major discoveries and set the stage for the next 50 years.
Collapse
|
7
|
Profile of Junying Yuan. Proc Natl Acad Sci U S A 2019; 116:11564-11566. [DOI: 10.1073/pnas.1906915116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Caspase-3 Mediated Cell Death in the Normal Development of the Mammalian Cerebellum. Int J Mol Sci 2018; 19:ijms19123999. [PMID: 30545052 PMCID: PMC6321612 DOI: 10.3390/ijms19123999] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Caspase-3, onto which there is a convergence of the intrinsic and extrinsic apoptotic pathways, is the main executioner of apoptosis. We here review the current literature on the intervention of the protease in the execution of naturally occurring neuronal death (NOND) during cerebellar development. We will consider data on the most common altricial species (rat, mouse and rabbit), as well as humans. Among the different types of neurons and glia in cerebellum, there is ample evidence for an intervention of caspase-3 in the regulation of NOND of the post-mitotic cerebellar granule cells (CGCs) and Purkinje neurons, as a consequence of failure to establish proper synaptic contacts with target (secondary cell death). It seems possible that the GABAergic interneurons also undergo a similar type of secondary cell death, but the intervention of caspase-3 in this case still remains to be clarified in full. Remarkably, CGCs also undergo primary cell death at the precursor/pre-migratory stage of differentiation, in this instance without the intervention of caspase-3. Glial cells, as well, undergo a process of regulated cell death, but it seems possible that expression of caspase-3, at least in the Bergmann glia, is related to differentiation rather than death.
Collapse
|
9
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 746] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
10
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Yuan J, Najafov A, Py BF. Roles of Caspases in Necrotic Cell Death. Cell 2017; 167:1693-1704. [PMID: 27984721 DOI: 10.1016/j.cell.2016.11.047] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/13/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
Caspases were originally identified as important mediators of inflammatory response and apoptosis. Recent discoveries, however, have unveiled their roles in mediating and suppressing two regulated forms of necrotic cell death, termed pyroptosis and necroptosis, respectively. These recent advances have significantly expanded our understanding of the roles of caspases in regulating development, adult homeostasis, and host defense response.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Ludwig Cancer Center, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Ludwig Cancer Center, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Bénédicte F Py
- CIRI, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France
| |
Collapse
|
12
|
Kuriki Y, Komatsu T, Ycas PD, Coulup SK, Carlson EJ, Pomerantz WCK. Meeting Proceedings ICBS2016-Translating the Power of Chemical Biology to Clinical Advances. ACS Chem Biol 2017; 12:869-877. [PMID: 28303709 DOI: 10.1021/acschembio.7b00205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yugo Kuriki
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School
of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Peter D. Ycas
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Sara K. Coulup
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - Erick J. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 312 Smith
Hall, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
13
|
Veyer DL, Carrara G, Maluquer de Motes C, Smith GL. Vaccinia virus evasion of regulated cell death. Immunol Lett 2017; 186:68-80. [PMID: 28366525 DOI: 10.1016/j.imlet.2017.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Regulated cell death is a powerful anti-viral mechanism capable of aborting the virus replicative cycle and alerting neighbouring cells to the threat of infection. The biological importance of regulated cell death is illustrated by the rich repertoire of host signalling cascades causing cell death and by the multiple strategies exhibited by viruses to block death signal transduction and preserve cell viability. Vaccinia virus (VACV), a poxvirus and the vaccine used to eradicate smallpox, encodes multiple proteins that interfere with apoptotic, necroptotic and pyroptotic signalling. Here the current knowledge on cell death pathways and how VACV proteins interact with them is reviewed. Studying the mechanisms evolved by VACV to counteract host programmed cell death has implications for its successful use as a vector for vaccination and as an oncolytic agent against cancer.
Collapse
Affiliation(s)
- David L Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
14
|
Affiliation(s)
- Gregory F. Erickson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Abstract
Cell death is a common outcome of virus infection. In some cases, cell death curbs virus replication. In others, cell death enhances virus dissemination and contributes to tissue injury, exacerbating viral disease. Three forms of cell death are observed following virus infection-apoptosis, necroptosis, and pyroptosis. In this review, I describe the core machinery needed for each of these forms of cell death. Using representative viruses, I highlight how distinct stages of virus replication initiate signaling pathways that elicit these forms of cell death. I also discuss viral strategies to overcome the deleterious effects of cell death on virus propagation and the consequences of cell death for host physiology.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
16
|
Trump BF. Mechanisms of Toxicity and Carcinogenesis. Toxicol Pathol 2016. [DOI: 10.1177/019262339502300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Abstract
Recent studies have shown that excitotoxicity can result in either neuronal necrosis (passive cell lysis associated with energy failure) or apoptosis (active cell death requiring energy production). The type of cell death encountered by neuronal cell cultures exposed to excessive levels of excitatory amino acids—such as glutamate, the major excitatory neurotransmitter in the central nervous system, or free radicals, such as nitric oxide (NO) and superoxide anion (O2 -), which react to form peroxynitrite (ONOO-)—depends on the intensity of the exposure and may involve two temporally distinct phases. After relatively fulminant insults, an initial phase of necrosis—associated with extreme energy depletion—may simply reflect the failure of neurons to carry out the "default" apoptotic death program used to efficiently dispose of aged or otherwise unwanted cells. Neurons that survive this initial insult recover mitochondrial membrane potential and energy charge and subsequently undergo apoptosis, which seems to be associated with a factor(s) released from mitochondria. These factors have proteolytic activity or trigger the activation of proteases (caspases), ex ecutors of the cell death program. Thus, the maintenance of balanced energy production may be a decisive factor in determining the degree, type, and progression of neuronal injury caused by excitotoxins and free radicals. Increasing evidence suggests that similar events occur in vivo after ischemia or other insults, including Alzheimer's disease, Huntington's disease, and AIDS dementia. NEUROSCIENTIST 4:345-352, 1998
Collapse
Affiliation(s)
- Stuart A. Lipton
- CNS Research Institute Brigham and Women's Hospital
and Program in Neuroscience Harvard Medical School Boston, Massachusetts (SAL)
Faculty of Biology University of Konstanz Konstanz, Germany (PN)
| | - Pierluigi Nicotera
- CNS Research Institute Brigham and Women's Hospital
and Program in Neuroscience Harvard Medical School Boston, Massachusetts (SAL)
Faculty of Biology University of Konstanz Konstanz, Germany (PN)
| |
Collapse
|
18
|
Abstract
Apoptosis is a form of cellular suicide in which the cell activates an intrinsic program to bring about its own demise. Recognized for years as the mechanism by which developing cells are lost naturally, it has become apparent recently that this same process may play an important role in many acute and chronic diseases in which neural cell death occurs, such as stroke and Alzheimer's disease. This growing recognition suggests that a knowledge of the gene products controlling this process may lead to improved treatments for some disease states, as well as to improved understanding of neuronal development, physiology, and pathophysiology. Some controls with important roles in neural apoptosis have been identified, and these controls, as well as their putative mechanisms of action, are described in this article. NEUROSCIENTIST 2:181-190, 1996
Collapse
Affiliation(s)
- Dale E. Bredesen
- Program on Aging La Jolla Cancer Research Foundation
La Jolla, California
| |
Collapse
|
19
|
Mitra S, Wewers MD, Sarkar A. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury. PLoS One 2015; 10:e0145607. [PMID: 26710067 PMCID: PMC4692444 DOI: 10.1371/journal.pone.0145607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.
