1
|
Qian J, Guo Y, Khan B, Shi J, Hou Y. GW501516 facilitated tumor immune escape by inhibiting phagocytosis. Eur J Pharmacol 2025; 995:177418. [PMID: 39993702 DOI: 10.1016/j.ejphar.2025.177418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
The CD47/SIRPα innate immune checkpoint plays a critical role in regulating tumor immune escape. GW501516, a peroxisome proliferator-activated receptor delta (PPARδ) agonist, is known to promote cancer cell metabolism, proliferation, and inflammation; however, its regulatory mechanism in colon tumor immune escape remains unclear. In this study, qPCR analysis revealed that GW501516 treatment upregulated CD47 gene expression in colon cancer cells. Additionally, GW501516 increased membrane-associated CD47 protein levels in these cells. Mechanistically, luciferase reporter assays demonstrated that GW501516 enhanced CD47 gene transcription activity in colon cancer cells. Co-culture experiments with macrophages further showed that GW501516 treatment suppressed macrophage phagocytic capacity. Crucially, PPARδ knockout abolished GW501516-induced CD47 expression, indicating PPARδ dependency. In vivo implanted tumor models demonstrated that GW501516 facilitated tumor immune escape, whereas PPARδ loss reversed this effect. Collectively, these findings suggest that GW501516 activates PPARδ to promote colon tumor immune escape via CD47 upregulation.
Collapse
Affiliation(s)
- Jing Qian
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013
| | - Yilei Guo
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013
| | - Bibimaryam Khan
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013
| | - Yongzhong Hou
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China, 212013.
| |
Collapse
|
2
|
Ljubimov VA, Sun T, Wang J, Li L, Wang PZ, Ljubimov AV, Holler E, Black KL, Kopeček J, Ljubimova JY, Yang J. Blood-brain barrier crossing biopolymer targeting c-Myc and anti-PD-1 activate primary brain lymphoma immunity: Artificial intelligence analysis. J Control Release 2025; 381:113611. [PMID: 40088978 DOI: 10.1016/j.jconrel.2025.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Primary Central Nervous System Lymphoma is an aggressive central nervous system neoplasm with poor response to pharmacological treatment, partially due to insufficient drug delivery across blood-brain barrier. In this study, we developed a novel therapy for this lymphoma by combining a targeted nanopolymer treatment with an immune checkpoint inhibitor antibody (anti-PD-1). A N-(2-hydroxypropyl)methacrylamide copolymer-based nanoconjugate was designed to block tumor cell c-Myc oncogene expression by antisense oligonucleotide. Angiopep-2 peptide was conjugated to the copolymer to facilitate nanodrug crossing of the blood-brain barrier. Systemically administered polymeric nanodrug, alone or in combination with immune checkpoint inhibitor antibody anti-PD-1, was tested in syngeneic mouse model of A20 intracranial brain lymphoma. There was no significant survival difference between saline- and free anti-PD-1-treated groups. However, significant survival advantage vs. saline was observed upon treatment with nanodrug bearing Angiopep-2, H6 (6 histidines for endosome escape), and c-Myc antisense alone and especially when it was combined with anti-PD-1 antibody. Animal survival after combined treatment was also significantly increased vs. free anti-PD-1. Artificial Intelligence-assisted analysis of gene expression database after RNA-seq of tumors was used to find novel immune pathways, molecular targets and the most effective multifunctional drugs together with future drug prediction for brain lymphoma in vivo model. Spectral flow cytometry and RNA-seq analysis revealed a robust activation of tumor infiltrating T lymphocytes with enhanced interferon γ signaling and polarization to M1-type macrophages in treated tumors, which was confirmed by immunofluorescence staining. In summary, a new effective blood-brain barrier crossing nano immuno therapeutic system was developed that effectively blocked tumor c-Myc acting in combination with immune checkpoint inhibitor anti-PD-1 to treat primary brain lymphoma. The treatment improved survival of tumor-bearing animals through activation of both the adaptive and innate immune responses.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Jiawei Wang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Lian Li
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Paul Z Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Alexander V Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States; Institut für Biophysik und Physikalische Biochemie Universität Regensburg, D-93040 Regensburg, Germany
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Jindřich Kopeček
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Julia Y Ljubimova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States.
| | - Jiyuan Yang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States.
| |
Collapse
|
3
|
Zheng W, Ge Z, Wu Q, Wan H, Sun J, Nai Y, Lv C. Olaparib Combined with Anti-PD1 Enhances Immunotherapy of Gastric Cancer Via NF-κB/c-Myc/PD-L1 Signaling. Dig Dis Sci 2025:10.1007/s10620-025-09021-y. [PMID: 40237904 DOI: 10.1007/s10620-025-09021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND PARP inhibitors, effective in BRCA-mutated cancers, show potential in gastric cancer (GC) where homologous recombination defects (e.g., BRCA1/2 mutations) are common. Olaparib, a PARP inhibitor, upregulates PD-L1, suggesting synergy with PD-1 inhibitors for enhanced GC therapy. METHODS Using CCK-8 screening of 867 drugs, olaparib demonstrated potent GC cell inhibition. Western blot and qRT-PCR assessed PD-L1, c-MYC, COX-2, and NF-κB pathway proteins (p65/p-p65). Functional assays (Transwell, wound healing, colony formation) evaluated olaparib's effects on GC cell proliferation, migration, and invasion. A GC mouse model tested olaparib combined with anti-PD1. TCGA and Kaplan-Meier analyzed PARP expression-prognosis correlations. RESULTS Olaparib suppressed GC cell proliferation, migration, and invasion in vitro. Western blot revealed upregulated c-MYC, COX-2, p65, p-p65, and PD-L1, confirmed by qRT-PCR for PD-L1. Low PARP expression correlated with better GC patient survival. In vivo, olaparib synergized with anti-PD1 to enhance tumor suppression. CONCLUSION Olaparib activates the NF-κB/c-MYC pathway to elevate PD-L1, supporting its combination with PD-1 inhibitors as a promising GC therapeutic strategy.
Collapse
Affiliation(s)
- Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, 68 Changle Rd., Nanjing, 210006, Jiangsu, China
| | - Zhifa Ge
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, 68 Changle Rd., Nanjing, 210006, Jiangsu, China
| | - Qingwei Wu
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, 68 Changle Rd., Nanjing, 210006, Jiangsu, China
| | - Haoyue Wan
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, 68 Changle Rd., Nanjing, 210006, Jiangsu, China
| | - Junjie Sun
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, 68 Changle Rd., Nanjing, 210006, Jiangsu, China
| | - Yongjun Nai
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, 68 Changle Rd., Nanjing, 210006, Jiangsu, China.
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, 68 Changle Rd., Nanjing, 210006, Jiangsu, China
| |
Collapse
|
4
|
Huang C, Wang L, Zhuo C, Chen W, Fan H, Hong Y, Zhang Y, Zhou D, Lin W, Zhang L, Zhao J, Chen S, Yu C, Ye Y. ID3 enhances PD-L1 expression by restructuring MYC to promote colorectal cancer immune evasion. Proc Natl Acad Sci U S A 2025; 122:e2423490122. [PMID: 40208940 DOI: 10.1073/pnas.2423490122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
The inhibitor of DNA binding protein ID3 has been associated with the progression of colorectal cancer (CRC). Despite its significance, its specific role in the immune evasion strategies utilized by CRC remains unclear. RNA-seq analysis revealed that ID3 was positively associated with the PD-L1 immune checkpoint. We further demonstrated that tumor cell-expressed ID3 enhanced PD-L1 expression, suppressed the infiltration and activation of CD8+ T cells, and facilitated the immune evasion of CRC cells. Additionally, we found that knockdown of ID3 significantly enhanced the effectiveness of PD-L1 antibody blockade treatment in combating CRC, reduced the upregulation of PD-L1 induced by the antibody, and altered the immune microenvironment within CRC. Mechanistically, ID3 interacted with the transcription factor MYC and reconstructed the four-dimensional structure of MYC, thereby enhancing its binding affinity to the PD-L1 promoter and augmenting PD-L1 transcriptional activity. By integrating analysis of ChIP-seq, RNA-seq, and ImmPort gene sets, we found that ID3's DNA-assisted binding function was widespread and could either enhance or suppress gene transcription, not only affecting tumor immune escape through immune checkpoints but also regulating various cytokines and immune cells involved in tumor immunity. In conclusion, our study uncovers a mechanism by which ID3 promotes immune evasion in CRC and implicates that targeting ID3 may improve the efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Chuanzhong Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, People's Republic of China
| | - Ling Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Changhua Zhuo
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Wenxin Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Hongmei Fan
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yu Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
| | - Dongmei Zhou
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Wansong Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Lingyu Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jingjing Zhao
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
| | - Shuping Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yunbin Ye
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
| |
Collapse
|
5
|
Liu T, Cui Y, Ouyang Y, Wang M, Yue S. Exosomal CCT3 as a biomarker for diagnosis and immune therapy response in patients diagnosed with hepatocellular carcinoma. Dig Liver Dis 2025:S1590-8658(25)00301-9. [PMID: 40221386 DOI: 10.1016/j.dld.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/19/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the dominant type of liver cancer and is associated with a high mortality rate. However, HCC lacks biomarkers for diagnosis and immune therapy response. Tumor-derived exosomes (TDEs) carcinogen-specific molecules have been used for screening multiple biomarkers. This study aimed to identify new biomarkers for the diagnosis of HCC and response to immune checkpoint blockade (ICB) therapy. METHODS Analysis of differentially expressed genes (DEGs) in HCC and normal tissues was integrated using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and ExoCarta datasets. The expression of CCT3 was validated in samples from patients with HCC using quantitative polymerase chain reaction (qPCR), Western blotting, and immunohistochemistry (IHC) techniques. RESULTS Exosomal CCT3 was identified as a potential biomarker with significant impact. The expression of CCT3 in different tumor stages and normal tissues adjacent to the tumors (NATs) was validated using qPCR, western blotting, and IHC. CCT3 expression significantly increased the number of activated natural killer cells in HCC, as confirmed by qPCR and IHC. CCT3 expression significantly increases the expression of immune checkpoints in HCC. HCC-derived exosomes significantly increase the enrichment of CCT3. CONCLUSION Exosomal CCT3 is a biomarker for diagnosis and ICB therapy of HCC via MYC pathway activation and immune infiltration.
Collapse
Affiliation(s)
- Tiange Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China; Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Yanyan Cui
- The Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Yiben Ouyang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Meilin Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shijing Yue
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
6
|
Kuno S, Pakpian N, Muanprasat C. The potential role of PD-1/PD-L1 small molecule inhibitors in colorectal cancer with different mechanisms of action. Eur J Pharmacol 2025; 992:177351. [PMID: 39922421 DOI: 10.1016/j.ejphar.2025.177351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide, with increasing incidence in younger ages highlighting the need for new or alternative therapy, of which is immune checkpoint inhibitors. Antibody-based immune checkpoint inhibitors targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have revolutionized cancer treatment, including CRC. However, the low response rate in CRC highlights the need for additional research and innovative therapies. Small molecule inhibitors have risen as another strategy worth exploring, considering their potential to target a wide array of PD-1/PD-L1-related pathways. This review focuses on the potential of small molecule inhibitors targeting the PD-1/PD-L1 axis in CRC. Exploring various classes of small molecule inhibitors, including those that directly block the PD-1/PD-L1 interaction and others that target upstream regulators or downstream signaling pathways involved in PD-1/PD-L1-mediated immune suppression. Additionally, modulation of post-transcriptional and post-translational processes, thereby influencing the expression, stability, or localization of PD-1/PD-L1 proteins to enhance antitumor immunity, provides a multifaceted treatment approach. By disrupting these pathways, these inhibitors can restore immune system activity against tumor cells, offering new hope for overcoming resistance and improving outcomes in CRC patients who do not respond to conventional immune checkpoint inhibitors (ICIs). Integrating these small molecules into CRC treatment strategies could represent a promising advancement in the battle against the challenging disease.
