1
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00785-1. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Murata D, Roy S, Lutsenko S, Iijima M, Sesaki H. Slc25a3-dependent copper transport controls flickering-induced Opa1 processing for mitochondrial safeguard. Dev Cell 2024; 59:2578-2592.e7. [PMID: 38986607 PMCID: PMC11461135 DOI: 10.1016/j.devcel.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Following the Goldilocks principle, mitochondria size must be "just right." Mitochondria balance division and fusion to avoid becoming too big or too small. Defects in this balance produce dysfunctional mitochondria in human diseases. Mitochondrial safeguard (MitoSafe) is a defense mechanism that protects mitochondria against extreme enlarging by suppressing fusion in mammalian cells. In MitoSafe, hyperfused mitochondria elicit flickering-short pulses of mitochondrial depolarization. Flickering activates an inner membrane protease, Oma1, which in turn proteolytically inactivates a mitochondrial fusion protein, Opa1. The mechanisms underlying flickering are unknown. Using a live-imaging screen, we identified Slc25a3 (a mitochondrial carrier transporting phosphate and copper) as necessary for flickering and Opa1 cleavage. Remarkably, copper, but not phosphate, is critical for flickering. Furthermore, we found that two copper-containing mitochondrial enzymes, superoxide dismutase 1 and cytochrome c oxidase, regulate flickering. Our data identify an unforeseen mechanism linking copper, redox homeostasis, and membrane flickering in mitochondrial defense against deleterious fusion.
Collapse
Affiliation(s)
- Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Sawyer EM, Jensen LE, Meehl JB, Larsen KP, Petito DA, Hurley JH, Voeltz GK. SigmaR1 shapes rough endoplasmic reticulum membrane sheets. Dev Cell 2024; 59:2566-2577.e7. [PMID: 38971154 DOI: 10.1016/j.devcel.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/12/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Rough endoplasmic reticulum (ER) sheets are a fundamental domain of the ER and the gateway into the secretory pathway. Although reticulon proteins stabilize high-curvature ER tubules, it is unclear whether other proteins scaffold the flat membranes of rough ER sheets. Through a proteomics screen using ER sheet-localized RNA-binding proteins as bait, we identify the sigma-1 receptor (SigmaR1) as an ER sheet-shaping factor. High-resolution live cell imaging and electron tomography assign SigmaR1 as an ER sheet-localized factor whose levels determine the amount of rough ER sheets in cells. Structure-guided mutagenesis and in vitro reconstitution on giant unilamellar vesicles further support a mechanism whereby SigmaR1 oligomers use their extended arrays of amphipathic helices to bind and flatten the lumenal leaflet of ER membranes to oppose membrane curvature and stabilize rough ER sheets.
Collapse
Affiliation(s)
- Eric M Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute
| | - Liv E Jensen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Janet B Meehl
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute
| | - Kevin P Larsen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A Petito
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gia K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute.
| |
Collapse
|
5
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
6
|
Luo JS, Zhai WH, Ding LL, Zhang XJ, Han J, Ning JQ, Chen XM, Jiang WC, Yan RY, Chen MJ. MAMs and Mitochondrial Quality Control: Overview and Their Role in Alzheimer's Disease. Neurochem Res 2024; 49:2682-2698. [PMID: 39002091 DOI: 10.1007/s11064-024-04205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Jian-Sheng Luo
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Hu Zhai
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ling-Ling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xian-Jie Zhang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia Han
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia-Qi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xue-Meng Chen
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Cai Jiang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ru-Yu Yan
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Meng-Jie Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
7
|
Cui L, Xu X, Fan H, Wan X, Chen Q, Zhang J, Tao C, Du Z, Wang Y, Zhang J, Zeng J, Zhang Y, Zhang C, Li L, Bu Y, Lei Y. Reuterin promotes pyroptosis in hepatocellular cancer cells through mtDNA-mediated STING activation and caspase 8 expression. Cancer Lett 2024; 601:217183. [PMID: 39153728 DOI: 10.1016/j.canlet.2024.217183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer with poor prognosis. The available drugs for advanced HCC are limited and substantial therapeutic advances including new drugs and new combination therapies are still in urgent need. In this study, we found that the major metabolite of Lactobacillus reuteri (L. reuteri), reuterin showed great anti-HCC potential and could help in sorafenib treatment. Reuterin treatment impaired mitophagy and caused the aberrant clustering of mitochondrial nucleoids to block mitochondrial DNA (mtDNA) replication and mitochondrial fission, which could promote mtDNA leakage and subsequent STING activation in HCC cells. STING could activate pyroptosis and necroptosis, while reuterin treatment also induced caspase 8 expression to inhibit necroptosis through cleaving RIPK3 in HCC cells. Thus, pyroptosis was the main death form in reuterin-treated HCC cells and STING suppression remarkably rescued the growth inhibitory effect of reuterin and concurrently knockdown caspase 8 synergized to restrain the induction of pyroptosis. In conclusion, our study explains the detailed molecular mechanisms of the antitumor effect of reuterin and reveals its potential to perform as a combinational drug for HCC treatment.