Collapse
Affiliation(s)
- Srabani Mitra
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
20
|
Sensory deprivation disrupts homeostatic regeneration of newly generated olfactory sensory neurons after injury in adult mice. J Neurosci 2015; 35:2657-73. [PMID: 25673857 DOI: 10.1523/jneurosci.2484-14.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although it is well known that injury induces the generation of a substantial number of new olfactory sensory neurons (OSNs) in the adult olfactory epithelium (OE), it is not well understood whether olfactory sensory input influences the survival and maturation of these injury-induced OSNs in adults. Here, we investigated whether olfactory sensory deprivation affected the dynamic incorporation of newly generated OSNs 3, 7, 14, and 28 d after injury in adult mice. Mice were unilaterally deprived of olfactory sensory input by inserting a silicone tube into their nostrils. Methimazole, an olfactotoxic drug, was also injected intraperitoneally to bilaterally ablate OSNs. The OE was restored to its preinjury condition with new OSNs by day 28. No significant differences in the numbers of olfactory marker protein-positive mature OSNs or apoptotic OSNs were observed between the deprived and nondeprived sides 0-7 d after injury. However, between days 7 and 28, the sensory-deprived side showed markedly fewer OSNs and mature OSNs, but more apoptotic OSNs, than the nondeprived side. Intrinsic functional imaging of the dorsal surface of the olfactory bulb at day 28 revealed that responses to odor stimulation were weaker in the deprived side compared with those in the nondeprived side. Furthermore, prevention of cell death in new neurons 7-14 d after injury promoted the recovery of the OE. These results indicate that, in the adult OE, sensory deprivation disrupts compensatory OSN regeneration after injury and that newly generated OSNs have a critical time window for sensory-input-dependent survival 7-14 d after injury.
Collapse
|
21
|
Lossi L, Castagna C, Merighi A. Neuronal cell death: an overview of its different forms in central and peripheral neurons. Methods Mol Biol 2015; 1254:1-18. [PMID: 25431053 DOI: 10.1007/978-1-4939-2152-2_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The discovery of neuronal cell death dates back to the nineteenth century. Nowadays, after a very long period of conceptual difficulties, the notion that cell death is a phenomenon occurring during the entire life course of the nervous system, from neurogenesis to adulthood and senescence, is fully established. The dichotomy between apoptosis, as the prototype of programmed cell death (PCD ), and necrosis, as the prototype of death caused by an external insult, must be carefully reconsidered, as different types of PCD: apoptosis, autophagy, pyroptosis, and oncosis have all been demonstrated in neurons (and glia ). These modes of PCD may be triggered by different stimuli, but share some intracellular pathways such that different types of cell death may affect the same population of neurons according to several intrinsic and extrinsic factors. Therefore, a mixed morphology is often observed also depending on degrees of differentiation, activity, and injury. The main histological and ultrastructural features of the different types of cell death in neurons are described and related to the cellular pathways that are specifically activated in any of these types of PCD.
Collapse
Affiliation(s)
- Laura Lossi
- Department of Veterinary Sciences, University of Torino, Via Leonardo da Vinci 44, 10095, Grugliasco, Torino, Italy
| | | | | |
Collapse
|
22
|
Exline MC, Justiniano S, Hollyfield JL, Berhe F, Besecker BY, Das S, Wewers MD, Sarkar A. Microvesicular caspase-1 mediates lymphocyte apoptosis in sepsis. PLoS One 2014; 9:e90968. [PMID: 24643116 PMCID: PMC3958341 DOI: 10.1371/journal.pone.0090968] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
Objective Immune dysregulation during sepsis is poorly understood, however, lymphocyte apoptosis has been shown to correlate with poor outcomes in septic patients. The inflammasome, a molecular complex which includes caspase-1, is essential to the innate immune response to infection and also important in sepsis induced apoptosis. Our group has recently demonstrated that endotoxin-stimulated monocytes release microvesicles (MVs) containing caspase-1 that are capable of inducing apoptosis. We sought to determine if MVs containing caspase-1 are being released into the blood during human sepsis and induce apoptosis.. Design Single-center cohort study Measurements 50 critically ill patients were screened within 24 hours of admission to the intensive care unit and classified as either a septic or a critically ill control. Circulatory MVs were isolated and analyzed for the presence of caspase-1 and the ability to induce lymphocyte apoptosis. Patients remaining in the ICU for 48 hours had repeated measurement of caspase-1 activity on ICU day 3. Main Results Septic patients had higher microvesicular caspase-1 activity 0.05 (0.04, 0.07) AFU versus 0.0 AFU (0, 0.02) (p<0.001) on day 1 and this persisted on day 3, 0.12 (0.1, 0.2) versus 0.02 (0, 0.1) (p<0.001). MVs isolated from septic patients on day 1 were able to induce apoptosis in healthy donor lymphocytes compared with critically ill control patients (17.8±9.2% versus 4.3±2.6% apoptotic cells, p<0.001) and depletion of MVs greatly diminished this apoptotic signal. Inhibition of caspase-1 or the disruption of MV integrity abolished the ability to induce apoptosis. Conclusion These findings suggest that microvesicular caspase-1 is important in the host response to sepsis, at least in part, via its ability to induce lymphocyte apoptosis. The ability of microvesicles to induce apoptosis requires active caspase-1 and intact microvesicles.