Collapse
Affiliation(s)
- Suhaibee Kuno
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nattaporn Pakpian
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
| |
Collapse
|
7
|
Soltani M, Abbaszadeh M, Fouladseresht H, Sullman MJM, Eskandari N. PD-L1 importance in malignancies comprehensive insights into the role of PD-L1 in malignancies: from molecular mechanisms to therapeutic opportunities. Clin Exp Med 2025; 25:106. [PMID: 40180653 PMCID: PMC11968484 DOI: 10.1007/s10238-025-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/16/2025] [Indexed: 04/05/2025]
Abstract
The phenomenon of upregulated programmed death-ligand 1 (PD-L1) expression is common in numerous human malignancies. The overexpression of PD-L1 significantly contributes to immune evasion because its interaction with the PD-1 receptor on activated T lymphocytes impairs anti-tumour immunity by neutralizing T cell stimulatory signals. Furthermore, beyond its immunological interface, PD-L1 possesses intrinsic capabilities that directly modulate oncogenic processes, fostering cancer cell proliferation and survival. This dual function of PD-L1 challenges the efficacy of immune checkpoint inhibitors and highlights its possible application as a direct target for therapy. Recent discoveries concerning the cancer cell-intrinsic signalling pathways of PD-L1 have significantly enhanced our understanding of the pathological implications linked to its tumour-specific expression. These entail the orchestration of tumour proliferation and viability, maintenance of cancer stem cell-like phenotypes, modulation of immune responses, as well as impacts on DNA repair mechanisms and transcriptional regulation. This review aims to deliver an exhaustive synthesis of PD-L1's molecular underpinnings alongside its clinical implications in a spectrum of cancers, spanning both solid neoplasms and haematological disorders. It underscores the necessity for an integrated understanding of PD-L1 in further refining therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Abbaszadeh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fouladseresht
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Li X, Nguyen J, Korkut A. Recurrent Composite Markers of Cell Types and States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.17.549344. [PMID: 37503180 PMCID: PMC10370072 DOI: 10.1101/2023.07.17.549344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Biological function is mediated by the hierarchical organization of cell types and states within tissue ecosystems. Identifying interpretable composite marker sets that both define and distinguish hierarchical cell identities is essential for decoding biological complexity, yet remains a major challenge. Here, we present RECOMBINE, an algorithm that identifies recurrent composite marker sets to define hierarchical cell identities. Validation using both simulated and biological datasets demonstrates that RECOMBINE achieves higher accuracy in identifying discriminative markers compared to existing approaches, including differential gene expression analysis. When applied to single-cell data and validated with spatial transcriptomics data from the mouse visual cortex, RECOMBINE identified key cell type markers and generated a robust gene panel for targeted spatial profiling. It also uncovered markers of CD8+; T cell states, including GZMK+;HAVCR2-; effector memory cells associated with anti-PD-1 therapy response, and revealed a rare intestinal subpopulation with composite markers in mice. Finally, using data from the Tabula Sapiens project, RECOMBINE identified composite marker sets across a broad range of human tissues. Together, these results highlight RECOMBINE as a robust, data-driven framework for optimized marker selection, enabling the discovery and validation of hierarchical cell identities across diverse tissue contexts.
Collapse
|
9
|
Hu H, Ning S, Liu F, Zhang Z, Zeng W, Liu Y, Liao Z, Zhang H, Zhang Z. Hafnium Metal-Organic Framework-Based Glutamine Metabolism Disruptor For Potentiating Radio-Immunotherapy in MYC-Amplified Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19367-19381. [PMID: 40116395 DOI: 10.1021/acsami.4c21998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Hepatocellular carcinoma (HCC) with MYC oncogene amplification remains a serious challenge in clinical practice. Recent advances in comprehensive treatment strategies, particularly the combination of radiotherapy and immunotherapy, offer new hope. To further improve efficacy while lowering radiation doses, nanopharmaceuticals based on high-Z elements have been extensively studied in radio-immunotherapy. In this work, a hafnium-based metal-organic framework (Hf-MOF), UiO-66-Hf(2OH)-CB-839/BSO@HA (UiO-66-Hf(2OH)-C/B@HA), was designed to codeliver telaglenastat (CB-839) and buthionine sulfoximine (BSO), which synergistically inhibited glutamine metabolism and alleviated tumor hypoxia. Further modification with hyaluronic acid (HA) enhanced tumor targeting, ultimately strengthening the efficacy of radiotherapy in MYC-amplified HCC. Beyond increasing reactive oxygen species (ROS) generation, promoting DNA damage, and inducing tumor apoptosis, more importantly, UiO66-Hf(2OH)-C/B@HA triggered immunogenic cell death (ICD), driving the antitumor immune response. Combination with immune checkpoint blockade (ICB) further enhanced the efficacy, accompanied by increased infiltration of T cells with high granzyme B expression (GZMB+ T cells) within the tumor microenvironment (TME). In the orthotopic HCC model, established with MYC-amplified tumor cells, intravenous administration of UiO66-Hf(2OH)-C/B@HA significantly potentiated the efficacy of radio-immunotherapy, resulting in superior tumor regression. In summary, our study provides insights into the design of Hf-MOF for radio-immunotherapy and proposes a promising therapeutic approach for MYC-amplified HCC.
Collapse
Affiliation(s)
- Haofan Hu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Shangwu Ning
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| |
Collapse
|
10
|
Raninga PV, Zeng B, Moi D, Trethowan E, Saletta F, Venkat P, Mayoh C, D'Souza RCJ, Day BW, Shai-Hee T, Vittorio O, Mazzieri R, Dolcetti R, Khanna KK. CBL0137 and NKG2A blockade: a novel immuno-oncology combination therapy for Myc-overexpressing triple-negative breast cancers. Oncogene 2025; 44:893-908. [PMID: 39706891 PMCID: PMC11932921 DOI: 10.1038/s41388-024-03259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The MYC proto-oncogene is upregulated in >60% of triple-negative breast cancers (TNBCs), it can directly promote tumor cell proliferation, and its overexpression negatively regulates anti-tumor immune responses. For all these reasons, MYC has long been considered as a compelling therapeutic target. However, pharmacological inhibition of MYC function has proven difficult due to a lack of a drug-binding pocket. Here, we demonstrate that the potent abrogation of MYC gene transcription by CBL0137 induces immunogenic cell death and reduces proliferation in MYC-high but not in MYC-low TNBC in vitro. CBL0137 also significantly inhibited the in vivo growth of primary tumors in a human MYC-high TNBC xenograft model (MDA-MB-231). Moreover, CBL0137 inhibited the tumor growth of highly aggressive mouse 4T1.2 syngeneic TNBC model in immunocompetent mice by inhibiting the MYC pathway and inducing Type I interferon responses. Immune profiling of CBL0137-treated mice revealed significantly enhanced tumor-specific immune responses and increased proportions of tumor infiltrating effector CD8+ T cells, CD4+ T cells, and NK cells. CBL0137-induced immune activation also resulted in increased exhaustion of immune effector cells. In particular, NKG2A up-regulation on activated effector cells and of its ligand Qa-1b on tumors in vivo was identified as a possible immune evasive mechanism. Indeed, NKG2A blockade synergized with CBL0137 significantly inhibiting the in vivo growth of 4T1.2 tumors. Collectively, our findings provide the rationale supporting the exploitation of CBL0137-induced anti-tumor immunity in combination with NKG2A blockade to improve the treatment of TNBC expressing high levels of MYC.
Collapse
Affiliation(s)
- Prahlad V Raninga
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
| | - Bijun Zeng
- Peter McCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Davide Moi
- Peter McCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ethan Trethowan
- Peter McCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
| | - Pooja Venkat
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rochelle C J D'Souza
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Tyler Shai-Hee
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
| | - Roberta Mazzieri
- Peter McCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Riccardo Dolcetti
- Peter McCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
11
|
Zhou J, Li Y, Jiang X, Xin Z, Liu W, Zhang X, Zhai Y, Zhang Z, Shi T, Xue M, Zhang M, Wu Y, Chu Y, Wang S, Jin X, Zhu W, Gao J. PD-L1 siRNA incorporation into a cationic liposomal tumor mRNA vaccine enhances cytotoxic T cell activation and prevents immune evasion. Mater Today Bio 2025; 31:101603. [PMID: 40124340 PMCID: PMC11926701 DOI: 10.1016/j.mtbio.2025.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Engaging antigen-presenting cells and T lymphocytes is essential for invigorating the immune system's response to cancer. Nonetheless, challenges such as the low immunogenicity of tumor antigens, the genetic heterogeneity of tumor cells, and the elevated expression of immune checkpoint molecules frequently result in resistance to immunotherapy or enable immune evasion by tumors. To overcome this resistance, we developed a therapeutic tumor vaccine employing cationic liposomes to encapsulate MC38 total RNA alongside PD-L1 siRNA (siPD-L1). The encapsulated total RNA, enriched with tumor mRNA, effectively transduces dendritic cells (DCs), thereby enhancing antigen presentation. The incorporation of siPD-L1 specifically targets and diminishes PD-L1 expression on both DCs and tumor cells, synergistically amplifying the cytotoxic capabilities of CD8+ T cells. Furthermore, cationic liposomes play dual roles as carriers crucial for preserving the integrity of nucleic acids for antigen translation and as inhibitors of autophagy-a process essential for both promoting antigen cross-presentation and revitalizing MHC-I expression on tumor cells, thereby increasing their immunogenicity. This cationic liposomal vaccine represents a promising strategy in cancer immunotherapy, launching a multidimensional offensive against tumor cells that enhances cytotoxic T lymphocyte (CTL) activation and prevents tumor immune evasion.
Collapse
Affiliation(s)
- Jingsheng Zhou
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanyuan Li
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xianghe Jiang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhongyuan Xin
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhuanzhuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Te Shi
- Department of Gastroenterology, Chinese People's Liberation Army Naval Medical Center, Shanghai, 200052, China
| | - Minghao Xue
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yanhui Chu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| |
Collapse
|
12
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
13
|
Chen M, Zhou Y, Bao K, Chen S, Song G, Wang S. Multispecific Antibodies Targeting PD-1/PD-L1 in Cancer. BioDrugs 2025:10.1007/s40259-025-00712-6. [PMID: 40106158 DOI: 10.1007/s40259-025-00712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
The development of immune checkpoint inhibitors has revolutionized the treatment of patients with cancer. Targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1(PD-L1) interaction using monoclonal antibodies has emerged as a prominent focus in tumor therapy with rapid advancements. However, the efficacy of anti-PD-1/PD-L1 treatment is hindered by primary or acquired resistance, limiting the effectiveness of single-drug approaches. Moreover, combining PD-1/PD-L1 with other immune drugs, targeted therapies, or chemotherapy significantly enhances response rates while exacerbating adverse reactions. Multispecific antibodies, capable of binding to different epitopes, offer improved antitumor efficacy while reducing drug-related side effects, serving as a promising therapeutic approach in cancer treatment. Several bispecific antibodies (bsAbs) targeting PD-1/PD-L1 have received regulatory approval, and many more are currently in clinical development. Additionally, tri-specific antibodies (TsAbs) and tetra-specific antibodies (TetraMabs) are under development. This review comprehensively explores the fundamental structure, preclinical principles, clinical trial progress, and challenges associated with bsAbs targeting PD-1/PD-L1.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Yuli Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kaicheng Bao
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Siyu Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Guoqing Song
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| |
Collapse
|
14
|
Cereda V, D’Andrea MR. Pancreatic cancer: failures and hopes-a review of new promising treatment approaches. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002299. [PMID: 40124650 PMCID: PMC11926728 DOI: 10.37349/etat.2025.1002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic cancer is a challenging disease with limited treatment options and a high mortality rate. Just few therapy advances have been made in recent years. Tumor microenvironment, immunosuppressive features and mutational status represent important obstacles in the improvement of survival outcomes. Up to now, first-line therapy did achieve a median overall survival of less than 12 months and this discouraging data lead clinicians all over the world to focus their efforts on various fields of investigation: 1) sequential cycling of different systemic therapy in order to overcome mechanisms of resistance; 2) discovery of new predictive bio-markers, in order to target specific patient population; 3) combination treatment, in order to modulate the tumor microenvironment of pancreatic cancer; 4) new modalities of the delivery of drugs in order to pass the physical barrier of desmoplasia and tumor stroma. This review shows future directions of treatment strategies in advanced pancreatic cancer through a deep analysis of these recent macro areas of research.
