1
|
IGARASHI M. Molecular basis of the functions of the mammalian neuronal growth cone revealed using new methods. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:358-377. [PMID: 31406059 PMCID: PMC6766448 DOI: 10.2183/pjab.95.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 05/25/2023]
Abstract
The neuronal growth cone is a highly motile, specialized structure for extending neuronal processes. This structure is essential for nerve growth, axon pathfinding, and accurate synaptogenesis. Growth cones are important not only during development but also for plasticity-dependent synaptogenesis and neuronal circuit rearrangement following neural injury in the mature brain. However, the molecular details of mammalian growth cone function are poorly understood. This review examines molecular findings on the function of the growth cone as a result of the introduction of novel methods such superresolution microscopy and (phospho)proteomics. These results increase the scope of our understating of the molecular mechanisms of growth cone behavior in the mammalian brain.
Collapse
Affiliation(s)
- Michihiro IGARASHI
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Cagnetta R, Frese CK, Shigeoka T, Krijgsveld J, Holt CE. Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome. Neuron 2018; 99:29-46.e4. [PMID: 30008298 PMCID: PMC6048689 DOI: 10.1016/j.neuron.2018.06.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/24/2017] [Accepted: 05/31/2018] [Indexed: 01/13/2023]
Abstract
Axonal protein synthesis and degradation are rapidly regulated by extrinsic signals during neural wiring, but the full landscape of proteomic changes remains unknown due to limitations in axon sampling and sensitivity. By combining pulsed stable isotope labeling of amino acids in cell culture with single-pot solid-phase-enhanced sample preparation, we characterized the nascent proteome of isolated retinal axons on an unparalleled rapid timescale (5 min). Our analysis detects 350 basally translated axonal proteins on average, including several linked to neurological disease. Axons stimulated by different cues (Netrin-1, BDNF, Sema3A) show distinct signatures with more than 100 different nascent protein species up- or downregulated within the first 5 min followed by further dynamic remodeling. Switching repulsion to attraction triggers opposite regulation of a subset of common nascent proteins. Our findings thus reveal the rapid remodeling of the axonal proteomic landscape by extrinsic cues and uncover a logic underlying attraction versus repulsion.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christian K Frese
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Toshiaki Shigeoka
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; Excellence Cluster CellNetworks, University of Heidelberg, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
3
|
Gehringer M, Altmann KH. The chemistry and biology of mycolactones. Beilstein J Org Chem 2017; 13:1596-1660. [PMID: 28904608 PMCID: PMC5564285 DOI: 10.3762/bjoc.13.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mycolactones are a group of macrolides excreted by the human pathogen Mycobacterium ulcerans, which exhibit cytotoxic, immunosuppressive and analgesic properties. As the virulence factor of M. ulcerans, mycolactones are central to the pathogenesis of the neglected disease Buruli ulcer, a chronic and debilitating medical condition characterized by necrotic skin ulcers. Due to their complex structure and fascinating biology, mycolactones have inspired various total synthesis endeavors and structure-activity relationship studies. Although this review intends to cover all synthesis efforts in the field, special emphasis is given to the comparison of conceptually different approaches and to the discussion of more recent contributions. Furthermore, a detailed discussion of molecular targets and structure-activity relationships is provided.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Abstract
Axonal guidance factors play a central role in neural development and regeneration. The ability of cell surface adhesive proteins and extracellular matrix components to promote axonal outgrowth has been documented for some time. Recently, the existence and the importance of molecules that repulse axons and of soluble factors that attract axons have been appreciated. By virtue of their long-range diffusible action, the netrins are now well- defined, soluble axonal guidance molecules. The physiological role of repulsive mecha nisms has been best documented in the development of the retinotectal map and in the ability of CNS myelin to inhibit axonal regeneration. The collapsin/semaphorin family of axonal growth inhibitors has been characterized at the molecular level. It is now clear that an understanding of axonal guidance mechanisms must include soluble cell-surface and matrix-bound factors, which are both attractive and repulsive for axonal growth cones. The Neuroscientist 1:255-258, 1995
Collapse
|
5
|
Sierra-Fonseca JA, Najera O, Martinez-Jurado J, Walker EM, Varela-Ramirez A, Khan AM, Miranda M, Lamango NS, Roychowdhury S. Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction. BMC Neurosci 2014; 15:132. [PMID: 25552352 PMCID: PMC4302597 DOI: 10.1186/s12868-014-0132-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth. However, the possible connection between these pathways and how they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not well understood. RESULTS Here, we report that Gβγ, an important component of the GPCR pathway, is critical for NGF-induced neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gβγ with MTs and stimulated MT assembly. While Gβγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and induced neurite damage, the Gβγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement of Gβγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation of γ subunits are required for the Gβγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these inhibitors disrupted Gβγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further support of a role of Gβγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gβγ in PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gβγ exhibited a pattern of association with MTs similar to that observed in NGF-differentiated cells. CONCLUSIONS Altogether, our results demonstrate that βγ subunit of heterotrimeric G proteins play a critical role in neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement.
Collapse
Affiliation(s)
- Jorge A Sierra-Fonseca
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
- />Present Address: Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Omar Najera
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Jessica Martinez-Jurado
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Ellen M Walker
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Armando Varela-Ramirez
- />Cytometry Screening and Imaging Core facility, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Arshad M Khan
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Manuel Miranda
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Nazarius S Lamango
- />College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307 USA
| | - Sukla Roychowdhury
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| |
Collapse
|
6
|
Igarashi M. Proteomic identification of the molecular basis of mammalian CNS growth cones. Neurosci Res 2014; 88:1-15. [PMID: 25066522 DOI: 10.1016/j.neures.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
The growth cone, which is a unique structure with high motility that forms at the tips of extending axons and dendrites, is crucial to neuronal network formation. Axonal growth of the mammalian CNS is most likely achieved by the complicated coordination of cytoskeletal rearrangement and vesicular trafficking via many proteins. Before recent advances, no methods to identify numerous proteins existed; however, proteomics revolutionarily resolved such problems. In this review, I summarize the profiles of the mammalian growth cone proteins revealed by proteomics as the molecular basis of the growth cone functions, with molecular mapping. These results should be used as a basis for understanding the mechanisms of the complex mammalian CNS developmental process.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Trans-disciplinary Program, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
7
|
Georganta EM, Tsoutsi L, Gaitanou M, Georgoussi Z. δ-opioid receptor activation leads to neurite outgrowth and neuronal differentiation via a STAT5B-Gαi/o pathway. J Neurochem 2013; 127:329-41. [DOI: 10.1111/jnc.12386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/27/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Eirini-Maria Georganta
- Laboratory of Cellular Signalling and Molecular Pharmacology; Institute of Biosciences and Applications; National Centre for Scientific Research “Demokritos”; Athens Greece
| | - Lambrini Tsoutsi
- Laboratory of Cellular Signalling and Molecular Pharmacology; Institute of Biosciences and Applications; National Centre for Scientific Research “Demokritos”; Athens Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology; Hellenic Pasteur Institute; Athens Greece
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology; Institute of Biosciences and Applications; National Centre for Scientific Research “Demokritos”; Athens Greece
| |
Collapse
|
8
|
Amyloid precursor proteins interact with the heterotrimeric G protein Go in the control of neuronal migration. J Neurosci 2013; 33:10165-81. [PMID: 23761911 DOI: 10.1523/jneurosci.1146-13.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid precursor protein (APP) belongs to a family of evolutionarily conserved transmembrane glycoproteins that has been proposed to regulate multiple aspects of cell motility in the nervous system. Although APP is best known as the source of β-amyloid fragments (Aβ) that accumulate in Alzheimer's disease, perturbations affecting normal APP signaling events may also contribute to disease progression. Previous in vitro studies showed that interactions between APP and the heterotrimeric G protein Goα-regulated Goα activity and Go-dependent apoptotic responses, independent of Aβ. However, evidence for authentic APP-Go interactions within the healthy nervous system has been lacking. To address this issue, we have used a combination of in vitro and in vivo strategies to show that endogenously expressed APP family proteins colocalize with Goα in both insect and mammalian nervous systems, including human brain. Using biochemical, pharmacological, and Bimolecular Fluorescence Complementation assays, we have shown that insect APP (APPL) directly interacts with Goα in cell culture and at synaptic terminals within the insect brain, and that this interaction is regulated by Goα activity. We have also adapted a well characterized assay of neuronal migration in the hawkmoth Manduca to show that perturbations affecting APPL and Goα signaling induce the same unique pattern of ectopic, inappropriate growth and migration, analogous to defective migration patterns seen in mice lacking all APP family proteins. These results support the model that APP and its orthologs regulate conserved aspects of neuronal migration and outgrowth in the nervous system by functioning as unconventional Goα-coupled receptors.