Collapse
Affiliation(s)
- Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohui Xu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing, 400030, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chuntao Tao
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Du
- Department of Urology, The Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Zeng
- College of Life Sciences and Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
8
|
Wai T. Is mitochondrial morphology important for cellular physiology? Trends Endocrinol Metab 2024; 35:854-871. [PMID: 38866638 DOI: 10.1016/j.tem.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Mitochondria are double membrane-bound organelles the network morphology of which in cells is shaped by opposing events of fusion and fission executed by dynamin-like GTPases. Mutations in these genes can perturb the form and functions of mitochondria in cell and animal models of mitochondrial diseases. An expanding array of chemical, mechanical, and genetic stressors can converge on mitochondrial-shaping proteins and disrupt mitochondrial morphology. In recent years, studies aimed at disentangling the multiple roles of mitochondrial-shaping proteins beyond fission or fusion have provided insights into the homeostatic relevance of mitochondrial morphology. Here, I review the pleiotropy of mitochondrial fusion and fission proteins with the aim of understanding whether mitochondrial morphology is important for cell and tissue physiology.
Collapse
Affiliation(s)
- Timothy Wai
- Institut Pasteur, Mitochondrial Biology, CNRS UMR 3691, Université Paris Cité, Paris, France.
| |
Collapse
|
9
|
Dua N, Badrinarayanan A. Heteroplasmy in action: tracking mtDNA segregation dynamics. EMBO J 2024:10.1038/s44318-024-00226-x. [PMID: 39256559 DOI: 10.1038/s44318-024-00226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Nitish Dua
- The Scripps Research Institute, La Jolla, CA, USA.
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences (TIFR), Bengaluru, Karnataka, 560065, India.
| |
Collapse
|
10
|
Chen T, Yang J, Zheng Y, Zhou X, Huang H, Zhang H, Xu Z. ERK1/2 Regulates Epileptic Seizures by Modulating the DRP1-Mediated Mitochondrial Dynamic. Synapse 2024; 78:e22309. [PMID: 39285628 DOI: 10.1002/syn.22309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
After seizures, the hyperactivation of extracellular signal-regulated kinases (ERK1/2) causes mitochondrial dysfunction. Through the guidance of dynamin-related protein 1 (DRP1), ERK1/2 plays a role in the pathogenesis of several illnesses. Herein, we speculate that ERK1/2 affects mitochondrial division and participates in the pathogenesis of epilepsy by regulating the activity of DRP1. LiCl-Pilocarpine was injected intraperitoneally to establish a rat model of status epilepticus (SE) for this study. Before SE induction, PD98059 and Mdivi-1 were injected intraperitoneally. The number of seizures and the latency period before the onset of the first seizure were then monitored. The analysis of Western blot was also used to measure the phosphorylated and total ERK1/2 and DRP1 protein expression levels in the rat hippocampus. In addition, immunohistochemistry revealed the distribution of ERK1/2 and DRP1 in neurons of hippocampal CA1 and CA3. Both PD98059 and Mdivi-1 reduced the susceptibility of rats to epileptic seizures, according to behavioral findings. By inhibiting ERK1/2 phosphorylation, the Western blot revealed that PD98059 indirectly reduced the phosphorylation of DRP1 at Ser616 (p-DRP1-Ser616). Eventually, the ERK1/2 and DRP1 were distributed in the cytoplasm of neurons by immunohistochemistry. Inhibition of ERK1/2 signaling pathways downregulates p-DRP1-Ser616 expression, which could inhibit DRP1-mediated excessive mitochondrial fission and then regulate the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Ting Chen
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Juan Yang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Yongsu Zheng
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Xuejiao Zhou
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Hao Huang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Haiqing Zhang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, P. R. China
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| |
Collapse
|
11
|