Collapse
Affiliation(s)
- Vittore Cereda
- Asl Roma 4, Hospital S. Paolo Civitavecchia, 00053 Civitavecchia, Italy
| | | |
Collapse
|
15
|
Marbach D, Brouer-Visser J, Brennan L, Wilson S, Davydov II, Staedler N, Duarte J, Martinez Quetglas I, Nüesch E, Cañamero M, Chesné E, Au-Yeung G, Hamilton E, Lheureux S, Richardson DL, Spanggaard I, Gomes B, Franjkovic I, DeMario M, Kornacker M, Lechner K. Immune modulation in solid tumors: a phase 1b study of RO6870810 (BET inhibitor) and atezolizumab (PD-L1 inhibitor). BMC Cancer 2025; 25:500. [PMID: 40102759 PMCID: PMC11916277 DOI: 10.1186/s12885-025-13851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
PURPOSE Bromodomain and extra-terminal domain (BET) inhibitors (BETi) have demonstrated epigenetic modulation capabilities, specifically in transcriptional repression of oncogenic pathways. Preclinical assays suggest that BETi potentially attenuates the PD1/PD-L1 immune checkpoint axis, supporting its combination with immunomodulatory agents. PATIENTS AND METHODS A Phase 1b clinical trial was conducted to elucidate the pharmacokinetic and pharmacodynamic profiles of the BET inhibitor RO6870810 as monotherapy and in combination with the PD-L1 antagonist atezolizumab in patients with advanced ovarian carcinomas and triple-negative breast cancer (TNBC). Endpoints included maximum tolerated dosages, adverse event profiling, pharmacokinetic evaluations, and antitumor activity. Pharmacodynamic and immunomodulatory effects were assessed in tumor tissue (by immunohistochemistry and RNA-seq) and in peripheral blood (by flow cytometry and cytokine analysis). RESULTS The study was terminated prematurely due to a pronounced incidence of immune-related adverse effects in patients receiving combination of RO6870810 and atezolizumab. Antitumor activity was limited to 2 patients (5.6%) showing partial response. Although target engagement was confirmed by established BETi pharmacodynamic markers in both blood and tumor samples, BETi failed to markedly decrease tumor PD-L1 expression and had a suppressive effect on antitumor immunity. Immune effector activation in tumor tissue was solely observed with the atezolizumab combination, aligning with this checkpoint inhibitor's recognized biological effects. CONCLUSIONS The combination of BET inhibitor RO6870810 with the checkpoint inhibitor atezolizumab presents an unfavorable risk-benefit profile for ovarian cancer and TNBC (triple-negative breast cancer) patients due to the increased risk of augmented or exaggerated immune reactions, without evidence for synergistic antitumor effects. TRIAL REGISTRATION ClinicalTrials.gov ID NCT03292172; Registration Date: 2017-09-25.
Collapse
Affiliation(s)
- Daniel Marbach
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Jurriaan Brouer-Visser
- Roche Pharma Research and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd, New York, NY, USA
| | - Laura Brennan
- Roche Pharma Research and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd, New York, NY, USA
| | - Sabine Wilson
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Iakov I Davydov
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nicolas Staedler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - José Duarte
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Iris Martinez Quetglas
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eveline Nüesch
- Product Development, Data Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marta Cañamero
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Evelyne Chesné
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George Au-Yeung
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Iben Spanggaard
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bruno Gomes
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Izolda Franjkovic
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Mark DeMario
- Roche Pharma Research and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd, New York, NY, USA
| | - Martin Kornacker
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Katharina Lechner
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| |
Collapse
|
16
|
Chen P, Chen Z, Sui W, Han W. Recent advances in the mechanisms of PD-L1 expression in gastric cancer: a review. Biol Res 2025; 58:16. [PMID: 40091086 PMCID: PMC11912799 DOI: 10.1186/s40659-025-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
In the progression of gastric cancer (GC), various cell types in the tumor microenvironment (TME) exhibit upregulated expression of programmed death ligand 1 (PD-L1), leading to impaired T-cell function and evasion of immune surveillance. Infection with H. pylori and EBV leads to increased PD-L1 expression in various cell types within TME, resulting in immune suppression and facilitating immune escape of GC cells. In the TME, mesenchymal stem cells (MSCs), M1-like tumor-associated macrophages (MI-like TAM), and myeloid-derived suppressor cells (MDSCs) contribute to the upregulation of PD-L1 expression in GC cells. Conversely, mast cells, M2-like tumor-associated macrophages (M2-like TAM), and tumor-associated neutrophils (TANs) exhibit elevated levels of PD-L1 expression in response to the influence of GC cells. Together, these factors collectively contribute to the upregulation of PD-L1 expression in GC. This review aims to provide a comprehensive summary of the cellular expression patterns of PD-L1 in GC and the underlying molecular mechanisms. Understanding the complex regulatory pathways governing PD-L1 expression may offer novel insights for the development of effective immunotherapeutic interventions.
Collapse
Affiliation(s)
- Peifeng Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Wannian Sui
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Wenxiu Han
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
17
|
Akkız H, Şimşek H, Balcı D, Ülger Y, Onan E, Akçaer N, Delik A. Inflammation and cancer: molecular mechanisms and clinical consequences. Front Oncol 2025; 15:1564572. [PMID: 40165901 PMCID: PMC11955699 DOI: 10.3389/fonc.2025.1564572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of anticancer treatments in cancer. It affects all stages of cancer, from the initiation of carcinogenesis to metastasis. Chronic inflammation induces immunosup-pression, providing an environment conducive to carcinogenesis, whereas acute inflammation induces an antitumor immune response, leading to tumor suppression. Solid tumors have an inflammatory tumor microenvironment (TME) containing cancer cells, immune cells, stromal cells, and soluble molecules, which plays a key role in tumor progression and therapy response. Both cancer cells and stromal cells in the TME are highly plastic and constantly change their phenotypic and functional properties. Cancer-associated inflammation, the majority of which consists of innate immune cells, plays an important role in cancer cell plasticity, cancer progression and the development of anticancer drug resistance. Today, with the combined used of advanced technologies, such as single-cell RNA sequencing and spatial molecular imaging analysis, the pathways linking chronic inflammation to cancer have been largely elucidated. In this review article, we highlighted the molecular and cellular mechanisms involved in cancer-associated inflammation and its effects on cancer progression and treatment response. We also comprehensively review the mechanisms linking chronic inflammation to cancer in the setting of GI cancers.
Collapse
Affiliation(s)
- Hikmet Akkız
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Halis Şimşek
- Department of Gastroenterology, Medical Faculty, Hacettepe University, Ankara, Türkiye
| | - Deniz Balcı
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Yakup Ülger
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
| | - Engin Onan
- Department of Nephrology, Medical Faculty, Baskent University, Adana, Türkiye
| | - Nevin Akçaer
- Department of Gastroenterology, Medical Faculty, Health Sciences University, Adana, Türkiye
| | - Anıl Delik
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
- Department of Biology, Science and Literature Faculty, Cukurova University, Adana, Türkiye
| |
Collapse
|
18
|
Stipp MC, Acco A. c-Myc-targeted therapy in breast cancer: A review of fundamentals and pharmacological Insights. Gene 2025; 941:149209. [PMID: 39755262 DOI: 10.1016/j.gene.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form. This review highlights c-Myc as a pharmacological target, discussing antitumor compounds in preclinical and clinical trials. Notably, the c-Myc inhibitor OMO-103 has shown promise in a Phase II clinical trial for advanced cancer patients. Further research is needed to develop new drugs targeting this gene, protein, or its pathways, and additional studies on cancer patients are encouraged.
Collapse
Affiliation(s)
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
19
|
Liu J, Zhao Z, Zanni R, Jiang X, Weichselbaum RR, Lin W. Nanoparticle-Mediated Toll-Like Receptor Activation and Dual Immune Checkpoint Downregulation for Potent Cancer Immunotherapy. ACS NANO 2025; 19:8852-8866. [PMID: 40009747 DOI: 10.1021/acsnano.4c16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Dual blockade of CD47 and PD-L1 immune checkpoints has shown potential in cancer treatment, but its clinical application is hindered by the on-target off-tumor immunotoxicities of monoclonal antibodies. Herein, we report a core-shell nanoparticle, PPA/HG, comprising polyinosinic: polycytidylic acid (PPA) in the core and a cholesterol-conjugated prodrug of 3-(hydroxyolinoyl)glycine (HG) on the shell, for potent cancer immunotherapy. PPA/HG shows a long half-life in the bloodstream to efficiently accumulate in tumors, where PPA/HG rapidly releases HG and PPA. HG inhibits the histone lysine demethylase 3A/c-Myc transduction for effective CD47 and PD-L1 downregulation in cancer cells while PPA activates toll-like receptor 3 in dendritic cells and tumor-associated macrophages to promote dendritic cell maturation and macrophage repolarization. PPA/HG promotes the infiltration and activation of effector T lymphocytes, meanwhile decreasing the population of immunosuppressive regulatory T cells. Systemic administration of PPA/HG significantly inhibits the progression of orthotopic triple-negative breast cancer and pancreatic ductal adenocarcinoma with minimal side effects.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Zhihao Zhao
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Richard Zanni
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Wirbel C, Durand S, Boivin F, Plaschka M, Benboubker V, Grimont M, Barbollat-Boutrand L, Tondeur G, Balme B, Harou O, Eberhardt A, Dalle S, Lopez J, Caramel J. ZEB1 transcription factor induces tumor cell PD-L1 expression in melanoma. Cancer Immunol Immunother 2025; 74:141. [PMID: 40056177 PMCID: PMC11890833 DOI: 10.1007/s00262-025-03978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
Tumor cells can evade antitumor immune response by expressing the PD-L1 ligand, leading to the inhibition of PD-1-expressing T lymphocytes. The mechanisms that regulate PD-L1 expression in cancer cells are imperfectly characterized. The transcription factor ZEB1, a major regulator of phenotype switching in melanoma cells, was shown to promote immune escape in melanoma by repressing T cell infiltration. Using inducible models of phenotype switching and ZEB1 gain/loss-of-function melanoma, we show that ZEB1 binds to the CD274 (PD-L1) promoter, directly enhancing PD-L1 mRNA transcription and its expression at the cell membrane. Furthermore, using single-cell spatial analyses on human primary melanoma samples, we demonstrate the correlation of ZEB1 and PD-L1 expression in tumor cells. Overall, these data identify ZEB1-mediated regulation of PD-L1 tumor expression as a mechanism that could contribute to immune escape in melanoma.