Collapse
|
9
|
Tułodziecka K, Czeredys M, Nałęcz KA. Palmitoylcarnitine affects localization of growth associated protein GAP-43 in plasma membrane subdomains and its interaction with Gα(o) in neuroblastoma NB-2a cells. Neurochem Res 2012; 38:519-29. [PMID: 23224819 DOI: 10.1007/s11064-012-0944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/26/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022]
Abstract
Palmitoylcarnitine was observed previously to promote differentiation of neuroblastoma NB-2a cells, and to affect protein kinase C (PKC). Palmitoylcarnitine was also observed to increase palmitoylation of several proteins, including a PKC substrate, whose expression augments during differentiation of neural cells-a growth associated protein GAP-43, known to bind phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. Since palmitoylated proteins are preferentially localized in sphingolipid- and cholesterol-rich microdomains of plasma membrane, the present study has been focused on a possible effect of palmitoylcarnitine on GAP-43 localization in these microdomains. Palmitoylcarnitine treatment resulted in GAP-43 appearance in floating fractions (rafts) in sucrose gradient and increased co-localization with cholesterol and with PI(4,5)P(2), although co-localization of both lipids decreased. GAP-43 disappeared from raft fraction upon treatment with 2-bromopalmitate (an inhibitor of palmitoylating enzymes) and after treatment with etomoxir (carnitine palmitoyltransferase I inhibitor). Raft localization of GAP-43 was completely abolished by treatment with methyl-β-cyclodextrin, a cholesterol binding agent, while there was no change upon sequestration of PI(4,5)P(2) with neomycin. GAP-43 co-precipitated with a monomeric form of Gα(o), a phenomenon diminished after palmitoylcarnitine treatment and paralleled by a decrease of Gα(o) in the raft fraction. These observations point to palmitoylation of GAP-43 as a mechanism leading to an increased localization of this protein in microdomains of plasma membrane rich in cholesterol, in majority different, however, from microdomains in which PI(4,5)P(2) is present. This localization correlates with decreased interaction with Gα(o) and suppression of its activity-an important step regulating neural cell differentiation.
Collapse
Affiliation(s)
- Karolina Tułodziecka
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | |
Collapse
|
10
|
Ferraro GB, Morrison CJ, Overall CM, Strittmatter SM, Fournier AE. Membrane-type matrix metalloproteinase-3 regulates neuronal responsiveness to myelin through Nogo-66 receptor 1 cleavage. J Biol Chem 2011; 286:31418-24. [PMID: 21768085 DOI: 10.1074/jbc.m111.249169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nogo-66 receptor 1 (NgR1) is a glycosylphosphatidylinositol-anchored receptor for myelin-associated inhibitors that restricts plasticity and axonal regrowth in the CNS. NgR1 is cleaved from the cell surface of SH-SY5Y neuroblastoma cells in a metalloproteinase-dependent manner; however, the mechanism and physiological consequence of NgR1 shedding have not been explored. We now demonstrate that NgR1 is shed from multiple populations of primary neurons. Through a loss-of-function approach, we found that membrane-type matrix metalloproteinase-3 (MT3-MMP) regulates endogenous NgR1 shedding in primary neurons. Neuronal knockdown of MT3-MMP resulted in the accumulation of NgR1 at the cell surface and reduced the accumulation of the NgR1 cleavage fragment in medium conditioned by cortical neurons. Recombinant MT1-, MT2-, MT3-, and MT5-MMPs promoted NgR1 shedding from the surface of primary neurons, and this treatment rendered neurons resistant to myelin-associated inhibitors. Introduction of a cleavage-resistant form of NgR1 reconstitutes the neuronal response to these inhibitors, demonstrating that specific metalloproteinases attenuate neuronal responses to myelin in an NgR1-dependent manner.
Collapse
Affiliation(s)
- Gino B Ferraro
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
11
|
Abstract
Mutations in leucine-rich glioma inactivated (LGI1) are a genetic cause of autosomal dominant temporal lobe epilepsy with auditory features. LGI1 is a secreted protein that shares homology with members of the SLIT family, ligands that direct axonal repulsion and growth cone collapse, and we therefore considered the possibility that LGI1 may regulate neuronal process extension or growth cone collapse. Here we report that LGI1 does not affect growth directly but instead enhances neuronal growth on myelin-based inhibitory substrates and antagonizes myelin-induced growth cone collapse. We show that LGI1 mediates this effect by functioning as a specific Nogo receptor 1 (NgR1) ligand that antagonizes the action of myelin-based inhibitory cues. Finally, we demonstrate that NgR1 and ADAM22 physically associate to form a receptor complex in which NgR1 facilitates LGI1 binding to ADAM22.
Collapse
|
12
|
Abstract
Myelin-associated inhibitors (MAIs) contribute to failed regeneration in the CNS. The intracellular signaling pathways through which MAIs block axonal repair remain largely unknown. Here, we report that the kinase GSK3beta is directly phosphorylated and inactivated by MAIs, consequently regulating protein-protein interactions that are critical for myelin-dependent inhibition. Inhibition of GSK3beta mimics the neurite outgrowth inhibitory effect of myelin. The inhibitory effects of GSK3beta inhibitors and myelin are not additive indicating that GSK3beta is a major effector of MAIs. Consistent with this, overexpression of GSK3beta attenuates myelin inhibition. MAI-dependent phosphorylation and inactivation of GSK3beta regulate phosphorylation of CRMP4, a cytosolic regulator of myelin inhibition, and its ability to complex with RhoA. Introduction of a CRMP4 antagonist attenuates the neurite outgrowth inhibitory properties of GSK3beta inhibitors. We describe the first example of GSK3beta inactivation in response to inhibitory ligands and link the neurite outgrowth inhibitory effects of GSK3beta inhibition directly to CRMP4. These findings raise the possibility that GSK3beta inhibition will not effectively promote long-distance CNS regeneration following trauma such as spinal cord injury.
Collapse
|
13
|
The role of glial cells in influencing neurite extension by dorsal root ganglion cells. ACTA ACUST UNITED AC 2009; 6:19-29. [PMID: 20025817 DOI: 10.1017/s1740925x09990433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When pretreated with pertussis toxin (PTX), the neurites of adult rat dorsal root ganglion (DRG) cells in mixed cell cultures retract over a period of 2 h following the initial stimulus of removal from the cell culture incubator for brief periods of observation. The purpose of this investigation was to determine whether this PTX-dependent response was specific to any one of the three subpopulations of DRG neurons. However, no neurite retraction response was observed in neuron-enriched populations of cells, or in cultures enriched in isolectin B4 (IB4)-positive neurons or in IB4-negative neurons. But, the addition of non-neuronal cells, and/or medium conditioned by non-neuronal cells, was sufficient to restore the PTX-dependent neurite retraction response, but only in large diameter IB4-negative neurons. In conclusion, we have identified a regulatory response, mediated by Gi/o-proteins, which prevents retraction of neurites in large diameter IB4-negative cells of adult rat DRG. The non-neuronal cells of adult rat DRG constitutively release factor/s that can stimulate neurite retraction of a subset of isolated DRG neurons, but this property of non-neuronal cells is only observed when the Gi/o-proteins of large diameter IB4-negative cells are inhibited.
Collapse
|
14
|
Identification of functional marker proteins in the mammalian growth cone. Proc Natl Acad Sci U S A 2009; 106:17211-6. [PMID: 19805073 DOI: 10.1073/pnas.0904092106] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identification of proteins in the mammalian growth cone has the potential to advance our understanding of this critical regulator of neuronal growth and formation of neural circuit; however, to date, only one growth cone marker protein, GAP-43, has been reported. Here, we successfully used a proteomic approach to identify 945 proteins present in developing rat forebrain growth cones, including highly abundant, membrane-associated and actin-associated proteins. Almost 100 of the proteins appear to be highly enriched in the growth cone, as determined by quantitative immunostaining, and for 17 proteins, the results of RNAi suggest a role in axon growth. Most of the proteins we identified have not previously been implicated in axon growth and thus their identification presents a significant step forward, providing marker proteins and candidate neuronal growth-associated proteins.