Collapse
Affiliation(s)
- Matthew C. Exline
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven Justiniano
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Jennifer L. Hollyfield
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Freweine Berhe
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Beth Y. Besecker
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Srabani Das
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Walsh CM. Grand challenges in cell death and survival: apoptosis vs. necroptosis. Front Cell Dev Biol 2014; 2:3. [PMID: 25364712 PMCID: PMC4206982 DOI: 10.3389/fcell.2014.00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Craig M Walsh
- Department of Molecular Biology and Biochemistry, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine CA, USA
| |
Collapse
|
24
|
Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS, Lewcock JW. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. ACTA ACUST UNITED AC 2013; 202:747-63. [PMID: 23979718 PMCID: PMC3760612 DOI: 10.1083/jcb.201303066] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuronal injury induces JNK phosphorylation of DLK, which reduces DLK ubiquitination and creates a positive feedback loop to enhance JNK signaling and increase apoptosis. Neurons are highly polarized cells that often project axons a considerable distance. To respond to axonal damage, neurons must transmit a retrograde signal to the nucleus to enable a transcriptional stress response. Here we describe a mechanism by which this signal is propagated through injury-induced stabilization of dual leucine zipper-bearing kinase (DLK/MAP3K12). After neuronal insult, specific sites throughout the length of DLK underwent phosphorylation by c-Jun N-terminal kinases (JNKs), which have been shown to be downstream targets of DLK pathway activity. These phosphorylation events resulted in increased DLK abundance via reduction of DLK ubiquitination, which was mediated by the E3 ubiquitin ligase PHR1 and the de-ubiquitinating enzyme USP9X. Abundance of DLK in turn controlled the levels of downstream JNK signaling and apoptosis. Through this feedback mechanism, the ubiquitin–proteasome system is able to provide an additional layer of regulation of retrograde stress signaling to generate a global cellular response to localized external insults.
Collapse
Affiliation(s)
- Sarah Huntwork-Rodriguez
- Department of Neuroscience, 2 Department of Microchemical Proteomics, and 3 Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Amsler L, Malouli D, DeFilippis V. The inflammasome as a target of modulation by DNA viruses. Future Virol 2013; 8:357-370. [PMID: 24955107 DOI: 10.2217/fvl.13.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cellular innate immune response represents the initial reaction of a host against infecting pathogens. Host cells detect incoming microbes by way of a large and expanding array of receptors that react with evolutionarily conserved molecular patterns exhibited by microbial intruders. These receptors are responsible for initiating signaling that leads to both transcriptional activation of immunologically important genes as well as protease-dependent processing of cellular proteins. The inflammasome refers to a protein complex that functions as an activation platform for the cysteine protease caspase-1, which then processes inflammatory molecules such as IL-1β and IL-18 into functional forms. Assembly of this complex is triggered following receptor-mediated detection of pathogen-associated molecules. Receptors have been identified that are essential to inflammasome activation in response to numerous molecular patterns including virus-associated molecules such as DNA. In fact, the importance of cytoplasmic DNA as an immune stimulus is exemplified by the existence of at least nine distinct cellular receptors capable of initiating innate reactivity in response to this molecule. Viruses that employ DNA as genomic material include herpesviruses, poxviruses and adenoviruses. Each has been described as capable of inducing inflammasome-mediated activity. Interestingly, however, the cellular molecules responsible for these responses appear to vary according to host species, cell type and even viral strain. Secretion of IL-1β and IL-18 are important components of antimicrobial immunity and, as a result, pathogens have evolved factors to evade or counteract this response. This includes DNA-based viruses, many of which encode multiple redundant counteractive molecules. However, it is clear that such phenotypes are only beginning to be uncovered. The purpose of this review is to describe what is known regarding the activation of inflammasome-mediated processes in response to infection with well-examined families of DNA viruses and to discuss characterized mechanisms of manipulation and neutralization of inflammasome-dependent activity. This review aims to shed light on the biologically important phenomena regarding this virus-host interaction and to highlight key areas where important information is lacking.
Collapse
Affiliation(s)
- Lisi Amsler
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| | - Victor DeFilippis
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
26
|
Wu J, Yang J, Liu Q, Wu S, Ma H, Cai Y. Lanthanum induced primary neuronal apoptosis through mitochondrial dysfunction modulated by Ca²⁺ and Bcl-2 family. Biol Trace Elem Res 2013; 152:125-34. [PMID: 23338853 DOI: 10.1007/s12011-013-9601-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/02/2013] [Indexed: 12/25/2022]
Abstract
As a representative element of lanthanide, lanthanum has been widely used in various fields and eventually entered environment and accumulated in human body. Epidemiological and experimental evidences indicated that lanthanum has neurotoxicity; however, the detailed mechanism is still elusive. Here, we chose primary cerebral cortical neurons as model in vitro to investigate the mechanism underlying the toxic effects of lanthanum chloride (LaCl3). This study revealed the following findings: (1) LaCl3 treatment (0.01, 0.1, and 1.0 mM for 24 h) reduced the viability of cortical neurons and elevated apoptotic rate significantly in a dose-dependent manner. (2) LaCl3 triggered mitochondrial apoptotic pathway in cortical neurons, characterized with collapsed mitochondrial membrane potential, release of cytochrome c into cytosol, and increasing expression of activated caspase-3. (3) LaCl3 elevated intracellular Ca(2+) concentration, promoted reactive oxygen species generation, and upregulated pro-apoptotic Bax, whereas it downregulated anti-apoptotic Bcl-2 expression and consequently altered Bax/Bcl-2 ratio, which ultimately lead to neuronal mitochondrial apoptosis. Our results demonstrated that toxicity of lanthanum in cortical neurons perhaps partly attributed to enhanced mitochondrial apoptosis due to mitochondrial dysfunction modulated by Ca(2+) and Bcl-2 family.