Collapse
Affiliation(s)
- Chloé Wirbel
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
| | - Simon Durand
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
| | - Félix Boivin
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
| | - Maud Plaschka
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
| | - Valentin Benboubker
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
| | - Maxime Grimont
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
| | - Laetitia Barbollat-Boutrand
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
| | - Garance Tondeur
- Dermatology Unit, Hospices Civils de Lyon, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Brigitte Balme
- Dermatology Unit, Hospices Civils de Lyon, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Olivier Harou
- Dermatology Unit, Hospices Civils de Lyon, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Anaïs Eberhardt
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
- Dermatology Unit, Hospices Civils de Lyon, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
- Dermatology Unit, Hospices Civils de Lyon, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Jonathan Lopez
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Biochemistry and Molecular Biology Unit, Hospices Civils de Lyon, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495, Pierre Bénite Cedex, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, "Cancer Cell Plasticity in Melanoma" Team, Lyon, France.
| |
Collapse
|
21
|
Chen M, Song L, Zhou Y, Xu T, Sun T, Liu Z, Xu Z, Zhao Y, Du P, Ma Y, Huang L, Chen X, Yang G, Jing J, Shi H. Promotion of triple negative breast cancer immunotherapy by combining bioactive radicals with immune checkpoint blockade. Acta Biomater 2025; 194:305-322. [PMID: 39805523 DOI: 10.1016/j.actbio.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Although immunotherapy has revolutionized clinical cancer treatment, the efficacy is limited due to the lack of tumor-associated antigens (TAAs) and the presence of compensatory immune checkpoints. To overcome the deficiency, a nano-system loaded with ozone and CD47 inhibitor RRx-001 is designed and synthesized. Upon irradiation, reactive oxygen species (ROS) generated from ozone reacts with nitric oxide (NO) metabolized from RRx-001 to form reactive nitrogen species (RNS), which presents a much stronger cell-killing ability than ROS. Molecular mechanism studies further reveal that RNS induce extensive immunogenic cell death (ICD). The released TAAs promote infiltration of cytotoxic T lymphocytes, which provides the basis for immune checkpoint blockade (ICB) therapy. Meanwhile, RRx-001 carried by the nanoparticles and the produced radicals repolarize M2-type tumor-associated macrophages (TAMs) into the anti-tumor M1-type, consequently reversing the immunosuppressive tumor microenvironment (TME). In a xenograft triple-negative breast cancer (TNBC) animal model, O3-001@lipo (liposome enwrapping O3 and RRx-001) plus irradiation shows a significant anti-tumor efficacy by improving cytotoxic lymphocyte infiltration and regulating immunosuppressive TME. In summary, the O3-001@lipo nano-system triggered by irradiation potently improves the efficacy of immunotherapy by introducing strong cytotoxic RNS, which not only enriches the toolbox of ICD inducer but also provides a strategy of treatment for immune deficient tumor. STATEMENT OF SIGNIFICANCE: This study introduces a nano-system that leverages ozone and RRx-001 in the presence of X-ray irradiation to generate reactive nitrogen species, enhancing immunogenic cell death and promoting T-lymphocyte infiltration in triple-negative breast cancer, addressing a significant unmet need in the field. The scientific contribution is the development of a clinically translatable nano-system that not only induces ICD but also reshapes the tumor microenvironment, which is expected to have a profound impact on the readership in pharmaceutics, material science, and nano-bio interaction, particularly for those interested in advanced immune therapy approaches.
Collapse
Affiliation(s)
- Meixu Chen
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Linlin Song
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China; Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yao Zhou
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Tianyue Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Ting Sun
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China; Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhihui Liu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Zihan Xu
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Yujie Zhao
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Peixin Du
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Yingying Ma
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Liwen Huang
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Jing
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.
| | - Hubing Shi
- Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
22
|
Yang L, Tan W, Wang M, Wei Y, Xie Z, Wang Q, Zhang Z, Zhuang H, Ma X, Wang B, Jiang J, Chen Y, Shang C. circCCNY enhances lenvatinib sensitivity and suppresses immune evasion in hepatocellular carcinoma by serving as a scaffold for SMURF1 mediated HSP60 degradation. Cancer Lett 2025; 612:217470. [PMID: 39826668 DOI: 10.1016/j.canlet.2025.217470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Lenvatinib is the standard first-line therapy for advanced hepatocellular carcinoma (HCC), but drug resistance significantly hampers its efficacy. Increasing evidence has shown that circular RNAs (circRNAs) play critical roles in HCC pathogenesis. However, the underlying mechanisms of lenvatinib sensitivity regulated by circRNAs remain largely unclear. The present study aims to identify circRNAs involved in lenvatinib resistance, as well as to elucidate the underlying mechanisms. High-throughput sequencing revealed that hsa_circ_0000235 (circCCNY) was downregulated in matched HCC tumor tissues and lenvatinib-resistant cells. Both in vitro and in vivo experiments revealed that downregulation of circCCNY could induce lenvatinib resistance in HCC cells. Subsequently, RNA pull-down, mass spectrometry, and RNA immunoprecipitation techniques were employed to investigate the interactions between circCCNY, HSP60, and the E3 ubiquitin ligase SMURF1. Briefly, circCCNY bounds to HSP60, subsequently leading to HSP60 ubiquitination and degradation through its interaction with the E3 ubiquitin ligase SMURF1. As a result, HSP60 degradation released Raf kinase inhibitor protein (RKIP), leading to the inactivation of the MAPK signaling pathway, and subsequently enhanced the anti-tumor effect of lenvatinib against HCC. Moreover, we also demonstrated that circCCNY could enhance CD8+ T-cell infiltration and suppress immune evasion through inhibiting the MAPK/c-Myc/PD-L1 signaling pathway. Our findings revealed that circCCNY enhances HCC sensitivity to lenvatinib and suppresses immune evasion by inhibiting the MAPK signaling pathway in HCC. This suggests that circCCNY could serve as a promising therapeutic target in HCC treatment and a potential biomarker for predicting HCC sensitivity to lenvatinib.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Quinolines/pharmacology
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Phenylurea Compounds/pharmacology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Drug Resistance, Neoplasm
- Animals
- Mice
- Cell Line, Tumor
- Chaperonin 60/metabolism
- Chaperonin 60/genetics
- Mice, Nude
- Xenograft Model Antitumor Assays
- Ubiquitination
- Male
- Tumor Escape/drug effects
- Antineoplastic Agents/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Lei Yang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Wenliang Tan
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital, Hainan Medical University, Haikou, 570311, Hai Nan, China
| | - Yingcheng Wei
- Department of Hepatopancreatobiliary Surgery, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516621, Guangdong, China
| | - Zhiqin Xie
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Qingbin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Ziyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xiaowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Bingkun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Jiahao Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
23
|
Zhao Y, Yang J, Xu S, Wang Y, Bo J. The pathogenesis of B-cell non-hodgkin lymphoma associated with HBV (hepatitis B virus) infection is regulated by c-Myc/PD-L1 signaling pathway. Glob Med Genet 2025; 12:100001. [PMID: 39925444 PMCID: PMC11800311 DOI: 10.1016/j.gmg.2024.100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Background HBV is closely associated with the incidence of B-NHL (B-cell non-hodgkin lymphoma). This project intends to establish HBV infection-induced B-NHL cells and animal models to clarify the mutual mechanism of HBV infection and B-NHL pathogenesis. Methods The relationship between HBV and B-NHL was studied based on the HBV infection model, which included CTC cells and HBV transgenic mice. Moreover, differential expression analysis of transcriptome profiling was performed to confirm the mechanism. Results The HBsAg expression and HBV-DNA could be found in tumor tissues of HBV group, but negative in the control group. Moreover, there were clearly differences between the two groups in the transcriptome of tumor tissues and CTC. HBsAg significantly promoted lymphocytes associated with c-Myc and PD-L1. Conclusion The promoted effect induced by HBsAg in lymphocytes was associated with PD-L1 mediated by c-Myc.
Collapse
Affiliation(s)
- Yu Zhao
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No 8 East Street, Fengtai District, Beijing 100071, China
| | - Jian Yang
- Clinic of Yongding Road, Southern Medical Branch of PLA General Hospital, No 27 Taiping Road, Haidian District, Beijing 100036, China
| | - Sai Xu
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No 8 East Street, Fengtai District, Beijing 100071, China
| | - Ying Wang
- Clinic of Yongding Road, Southern Medical Branch of PLA General Hospital, No 27 Taiping Road, Haidian District, Beijing 100036, China
| | - Jian Bo
- Senior Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No 8 East Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
24
|
Shao WQ, Li YT, Zhou X, Zhang SG, Fan MH, Zhang D, Chen ZM, Yi CH, Wang SH, Zhu WW, Lu M, Chen JS, Lin J, Zhou Y. Cholesterol suppresses AMFR-mediated PDL1 ubiquitination and degradation in HCC. Mol Cell Biochem 2025; 480:1807-1818. [PMID: 39231894 PMCID: PMC11842428 DOI: 10.1007/s11010-024-05106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The degradation of proteasomes or lysosomes is emerging as a principal determinant of programmed death ligand 1 (PDL1) expression, which affects the efficacy of immunotherapy in various malignancies. Intracellular cholesterol plays a central role in maintaining the expression of membrane receptors; however, the specific effect of cholesterol on PDL1 expression in cancer cells remains poorly understood. Cholesterol starvation and stimulation were used to modulate the cellular cholesterol levels. Immunohistochemistry and western blotting were used to analyze the protein levels in the samples and cells. Quantitative real-time PCR, co-immunoprecipitation, and confocal co-localization assays were used for mechanistic investigation. A xenograft tumor model was constructed to verify these results in vivo. Our results showed that cholesterol suppressed the ubiquitination and degradation of PDL1 in hepatocellular carcinoma (HCC) cells. Further mechanistic studies revealed that the autocrine motility factor receptor (AMFR) is an E3 ligase that mediated the ubiquitination and degradation of PDL1, which was regulated by the cholesterol/p38 mitogenic activated protein kinase axis. Moreover, lowering cholesterol levels using statins improved the efficacy of programmed death 1 (PD1) inhibition in vivo. Our findings indicate that cholesterol serves as a signal to inhibit AMFR-mediated ubiquitination and degradation of PDL1 and suggest that lowering cholesterol by statins may be a promising combination strategy to improve the efficiency of PD1 inhibition in HCC.
Collapse
Affiliation(s)
- Wei-Qing Shao
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Yi-Tong Li
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Xu Zhou
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Sheng-Guo Zhang
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Ming-Hao Fan
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Dong Zhang
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
| | - Zhen-Mei Chen
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Chen-He Yi
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Sheng-Hao Wang
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Ming Lu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ji-Song Chen
- Depatment of Hepatobiliary Surgery, Taizhou Fourth People's Hospital, Jiangsu, 214527, China
| | - Jing Lin
- Department of General Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Yu Zhou
- Department of Infection, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China.
| |
Collapse
|
25
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:191-205. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Stebbing J, Bullock A. CD47 as a potential predictive biomarker in colorectal cancer. J Immunother Cancer 2025; 13:e011142. [PMID: 40010768 DOI: 10.1136/jitc-2024-011142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
In this week's Journal for ImmunoTherapy for Cancer, Arai and colleagues analyzed next-generation sequencing data for DNA and RNA from 14,287 patients with colorectal cancer (CRC) categorized by median CD47 expression level, and showed that CD47, a key component of innate immunity in deflecting phagocytosis, is associated with molecular subtypes of CRC, cell damage-associated molecular pattern-related genes, major oncogenic pathways, and adaptive immune checkpoint genes. Taken together, they concluded that CD47 expression is associated with activation of oncogenic pathways and an immune-engaged tumor microenvironment. Clinical outcomes data also demonstrated that high CD47 is associated with prolonged survival in patients treated with antiangiogenic and checkpoint inhibitor therapy. Biomarker studies such as this will enable broader application of immuno-oncology to patients with CRC and other malignancies.