Collapse
|
15
|
Bonnici B, Kapfhammer JP. Modulators of signal transduction pathways can promote axonal regeneration in entorhino-hippocampal slice cultures. Eur J Pharmacol 2009; 612:35-40. [PMID: 19375417 DOI: 10.1016/j.ejphar.2009.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/24/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Axonal regeneration after lesions is usually not possible in the adult central nervous system but can occur in the embryonic and young postnatal nervous system. In this study we used the model system of mouse entorhino-hippocampal slice cultures to assess the potential of pharmacological treatments with compounds targeting signal transduction pathways to promote growth of entorhinal fibers after mechanical lesions across the lesion site to their target region in the dentate gyrus. Compounds acting on the cyclic AMP-system, protein kinase C and G-proteins have been shown before to be able to promote regeneration. In this study we have confirmed the potential of drugs affecting these systems to promote axonal regeneration in the central nervous system. In addition we have found that inhibition of the phosphoinositide 3-kinase pathway and of the inositol triphosphate receptor also promoted axonal growth across the lesion site and are thus potential novel drug targets for promoting axonal regeneration after central nervous system lesions. Our findings demonstrate that slice culture models can be used to evaluate compounds for their potential to promote axonal regeneration and that the pharmacological modulation of signal transduction pathways is a promising approach for promoting axonal repair.
Collapse
Affiliation(s)
- Brenda Bonnici
- Anatomical Institute, Department of Biomedicine Basel, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
16
|
Dave RH, Saengsawang W, Yu JZ, Donati R, Rasenick MM. Heterotrimeric G-proteins interact directly with cytoskeletal components to modify microtubule-dependent cellular processes. Neurosignals 2009; 17:100-8. [PMID: 19212143 DOI: 10.1159/000186693] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/05/2008] [Indexed: 01/07/2023] Open
Abstract
A large percentage of current drugs target G-protein-coupled receptors, which couple to well-known signaling pathways involving cAMP or calcium. G-proteins themselves may subserve a second messenger function. Here, we review the role of tubulin and microtubules in directly mediating effects of heterotrimeric G-proteins on neuronal outgrowth, shape and differentiation. G-protein-tubulin interactions appear to be regulated by neurotransmitter activity, and, in turn, regulate the location of Galpha in membrane microdomains (such as lipid rafts) or the cytosol. Tubulin binds with nanomolar affinity to Gsalpha, Gialpha1 and Gqalpha (but not other Galpha subunits) as well as Gbeta(1)gamma(2) subunits. Galpha subunits destabilize microtubules by stimulating tubulin's GTPase, while Gbetagamma subunits promote microtubule stability. The same region on Gsalpha that binds adenylyl cyclase and Gbetagamma also interacts with tubulin, suggesting that cytoskeletal proteins are novel Galpha effectors. Additionally, intracellular Gialpha-GDP, in concert with other GTPase proteins and Gbetagamma, regulates the position of the mitotic spindle in mitosis. Thus, G-protein activation modulates cell growth and differentiation by directly altering microtubule stability. Further studies are needed to fully establish a structural mechanism of this interaction and its role in synaptic plasticity.
Collapse
Affiliation(s)
- Rahul H Dave
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Il 60612-7342, USA
| | | | | | | | | |
Collapse
|
17
|
Roychowdhury S, Rasenick MM. Submembraneous microtubule cytoskeleton: regulation of microtubule assembly by heterotrimeric Gproteins. FEBS J 2008; 275:4654-63. [PMID: 18754776 PMCID: PMC2782913 DOI: 10.1111/j.1742-4658.2008.06614.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heterotrimeric Gproteins participate in signal transduction by transferring signals from cell surface receptors to intracellular effector molecules. Gproteins also interact with microtubules and participate in microtubule-dependent centrosome/chromosome movement during cell division, as well as neuronal differentiation. In recent years, significant progress has been made in our understanding of the biochemical/functional interactions between Gprotein subunits (alpha and betagamma) and microtubules, and the molecular details emerging from these studies suggest that alpha and betagamma subunits of Gproteins interact with tubulin/microtubules to regulate the assembly/dynamics of microtubules, providing a novel mechanism for hormone- or neurotransmitter-induced rapid remodeling of cytoskeleton, regulation of the mitotic spindle for centrosome/chromosome movements in cell division, and neuronal differentiation in which structural plasticity mediated by microtubules is important for appropriate synaptic connections and signal transmission.
Collapse
Affiliation(s)
- Sukla Roychowdhury
- Department of Biological Sciences, University of Texas, El Paso, TX, USA.
| | | |
Collapse
|
18
|
Bromberg KD, Iyengar R, He JC. Regulation of neurite outgrowth by G(i/o) signaling pathways. FRONT BIOSCI-LANDMRK 2008; 13:4544-57. [PMID: 18508528 DOI: 10.2741/3022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurogenesis is a long and winding journey. A neural progenitor cell migrates long distances, differentiates by forming a single axon and multiple dendrites, undergoes maturation, and ultimately survives. The initial formation of neurites during neuronal differentiation, commonly referred to as "neurite outgrowth," can be induced by a large repertoire of signals that stimulate an array of receptors and downstream signaling pathways. The G(i/o) family of heterotrimeric G-proteins are abundantly expressed in the brain and enriched at neuronal growth cones. Recent evidence has uncovered several G(i/o)-coupled receptors that induce neurite outgrowth and has begun to elucidate the underlying molecular mechanisms. Emerging data suggests that signals from several G(i/o)-coupled receptors converge at the transcription factor STAT3 to regulate neurite outgrowth and at Rac1 and Cdc42 to regulate cytoskeletal reorganization. Physiologically, signaling through G(i/o)-coupled cannabinoid receptors is critical for pro percentral nervous system development. As the mechanisms by which G(i/o)-coupled receptors regulate neurite outgrowth are clarified, it is becoming evident that modulating signals from G(i/o) and their receptors has great potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kenneth D Bromberg
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
19
|
Zakharov VV, Mosevitsky MI. M-calpain-mediated cleavage of GAP-43 near Ser41 is negatively regulated by protein kinase C, calmodulin and calpain-inhibiting fragment GAP-43-3. J Neurochem 2007; 101:1539-51. [PMID: 17326767 DOI: 10.1111/j.1471-4159.2007.04452.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuronal protein GAP-43 performs multiple functions in axon guidance, synaptic plasticity and regulation of neuronal death and survival. However, the molecular mechanisms of its action in these processes are poorly understood. We have shown that in axon terminals GAP-43 is a substrate for calcium-activated cysteine protease m-calpain, which participates in repulsion of axonal growth cones and induction of neuronal death. In pre-synaptic terminals in vivo, in synaptosomes, and in vitro, m-calpain cleaved GAP-43 in a small region near Ser41, on either side of this residue. In contrast, micro-calpain cleaved GAP-43 in vitro at several other sites, besides Ser41. Phosphorylation of Ser41 by protein kinase C or GAP-43 binding to calmodulin strongly suppressed GAP-43 proteolysis by m-calpain. A GAP-43 fragment, lacking about forty N-terminal residues (named GAP-43-3), was produced by m-calpain-mediated cleavage of GAP-43 and inhibited m-calpain, but not micro-calpain. This fragment prevented complete cleavage of intact GAP-43 by m-calpain as a negative feedback. GAP-43-3 also blocked m-calpain activity against casein, a model calpain substrate. This implies that GAP-43-3, which is present in axon terminals in high amount, can play important role in regulation of m-calpain activity in neurons. We suggest that GAP-43-3 and another (N-terminal) GAP-43 fragment produced by m-calpain participate in modulation of neuronal response to repulsive and apoptotic signals.
Collapse
Affiliation(s)
- Vladislav V Zakharov
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute of Russian Academy of Sciences, Gatchina, Leningrad District, Russia.
| | | |
Collapse
|
20
|
He JC, Neves SR, Jordan JD, Iyengar R. Role of the Go/i signaling network in the regulation of neurite outgrowth. Can J Physiol Pharmacol 2007; 84:687-94. [PMID: 16998532 DOI: 10.1139/y06-025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neurite outgrowth is a complex differentiation process stimulated by many neuronal growth factors and transmitters and by electrical activity. Among these stimuli are ligands for G-protein-coupled receptors (GPCR) that function as neurotransmitters. The pathways involved in GPCR-triggered neurite outgrowth are not fully understood. Many of these receptors couple to Galphao, one of the most abundant proteins in the neuronal growth cones. We have studied the Go signaling network involved in neurite outgrowth in Neuro2A cells. Galphao can induce neurite outgrowth. The CB1 cannabinoid receptor, a Go/i-coupled receptor expressed endogenously in Neuro2A cells, triggers neurite outgrowth by activating Rap1, which promotes the Galphao-stimulated proteasomal degradation of Rap1GAPII. CB1-receptor-mediated Rap1 activation leads to the activation of a signaling network that includes the small guanosine triphosphate (GTP)ases Ral and Rac, the protein kinases Src, and c-Jun N-terminal kinase (JNK), which converge onto the activation of signal transducer and activator of transcription 3 (Stat3), a key transcription factor that mediates the gene expression process of neurite outgrowth in Neuro2A cells. This review describes current findings from our laboratory and also discusses alternative pathways that Go/i might mediate to trigger neurite outgrowth. We also analyze the role neurotransmitters, which stimulate Go/i to activate a complex signaling network controlling neurite outgrowth, play in regeneration after neuronal injury.