Wong HTC, Lang AE, Stein C, Drerup CM. ALS-Linked VapB P56S Mutation Alters Neuronal Mitochondrial Turnover at the Synapse. J Neurosci 2024; 44:e0879242024. [PMID: 39054069 PMCID: PMC11358610 DOI: 10.1523/jneurosci.0879-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Mitochondrial population maintenance in neurons is essential for neuron function and survival. Contact sites between mitochondria and the endoplasmic reticulum (ER) are poised to regulate mitochondrial homeostasis in neurons. These contact sites can facilitate transfer of calcium and lipids between the organelles and have been shown to regulate aspects of mitochondrial dynamics. Vesicle-associated membrane protein-associated protein B (VapB) is an ER membrane protein present at a subset of ER-mitochondrial contact sites. A proline-to-serine mutation in VapB at amino acid 56 (P56S) correlates with susceptibility to amyotrophic lateral sclerosis (ALS) type 8. Given the relationship between failed mitochondrial health and neurodegenerative disease, we investigated the function of VapB in mitochondrial population maintenance. We demonstrated that transgenic expression of VapBP56S in zebrafish larvae (sex undetermined) increased mitochondrial biogenesis, causing increased mitochondrial population size in the axon terminal. Expression of wild-type VapB did not alter biogenesis but, instead, increased mitophagy in the axon terminal. Using genetic manipulations to independently increase mitochondrial biogenesis, we show that biogenesis is normally balanced by mitophagy to maintain a constant mitochondrial population size. VapBP56S transgenics fail to increase mitophagy to compensate for the increase in mitochondrial biogenesis, suggesting an impaired mitophagic response. Finally, using a synthetic ER-mitochondrial tether, we show that VapB's function in mitochondrial turnover is likely independent of ER-mitochondrial tethering by contact sites. Our findings demonstrate that VapB can control mitochondrial turnover in the axon terminal, and this function is altered by the P56S ALS-linked mutation.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Angelica E Lang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
12
|
Begeman A, Smolka JA, Shami A, Waingankar TP, Lewis SC. A spatial atlas of mitochondrial gene expression reveals dynamic translation hubs and remodeling in stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.604215. [PMID: 39149346 PMCID: PMC11326164 DOI: 10.1101/2024.08.05.604215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mitochondrial genome expression is important for cellular bioenergetics. How mitochondrial RNA processing and translation are spatially organized across dynamic mitochondrial networks is not well understood. Here, we report that processed mitochondrial RNAs are consolidated with mitoribosome components into translation hubs distal to either nucleoids or processing granules in human cells. During stress, these hubs are remodeled into translationally repressed mesoscale bodies containing messenger, ribosomal, and double-stranded RNA. We show that the highly conserved helicase SUV3 contributes to the distribution of processed RNA within mitochondrial networks, and that stress bodies form downstream of proteostatic stress in cells lacking SUV3 unwinding activity. We propose that the spatial organization of nascent chain synthesis into discrete domains serves to throttle the flow of genetic information in stress to ensure mitochondrial quality control.
Collapse
Affiliation(s)
- Adam Begeman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - John A. Smolka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | - Ahmad Shami
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
| | | | - Samantha C. Lewis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA USA
- Innovative Genomics Institute, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, Berkeley, CA USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA USA
| |
Collapse
|
13
|
Roussou R, Metzler D, Padovani F, Thoma F, Schwarz R, Shraiman B, Schmoller KM, Osman C. Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level. EMBO J 2024:10.1038/s44318-024-00183-5. [PMID: 39103491 DOI: 10.1038/s44318-024-00183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies within cells and is required for mitochondrial ATP generation. Even within individual cells, mtDNA copies can differ in their sequence, a state known as heteroplasmy. The principles underlying dynamic changes in the degree of heteroplasmy remain incompletely understood, due to the inability to monitor this phenomenon in real time. Here, we employ mtDNA-based fluorescent markers, microfluidics, and automated cell tracking, to follow mtDNA variants in live heteroplasmic yeast populations at the single-cell level. This approach, in combination with direct mtDNA tracking and data-driven mathematical modeling reveals asymmetric partitioning of mtDNA copies during cell division, as well as limited mitochondrial fusion and fission frequencies, as critical driving forces for mtDNA variant segregation. Given that our approach also facilitates assessment of segregation between intact and mutant mtDNA, we anticipate that it will be instrumental in elucidating the mechanisms underlying the purifying selection of mtDNA.