Collapse
Affiliation(s)
- Jie Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
27
|
Veeravalli KK, Dasari VR, Rao JS. Regulation of proteases after spinal cord injury. J Neurotrauma 2012; 29:2251-62. [PMID: 22709139 DOI: 10.1089/neu.2012.2460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury is a major medical problem worldwide. Unfortunately, we still do not have suitable therapeutic agents for the treatment of spinal cord injury and prevention of its devastating consequences. Scientists and physicians are baffled by the challenges of controlling progressive neurodegeneration in spinal cord injury, which has not been healed with any currently-available treatments. Although extensive work has been carried out to better understand the pathophysiology of spinal cord injury, our current understanding of the repair mechanisms of secondary injury processes is still meager. Several investigators reported the crucial role played by various proteases after spinal cord injury. Understanding the beneficial and harmful roles these proteases play after spinal cord injury will allow scientists to plan and design appropriate treatment strategies to improve functional recovery after spinal cord injury. This review will focus on various proteases such as matrix metalloproteinases, cysteine proteases, and serine proteases and their inhibitors in the context of spinal cord injury.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | |
Collapse
|
28
|
Abstract
Caspase-1, formerly known as interleukin (IL)-1-converting enzyme is best established as the protease responsible for the processing of the key pro-inflammatory cytokine IL-1β from an inactive precursor to an active, secreted molecule. Thus, caspase-1 is regarded as a key mediator of inflammatory processes, and has become synonymous with inflammation. In addition to the processing of IL-1β, caspase-1 also executes a rapid programme of cell death, termed pyroptosis, in macrophages in response to intracellular bacteria. Pyroptosis is also regarded as a host response to remove the niche of the bacteria and to hasten their demise. These processes are generally accepted as the main roles of caspase-1. However, there is also a wealth of literature supporting a direct role for caspase-1 in non-infectious cell death processes. This is true in mammals, but also in non-mammalian vertebrates where caspase-1-dependent processing of IL-1β is absent because of the lack of appropriate caspase-1 cleavage sites. This literature is most prevalent in the brain where caspase-1 may directly regulate neuronal cell death in response to diverse insults. We attempt here to summarise the evidence for caspase-1 as a cell death enzyme and propose that, in addition to the processing of IL-1β, caspase-1 has an important and a conserved role as a cell death protease.
Collapse
|
29
|
Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 2012; 13:395-406. [PMID: 22595785 DOI: 10.1038/nrn3228] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases are cysteine proteases that mediate apoptosis, which is a form of regulated cell death that effectively and efficiently removes extra and unnecessary cells during development. In the mature nervous system, caspases are not only involved in mediating cell death but also regulatory events that are important for neural functions, such as axon pruning and synapse elimination, which are necessary to refine mature neuronal circuits. Furthermore, caspases can be reactivated to cause cell death as well as non-lethal changes in neurons during numerous pathological processes. Thus, although a global activation of caspases leads to apoptosis, restricted and localized activation may control normal physiology and pathophysiology in living neurons. This Review explores the multiple roles of caspase activity in neurons.
Collapse
Affiliation(s)
- Bradley T Hyman
- Neurology Service, Massachusetts General Hospital, 114 16th Street Charlestown, Massachusetts 01029, USA.
| | | |
Collapse
|
30
|
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:107-20. [PMID: 21760595 PMCID: PMC3252826 DOI: 10.1038/cdd.2011.96] [Citation(s) in RCA: 1863] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023] Open
Abstract
In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - I Vitale
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - J M Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - E S Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - E H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - M V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - T M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - V L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - W S El-Deiry
- Cancer Institute Penn State, Hershey Medical Center, Philadelphia, PA 17033, USA
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt 60528, Germany
| | - E Gottlieb
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - D R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - O Kepp
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - R A Knight
- Institute of Child Health, University College London, London WC1N 3JH, UK
| | - S Kumar
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - S A Lipton
- Sanford-Burnham Medical Research Institute, San Diego, CA 92037, USA
- Salk Institute for Biological Studies, , La Jolla, CA 92037, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
- Univerisity of California, San Diego, La Jolla, CA 92093, USA
| | - X Lu
- Ludwig Institute for Cancer Research, Oxford OX3 7DQ, UK
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - W Malorni
- Department of Therapeutic Research and Medicines Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto San Raffaele Sulmona, 67039 Sulmona, Italy
| | - P Mehlen
- Apoptosis, Cancer and Development, CRCL, 69008 Lyon, France
- INSERM, U1052, 69008 Lyon, France
- CNRS, UMR5286, 69008 Lyon, France
- Centre Léon Bérard, 69008 Lyon, France
| | - G Nuñez
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M E Peter
- Northwestern University Feinberg School of Medicine, Chicago, IL 60637, USA
| | - M Piacentini
- Laboratory of Cell Biology, National Institute for Infectious Diseases IRCCS ‘L Spallanzani', 00149 Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata', 00133 Rome, Italy
| | - D C Rubinsztein
- Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Y Shi
- Shanghai Institutes for Biological Sciences, 200031 Shanghai, China
| | - H-U Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - P Vandenabeele
- Department for Molecular Biology, Gent University, 9052 Gent, Belgium
- Department for Molecular Biomedical Research, VIB, 9052 Gent, Belgium
| | - E White
- The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - J Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - B Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - G Melino
- Biochemical Laboratory IDI-IRCCS, Department of Experimental Medicine, University of Rome ‘Tor Vergata', 00133 Rome, Italy
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - G Kroemer
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75908 Paris, France
- Université Paris Descartes, Paris 5, 75270 Paris, France
| |
Collapse
|
31
|
Li F, He Z, Shen J, Huang Q, Li W, Liu X, He Y, Wolf F, Li CY. Apoptotic caspases regulate induction of iPSCs from human fibroblasts. Cell Stem Cell 2011; 7:508-20. [PMID: 20887956 DOI: 10.1016/j.stem.2010.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 06/03/2010] [Accepted: 09/08/2010] [Indexed: 01/01/2023]
Abstract
The molecular mechanisms involved in the derivation of induced pluripotent stem cells (iPSCs) from differentiated cells are poorly understood. Here we report that caspases 3 and 8, two proteases associated with apoptotic cell death, play critical roles in induction of iPSCs from human fibroblasts. Activation of caspases 3 and 8 occurs soon after transduction of iPSC-inducing transcription factors. Oct-4, a key iPSC transcription factor, is responsible for the activation. Inhibition of caspase 3 or 8 in human fibroblast cells partially or completely (respectively) prevents the induction of iPSCs. Furthermore, retinoblastoma susceptibility (Rb) protein appears to be one of the factors that act downstream of the caspases. We propose that caspases are key facilitators of nuclear reprogramming in iPSC induction.