Collapse
Affiliation(s)
- John Cijiang He
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, One Gustave L levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
21
|
Alabed YZ, Pool M, Tone SO, Fournier AE. Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci 2007; 27:1702-11. [PMID: 17301178 PMCID: PMC6673735 DOI: 10.1523/jneurosci.5055-06.2007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myelin-associated inhibitors (MAIs) and chondroitin sulfate proteoglycans (CSPGs) contribute to failed regeneration after neuronal injury. MAIs and CSPGs stimulate intracellular signals including the activation of RhoA and Rho kinase to block axonal extension through targeted modifications to the cytoskeleton. RhoA and ROCK are promising targets for therapeutic intervention to promote CNS repair; however, their ubiquitous expression will limit the specificity of drugs targeted to these molecules. We have identified the cytosolic phosphoprotein CRMP4b (collapsin-response mediator protein 4b) as a protein that physically and functionally interacts with RhoA to mediate neurite outgrowth inhibition. Short interfering RNA-mediated knockdown of CRMP4 promotes neurite outgrowth on myelin substrates, indicating a critical role for CRMP4 in neurite outgrowth inhibition. Disruption of CRMP4b-RhoA binding with a competitive inhibitor attenuates neurite outgrowth inhibition on myelin and aggrecan substrates. Stimulation of neuronal growth cones with Nogo leads to colocalization of CRMP4b and RhoA at discrete regions within the actin-rich central and peripheral domains of the growth cone, indicative of a potential function in cytoskeletal rearrangements during neurite outgrowth inhibition. Together, these data indicate that a RhoA-CRMP4b complex forms in response to inhibitory challenges in the growth cone environment and regulates cytoskeletal dynamics at distinct sites necessary for axon outgrowth inhibition. Competitive inhibition of CRMP4b-RhoA binding suggests a novel, highly specific therapeutic avenue for promoting regeneration after CNS injury.
Collapse
Affiliation(s)
- Yazan Z. Alabed
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | - Madeline Pool
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | - Stephan Ong Tone
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | - Alyson E. Fournier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
22
|
Wang D, Chen P, Quan W, Halpern M. Suprasternal gland secretion of male short-tailed opossum induces IP3 generation in the vomeronasal organ. Biochim Biophys Acta Gen Subj 2007; 1770:725-32. [PMID: 17306463 DOI: 10.1016/j.bbagen.2007.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 12/27/2006] [Indexed: 11/21/2022]
Abstract
Chemical communication is an important component of mammalian social behaviors. Gray short-tailed opossums (Monodelphis domestica) communicate by scent marking. The male opossum possesses a prominent suprasternal scent gland, extracts of which strongly attract female opossums. This attractivity remains unaltered following repeated lyophilization. The suprasternal gland secretion functions in a sexually dimorphic manner, i.e., it elicits elevated levels of IP(3) in the vomeronasal (VN) sensory epithelium of female opossums, but suppressed the levels of IP(3) in the VN sensory epithelium of male opossums. The elevated levels of IP(3) induced by suprasternal gland secretion in female vomeronasal sensory epithelium is inhibited by the G(i/o) specific inhibitor, NF023, but not its inactive analogue, NF007. It is also suppressed by specific antibodies to the alpha subunits of G(i) and G(o) proteins, by the phospholipase C inhibitor, U73122, as well as by GDPbetaS. Surprisingly, GDPbetaS itself enhances basal levels of IP(3) in female VN sensory epithelium. This GDPbetaS-induced increase in levels of IP(3) is reduced by the PLC inhibitor, U73122, but not by the G(i/o) inhibitor, NF023. In addition, GDP also enhances basal levels of IP(3). GDPbetaS, a known inhibitor of G-protein activation, thus appears to have dual functions: as both stimulator and inhibitor of IP(3) production in the VN sensory epithelium of opossums. In contrast, this nucleotide analogue functions as an inhibitor in the VN sensory epithelium of mice. The mechanism of signal transduction underlying the suprasternal gland secretion-elicited signals in the VN sensory epithelium of opossums appears to involve signals that are generated through activation of G-protein-coupled receptors and transduced via activation of G(i/o)-proteins and the effector, phospholipase C, resulting in an increased production of the second messenger, IP(3). The extracellular signals are thus amplified.
Collapse
Affiliation(s)
- Dalton Wang
- Department of Biochemistry, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
23
|
Alabed YZ, Grados-Munro E, Ferraro GB, Hsieh SHK, Fournier AE. Neuronal responses to myelin are mediated by rho kinase. J Neurochem 2006; 96:1616-25. [PMID: 16441511 DOI: 10.1111/j.1471-4159.2006.03670.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CNS myelin inhibits axon growth due to the expression of several growth-inhibitory proteins, including myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein and Nogo. Myelin-associated inhibitory proteins activate rho GTPase in responsive neurons. Rho kinase (ROCK) has been implicated as a critical rho effector in this pathway due to the ability of the pharmacological inhibitor Y-27632 to circumvent myelin-dependent inhibition. Y-27632, however, inhibits the activity of additional kinases. Using three independent approaches, we provide direct evidence that ROCKII is activated in response to the myelin-associated inhibitor Nogo. We demonstrate that Nogo treatment enhances ROCKII translocation to the cellular membrane in PC12 cells and enhances ROCKII kinase activity towards an in vitro substrate. In addition, Nogo treatment enhances phosphorylation of myosin light chain II, a known ROCK substrate. Further, we demonstrate that primary dorsal root ganglia neurons can be rendered insensitive to the inhibitory effects of myelin via infection with dominant negative ROCK. Together these data provide direct evidence for a rho-ROCK-myosin light chain-II signaling cascade in response to myelin-associated inhibitors.
Collapse
Affiliation(s)
- Yazan Z Alabed
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
24
|
Hsieh SHK, Ferraro GB, Fournier AE. Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J Neurosci 2006; 26:1006-15. [PMID: 16421320 PMCID: PMC6675360 DOI: 10.1523/jneurosci.2806-05.2006] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Myelin-associated inhibitors (MAIs) signal through a tripartate receptor complex on neurons to limit axon regeneration in the CNS. Inhibitory influences ultimately converge on the cytoskeleton to mediate growth cone collapse and neurite outgrowth inhibition. Rho GTPase and its downstream effector Rho kinase are key signaling intermediates in response to MAIs; however, the links between Rho and the actin cytoskeleton have not been fully defined. We found that Nogo-66, a potent inhibitory fragment of Nogo-A, signals through LIM (LIM is an acronym of the three gene products Lin-11, Isl-1, and Mec-3) kinase and Slingshot (SSH) phosphatase to regulate the phosphorylation profile of the actin depolymerization factor cofilin. Blockade of LIMK1 activation and subsequent cofilin phosphorylation circumvents myelin-dependent inhibition in chick dorsal root ganglion neurons, suggesting that phosphorylation and inactivation of cofilin is critical for neuronal inhibitory responses. Subsequent activation of SSH1 phosphatase mediates cofilin dephosphorylation and reactivation. Overexpression of SSH1 does not mimic the neurite outgrowth inhibitory effects of myelin, suggesting an alternative role in MAI inhibition. We speculate that SSH-mediated persistent cofilin activation may be responsible for maintaining an inhibited neuronal phenotype in response to myelin inhibitors.
Collapse
Affiliation(s)
- Sidney H-K Hsieh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, H3A 2B4, Canada
| | | | | |
Collapse
|
25
|
Zakharov VV, Bogdanova MN, Mosevitsky MI. Specific Proteolysis of Neuronal Protein GAP-43 by Calpain: Characterization, Regulation, and Physiological Role. BIOCHEMISTRY (MOSCOW) 2005; 70:897-907. [PMID: 16212546 DOI: 10.1007/s10541-005-0200-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanism of specific proteolysis of the neuronal protein GAP-43 in axonal terminals has been investigated. In synaptic terminals in vivo and in synaptosomes in vitro GAP-43 is cleaved only at the single peptide bond formed by Ser41; this is within the main effector domain of GAP-43. Proteolysis at this site involves the cysteine calcium-dependent neutral protease calpain. The following experimental evidences support this conclusion: 1) calcium-dependent proteolysis of GAP-43 in synaptosomes is insensitive to selective inhibitor of micro-calpain (PD151746), but it is completely blocked by micro- and m-calpain inhibitor PD150606; 2) GAP-43 proteolysis in the calcium ionophore A23187-treated synaptosomes is activated by millimolar concentration of calcium ions; 3) the pattern of fragmentation of purified GAP-43 by m-calpain (but not by micro-calpain) is identical to that observed in synaptic terminals in vivo. GAP-43 phosphorylated at Ser41 by protein kinase C (PKC) is resistant to the cleavage by calpain. In addition, calmodulin binding to GAP-43 decreases the rate of calpain-mediated GAP-43 proteolysis. Our results indicate that m-calpain-mediated GAP-43 proteolysis regulated by PKC and calmodulin is of physiological relevance, particularly in axonal growth cone guidance. We suggest that the function of the N-terminal fragment of GAP-43 (residues 1-40) formed during cleavage by m-calpain consists in activation of neuronal heterotrimeric GTP-binding protein G(o); this results in growth cone turning in response to repulsive signals.