Collapse
Affiliation(s)
- Justin Stebbing
- Imperial College London, London, UK
- Anglia Ruskin University Faculty of Arts Law and Social Sciences, Cambridge, London, UK
| | - Andrea Bullock
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Pan Y, Yuan C, Zeng C, Sun C, Xia L, Wang G, Chen X, Zhang B, Liu J, Ding ZY. Cancer stem cells and niches: challenges in immunotherapy resistance. Mol Cancer 2025; 24:52. [PMID: 39994696 PMCID: PMC11852583 DOI: 10.1186/s12943-025-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer stem cells (CSCs) are central to tumor progression, metastasis, immune evasion, and therapeutic resistance. Characterized by remarkable self-renewal and adaptability, CSCs can transition dynamically between stem-like and differentiated states in response to external stimuli, a process termed "CSC plasticity." This adaptability underpins their resilience to therapies, including immune checkpoint inhibitors and adoptive cell therapies (ACT). Beyond intrinsic properties, CSCs reside in a specialized microenvironment-the CSC niche-which provides immune-privileged protection, sustains their stemness, and fosters immune suppression. This review highlights the critical role of CSCs and their niche in driving immunotherapy resistance, emphasizing the need for integrative approaches to overcome these challenges.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the MOE, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Tongji Hospital, GI Cancer Research Institute, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Liu
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Liu Z, Li Y, Wang S, Wang Y, Sui M, Liu J, Chen P, Wang J, Zhang Y, Dang C, Hou P. Genome-wide CRISPR screening identifies PHF8 as an effective therapeutic target for KRAS- or BRAF-mutant colorectal cancers. J Exp Clin Cancer Res 2025; 44:70. [PMID: 40001243 PMCID: PMC11853609 DOI: 10.1186/s13046-025-03338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Mutations in KRAS and BRAF genes are prevalent in colorectal cancer (CRC), which strikingly promote tumorigenesis and lead to poor response to a variety of treatments including immunotherapy by activating the MAPK/ERK pathway. Thus, there is an urgent need to discover effective therapeutic targets and strategies. METHODS CRISPR-Cas9 lentiviral knockout library was used to screen the suppressors of anti-PD1 immunotherapy. Bioinformatic analysis was used to analyze the correlation between PHF8 expression and immune indicators in CRC. In vitro and in vivo experiments were utilized to determine the effects of PHF8 on the immune indexes and malignant phenotypes of CRC cells. qRT-PCR, western blotting, immunohistochemical (IHC) staining, and chromatin immunoprecipitation (ChIP)-qPCR assays were used to determine the regulatory effects of PHF8 on PD-L1, KRAS, BRAF, and c-Myc and the regulatory effect c-Myc/miR-22-3p signaling axis on PHF8 expression in CRC cells. RESULTS This study identified histone lysine demethylase PHF8 as a negative regulator for the efficacy of anti-PD1 therapy and found that it was highly expressed in CRCs and strongly associated with poor patient survival. Functional studies showed that PHF8 played an oncogenic role in KRAS- or BRAF-mutant CRC cells, but not in wild-type ones. Mechanistically, PHF8 up-regulated the expression of PD-L1, KRAS, BRAF, and c-Myc by increasing the levels of transcriptional activation marks H3K4me3 and H3K27ac and decreasing the levels of transcriptional repression mark H3K9me2 within their promoter regions, promoting immune escape and tumor progression. Besides, our data also demonstrated that PHF8 was up-regulated by the c-Myc/miR-22-3p signaling axis to form a positive feedback loop. Targeting PHF8 substantially improved the efficacy of anti-PD1 therapy and inhibited the malignant phenotypes of KRAS- or BRAF-mutant CRC cells. CONCLUSION Our data demonstrate that PHF8 may be an effective therapeutic target for KRAS- or BRAF-mutant CRCs.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yiqi Li
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, P.R. China
| | - Simeng Wang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yubo Wang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Mengjun Sui
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jiaxin Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Pu Chen
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jianling Wang
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Yuchen Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Peng Hou
- Department of Endocrinology and International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
29
|
Guan P, Jin F, Zhang A, Gao S, Liu Z. Rationally Engineered Bispecific Nanoimmunoblocker Restores Anticancer Immunity via Dual Immune Checkpoint Blockade. ACS NANO 2025; 19:5392-5405. [PMID: 39887132 DOI: 10.1021/acsnano.4c13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment. However, the outcomes of mainstay antibody inhibitors against solid tumors remain poor, facing tremendous challenges including manufacturing complexities, serious toxicities, and crosstalk among multiple checkpoints. Herein, we present a bispecific molecularly imprinted nanoimmunoblocker (bsMINIB) designed to boost potent antitumor immunity via synchronously blocking innate and adaptive immune checkpoints. Two epitopes for PD-L1 and SIRPα are selected as templates through structural analysis, and thereafter, bsMINIB capable of bridging tumor cells and macrophages is rationally engineered via an advanced imprinting approach. The bsMINIB exhibits high affinity and specificity toward PD-L1 on solid tumor cells and SIRPα on macrophages, allowing effective disruption of both PD-L1/PD-1 and CD47/SIRPα signaling. These signal disruptions restore macrophage-mediated tumor phagocytosis, promote tumor-associated antigen presentation, and reinvigorate T cell-mediated tumor killing. Using refractory triple-negative breast cancer as a solid tumor model, the bsMINIB demonstrates extended retention at the tumor site, amplified infiltration of active T cells, and reactivated antitumor macrophages, thereby effectively inhibiting tumor growth. This biomimetic nanoimmunoblocker not only presents an effective multipronged ICB therapeutic against solid tumors but also showcases a compelling paradigm for the rational engineering of bispecific nanoplatforms for synergistic immunotherapy through molecular imprinting.
Collapse
Affiliation(s)
- Peixin Guan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Fang Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Anqi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
30
|
Schaaf C, Sussel L. A Cure for Type 1 Diabetes: Are We There Yet? Diabetes Technol Ther 2025. [PMID: 39911033 DOI: 10.1089/dia.2024.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Type 1 diabetes (T1D) affects over 2 million people in the United States and has no known cure. The discovery and first use of insulin in humans 102 years ago marked a revolutionary course of treatment for the disease, and although the formulations and delivery systems have advanced, insulin administration remains the standard of care today. While improved treatment options represent notable progress in T1D management, finding a functional cure for the disease remains the ultimate goal. Approaches to curing T1D have historically focused on blunting the autoimmune response, although sustained effects of immune modulation have proven elusive. Islet transplant therapies have also proven effective, although a lack of available donor tissue and the need for immunosuppression to prevent both host-graft rejection and the autoimmune response have reserved such treatments for those who already require immunosuppressive regimens for other reasons or undergo severe hypoglycemic events in conjunction with hypoglycemic unawareness. With the advent of human stem cell research, the focus has shifted toward generating an abundance of allogeneic, functional beta-like cells that can be transplanted into the patients. Immunoisolation devices have also shown some promise as a method of preventing immune rejection and the autoimmune destruction of transplanted cells. Finally, advances in new immune therapies, if used in the early stages of T1D progression, have proven to delay the onset of diabetes. Stem cell-based therapies are a promising approach to curing T1D. The ongoing clinical trials show some success, although they currently require immunosuppressant agents. Encapsulation devices provide a method of immunoisolation that does not require immunosuppression; however, the devices tested thus far eventually lead to cell death and fibrotic tissue growth. Substantial research efforts are underway to develop new approaches to protect the stem cell-derived beta cells upon transplantation.
Collapse
Affiliation(s)
- Christopher Schaaf
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| |
Collapse
|
31
|
Cen Y, Li XX, Wang M, Chen Y, Ou XC, Yu BX, Chen XY, Wang YQ, Guo N, Li SY. Chimeric Peptide Functionalized Immunostimulant to Orchestrate Photodynamic Immunotherapeutic Effect by PD-L1 Deglycosylation and CD47 Inhibition. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7539-7552. [PMID: 39853093 DOI: 10.1021/acsami.4c22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Breast cancer utilizes diverse immunosuppressive mechanisms to evade immune surveillance, thereby impairing immunotherapeutic effects. In this work, a chimeric peptide functionalized immunostimulant (designated as aGlyR) is fabricated to boost photodynamic immunotherapy through PD-L1 deglycosylation and CD47 inhibition. The photosensitizer protoporphyrin IX (PpIX) is conjugated to a PD-L1 deglycosylation peptide via a hydrophilic PEG8 linker, yielding the chimeric peptide Fmoc-K(PpIX)-PEG8-GFTATPPAPDSPQEP. This chimeric peptide could self-assemble into nanomicelles capable of encapsulating the CD47 inhibitor RRx-001, generating the multifunctional photodynamic immunostimulant aGlyR. In vitro and in vivo results indicate that the photodynamic therapy (PDT) of aGlyR could disrupt breast cancer cells and trigger immunogenic cell death (ICD), leading to the release of tumor-associated antigens (TAAs) and the activation of immunological cascades. Additionally, the chimeric peptide component of aGlyR results in the deglycosylation and degradation of PD-L1, which restores T cell-mediated immune activity. Concurrently, the release of RRx-001 blocks the CD47 pathway, disrupting the antiphagocytic signaling of breast cancer cells and activating innate immune responses. This synergistic immunomodulatory approach effectively reverses the complex immunosuppressive factors, significantly enhancing the immunotherapeutic effects of conventional treatments.
Collapse
Affiliation(s)
- Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xin-Xuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Min Wang
- Scientific Research Center of Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xiao-Cheng Ou
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Bai-Xue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xia-Yun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yu-Qing Wang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ning Guo
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Shi-Ying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
32
|
Zhao Y, Liu D, Yang W, He W, Yan J, Yao L. Resetting the Hsc70-mediated lysosomal degradation of PD-L1 via a supramolecular meso peptide for the restoration of acquired anti-tumor T cell immunity. J Nanobiotechnology 2025; 23:79. [PMID: 39905428 DOI: 10.1186/s12951-025-03171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
The reduction of cellular PD-L1 abundance through lysosomal degradation is recognized as essential for effective and sustained targeting of PD-L1-dependent immune evasion in cancer. While Hsc70 can interact with PD-L1 to promote its lysosomal degradation, the overexpression of CMTM6 competitively inhibits this interaction, leading to the blockade of PD-L1 lysosomal degradation. To overcome this issue, a meso chimeric peptide PEPPDL1 was designed to specifically bind the PD-1 binding domain of PD-L1 instead of the Hsc70/CMTM6 binding domain, while also binding to Hsc70 to facilitate the dragging of PD-L1 into Hsc70-mediated chaperone-mediated autophagy (CMA), thereby achieving lysosomal degradation. In order to enable internalization into tumor cells, supramolecular engineering techniques were employed through terminal modification involving sulfydryl and monovalent gold ion (Au(I)), both facilitating self-assembly of modified PEPPDL1 into supramolecular nanospheres termed CTAC-PDL1 driven by aurophilic interaction. Furthermore, based on bioinformatics analysis of mRNA expression data from 30 types of tumors obtained from TCGA database, malignant melanoma was identified as the most suitable indication for CTAC-PDL1 due to its specific characteristics of tumor immune. As expected, CTAC-PDL1 effectively reactivated Hsc70-mediated lysosomal degradation of PD-L1 and consequently restored anti-tumor T cell immunity in a B16F10-derived mouse model of malignant melanoma while maintaining a favorable safety profile. Overall, this work not only presents an alternative approach for targeting PD-L1-dependent cancer immune evasion, but also provides a modularized strategy for discovering specific regulators for target proteins in various diseases.