Collapse
Affiliation(s)
- Fang Li
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One 2009; 4:e7140. [PMID: 19779610 PMCID: PMC2744928 DOI: 10.1371/journal.pone.0007140] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/29/2009] [Indexed: 01/20/2023] Open
Abstract
Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1beta and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death.
Collapse
Affiliation(s)
- Anasuya Sarkar
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Srabani Mitra
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Sonya Mehta
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Raquel Raices
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- The Davis Heart and Lung Research Institute and the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
34
|
Stereological estimation of gap junction surface area per neuron in the developing nervous system of the invertebrate Mesocestoides corti. Parasitology 2009. [DOI: 10.1017/s0031182000066014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYAs a major morphological feature in establishing the form of the nervous system, it is recognized that neurons are initially overproduced, then naturally occurring cell death reduces the neuron number to the functional requirement. However, the mechanisms controlling the selective elimination of certain neurons during a general phase of cell death are not fully understood. One event that seems to be pivotal is the establishment of neural connections, the degree of which may be influential regarding the fate of specific neurons. However, little quantitative evidence is available to either support or refute this theory. In this current study, a Stereological measurement of gap junction per neuron was carried out within the invertebrate model system of the tapeworm metacestode Mesocestoides corti, which has previously been shown to overproduce neurons during the asexual reproduction stage of its life-cycle. Novel Stereological estimation methods with ‘ vertical sections’ indicated that prior to asexual division the cerebral ganglion possessed approximately 268 neurons, each with a gap junction surface area of 250 μm2. As division progressed, the neuron number increased to approximately 700, while the total surface area of gap junction remained statistically unchanged. As a result the surface area of gap junction per neuron decreased to 106 μm2, less than half that in the undividing stage. These results provide the first non-biased quantitative data regarding changes in the mean surface area of gap junction per neuron in a developing cerebral ganglion.
Collapse
|
35
|
Chi YH, Salzman RA, Balfe S, Ahn JE, Sun W, Moon J, Yun DJ, Lee SY, Higgins TJV, Pittendrigh B, Murdock LL, Zhu-Salzman K. Cowpea bruchid midgut transcriptome response to a soybean cystatin--costs and benefits of counter-defence. INSECT MOLECULAR BIOLOGY 2009; 18:97-110. [PMID: 19196350 DOI: 10.1111/j.1365-2583.2008.00854.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The insect digestive system is the first line of defence protecting cells and tissues of the body from a broad spectrum of toxins and antinutritional factors in its food. To gain insight into the nature and breadth of genes involved in adaptation to dietary challenge, a collection of 20 352 cDNAs was prepared from the midgut tissue of cowpea bruchid larvae (Callosobruchus maculatus) fed on regular diet and diets containing antinutritional compounds. Transcript responses of the larvae to dietary soybean cystatin (scN) were analysed using cDNA microarrays, followed by quantitative real-time PCR (RT-PCR) confirmation with selected genes. The midgut transcript profile of insects fed a sustained sublethal scN dose over the larval life was compared with that of insects treated with an acute high dose of scN for 24 h. A total of 1756 scN-responsive cDNAs was sequenced; these clustered into 967 contigs, of which 653 were singletons. Many contigs (451) did not show homology with known genes, or had homology only with genes of unknown function in a Blast search. The identified differentially regulated sequences encoded proteins presumptively involved in metabolism, structure, development, signalling, defence and stress response. Expression patterns of some scN-responsive genes were consistent in each larval stage, whereas others exhibited developmental stage-specificity. Acute (24 h), high level exposure to dietary scN caused altered expression of a set of genes partially overlapping with the transcript profile seen under chronic lower level exposure. Protein and carbohydrate hydrolases were generally up-regulated by scN whereas structural, defence and stress-related genes were largely down-regulated. These results show that insects actively mobilize genomic resources in the alimentary tract to mitigate the impact of a digestive protease inhibitor. The enhanced or restored digestibility that may result is possibly crucial for insect survival, yet may be bought at the cost of weakened response to other stresses.