Collapse
Affiliation(s)
- V V Zakharov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Leningrad Region, 188300, Russia.
| | | | | |
Collapse
|
26
|
Liu X, Liu YY, Jin WL, Liu HL, Ju G. Nogo-66 Receptor at Cerebellar Cortical Glia Gap Junctions in the Rat. Neurosignals 2005; 14:96-101. [PMID: 16088223 DOI: 10.1159/000086291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 01/06/2005] [Indexed: 11/19/2022] Open
Abstract
Nogo-A is a myelin inhibitor of neurite outgrowth that accounts for the difficulty in fiber regeneration in the central nervous system. Its 66-amino-acid extracellular domain (Nogo-66) contributes to the inhibitory activity of Nogo-A. The Nogo-66 receptor is widely distributed in neurons of the central nervous system, including the cerebellum. In our study on the distribution of Nogo-66 receptor in the cerebellar cortex in the rat, we unexpectedly found Nogo-66 receptor immunoreactivity in the glia cells, particularly abundant beneath the Purkinje cells. The presence of Nogo-66 receptor in glia cells has not been reported before. A detailed study was thus conducted. Immunoelectron microscopic investigation clearly demonstrated that the Nogo-66 receptor immunoreactivity could be ascertained at the gap junction between glia cells, indicating that the Nogo-66 receptor may modulate the communication between glia cells through gap junctions.
Collapse
Affiliation(s)
- Xia Liu
- Institute of Neurosciences, 4th Military Medical University, Xi'an, China
| | | | | | | | | |
Collapse
|
27
|
Schwab ME. Structural plasticity of the adult CNS. Negative control by neurite growth inhibitory signals. Int J Dev Neurosci 2005. [DOI: 10.1016/0736-5748(96)00024-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Martin E. Schwab
- Brain Research Institute; University of Zurich; August Forel-Str. 1 8029 Zurich Switzerland
| |
Collapse
|
28
|
Mosevitsky MI. Nerve Ending “Signal” Proteins GAP‐43, MARCKS, and BASP1. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:245-325. [PMID: 16125549 DOI: 10.1016/s0074-7696(05)45007-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanisms of growth cone pathfinding in the course of neuronal net formation as well as mechanisms of learning and memory have been under intense investigation for the past 20 years, but many aspects of these phenomena remain unresolved and even mysterious. "Signal" proteins accumulated mainly in the axon endings (growth cones and the presynaptic area of synapses) participate in the main brain processes. These proteins are similar in several essential structural and functional properties. The most prominent similarities are N-terminal fatty acylation and the presence of an "effector domain" (ED) that dynamically binds to the plasma membrane, to calmodulin, and to actin fibrils. Reversible phosphorylation of ED by protein kinase C modulates these interactions. However, together with similarities, there are significant differences among the proteins, such as different conditions (Ca2+ contents) for calmodulin binding and different modes of interaction with the actin cytoskeleton. In light of these facts, we consider GAP-43, MARCKS, and BASP1 both separately and in conjunction. Special attention is devoted to a discussion of apparent inconsistencies in results and opinions of different authors concerning specific questions about the structure of proteins and their interactions.
Collapse
Affiliation(s)
- Mark I Mosevitsky
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188300 Gatchina Leningrad District, Russian Federation
| |
Collapse
|
29
|
Geddis MS, Tornieri K, Giesecke A, Rehder V. PLA2 and secondary metabolites of arachidonic acid control filopodial behavior in neuronal growth cones. ACTA ACUST UNITED AC 2004; 57:53-67. [PMID: 14648557 DOI: 10.1002/cm.10156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neuronal growth cone provides the sensory and motor structure that guides neuronal processes to their target. The ability of a growth cone to navigate correctly depends on its filopodia, which sample the environment by continually extending and retracting as the growth cone advances. Several second messengers systems that are activated upon contact with extracellular cues have been reported to affect growth cone morphology by changing the length and number of filopodia. Because recent studies have suggested that guidance cues can signal via G-protein coupled receptors to regulate phospholipases, we here investigated whether phospholipase A2 (PLA2) may control filopodial dynamics and could thereby affect neuronal pathfinding. Employing identified Helisoma neurons in vitro, we demonstrate that inhibition of PLA2 with 2 microM BPB caused a 40.3% increase in average filopodial length, as well as a 37.3% reduction in the number of filopodia on a growth cone. The effect of PLA2 inhibition on filopodial length was mimicked by the inhibition of G-proteins with 500 ng/ml pertussis toxin and was partially blocked by the simultaneous activation of PLA2 with 50 nM melittin. We provide evidence that PLA2 acts via production of arachidonic acid (AA), because (1) the effect of inhibition of PLA2 could be counteracted by supplying AA exogenously, and (2) the inhibition of cyclooxygenase, which metabolizes AA into prostaglandins, also increased filopodial length. We conclude that filopodial contact with extracellular signals that alter the activity of PLA2 can control growth cone morphology and may affect neuronal pathfinding by regulating the sensory radius of navigating growth cones.
Collapse
Affiliation(s)
- Matthew S Geddis
- Department of Biology, Georgia State University, Atlanta, GA 30303-3088, USA
| | | | | | | |
Collapse
|
30
|
Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003; 4:703-13. [PMID: 12951563 DOI: 10.1038/nrn1195] [Citation(s) in RCA: 636] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marie T Filbin
- Department of Biological Sciences, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10021, USA.
| |
Collapse
|
31
|
Kim BJ, Ghil SH, Kim MJ, Yun Park S, Kim DS, Hwan Kim S, Chin H, Birnbaumer L, Jiang M, Hong SY, Suh-Kim H, Lee YD. Modulation of the N-type calcium channel gene expression by the alpha subunit of Go. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:95-102. [PMID: 12670707 DOI: 10.1016/s0169-328x(03)00053-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Go, a heterotrimeric G-protein, is enriched in brain and neuronal growth cones. Although several reports suggest that Go may be involved in modulation of neuronal differentiation, the precise role of Go is not clear. To investigate the function of Go in neuronal differentiation, we determined the effect of Goalpha, the alpha subunit of Go, on the expression of Ca(v)2.2, the pore-forming unit of N-type calcium channels, at the transcription level. Treatment with cyclic AMP (cAMP), which triggers neurite outgrowth in neuroblastoma F11 cells, increased the mRNA level and the promoter activity of the Ca(v)2.2 gene. Overexpression of Goalpha inhibited neurite extension in F11 cells and simultaneously repressed the stimulatory effect of cAMP on the Ca(v)2.2 gene expression to the basal level. Targeted mutation of the Goalpha gene also increased the level of Ca(v)2.2 in the brain. These results suggest that Go may regulate neuronal differentiation through modulation of gene expression of target genes such as N-type calcium channels.
Collapse
Affiliation(s)
- Bum-Jun Kim
- Department of Anatomy, School of Medicine, Ajou University, San 5, Wonchon-dong, Paldal-gu, Suwon, 442-749, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Snyder DS, Small PLC. Uptake and cellular actions of mycolactone, a virulence determinant for Mycobacterium ulcerans. Microb Pathog 2003; 34:91-101. [PMID: 12623277 DOI: 10.1016/s0882-4010(02)00210-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycolactone is a macrolide secreted by Mycobacterium ulcerans. Experimental evidence suggests that mycolactone plays a prominent role in the pathogenesis of Buruli ulcer by causing both tissue destruction and immunosuppression. To understand the cell biology of mycolactone activity, we have synthesized the fluorescent mycolactone derivativebodipymycolactone. Although derivatization resulted in a modest decrease in cytopathic activity, the derivatized and native molecules produce identical phenotypes in cultured cells. Confocal microscopy of bodipymycolactone added to cultured fibroblasts, shows that it is localized to the cytosol. Bodipymycolactone fails to bind to the cell membrane and is excluded from the nucleus. Uptake is both nonsaturable and noncompetitive with excess mycolactone, consistent with passive diffusion of this toxin through the cell membrane. These facts, combined with the inability of signal transduction inhibitors to inhibit mycolactone cytopathicity point towards the presence of an cytosolic target for mycolactone.A dose dependent increase in intracellular calcium levels at occurs upon mycolactone exposure, but chelation of intracellular calcium alters neither the cytopathicity nor the caspase induction profile of treated cells. Mitochondrial polarization is maintained in treated cells for up to 3 days arguing that the rise in intracellular calcium levels may be a result of cytoskeletal remodeling.