Collapse
Affiliation(s)
- Yujia Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Dan Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Jin Yan
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
| | - Leiqing Yao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
| |
Collapse
|
33
|
Kim J, Seki E. Inflammation and Immunity in Liver Neoplasms: Implications for Future Therapeutic Strategies. Mol Cancer Ther 2025; 24:188-199. [PMID: 39365846 PMCID: PMC11794036 DOI: 10.1158/1535-7163.mct-23-0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 10/06/2024]
Abstract
Over the past two decades, the "hallmarks of cancer" have revolutionized cancer research and highlighted the crucial roles of inflammation and immunity. Protumorigenic inflammation promotes cancer development along with inhibition of antitumor immunity, shaping the tumor microenvironment (TME) toward a tumor-permissive state and further enhancing the malignant potential of cancer cells. This immunosuppressive TME allows tumors to evade immunosurveillance. Thus, understanding the complex interplay between tumors and the immune system within the TME has become pivotal, especially with the advent of immunotherapy. Although immunotherapy has achieved notable success in many malignancies, primary liver cancer, particularly hepatocellular carcinoma, presents unique challenges. The hepatic immunosuppressive environment poses obstacles to the effectiveness of immunotherapy, along with high mortality rates and limited treatment options for patients with liver cancer. In this review, we discuss current understanding of the complex immune-mediated mechanisms underlying liver neoplasms, focusing on hepatocellular carcinoma and liver metastases. We describe the molecular and cellular heterogeneity within the TME, highlighting how this presents unique challenges and opportunities for immunotherapy in liver cancers. By unraveling the immune landscape of liver neoplasms, this review aims to contribute to the development of more effective therapeutic interventions, ultimately improving clinical outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
34
|
Liang X, Guo J, Wang X, Luo B, Fu R, Chen H, Yang Y, Jin Z, Lin C, Zang A, Jia Y, Feng L, Wang L. Overexpression of ornithine decarboxylase 1 mediates the immune-deserted microenvironment and poor prognosis in diffuse large B-cell lymphoma. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:57-74. [PMID: 40040873 PMCID: PMC11873660 DOI: 10.1016/j.jncc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 03/06/2025] Open
Abstract
Background Previous researches mainly focused on whether cancer stem cells exist in diffuse large B-cell lymphoma (DLBCL). However, subgroups with dismal prognosis and stem cell-like characteristics have been overlooked. Methods Using large scale data (n = 2133), we conducted machine learning algorithms to identify a high risk DLBCL subgroup with stem cell-like features, and then investigated the potential mechanisms in shaping this subgroup using transcriptome, genome and single-cell RNA-seq data, and in vitro experiments. Results We identified a high-risk subgroup (25.6 % of DLBCL) with stem cell-like characteristics and dismal prognosis. This high-risk group (HRG) was featured by upregulation of key enzyme (ODC1) in polyamine metabolism and cold tumor microenvironment (TME), and had a poor prognosis with lower 3-year overall survival (OS) (54.3 % vs. 83.6 %, P < 0.0001) and progression-free survival (PFS) (42.8 % vs. 74.7 %, P < 0.0001) rates compared to the low-risk group. HRG also exhibited malignant proliferative phenotypes similar to Burkitt lymphoma. Patients with MYC rearrangement, double-hit, double-expressors, or complete remission might have either favorable or poor prognosis, which could be further distinguished by our risk stratification model. Genomic analysis revealed widespread copy number losses in the chemokine and interferon coding regions 8p23.1 and 9p21.3 in HRG. We identified ODC1 as a therapeutic vulnerability for HRG-DLBCL. Single-cell analysis and in vitro experiments demonstrated that ODC1 overexpression enhanced DLBCL cell proliferation and drove macrophage polarization towards the M2 phenotype. Conversely, ODC1 inhibition reduced DLBCL cell proliferation, induced cell cycle arrest and apoptosis, and promoted macrophage polarization towards the M1 phenotype. Finally, we developed a comprehensive database of DLBCL for clinical application. Conclusions Our study effectively advances the precise risk stratification of DLBCL and reveals that ODC1 and immune-deserted microenvironment jointly shape a group of DLBCL patients with stem cell-like features. Targeting ODC1 regulates immunotherapies in DLBCL, offering new insights for DLBCL treatment.
Collapse
Affiliation(s)
- Xiaojie Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia Guo
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Baiwei Luo
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiying Fu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Haiying Chen
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yunong Yang
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zhihao Jin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Chaoran Lin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Youchao Jia
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Gou Q, Yan B, Duan Y, Guo Y, Qian J, Shi J, Hou Y. Ubiquitination of CD47 Regulates Innate Anti-Tumor Immune Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412205. [PMID: 39665172 PMCID: PMC11792004 DOI: 10.1002/advs.202412205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/16/2024] [Indexed: 12/13/2024]
Abstract
In addition to adaptive immune checkpoint of PD-1/PD-L1, the innate immune checkpoint SIRPα/CD47 plays an important role in regulation of tumor immune escape. However, the mechanism of CD47 ubiquitination on tumor immune escape remains unclear. Here it is found that TRAF2 bound to the C-terminal of CD47 cytoplasmic fragment and induced its ubiquitination, leading to inhibition of CD47 autophagic degradation by disrupting its binding to LC3, which in turn inhibited macrophage phagocytosis and promoted tumor immune escape. In contrast, loss of TRAF2 facilitated CD47 autophagic degradation and inhibited tumor immune escape. Moreover, autophagy induction promoted CD47 degradation and enhanced the efficacy of CD47 antibody anti-tumor immunotherapy. These findings revealed a novel mechanism of ubiquitination of CD47 on tumor immune escape.
Collapse
Affiliation(s)
- Qian Gou
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Bingjun Yan
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Yalan Duan
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Yilei Guo
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Jing Qian
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Juanjuan Shi
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| | - Yongzhong Hou
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu Province212013People's Republic of China
| |
Collapse
|
36
|
Xu R, Wan M, Pan J, Mei J, Zhou J, Shen Y, Yang J, Zhu Y, Sun J. Formin protein DAAM1 positively regulates PD-L1 expression via mediating the JAK1/STAT1 axis in pancreatic cancer. Cancer Cell Int 2025; 25:28. [PMID: 39881344 PMCID: PMC11776260 DOI: 10.1186/s12935-024-03631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer. METHODS Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer. The LinkedOmics platform was employed to perform enrichment analysis of DAAM1-associated molecular pathways in pancreatic cancer. Subsequently, a series of in vitro and in vivo experiments were conducted to evaluate the biological roles of DAAM1 in pancreatic cancer cells and its effects on intratumoral T cells. RESULTS DAAM1 was found to be upregulated in pancreatic cancer tissues, with higher expression levels observed in tumor cells. Additionally, high expression of DAAM1 was associated with poor prognosis. DAAM1 acted as an oncogene in pancreatic cancer, and its inhibition suppressed tumor cell proliferation, migration, and invasion, while promoted apoptosis. Furthermore, DAAM1 was involved in the JAK1/STAT1 signaling pathway and regulated PD-L1 expression in pancreatic cancer cells. The inhibition of DAAM1 also significantly reduced the exhaustion levels of CD8+ T cells. CONCLUSION In conclusion, DAAM1 functions as an oncogene and is immunologically implicated in pancreatic cancer, these findings suggest that DAAM1 may serve as a promising therapeutic target for the clinical management of pancreatic cancer.
Collapse
Affiliation(s)
- Rui Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengyun Wan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jiadong Pan
- Departments of Gastroenterology, The Third People's Hospital of Kunshan, Suzhou, 215300, China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji Zhou
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayue Yang
- Departments of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Yichao Zhu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Jing Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Xu J, Li Z, Tong Q, Zhang S, Fang J, Wu A, Wei G, Zhang C, Yu S, Zheng B, Lin H, Liao X, Xiao Z, Lu W. CD133 +PD-L1 + cancer cells confer resistance to adoptively transferred engineered macrophage-based therapy in melanoma. Nat Commun 2025; 16:895. [PMID: 39837811 PMCID: PMC11751330 DOI: 10.1038/s41467-025-55876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages. Compared to the CD133-PD-L1- cancer cells, the CD133+PD-L1+ cancer cells express higher transforming growth factor-β signaling molecules to foster a resistant tumor niche, that restricts the trafficking of the transferred macrophages by stiffened extracellular matrix, and inhibits their cell-killing capability by immunosuppressive factors. The CD133+PD-L1+ cancer cells exhibit tumorigenic potential. The CD133+PD-L1+ cells are further identified in the clinically metastatic melanoma. Hyperthermia reverses the resistance of CD133+PD-L1+ cancer cells through upregulating the 'eat me' signal calreticulin, significantly improving the efficacy of adoptive macrophage therapy. Our findings demonstrate the mechanism of resistance to adoptive macrophage therapy, and provide a de novo strategy to counteract the resistance.
Collapse
Affiliation(s)
- Jiaojiao Xu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Zhe Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Qinli Tong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Sihang Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Jianchen Fang
- Department of Pathology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Aihua Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Guoguang Wei
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Chen Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Sheng Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Binbin Zheng
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Hongzheng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Xueling Liao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
| | - Zeyu Xiao
- Department of Pathology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
- Minhang Hospital, Fudan University, Shanghai, 201199, China.
- Quzhou Fudan Institute, Quzhou, Zhejiang, 324002, China.
| |
Collapse
|
38
|
Deng Z, Zhou F, Li M, Jin W, Yu J, Wang G, Qian K, Ju L, Zhang Y, Xiao Y, Wang X. DLGAP5 enhances bladder cancer chemoresistance by regulating glycolysis through MYC stabilization. Theranostics 2025; 15:2375-2392. [PMID: 39990228 PMCID: PMC11840727 DOI: 10.7150/thno.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: Bladder cancer (BLCA), one of the most lethal urological tumors, exhibits high rates of recurrence and chemoresistance, particularly to gemcitabine (GEM). Understanding the mechanisms of GEM resistance is crucial for improving therapeutic outcomes. Our study investigates the role of DLGAP5 in promoting GEM resistance through modulation of glycolysis and MYC protein stability in BLCA cells. Methods: We utilized various BLCA cell lines and clinical tissue samples to analyze the impact of DLGAP5 on GEM resistance. Through biochemical assays, protein interaction studies, and gene expression analyses, we examined how DLGAP5 interacts with USP11 and MYC, assessed the effects on MYC deubiquitination and stability. The influence of these interactions on glycolytic activity and GEM resistance was also evaluated via mouse subcutaneous xenograft model and spontaneous BLCA model. Results: Our findings indicate that DLGAP5 enhances GEM resistance by stabilizing MYC protein via deubiquitination, a process mediated by USP11. DLGAP5 was found to facilitate the interaction between USP11 and MYC, promoting MYC-driven transcription of DLGAP5 itself, thereby creating a positive feedback loop. This loop leads to sustained MYC accumulation and increased glycolytic activity, contributing to GEM resistance in BLCA cells. Conclusion: The study highlights the critical role of DLGAP5 in regulating MYC protein stability and suggests that disrupting the DLGAP5-USP11-MYC axis may provide a novel therapeutic approach to overcome GEM resistance in BLCA. DLGAP5 represents a potential target for therapeutic intervention aimed at mitigating chemoresistance in bladder cancer BLCA.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Jin
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Jingtian Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yu Xiao
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Wu X, Zhu Z, Zhang J, Tian M, Zhao P. Progress in understanding the regulatory mechanisms of immune checkpoint proteins PD-1 and PD-L1 expression. Clin Transl Oncol 2025:10.1007/s12094-024-03835-4. [PMID: 39776397 DOI: 10.1007/s12094-024-03835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Programmed Death Protein-1 (PD-1) is a cell surface receptor that serves as a checkpoint for T cells, playing a pivotal role in regulating T-cell apoptosis. The binding of PD-1 to its ligand, Programmed Death Ligand 1 (PD-L1), inhibits anti-tumor immunity by suppressing T-cell activation signals. Indeed, the PD-1/PD-L1 pathway governs the induction and maintenance of immune tolerance within the tumor microenvironment. Consequently, the regulation of PD-1/PD-L1 immune checkpoint expression is of paramount importance. This review summarizes the mechanisms governing PD1/PD-L1 expression at various stages, including transcription, post-transcription (mRNA processing), and post-translation (protein modifications), as well as immunotherapy targeting PD1/PD-L1, aiming to further explore novel strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Xuanxuan Wu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zengjun Zhu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jian Zhang
- Center of Translational Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China
| | - Maojin Tian
- Department of Critical Care Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China.