Collapse
Affiliation(s)
- Y H Chi
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Slee EA, Martin SJ. Regulation of caspase activation in apoptosis: implications for transformation and drug resistance. Cytotechnology 2008; 27:309-20. [PMID: 19002801 DOI: 10.1023/a:1008014215581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent developments in the apoptosis field have uncovered a family of cysteine proteases, the Caspases, that act as signalling components as well as effectors of the cell death machinery. Caspases are constitutively present as inactive precursors within most cells and undergo proteolytic processing in response to diverse death-inducing stimuli to initiate the death programme. Active caspases can process other caspases of the same type as well as process caspases further downstream in the pathway that ultimately leads to collapse of the cell. This cellular collapse is thought to occur as a consequence of caspase-mediated cleavage of a diverse array of cellular substrates. Regulation of entry into the death programme is controlled at a number of levels by members of the Bcl-2 family, as well as by other cell death regulatory proteins. Recent data has shed light upon the mechanism of action of these regulatory molecules and suggests that the point of caspase activation is a major checkpoint in the cell death programme. Because many transformed cell populations possess derangements in cell death-regulatory genes, such as bcl-2, such cells frequently exhibit elevated resistance to cytotoxic chemotherapy. Thus, a deeper understanding of how apoptosis is normally regulated has therapeutic implications for disease states where the normal controls on the cell death machinery have been subverted.
Collapse
Affiliation(s)
- E A Slee
- Department of Biology, National University of Ireland, Maynooth, Co, Kildare, Ireland
| | | |
Collapse
|
37
|
Koch K, Burgess LE. Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis: Anti-inflammatory patent highlights: January-July 1994. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.2.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Spence P, Franco R, Wood A, Moyer JA. Section Review Central & Peripheral Nervous Systems: Mechanisms of apoptosis as drug targets in the central nervous system. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.4.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Schultzberg M, Lindberg C, Aronsson AF, Hjorth E, Spulber SD, Oprica M. Inflammation in the nervous system--physiological and pathophysiological aspects. Physiol Behav 2007; 92:121-8. [PMID: 17597167 DOI: 10.1016/j.physbeh.2007.05.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There is ample evidence for the occurrence of inflammatory processes in most major neurodegenerative disorders, both in acute conditions such as traumatic brain injury and stroke, and in chronic disorders such as Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis and Parkinson's disease. Studies on inflammatory factors such as pro- and antiinflammatory cytokines in experimental models of neurodegenerative disorders suggest that they are not merely bystanders, but may be involved in the neurodegenerative process. In addition, there are findings indicating that inflammatory factors may have beneficial effects on the nervous system, particularly during development of the nervous system. The challenge is to understand when, where and during which circumstances inflammation and inflammatory factors are positive or negative for neuronal survival and functioning. Some of our studies on cytokines, particularly the interleukin-1 system, are summarised and discussed in relation to neurodegeneration, cognition, and temperature changes.
Collapse
Affiliation(s)
- Marianne Schultzberg
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The developmental cell death in the nematode C. elegans is controlled by a simple and dedicated genetic program. This genetic program is evolutionarily conserved in higher organisms, including mammals. However, although mammalian homologs of C. elegans cell death gene products continue to regulate apoptosis, they are no longer dedicated regulators of cell death. On the other hand, multiple cellular noncell death-related mechanisms have been recruited to regulate cell death under different conditions. Such evidence suggests that evolution has led to an extensive integration of mammalian apoptosis machinery with multiple cellular physiological processes.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
41
|
Sarkar A, Hall MW, Exline M, Hart J, Knatz N, Gatson NT, Wewers MD. Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 2006; 174:1003-10. [PMID: 16908867 PMCID: PMC2648100 DOI: 10.1164/rccm.200604-546oc] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Caspase-1 processes interleukin 1beta (IL-1beta) and IL-18 but may also contribute to apoptosis. In this context, caspase-1 knockout mice have been shown to be protected from endotoxin-induced mortality, whereas IL-1beta knockout mice are not protected. OBJECTIVES We therefore sought to delineate the mechanisms responsible for the differential responses between caspase-1 and IL-1beta knockout mice. METHODS Caspase-1 knockout, IL-1beta knockout, and IL-1beta/IL-18 double knockout mice were compared with wild-type mice for survival after intraperitoneal challenge with live Escherichia coli. MEASUREMENTS AND MAIN RESULTS Caspase-1 knockout animals were protected from bacterial challenge, whereas wild-type, IL-1beta knockout, and IL-1beta/IL-18 double knockout animals were not. Wild-type animals and both IL-1beta knockout and IL-1beta/IL-18 double knockout mice demonstrated significant splenic B lymphocyte apoptosis, which was absent in the caspase-1 knockout mice. Importantly, IL-1beta/IL-18 double knockout mice were protected from splenic cell apoptosis and sepsis-induced mortality by the caspase inhibitor zVAD-fmk. Furthermore, wild-type but not caspase-1 knockout splenic B lymphocytes induced peritoneal macrophages to assume an inhibitory phenotype. CONCLUSION Taken together, these findings suggest that caspase-1 is important in the host response to sepsis at least in part via its ability to regulate sepsis-induced splenic cell apoptosis.
Collapse
Affiliation(s)
- Anasuya Sarkar
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Balsara RD, Castellino FJ, Ploplis VA. A Novel Function of Plasminogen Activator Inhibitor-1 in Modulation of the AKT Pathway in Wild-type and Plasminogen Activator Inhibitor-1-deficient Endothelial Cells. J Biol Chem 2006; 281:22527-36. [PMID: 16785241 DOI: 10.1074/jbc.m512819200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell proliferation, an event associated with angiogenesis, involves coordinated activities of a number of proteins. The role of plasminogen activator inhibitor-1 (PAI-1) in angiogenesis remains controversial. Utilizing proliferating PAI-1-/- endothelial cells (EC), the impact of a host PAI-1 deficiency on Akt activation was evaluated. Hyperactivation of Akt(Ser(P)473) was observed in PAI-1-/- EC, and this was probably due to enhanced inactivation of tumor suppressor PTEN, thus rendering the cells resistant to apoptotic signals. Higher levels of inactivated caspase-9 in PAI-1-/- EC led to lower levels of procaspase-3 and cleaved caspase-3, thereby promoting survival. These effects were reversed when recombinant PAI-1 was added to PAI-1-/- EC. Additional studies demonstrated that regulation of proliferation is dependent on its interaction with low density lipoprotein receptor-related protein. Thus, PAI-1 is a negative regulator of cell growth, exerting its effect on the phosphatidylinositol 3-kinase/Akt pathway and allowing controlled cell proliferation.