Collapse
Affiliation(s)
- D Scott Snyder
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | |
Collapse
|
33
|
Schwab ME. Increasing plasticity and functional recovery of the lesioned spinal cord. PROGRESS IN BRAIN RESEARCH 2002; 137:351-9. [PMID: 12440377 DOI: 10.1016/s0079-6123(02)37026-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In vitro assays have shown that adult CNS tissue, in particular oligodendrocytes and myelin, contains several molecular constituents (Nogo-A/NI-220, MAG, several proteoglycans) which exert neurite growth inhibitory activity. Elimination of oligodendrocytes or myelin, or application of antibodies against some of these constituents enhance regenerative growth and compensatory sprouting of lesioned and unlesioned fiber tracts in spinal cord and brain. Enhanced growth is paralleled by various degrees of functional recovery.
Collapse
Affiliation(s)
- Martin E Schwab
- Department of Neuromorphology, Brain Research Institute, University of Zurich, Swiss Federal Institute of Technology, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| |
Collapse
|
34
|
Abstract
Recent studies suggest that molecules important for guiding neuronal migration and axon path-finding also play a role in modulating leukocyte chemotaxis. Neuronal migration and leukocyte chemotaxis may share some common regulatory mechanisms. Intracellular signal transduction mechanisms guiding neuronal migration and leukocyte chemotaxis are beginning to be elucidated. Studying molecular mechanisms modulating cell migration may provide new insights into understanding of endogenous inhibitors of inflammation.
Collapse
Affiliation(s)
- Necat Havlioglu
- Departments of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
35
|
Xiang Y, Li Y, Zhang Z, Cui K, Wang S, Yuan XB, Wu CP, Poo MM, Duan S. Nerve growth cone guidance mediated by G protein-coupled receptors. Nat Neurosci 2002; 5:843-8. [PMID: 12161754 DOI: 10.1038/nn899] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growing axons navigate by responding to chemical guidance cues. Here we report that growth cones of rat cerebellar axons in culture turned away from a gradient of SDF-1, a chemokine that attracts migrating leukocytes and cerebellar granule cells via a G protein-coupled receptor (GPCR). Similarly, Xenopus spinal growth cones turned away from a gradient of baclofen, an agonist of the GABA(B) receptor. This response was mediated by G(i) and subsequent activation of phospholipase C (PLC), which triggered two pathways: protein kinase C (PKC) led to repulsion, and inositol 1,4,5-triphosphate (IP(3)) receptor activation led to attractive turning. Under normal culture conditions, PKC-dependent repulsion dominated, but the repulsion could be converted to attraction by inhibiting PKC or by elevating cytosolic cGMP. Thus, GPCRs can mediate both repulsive and attractive axon guidance in vitro, and chemokines may serve as guidance cues for axon pathfinding.
Collapse
Affiliation(s)
- Yang Xiang
- Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sasaki Y, Cheng C, Uchida Y, Nakajima O, Ohshima T, Yagi T, Taniguchi M, Nakayama T, Kishida R, Kudo Y, Ohno S, Nakamura F, Goshima Y. Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 2002; 35:907-20. [PMID: 12372285 DOI: 10.1016/s0896-6273(02)00857-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semaphorin-3A (Sema3A), a member of class 3 semaphorins, regulates axon and dendrite guidance in the nervous system. How Sema3A and its receptors plexin-As and neuropilins regulate neuronal guidance is unknown. We observed that in fyn- and cdk5-deficient mice, Sema3A-induced growth cone collapse responses were attenuated compared to their heterologous controls. Cdk5 is associated with plexin-A2 through the active state of Fyn. Sema3A promotes Cdk5 activity through phosphorylation of Tyr15, a phosphorylation site with Fyn. A Cdk5 mutant (Tyr15 to Ala) shows a dominant-negative effect on the Sema3A-induced collapse response. The sema3A gene shows strong interaction with fyn for apical dendrite guidance in the cerebral cortex. We propose a signal transduction pathway in which Fyn and Cdk5 mediate neuronal guidance regulated by Sema3A.
Collapse
Affiliation(s)
- Yukio Sasaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
He Z, Wang KC, Koprivica V, Ming G, Song HJ. Knowing How to Navigate: Mechanisms of Semaphorin Signaling in the Nervous System. Sci Signal 2002. [DOI: 10.1126/scisignal.1192002re1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
He Z, Wang KC, Koprivica V, Ming G, Song HJ. Knowing how to navigate: mechanisms of semaphorin signaling in the nervous system. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re1. [PMID: 11842242 DOI: 10.1126/stke.2002.119.re1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuronal connections are made during embryonic development with astonishing precision to ultimately form the physical basis for the central nervous system's main capacity: information processing. Over the past few decades, much has been learned about the general principles of axon guidance. A key finding to emerge is that extracellular cues play decisive roles in establishing the connections. One family of such cues, the semaphorin proteins, was first identified as repellents for navigating axons during brain wiring. Recent studies have implicated these molecules in many other processes of neuronal development, including axonal fasciculation, target selection, neuronal migration, and dendritic guidance, as well as in the remodeling and repair of the adult nervous system. It appears that responding neuronal processes sense these semaphorin signals by a family of transmembrane molecules, namely the plexins, even though neuropilins were also found to be required for mediating the interaction between plexins and class 3 semaphorins. Our understanding of the intracellular signaling machinery linking the receptors to the cytoskeleton machinery is still incomplete, but several molecules have been implicated in mediating or modulating semaphorin-induced responses. Adding to the complexity of semaphorin biology, new findings implicate semaphorins in functioning not only as signaling ligands, but also as signal-transducing receptors. Thus, semaphorins may serve as important probes for exploring the mechanisms of intercellular communication during the development and function of the nervous system.
Collapse
Affiliation(s)
- Zhigang He
- 1Division of Neuroscience, Children's Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
39
|
Keith CH, Wilson MT. Factors controlling axonal and dendritic arbors. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:77-147. [PMID: 11336394 DOI: 10.1016/s0074-7696(01)05003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sculpting and maintenance of axonal and dendritic arbors is largely under the control of molecules external to the cell. These factors include both substratum-associated and soluble factors that can enhance or inhibit the outgrowth of axons and dendrites. A large number of factors that modulate axonal outgrowth have been identified, and the first stages of the intracellular signaling pathways by which they modify process outgrowth have been characterized. Relatively fewer factors and pathways that affect dendritic outgrowth have been described. The factors that affect axonal arbors form an incompletely overlapping set with those that affect dendritic arbors, allowing selective control of the development and maintenance of these critical aspects of neuronal morphology.
Collapse
Affiliation(s)
- C H Keith
- Department of Cellular Biology. University of Georgia, Athens, 30605, USA
| | | |
Collapse
|
40
|
Snow DM, Mullins N, Hynds DL. Nervous system-derived chondroitin sulfate proteoglycans regulate growth cone morphology and inhibit neurite outgrowth: a light, epifluorescence, and electron microscopy study. Microsc Res Tech 2001; 54:273-86. [PMID: 11514984 DOI: 10.1002/jemt.1140] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proteoglycans influence aging and plasticity in the nervous system. Particularly prominent are the chondroitin sulfate proteoglycans (CSPGs), which are generally inhibitory to neurite outgrowth. During development, CSPGs facilitate normal guidance, but following nervous system injury and in diseases of aging (e.g., Alzheimer's disease), they block successful regeneration, and are associated with axon devoid regions and degenerating nerve cells. Whereas previous studies used non-nervous system sources of CSPGs, this study analyzed the morphology and behavior of sensory (dorsal root ganglia) neurons, and a human nerve cell model (SH-SY5Y neuroblastoma cells) as they contacted nervous system-derived CSPGs, using a variety of microscopy techniques. The results of these qualitative analyses show that growth cones of both nerve cell types contact CSPGs via actin-based filopodia, sample the CSPGs repeatedly without collapse, and alter their trajectory to avoid nervous system-derived CSPGs. Turning and branching are correlated with increased filopodial sampling, and are common to both neurons and Schwann cells. We show that CSPG expression by rat CNS astrocytes in culture is correlated with sensory neuron avoidance. Further, we show for the first time the ultrastructure of sensory growth cones at a CSPG-laminin border and reveal details of growth cone and neurite organization at this choice point. This type of detailed analysis of the response of growth cones to nervous system-derived CSPGs may lead to an understanding of CSPG function following injury and in diseases of aging, where CSPGs are likely to contribute to aberrant neurite outgrowth, failed or reduced synaptic connectivity, and/or ineffective plasticity.