| |
Collapse
|
40
|
Awan AB, Osman MJA, Khan OM. Ubiquitination Enzymes in Cancer, Cancer Immune Evasion, and Potential Therapeutic Opportunities. Cells 2025; 14:69. [PMID: 39851497 PMCID: PMC11763706 DOI: 10.3390/cells14020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Ubiquitination is cells' second most abundant posttranslational protein modification after phosphorylation. The ubiquitin-proteasome system (UPS) is critical in maintaining essential life processes such as cell cycle control, DNA damage repair, and apoptosis. Mutations in ubiquitination pathway genes are strongly linked to the development and spread of multiple cancers since several of the UPS family members possess oncogenic or tumor suppressor activities. This comprehensive review delves into understanding the ubiquitin code, shedding light on its role in cancer cell biology and immune evasion. Furthermore, we highlighted recent advances in the field for targeting the UPS pathway members for effective therapeutic intervention against human cancers. We also discussed the recent update on small-molecule inhibitors and PROTACs and their progress in preclinical and clinical trials.
Collapse
Affiliation(s)
- Aiman B. Awan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| | - Maryiam Jama Ali Osman
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
- Research Branch, Sidra Medicine, Doha P.O. Box 34110, Qatar
| | - Omar M. Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| |
Collapse
|
41
|
Guo Y, Khan B, Shi J, Hou Y. PPARδ Antagonist Inhibited CD47 Expression and Phagocytosis. J Cell Biochem 2025; 126:e30685. [PMID: 39632616 DOI: 10.1002/jcb.30685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Increasing evidence suggests that CD47 is highly expressed in multiple types of cancer, which could bind to SIRPα on macrophage, leading to inhibition of macrophage phagocytosis and promotion of tumor growth. However, the regulatory mechanism of CD47 gene expression is not completely clear. Our results indicated that colon cancer cells treated with GSK0660 drug, which is one of the PPARδ antagonists, significantly reduced CD47 gene and protein expression levels in a time and dose-dependent manner. CD47 reporter plasmid was constructed and dual-luciferase analysis was performed. The results suggest that GSK0660 treatment markedly reduced CD47 gene transcriptional activity. Moreover, co-cultured analysis showed that GSK0660 treatment increased phagocytosis. BALB/C mice implanted with CT-26 colon cancer cells were treated with GSK0660, and the results showed that GSK0660 significantly inhibited tumor growth. Moreover, the combination of CD47 monoclonal antibody with GSK0660 drug significantly inhibited tumor growth compared to GSK0660 or CD47 antibody treatment alone. These findings suggest that GSK0660 synergized with CD47 antibody to enhance antitumor immunotherapy.
Collapse
Affiliation(s)
- Yilei Guo
- Department of Oncology, The Affiliated Wujin Hospital of Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bibimaryam Khan
- Department of Oncology, The Affiliated Wujin Hospital of Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital of Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
42
|
Tian S, Xu M, Geng X, Fang J, Xu H, Xue X, Hu H, Zhang Q, Yu D, Guo M, Zhang H, Lu J, Guo C, Wang Q, Liu S, Zhang W. Network Medicine-Based Strategy Identifies Maprotiline as a Repurposable Drug by Inhibiting PD-L1 Expression via Targeting SPOP in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410285. [PMID: 39499771 PMCID: PMC11714211 DOI: 10.1002/advs.202410285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are drugs that inhibit immune checkpoint (ICP) molecules to restore the antitumor activity of immune cells and eliminate tumor cells. Due to the limitations and certain side effects of current ICIs, such as programmed death protein-1, programmed cell death-ligand 1, and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) antibodies, there is an urgent need to find new drugs with ICP inhibitory effects. In this study, a network-based computational framework called multi-network algorithm-driven drug repositioning targeting ICP (Mnet-DRI) is developed to accurately repurpose novel ICIs from ≈3000 Food and Drug Administration-approved or investigational drugs. By applying Mnet-DRI to PD-L1, maprotiline (MAP), an antidepressant drug is repurposed, as a potential PD-L1 modifier for colorectal and lung cancers. Experimental validation revealed that MAP reduced PD-L1 expression by targeting E3 ubiquitin ligase speckle-type zinc finger structural protein (SPOP), and the combination of MAP and anti-CTLA4 in vivo significantly enhanced the antitumor effect, providing a new alternative for the clinical treatment of colorectal and lung cancer.
Collapse
Affiliation(s)
- Saisai Tian
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
| | - Mengting Xu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xiangxin Geng
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Jiansong Fang
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hanchen Xu
- Institute of Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Xinying Xue
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Hongmei Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qing Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Dianping Yu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Mengmeng Guo
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Jinyuan Lu
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
| | - Chengyang Guo
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Weidong Zhang
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100193China
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosafetyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
43
|
Priya, Kumar A, Kumar D. Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications. 3 Biotech 2025; 15:33. [PMID: 39777154 PMCID: PMC11700964 DOI: 10.1007/s13205-024-04195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.
Collapse
Affiliation(s)
- Priya
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand 248007 India
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar 801505 India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand 248007 India
| |
Collapse
|
44
|
Agudo J, Miao Y. Stemness in solid malignancies: coping with immune attack. Nat Rev Cancer 2025; 25:27-40. [PMID: 39455862 DOI: 10.1038/s41568-024-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Immunotherapy has become a key new pillar of cancer treatment, and this has sparked interest in understanding mechanisms of cancer immune evasion. It has long been appreciated that cancers are constituted by heterogeneous populations of tumour cells. This feature is often fuelled by specialized cells that have molecular programs resembling tissue stem cells. Although these cancer stem cells (CSCs) have capacity for unlimited self-renewal and differentiation, it is increasingly evident that some CSCs are capable of achieving remarkable immune resistance. Given that most immunotherapy regiments have overlooked CSC-specific immune-evasive mechanisms, many current treatment strategies often lead to cancer relapse. This Review focuses on advancements in understanding how CSCs in solid tumours achieve their unique immune-evasive properties, enabling them to drive tumour regrowth. Moreover, as cancers often arise from tissue stem cells that acquired oncogenic mutations, we discuss how tissue stem cells undergoing malignant transformation activate intrinsic immune-evasive mechanisms and establish close interactions with suppressive immune cells to escape immune surveillance. In addition, we summarize how in advanced disease stages, CSCs often hijack features of normal stem cells to resist antitumour immunity. Finally, we provide insights in how to design a new generation of cancer immunotherapies to ensure elimination of CSCs.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
- New York Stem Cell Foundation, Robertson Investigator, New York, NY, USA.
| | - Yuxuan Miao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA.
- The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
45
|
Zhu M, Li N, Fan L, Wu R, Cao L, Ren Y, Lu C, Zhang L, Cai Y, Shi Y, Lin Z, Lu X, Leng J, Zhong S, Hu X, Huang B, Huang R, Zhou W, Yao D, Wu L, Wu W, Liu Q, Xia P, Chen R, Shi W, Zhang R, Lv S, Wang C, Yu L, Li J, Wang Q, Li K, Jin H. Single-cell transcriptomic and spatial analysis reveal the immunosuppressive microenvironment in relapsed/refractory angioimmunoblastic T-cell lymphoma. Blood Cancer J 2024; 14:218. [PMID: 39695118 DOI: 10.1038/s41408-024-01199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a kind of aggressive T-cell lymphoma with significant enrichment of non-malignant tumor microenvironment (TME) cells. However, the complexity of TME in AITL progression is poorly understood. We performed single-cell RNA-Seq (scRNA-seq) and imaging mass cytometry (IMC) analysis to compare the cellular composition and spatial architecture between relapsed/refractory AITL (RR-AITL) and newly diagnosed AITL (ND-AITL). Our results showed that the malignant T follicular helper (Tfh) cells showed significantly increased proliferation driven by transcriptional activation of YY1 in RR-AITL, which is markedly associated with the poor prognosis of AITL patients. The CD8+ T cell proportion and cytotoxicity decreased in RR-AITL TME, resulting from elevated expression of the inhibitory checkpoints such as PD-1, TIGIT, and CTLA4. Notably, the transcriptional pattern of B cells in RR-AITL showed an intermediate state of malignant transformation to B-cell-lymphoma, and contributed to immune evasion by highly expressing CD47 and PD-L1. Besides, compared to ND-AITL samples, myeloid-cells-centered spatial communities were more prevalent but showed reduced phagocytic activity and impaired antigen processing and presentation in RR-AITL TME. Furthermore, specific inhibitory ligand-receptor interactions, such as CLEC2D-KLRB1, CTLA4-CD86, and MIF-CD74, were exclusively identified in the RR-AITL TME. Our study provides a high-resolution characterization of the immunosuppression ecosystem and reveals the potential therapeutic targets for RR-AITL patients.
Collapse
Affiliation(s)
- Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology of the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huai'an, Jiangsu, China
| | - Lei Fan
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Rongrong Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Cao
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Yimin Ren
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Chuanyang Lu
- Department of Hematology of the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huai'an, Jiangsu, China
| | - Lishen Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Cai
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuzhu Shi
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zihan Lin
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueying Lu
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Jiayan Leng
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shiyang Zhong
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingfei Hu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Runheng Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanting Zhou
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Diru Yao
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quanzhong Liu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Xia
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruize Chen
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ruohan Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sali Lv
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunling Wang
- Department of Hematology of the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huai'an, Jiangsu, China
| | - Liang Yu
- Department of Hematology of the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huai'an, Jiangsu, China
| | - Jianyong Li
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
- Biomedical Big Data Center, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Kening Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.
- Department of Hematology of the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huai'an, Jiangsu, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China.