Collapse
Affiliation(s)
- Rashna D Balsara
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
43
|
Sang Q, Kim MH, Kumar S, Bye N, Morganti-Kossman MC, Gunnersen J, Fuller S, Howitt J, Hyde L, Beissbarth T, Scott HS, Silke J, Tan SS. Nedd4-WW domain-binding protein 5 (Ndfip1) is associated with neuronal survival after acute cortical brain injury. J Neurosci 2006; 26:7234-44. [PMID: 16822981 PMCID: PMC6673957 DOI: 10.1523/jneurosci.1398-06.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the transcriptional response to neuronal injury after trauma is a necessary prelude to formulation of therapeutic strategies. We used Serial Analysis of Gene Expression (SAGE) to identify 50,000 sequence tags representing 18,000 expressed genes in the cortex 2 h after traumatic brain injury (TBI). A similar tag library was obtained from sham-operated cortex. The SAGE data were validated on biological replicates using quantitative real-time-PCR on multiple samples at 2, 6, 12, and 24 h after TBI. This analysis revealed that the vast majority of genes showed a downward trend in their pattern of expression over 24 h. This was confirmed for a subset of genes using in situ hybridization and immunocytochemistry on brain sections. Of the overexpressed genes in the trauma library, Nedd4-WW (neural precursor cell expressed, developmentally downregulated) domain-binding protein 5 (N4WBP5) (also known as Ndfip1) is strongly expressed in surviving neurons around the site of injury. Overexpression of N4WBP5 in cultured cortical neurons increased the number of surviving neurons after gene transfection and growth factor starvation compared with control transfections. These results identify N4WBP5 as a neuroprotective protein and, based on its known interaction with the ubiquitin ligase Nedd4, would suggest protein ubiquitination as a possible survival strategy in neuronal injury.
Collapse
|
44
|
Katai N, Yanagidaira T, Senda N, Murata T, Yoshimura N. Expression of c-Jun and Bcl-2 Family Proteins in Apoptotic Photoreceptors of RCS Rats. Jpn J Ophthalmol 2006; 50:121-7. [PMID: 16604387 DOI: 10.1007/s10384-005-0296-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/01/2005] [Indexed: 02/04/2023]
Abstract
PURPOSE To determine if c-Jun and Bcl-2 family proteins play a role in photoreceptor apoptosis in Royal College of Surgeons (RCS) rats. METHODS RCS and Sprague-Dawley rats were used. Cryosections of retinas harvested at various postnatal periods were immunostained with antibodies against c-Jun, Bcl-2, and Bax. Double staining with TdT-dUTP nick-end labeling (TUNEL) or propidium iodide (PI) and antibodies was also done. To study the time course of gene and protein expression, semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting analyses were carried out. RESULTS TUNEL-positive photoreceptors of RCS rats were stained strongly with antibodies against c-Jun and Bax. The number of immunoreactive cells increased on days 21 and 28 after birth (P21 and P28) and decreased on P45. Semiquantitative RT-PCR analysis showed that mRNAs for c-Jun and Bax were upregulated at P21 and P28, but those for Bcl-2 were unchanged. On immunoblotting, a 43-kDa band was revealed by the anti-c-Jun antibody and a 21-kDa band, by the anti-Bax antibody. Protein expression of c-Jun and Bax were increased at both P21 and P28. The temporal profiles of immunoreactivity, protein expression, and mRNA expression were similar. CONCLUSION c-Jun and Bax may play a role in photoreceptor apoptosis in RCS rats.
Collapse
Affiliation(s)
- Naomichi Katai
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | |
Collapse
|
45
|
Park JM, Greten FR, Wong A, Westrick RJ, Arthur JSC, Otsu K, Hoffmann A, Montminy M, Karin M. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis--CREB and NF-kappaB as key regulators. Immunity 2005; 23:319-29. [PMID: 16169504 DOI: 10.1016/j.immuni.2005.08.010] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/29/2005] [Accepted: 08/24/2005] [Indexed: 11/29/2022]
Abstract
Certain microbes evade host innate immunity by killing activated macrophages with the help of virulence factors that target prosurvival pathways. For instance, infection of macrophages with the TLR4-activating bacterium Bacillus anthracis triggers an apoptotic response due to inhibition of p38 MAP kinase activation by the bacterial-produced lethal toxin. Other pathogens induce macrophage apoptosis by preventing activation of NF-kappaB, which depends on IkappaB kinase beta (IKKbeta). To better understand how p38 and NF-kappaB maintain macrophage survival, we searched for target genes whose products prevent TLR4-induced apoptosis and a p38-dependent transcription factor required for their induction. Here we describe key roles for transcription factor CREB, a target for p38 signaling, and the plasminogen activator 2 (PAI-2) gene, a target for CREB, in maintenance of macrophage survival.
Collapse
Affiliation(s)
- Jin Mo Park
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miller CS. Pleiotropic mechanisms of virus survival and persistence. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 2005; 100:S27-36. [PMID: 16037790 PMCID: PMC7118778 DOI: 10.1016/j.tripleo.2005.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 01/12/2023]
Abstract
Viruses are enormously efficient infectious agents that have been implicated in causing human disease for centuries. Transmission of these pathogens continues to be from one life form to another in the form of isolated cases, epidemics, and pandemics. Each infection requires entry into a susceptible host, replication, and evasion of the immune system. Viruses are successful pathogens because they target specific cells for their attack, exploit the cellular machinery, and are efficient in circumventing and/or inhibiting key cellular events required of survival. This article reviews some of the advances that have taken place in human virology in the past 50 years, emphasizing mechanisms that contribute to, and are involved with, virus survival and persistence.