Collapse
Affiliation(s)
- D M Snow
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | | | |
Collapse
|
41
|
Gupta BB, Spessert R, Rimoldi S, Vollrath L. Sulfhydryl G proteins and phospholipase A(2)-associated G proteins are involved in adrenergic signal transduction in the rat pineal gland. Gen Comp Endocrinol 2001; 122:320-8. [PMID: 11356044 DOI: 10.1006/gcen.2001.7645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat pineal gland with its circadian noradrenaline-regulated melatonin rhythm is an excellent model for studying adrenergic signal transduction with respect to cAMP and cGMP formation. The stimulatory G(s) proteins play a well-established role in this process. In contrast, the potential roles of the inhibitory G(i) proteins, the functionally unclear other G(o) proteins, and a number of G protein subtypes are not known. The present study examines the effects on beta(1)- and beta(1)-plus-alpha(1)-stimulated cAMP and cGMP formation of a number of G protein modulators in rat pinealocyte suspension cultures. The effects of the nitric oxide donor sodium nitroprusside on cGMP were also examined. The results showed that drugs that activate G proteins of the G(i)/G(o) family, i.e., pertussis toxin, mastoparan, and compound 48/80, had no effect on unstimulated, isoproterenol (beta(1))-stimulated, or combined isoproterenol/phenylephrine (beta(1)-plus()-alpha(1))-stimulated cAMP and cGMP accumulation. However, in this experimental paradigm, the inhibitors of sulfhydryl G proteins (N-ethylmaleimide) and those of phospholipase A2-related G proteins (isotetrandrine) exerted a clear inhibitory effect. Sodium-nitroprusside-stimulated cGMP accumulation was also inhibited. These results confirm a previous report that members of the G(i)/G(o) family, which are present in the rat pineal gland, do not play a major role in adrenergic signal transduction. The new finding that sulfhydryl G proteins and phospholipase A2-associated G proteins exert a clear stimulatory effect on adrenergic signal transduction suggests that they are subtypes of G(s) proteins.
Collapse
Affiliation(s)
- B B Gupta
- Department of Anatomy, Johannes Gutenberg University, Mainz, D-55099, Germany
| | | | | | | |
Collapse
|
42
|
Prang P, Del Turco D, Kapfhammer JP. Regeneration of entorhinal fibers in mouse slice cultures is age dependent and can be stimulated by NT-4, GDNF, and modulators of G-proteins and protein kinase C. Exp Neurol 2001; 169:135-47. [PMID: 11312566 DOI: 10.1006/exnr.2001.7648] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axonal regeneration after lesions is normally not possible in the mature central nervous system, but occurs in the embryonic and neonatal nervous system. Slice cultures offer a convenient experimental system to study the decline of axonal regeneration with increasing maturation of central nervous system tissue. We have used mouse entorhinohippocampal slice cultures to assess regeneration of entorhinal fibers after mechanical lesions in vitro. We found that entorhinal axons regenerate well in cultures derived from postnatal days 5-7 mouse pups when the lesion is made at the second and fourth days in vitro (DIV 2 and DIV 4). Only little regenerative outgrowth is seen after lesions made at DIV 6 and DIV 10. This indicates that a maturation of the cultures occurs within a short time period in vitro resulting in a loss of the regenerative potential. We have used this system to screen for neurotrophic factors and pharmacological compounds that may promote axonal regeneration. Treatments were added to the cultures 1 day before the lesion was made. We found that most added factors did not promote regeneration. Only treatment with the neurotrophic factors NT-4 and GDNF stimulated regeneration in cultures where normally little regeneration is found. A similar improvement of regeneration was found after treatment with pertussis toxin, an inhibitor of G(i)-proteins, and with GF109203X, an inhibitor of protein kinase C. These substances may promote regeneration by interfering with intracellular signaling pathways activated by outgrowth inhibitors. Our findings indicate that the application of neurotrophic factors and the modulation of intracellular signal transduction pathways could be useful strategies to enhance axonal regeneration in a complex microenvironment.
Collapse
Affiliation(s)
- P Prang
- Anatomisches Institut I, AG Neuronale Plastizität, Hansastrasse 9a, Freiburg, D-79104, Germany
| | | | | |
Collapse
|
43
|
Transmitter-receptor interactions between growth cones of identified Lymnaea neurons determine target cell selection in vitro. J Neurosci 2001. [PMID: 11050129 DOI: 10.1523/jneurosci.20-21-08077.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In addition to their involvement in transsynaptic communication in the adult nervous system, neurotransmitters also participate in many developmental events, such as neurite initiation and outgrowth. Although growth cones can release transmitters and are themselves sensitive to exogenously applied neurotransmitters, a direct causal relationship between the release of transmitter from one growth cone and its effect on another has not yet been demonstrated. In this study, we provide evidence that dopamine release from the growth cones of an identified Lymnaea neuron, right pedal dorsal 1 (RPeD1), differentially regulates the growth cone behavior of its in vivo target and nontarget neurons in vitro. In coculture, RPeD1 growth cones enhanced the rate of growth cone advance from target cells and synaptic connections developed immediately after contact. In contrast, RPeD1 growth cones not only inhibited the rate of growth cone advance from nontarget cells but they also induced growth cone collapse. Using a "sniffer cell" approach, we demonstrated that both RPeD1 growth cones and somata released dopamine, which can be detected at a distance of several hundred micrometers. RPeD1 somata were used to demonstrate that spontaneous release of dopamine also acted as a chemoattractant for target growth cones but as a chemorepellent for nontarget growth cones. These effects were mimicked by exogenous dopamine application, and both RPeD1 growth cone and soma-induced effects were also blocked in the presence of dopamine receptor antagonists. This study emphasizes the importance of transmitter-receptor interactions between growth cones in target cell selection.
Collapse
|
44
|
Abstract
Semaphorin 3A (Sema3A) binds to neuropilin-1 (NP1) and activates the transmembrane Plexin to transduce a repulsive axon guidance signal. Here, we show that Sema3 signals are transduced equally effectively by PlexinA1 or PlexinA2, but not by PlexinA3. Deletion analysis of the PlexinA1 ectodomain demonstrates that the sema domain prevents PlexinA1 activation in the basal state. Sema-deleted PlexinA1 is constitutively active, producing cell contraction, growth cone collapse, and inhibition of neurite outgrowth. The sema domain of PlexinA1 physically associates with the remainder of the PlexinA1 ectodomain and can reverse constitutive activation. Both the sema portion and the remainder of the ectodomain of PlexinA1 associate with NP1 in a Sema3A-independent fashion. Plexin A1 is autoinhibited by its sema domain, and Sema3A/NP1 releases this inhibition.
Collapse
Affiliation(s)
- T Takahashi
- Department of Neurology and, Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
45
|
Baker MW, Rauth SJ, Macagno ER. Possible role of the receptor protein tyrosine phosphatase HmLAR2 in interbranch repulsion in a leech embryonic cell. JOURNAL OF NEUROBIOLOGY 2000; 45:47-60. [PMID: 10992256 DOI: 10.1002/1097-4695(200010)45:1<47::aid-neu5>3.0.co;2-c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Accumulating evidence indicates that receptor protein tyrosine phosphatases (rPTPs) play major roles in growth cone migration. We have previously shown that the growth cones of the multiple parallel processes of an identified leech embryonic cell, the Comb cell (CC), express high levels of a leukocyte antigen-related (LAR)-like rPTP, HmLAR2. Embryonic injection of a polyclonal antibody to the receptor's ectodomain resulted in reduced process outgrowth and in processes crossing over each other, a behavior that is seldom observed in normal or control animals. Here we present results of injecting a soluble Fc-HmLAR2 ectodomain fusion protein into embryos in order to bind the endogenous ligands of HmLAR2. Single injections of the Fc-chimeric protein into the developing embryo resulted, 12 to 24 h postinjection, in clear morphological abnormalities, ranging from abnormally directed CC processes and crossovers to apparent growth cone collapse. At later times, 2 to 5 days post injection, growth cones appeared to have recovered and processes had continued to extend, but effects of the earlier guidance errors remained, with the CCs displaying a relatively high incidence of proximal guidance errors. When injected into the germinal plate of developing embryos, the fusion protein was found to bind selectively to the processes of the CCs themselves, in contrast to control injections of Fc alone or closely related Fc-tagged proteins, which did not decorate the CCs. Double-labeling experiments revealed an early phase of Fc-HmLAR2 labeling (within 20 min after application), during which the growth cones and filopodia of the CC showed significant binding of the receptor ectodomain, and a later phase (1-2 h after injection), when most of the label was redistributed away from the growth cones and into the proximal processes of the CC. In culture, HmLAR2-transfected COS cells were found to selectively bind the Fc-recombinant protein, but not Fc-tagged proteins bearing other closely related receptor ectodomains, demonstrating that the HmLAR2 ectodomain is capable of interacting homophilically. Together, our observations demonstrate that the rPTP HmLAR2 is critically involved in CC process extension through its participation in the regulation of growth cone structure, migration, and navigation. Moreover, since our experiments also indicate that HmLAR2 can bind to itself, we hypothesize that HmLAR2 has a key role in the mechanism of mutual repulsion that maintains the parallel growth of adjacent CC projections.