- Biomedical Big Data Center, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hui Jin
- Lymphoma Center, Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
Yang CY, Liao WY, Ho CC, Chen KY, Tsai TH, Hsu CL, Su KY, Chang YL, Wu CT, Hsu CC, Liu YN, Peng GR, Kangartaputra AA, Yu SH, Liao BC, Hsu WH, Lee JH, Lin CC, Shih JY, Chih-Hsin Yang J, Yu CJ. PD-L1 expression and immune profiling cannot predict osimertinib efficacy in lung cancer with EGFR T790 M mutation: A translational study. J Formos Med Assoc 2024:S0929-6646(24)00579-5. [PMID: 39694766 DOI: 10.1016/j.jfma.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND PD-L1 is associated with poor efficacy of first- or second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in untreated EGFR-mutant non-small-cell lung cancer (NSCLC). Whether PD-L1 is also predictive of osimertinib efficacy in pre-treated patients with an acquired EGFR T790 M mutation is unclear. PATIENTS AND METHODS PD-L1 expression and tumor microenvironments were evaluated in tumors from EGFR-mutant T790 M + NSCLC patients treated with osimertinib. In vitro and in vivo experiments were also performed to examine the effect of PD-L1 overexpression on osimertinib susceptibility in EGFR T790 M + cells. RESULTS A total of 134 pre-treated EGFR T790 M + patients were enrolled, of whom 72 had del19, 58 had L858R, and 4 had G719X as initial EGFR mutation subtype. Positive PD-L1 expression (TC ≥ 1%) was found in 21 of 134 (15.7%) patients. PD-L1 expression did not differ across different biopsied sites and among different EGFR mutation subgroups. Kaplan-Meier estimate revealed no significant difference in progression-free survival (PFS) in PD-L1-positive versus PD-L1-negative patients. Multivariate analysis using the Cox proportional hazard model found that older age and L858R mutation were independent predictive factors. Multiplex IHC showed that immune cell infiltration was not associated with PD-L1 expression or osimertinib treatment response. By overexpressing PD-L1 in EGFR T790 M + cells, we found that PD-L1 did not result in osimertinib resistance in in vitro and xenograft models. CONCLUSIONS PD-L1 expression in pre-treated EGFR T790 M + lung adenocarcinoma is not predictive of osimertinib efficacy, as demonstrated by in vitro, xenograft, and clinical case studies.
Collapse
Affiliation(s)
- Ching-Yao Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Yu Liao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hsiu Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Lin Hsu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital, National Taiwan University Cancer Center, and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital, National Taiwan University Cancer Center, and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chia-Chi Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan; Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Bin-Chi Liao
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Hsun Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jih-Hsiang Lee
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
47
|
Makwana K, Velazquez EJ, Marzese DM, Smith B, Bhowmick NA, Faries MB, Hamid O, Boiko AD. NRF-1 transcription factor regulates expression of an innate immunity checkpoint, CD47, during melanomagenesis. Front Immunol 2024; 15:1495032. [PMID: 39742254 PMCID: PMC11685207 DOI: 10.3389/fimmu.2024.1495032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025] Open
Abstract
Transmembrane integrin-associated protein CD47 functions as a potent innate immunity checkpoint and is upregulated by many types of malignant cells, including melanoma during tumor progression. Binding of CD47 to its target receptor, SIRPα, on myeloid cell lineages leads to the initiation of the downstream signaling cascades that inhibit innate immunity anti-tumor responses. Molecular mechanisms underlying upregulation of CD47 during melanoma progression remain largely unknown. In this report, we performed ATAC-Sequencing on patient-derived melanoma cells, as well as, the analysis of ATAC-Seq datasets covering clinical melanoma samples to demonstrate a significant increase in chromatin accessibility for the CD47 promoter region in comparison to normal cells and tissues. Additionally, profiling of multiple CD47 transcript isoforms established that upregulation of CD47 in malignant cells occurs at the mRNA level. Using chromatin immunoprecipitation (ChIP) approaches along with the analysis of ChIP-Seq cancer datasets, we identified the transcription factor NRF-1 which binds at multiple sites within the proximal CD47 promoter region. In combination with serial deletions of CD47 promoter, we defined the minimal DNA region required for its activation, as well as, specific DNA locations within that region, which are preferentially occupied by NRF-1 in tumor cells.
Collapse
Affiliation(s)
- Kuldeep Makwana
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Edwin J. Velazquez
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Diego M. Marzese
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Bethany Smith
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Neil A. Bhowmick
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mark B. Faries
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA, United States
| | - Omid Hamid
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA, United States
| | - Alexander D. Boiko
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
48
|
Wang K, Zhu L, Gong H, Huang K, Luo H, Yu W, Yi B, Liang Y. ANXA6 expression as a potential indicator of tumor diagnosis, metastasis and immunity in nasopharyngeal carcinoma. Int J Biol Macromol 2024; 283:137809. [PMID: 39577524 DOI: 10.1016/j.ijbiomac.2024.137809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
This study aimed to explore the potential of ANXA6 as a biomarker and its possible mechanisms, like its expression patterns and clinical significance, as well as exploring its underlying biological functions and regulatory networks in nasopharyngeal carcinoma (NPC). Differentially expressed proteins were identified by proteomics technology. PCR, western blotting, immunohistochemistry, and ELISA analysis of serum were used to analyze ANXA6's clinical role. GEO databases investigated its prognosis relationship. Seven databases predicted transcription factors, and GO, KEGG analyzed ANXA6's mechanism. Immune infiltration and immunotherapy datasets were also examined. ANXA6 was significantly downregulated in NPC, linked to poor survival advantage. Its expression level was closely correlated with primary lesion size, lymph node metastasis, distant metastasis and clinical stage. Low serum ANXA6 was associated with lymph node and distant metastasis. MYC may regulate ANXA6 in NPC. Functional analysis revealed co-expressed genes related to immune cells. ANXA6 was linked to immune infiltration and response. High ANXA6 expression predicted better immunotherapy and influenced drug sensitivity. ANXA6, negatively correlated with NPC development and metastasis, is a potential prognostic biomarker with tumor-suppressing effects. Multi-omics analysis highlights its clinical and immune regulatory roles, offering insights for future biomarker and molecular mechanism studies in NPC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Lepan Zhu
- Department of Clinical Laboratory, Pingshan District Central Hospital, Shenzhen, Guangdong Province 518116, China
| | - Han Gong
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Kangkang Huang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Wenze Yu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| | - Yunlai Liang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| |
Collapse
|
49
|
Hu X, Nan Y, Zhang Y, Fan J, Wang H, Bai Y, Zhang Y, Zhang X, Zhu Z, Cao Z, Ye X, Wu T, Xu S, Wu Z, Hu W, Ju D. Simultaneously blocking ANGPTL3 and CD47 prevents the progression of atherosclerosis through regulating lipid metabolism, macrophagic efferocytosis and lipid peroxidation. Pharmacol Res 2024; 210:107486. [PMID: 39488258 DOI: 10.1016/j.phrs.2024.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Atherosclerosis (AS) ultimately cause major adverse cardiovascular events (MACEs). While traditional strategies by lipid-reducing have reduced MACEs, many patients continue to face significant risks. It might attribute to the upregulation of CD47 expression in AS lesions, that mediated anti-efferocytosis of macrophages. Therefore, we propose simultaneously blocking ANGPTL3, a vital regulator of lipid metabolism, and CD47 might be a potential approach for AS therapy. Firstly, we investigate the role of a novel anti-ANGPTL3 nanobody-Fc (FD03) in AS. We found that FD03 treatment significantly decreased circulating lipids, plaque size, and lipid deposition in apoE-/- mice compared to control Ab, but there was a twofold increase in plaque formation in comparison to baseline. However, immunofluorescence indicated the upregulation of CD47 expression in the plaques even after FD03 treatment compared to normal vascular tissue. Next, a bifunctional protein containing signal regulatory protein alpha (SIRPα) and FD03 (SIRPαD1-FD03) was constructed to block CD47 and ANGPTL3 concurrently, which had high purity, robust stability, and high affinity to CD47 and ANGPTL3 with biological activity in vitro. Furthermore, SIRPαD1-FD03 fusion protein exhibited the enhanced therapeutic effect on AS compared with SIRPαD1-Fc or FD03, regressing plaque contents and the necrotic core equal to baseline. Mechanistically, SIRPαD1-FD03 reduced serum lipids, augmented the efferocytosis rate and macrophage M2 polarization, and decreased the reactive oxygen species (ROS) and lipid peroxidation level in atherosclerotic plaques. Collectively, our project suggests an effective approach for AS by simultaneously blocking ANGPTL3 and CD47 to regulate lipid metabolism, macrophage activity and lipid peroxidation.
Collapse
Affiliation(s)
- Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Yuting Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Hanqi Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Yuanzhen Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Zeguo Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Zhonglian Cao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaomiao Ye
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Tao Wu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Shuwen Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China
| | - Zhengyu Wu
- TAU Cambridge Ltd, The Bradfield Centre UNIT 184, Cambridge Science Park, Cambridge CB4 0GA, UK.
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China.
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutic, Fudan University School of Pharmacy, Shanghai, China; Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Biedermann A, Patra-Kneuer M, Mougiakakos D, Büttner-Herold M, Mangelberger-Eberl D, Berges J, Kellner C, Altmeyer S, Bittenbring JT, Augsberger C, Ilieva-Babinsky K, Haskamp S, Beier F, Lischer C, Vera J, Lührmann A, Bertz S, Völkl S, Jacobs B, Steidl S, Mackensen A, Bruns H. Blockade of the CD47/SIRPα checkpoint axis potentiates the macrophage-mediated antitumor efficacy of tafasitamab. Haematologica 2024; 109:3928-3940. [PMID: 38934068 PMCID: PMC11609795 DOI: 10.3324/haematol.2023.284795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Macrophages are one of the key mediators of the therapeutic effects exerted by monoclonal antibodies, such as the anti-CD19 antibody tafasitamab, approved in combination with lenalidomide for the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL). However, antibody-dependent cellular phagocytosis (ADCP) in the tumor microenvironment can be counteracted by increased expression of the inhibitory receptor SIRPα on macrophages and its ligand, the immune checkpoint molecule CD47, on tumor cells. The aim of this study was to investigate the impact of the CD47-SIRPα axis on tafasitamab- mediated phagocytosis and explore the potential of anti-CD47 blockade to enhance its antitumor activity. Elevated expression of both SIRPα and CD47 was observed in DLBCL patient-derived lymph node biopsies compared to healthy control lymph nodes. CRISPR-mediated CD47 overexpression affected tafasitamab-mediated ADCP in vitro and increased expression of SIRPα on macrophages correlated with decreased ADCP activity of tafasitamab against DLBCL cell lines. A combination of tafasitamab and an anti-CD47 blocking antibody enhanced ADCP activity of in vitro-generated macrophages. Importantly, tafasitamab-mediated phagocytosis was elevated in combination with CD47 blockade using primary DLBCL cells and patient-derived lymphoma-associated macrophages in an autologous setting. Furthermore, lymphoma cells with low CD19 expression were efficiently eliminated by the combination treatment. Finally, combined treatment of tafasitamab and an anti-CD47 antibody resulted in enhanced tumor volume reduction and survival benefit in lymphoma xenograft mouse models. These findings provide evidence that CD47 blockade can enhance the phagocytic potential of tumor-targeting immunotherapies such as tafasitamab and suggest that there is value in exploring the combination in the clinic.
Collapse
MESH Headings
- CD47 Antigen/metabolism
- CD47 Antigen/antagonists & inhibitors
- Humans
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Animals
- Mice
- Antigens, Differentiation/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Macrophages/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Phagocytosis/drug effects
- Tumor Microenvironment/drug effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
Collapse
Affiliation(s)
- Alexander Biedermann
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | | | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Otto-von-Guericke University (OVGU) Magdeburg, Magdeburg
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of athology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen
| | | | - Johannes Berges
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich
| | - Sarah Altmeyer
- Medizinische Klinik I, Saarland University Medical School, Homburg/Saar
| | | | | | | | - Stefan Haskamp
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Fabian Beier
- Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Medical School, Aachen
| | | | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, Erlangen, GER
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | - Simone Bertz
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Benedikt Jacobs
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | | | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen.
| |
Collapse
|