Collapse
Affiliation(s)
- Craig S. Miller
- Professor, Section of Oral Medicine, Center for Oral Health Research, College of Dentistry, and Department of Microbiology, Immunology & Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Ky
| |
Collapse
|
47
|
Yin D, Tamaki N, Parent AD, Zhang JH. Insulin-like growth factor-I decreased etoposide-induced apoptosis in glioma cells by increasing bcl-2 expression and decreasing CPP32 activity. Neurol Res 2005; 27:27-35. [PMID: 15829155 DOI: 10.1179/016164105x18151] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
AIMS In a variety of tumors, the susceptibility of the tumor cells to apoptotic cell death following chemotherapy is a major determinant of therapeutic outcome. Gliomas are resistant to most chemotherapeutic agents, and its mechanism is not known in detail. In an attempt to understand the mechanism of chemo-resistance, we investigated the roles of insulin-like growth factor-I (IGF-I), IGF-I receptors (IGF-IR), and their relationship with the apoptotic response of two glioma cell lines to etoposide, a chemotherapeutic agent for malignant gliomas. METHODS Two human glioma cell lines, U-87MG and KNS-42, were used. Etoposide-induced cell growth inhibition was quantified using a modified MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide), colorimetric assay. Hoechst 33258 staining, DNA fragmentation assay, and western blot were used for the evaluation of apoptosis. ApoAlert caspase assay was used for measuring the activity of caspase-3 (CPP32) and interleukin-1 beta -converting enzyme (ICE) protease. In addition, the effect of IGF-IR antisense was tested in U-87MG and KNS-42 glioma cell lines. RESULTS Etoposide inhibited the growth of U-87MG and KNS-42 cells in a concentration-dependent manner. Etoposide increased the expression of wild-type p53, activated CPP32 (but not ICE) activity, and induced apoptosis in these cells. IGF-I prevented etoposide-induced apoptosis by increasing the expression of bcl-2 and decreasing the activity of CPP32. IGF-IR antisense enhanced the apoptotic effect of etoposide. CONCLUSIONS IGF-I decreased etoposide-induced apoptosis in glioma cells by increasing the expression of bcl-2 and decreasing the activity of CPP32. The antisense of IGF-IR increased etoposide-induced apoptosis. The anti-apoptotic effect of IGF-I and IGF-IR might be related to the chemo-resistance of glioma to chemotherapeutic agents.
Collapse
Affiliation(s)
- Dali Yin
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | |
Collapse
|
48
|
McBride CB, McPhail LT, Steeves JD. Emerging therapeutic targets in caspase-dependent disease. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.3.391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Puig S, Casati B, Staudenherz A, Paya K. Vascular low-flow malformations in children: current concepts for classification, diagnosis and therapy. Eur J Radiol 2005; 53:35-45. [PMID: 15607851 DOI: 10.1016/j.ejrad.2004.07.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 07/20/2004] [Accepted: 07/26/2004] [Indexed: 11/25/2022]
Abstract
Congenital vascular malformations (CVM) are made of dysplastic vessels with no cellular proliferation. Low- or slow-flow malformations (LFM) consist predominantly of venous and/or lymphatic vessels. Correct terminology is necessary for differentiating vascular malformations from tumours such as haemangiomas, in order to prevent ineffective or even adverse therapy. The role of the radiologist in the management of patients is two-fold: making the diagnosis with the use of ultrasound and magnetic resonance imaging, and performing sclerotherapy, which is the treatment of choice. Prior to sclerotherapy, percutaneous phlebography is necessary to visualize the dynamic situation inside the lesion and the flow into the adjacent vascular system. The double-needle technique is a useful therapy option reducing the risk of embolisation of the sclerosing agent. Large lesions might need subsequent surgical treatment. A multidisciplinary approach is substantial for optimal patient management.
Collapse
Affiliation(s)
- Stefan Puig
- Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
50
|
Hsiao JC, Chung CS, Drillien R, Chang W. The cowpox virus host range gene, CP77, affects phosphorylation of eIF2 alpha and vaccinia viral translation in apoptotic HeLa cells. Virology 2004; 329:199-212. [PMID: 15476887 DOI: 10.1016/j.virol.2004.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 04/09/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
Host restriction of vaccinia virus has been previously described in CHO and RK13 cells in which a cowpox virus CP77 gene rescues vaccinia virus growth at the viral protein translation level. Here we investigate the restrictive stage of vaccinia virus in HeLa cells using a vaccinia mutant virus (VV-hr) that contains a deletion of 18-kb genome sequences resulting in no growth in HeLa cells. Insertion of CP77 gene into VV-hr generated a recombinant virus (VV-36hr) that multiplied well in HeLa cells. Both viruses could enter cells, initiate viral DNA replication and intermediate gene transcription. However, translation of viral intermediate gene was only detected in cells infected with VV-36hr, indicating that CP77 relieves host restriction at the intermediate gene translation stage in HeLa cells. Caspase-2 and -3 activation was observed in HeLa cells infected with VV-hr coupled with dramatic morphological alterations and cleavage of the translation initiation factor eIF4G. Caspase activation was reduced in HeLa cells infected with VV-36hr, indicating that CP77 acts upstream of caspase activation. Enhanced phosphorylation of PKR and eIF2alpha was also observed in cells infected with VV-hr and was suppressed by CP77. Suppression of eIF4G cleavage with the caspase inhibitor ZVAD did not rescue virus translation, whereas expression of a mutant eIF2alpha protein with an alanine substitution of serine at amino acid position 51 (eIF2alphaS51A) partially restored viral translation and moderately increased virus growth in HeLa cells.
Collapse
Affiliation(s)
- Jye-Chian Hsiao
- Graduate Institute of Life Science, National Defense Medical Center, National Defense University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|