Collapse
Affiliation(s)
- M W Baker
- Department of Biological Sciences, Columbia University, 1011 Fairchild Center for the Life Sciences, New York City, New York 10027, USA
| | | | | |
Collapse
|
46
|
Baker MW, Macagno ER. RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse. Curr Biol 2000; 10:1071-4. [PMID: 10996077 DOI: 10.1016/s0960-9822(00)00674-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are important for growth-cone migration [1-5], but their specific roles have yet to be defined. Previously, we showed that the growth cones of the Comb cell, an embryonic cell in the leech, express high levels of an RPTP called HmLAR2 [6,7]. Here, we report the use of RNA interference (RNAi) to block expression of HmLAR2 in individual Comb cells in the developing embryo. HmLAR2 mRNA levels were reduced in the soma, processes and growth cones of Comb cells injected with double-stranded RNA (dsRNA) for HmLAR2, but no decrease was detected when control dsRNAs were injected. Consistent with this observation, the level of phosphotyrosine increased significantly in the growth cones of Comb cells injected with HmLAR2 dsRNA. Within 24 hours, the growth cones of treated cells showed a distinct collapsed phenotype, with sharp reductions in lamellipodial surface area and in numbers of filopodia. These experiments indicate a key role for LAR-like RPTPs in maintaining the integrity of the growth cone.
Collapse
Affiliation(s)
- M W Baker
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
47
|
Kanungo J, Potapova I, Malbon CC, Wang HY. MEKK4 mediates differentiation in response to retinoic acid via activation of c-Jun N-terminal kinase in rat embryonal carcinoma P19 cells. J Biol Chem 2000; 275:24032-9. [PMID: 10807916 DOI: 10.1074/jbc.m002747200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation of P19 embryonal carcinoma cells in response to the morphogen retinoic acid is regulated by Galpha(12/13) and is associated with activation of c-Jun N-terminal kinase. The role of MEKK1 and MEKK4 upstream of the c-Jun N-terminal kinase was investigated in P19 cells. P19 clones stably expressing constitutively active and dominant negative mutants of MEKK1 and MEKK4 were created and characterized. Expression of the constitutively active form of either MEKK1 or MEKK4 mimicked the action of retinoic acid, inducing these embryonal carcinoma cells to primitive endoderm. Expression of the dominant negative form of MEKK1 had no influence on the ability of retinoic acid to induce either JNK activation or primitive endoderm formation in P19 stem cells. Expression of the dominant negative form of MEKK4, in contrast, effectively blocks both morphogen-induced activation of JNK and cellular differentiation. These data identify MEKK4 as upstream of c-Jun N-terminal kinase in the pathway mediating differentiation of P19 stem cells to primitive endoderm.
Collapse
Affiliation(s)
- J Kanungo
- Department of Molecular Pharmacology, University Medical Center, SUNY/Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
48
|
Abstract
The semaphorin family of proteins constitute one of the major cues for axonal guidance. The prototypic member of this family is Sema3A, previously designated semD/III or collapsin-1. Sema3A acts as a diffusible, repulsive guidance cue in vivo for the peripheral projections of embryonic dorsal root ganglion neurons. Sema3A binds with high affinity to neuropilin-1 on growth cone filopodial tips. Although neuropilin-1 is required for Sema3A action, it is incapable of transmitting a Sema3A signal to the growth cone interior. Instead, the Sema3A/neuropilin-1 complex interacts with another transmembrane protein, plexin, on the surface of growth cones. Certain semaphorins, other than Sema3A, can bind directly to plexins. The intracellular domain of plexin is responsible for initiating the signal transduction cascade leading to growth cone collapse, axon repulsion, or growth cone turning. This intracellular cascade involves the monomeric G-protein, Rac1, and a family of neuronal proteins, the CRMPs. Rac1 is likely to be involved in semaphorin-induced rearrangements of the actin cytoskeleton, but how plexin controls Rac1 activity is not known. Vertebrate CRMPs are homologous to the Caenorhabditis elegans unc-33 protein, which is required for proper axon morphology in worms. CRMPs are essential for Sema3A-induced, neuropilin-plexin-mediated growth cone collapse, but the molecular interactions of growth cone CRMPs are not well defined. Mechanistic aspects of plexin-based signaling for semaphorin guidance cues may have implications for other axon guidance events and for the basis of growth cone motility.
Collapse
Affiliation(s)
- F Nakamura
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
49
|
Baker MW, Macagno ER. The role of a LAR-like receptor tyrosine phosphatase in growth cone collapse and mutual-avoidance by sibling processes. JOURNAL OF NEUROBIOLOGY 2000; 44:194-203. [PMID: 10934322 DOI: 10.1002/1097-4695(200008)44:2<194::aid-neu9>3.0.co;2-j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Among the many cells or parts of cells that a growth cone may encounter during its embryonic migrations are other processes or parts of its parent cell. Such an event can be expected to be relatively frequent in the genesis of neuronal arbors, for instance, where the density of innervation of a target region can be quite high. Few experimental studies have addressed the very interesting question of whether a process "recognizes" siblings in some unique way, in a manner that can be distinguished from, say, how it interacts with unrelated cells. One example can be found in the leech, where sibling branches in the terminal fields of identified mechanosensory cells avoid each other strictly while permitting some significant continuing contact and overlap with homologues, a phenomenon that has been dubbed "self-avoidance." Another example has been reported in cultured Helisoma neurons, where severing a branch of a neuron allows sibling neurites to form electrical junctions with it, although normally sibling neurites do not do so. In both of these instances, coincidental activity was proposed as one means to achieve recognition of self and as possibly leading to the blocking of a continuing interaction among the parts, although alternative explanations were indeed considered possible.
Collapse
Affiliation(s)
- M W Baker
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
50
|
Cai D, Su Q, Chen Y, Luo M. Effect of thyroid hormone deficiency on developmental expression of goalpha gene in the brain of neonatal rats by competitive RT-PCR and in situ hybridization histochemistry. Brain Res 2000; 864:195-204. [PMID: 10802026 DOI: 10.1016/s0006-8993(00)02116-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Goalpha is a guanine nucloetide-binding regulatory protein alpha subunit which is mainly distributed in the central nervous system, but it has not previously been reported how it is regulated by thyroid hormone in the brain of neonatal rat at transcriptional levels. In this report, we used quantitative competitive reverse transcriptional PCR to quantify the effects of TH deficiency on Goalpha gene expression in the brain of neonatal rat at mRNA levels. It was found that Goalpha mRNA levels in the brain of 14-day-old rats significantly increased over 3-fold after induction of perinatal hypothyroidism, and declined markedly after treatment of thyroxine replacement. In situ hybridization histochemistry was further employed to observe the time-course and spatial expression of Goalpha gene in the brain of neonatal rats affected by thyroid hormone deficiency during the developmental period. The data showed that perinatal hypothyroidism can enhance Goalpha mRNA levels in the temporal cortex, sensorimotor cortex, piriform cortex, amygdala, hippocampal CA1-4 subfields, dentate gyrus, arcuate nucleus (AR) and ventromedial hypothalamic nucleus (VMH) of hypothalamus, but not in the striate cortex, cingulate cortex, claustrum, caudate/putamen and thalamus in the brain of rat at 7-21 days post-partum. The results suggest that up-regulation of Goalpha gene expression may be one kind of common mechanism responsible for neurological deficits in some brain areas arising from thyroid hormone deficiency in the critical periods of neonatal rats.
Collapse
Affiliation(s)
- D Cai
- Shanghai Institute of Endocrinology, Ruijin Hospital, Shanghai Second Medical University, 197 Ruijin Road II, Shanghai, China
| | | | | | | |
Collapse
|