Collapse
Affiliation(s)
- Rodaria Roussou
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Graduate School Life Science Munich, 82152, Planegg-Martinsried, Germany
| | - Dirk Metzler
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Graduate School Life Science Munich, 82152, Planegg-Martinsried, Germany
| | - Rebecca Schwarz
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Boris Shraiman
- Kavli Institute for Theoretical Physics, University of California, 93106, Santa Barbara, CA, USA
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
14
|
Goel D, Kumar S. Advancements in unravelling the fundamental function of the ATAD3 protein in multicellular organisms. Adv Biol Regul 2024; 93:101041. [PMID: 38909398 DOI: 10.1016/j.jbior.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
ATPase family AAA domain containing protein 3, commonly known as ATAD3 is a versatile mitochondrial protein that is involved in a large number of pathways. ATAD3 is a transmembrane protein that spans both the inner mitochondrial membrane and outer mitochondrial membrane. It, therefore, functions as a connecting link between the mitochondrial lumen and endoplasmic reticulum facilitating their cross-talk. ATAD3 contains an N-terminal domain which is amphipathic in nature and is inserted into the membranous space of the mitochondria, while the C-terminal domain is present towards the lumen of the mitochondria and contains the ATPase domain. ATAD3 is known to be involved in mitochondrial biogenesis, cholesterol transport, hormone synthesis, apoptosis and several other pathways. It has also been implicated to be involved in cancer and many neurological disorders making it an interesting target for extensive studies. This review aims to provide an updated comprehensive account of the role of ATAD3 in the mitochondria especially in lipid transport, mitochondrial-endoplasmic reticulum interactions, cancer and inhibition of mitophagy.
Collapse
Affiliation(s)
- Divya Goel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
15
|
Boone C, Lewis SC. Bridging lipid metabolism and mitochondrial genome maintenance. J Biol Chem 2024; 300:107498. [PMID: 38944117 PMCID: PMC11326895 DOI: 10.1016/j.jbc.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Mitochondria are the nexus of cellular energy metabolism and major signaling hubs that integrate information from within and without the cell to implement cell function. Mitochondria harbor a distinct polyploid genome, mitochondrial DNA (mtDNA), that encodes respiratory chain components required for energy production. MtDNA mutation and depletion have been linked to obesity and metabolic syndrome in humans. At the cellular and subcellular levels, mtDNA synthesis is coordinated by membrane contact sites implicated in lipid transfer from the endoplasmic reticulum, tying genome maintenance to lipid storage and homeostasis. Here, we examine the relationship between mtDNA and lipid trafficking, the influence of lipotoxicity on mtDNA integrity, and how lipid metabolism may be disrupted in primary mtDNA disease.
Collapse
Affiliation(s)
- Casadora Boone
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Samantha C Lewis
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| |
Collapse
|
16
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mtDNA expression require motor neuron to muscle TGFβ/Activin Signaling in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600699. [PMID: 39131342 PMCID: PMC11312462 DOI: 10.1101/2024.06.25.600699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, Actβ loss reduces levels of mtDNA and nuclearly encoded genes required for mtDNA replication, transcription and translation. Direct RNAi mediated knockdown of these same nuclearly encoded mtDNA expression factors also results in decreased glycogen stores. Lastly, we find that expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis and mtDNA expression.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
17
|
Wisniewski BT, Lackner LL. Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604121. [PMID: 39071310 PMCID: PMC11275889 DOI: 10.1101/2024.07.18.604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Mitochondria exist as dynamic tubular networks and the morphology of these networks impacts organelle function and cell health. Mitochondrial morphology is maintained in part by the opposing activities of mitochondrial fission and fusion. Mitochondrial fission and fusion are also required to maintain mitochondrial DNA (mtDNA) integrity. In Saccharomyces cerevisiae , the simultaneous inhibition of mitochondrial fission and fusion results in increased mtDNA mutation and the consequent loss of respiratory competence. The mechanism by which fission and fusion maintain mtDNA integrity is not fully understood. Previous work demonstrates that mtDNA is spatially linked to mitochondrial fission sites. Here, we extend this finding using live-cell imaging to localize mtDNA to mitochondrial fusion sites. While mtDNA is present at sites of mitochondrial fission and fusion, mitochondrial fission and fusion rates are not altered in cells lacking mtDNA. Using alleles that alter mitochondrial fission and fusion rates, we find that mtDNA integrity can be maintained in cells with significantly reduced, but balanced, rates of fission and fusion. In addition, we find that increasing mtDNA copy number reduces the loss of respiratory competence in double mitochondrial fission-fusion mutants. Our findings add novel insights into the relationship between mitochondrial dynamics and mtDNA integrity.
Collapse
|
18
|
Rudokas MW, McKay M, Toksoy Z, Eisen JN, Bögner M, Young LH, Akar FG. Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction. Cardiovasc Diabetol 2024; 23:261. [PMID: 39026280 PMCID: PMC11264840 DOI: 10.1186/s12933-024-02357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.
Collapse
Affiliation(s)
- Michael W Rudokas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Margaret McKay
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University Schools of Engineering and Applied Sciences, New Haven, CT, USA
| | - Zeren Toksoy
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Julia N Eisen
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Markus Bögner
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Lawrence H Young
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fadi G Akar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University Schools of Engineering and Applied Sciences, New Haven, CT, USA.
- Department of Biomedical Engineering, Electro-biology and Arrhythmia Therapeutics Laboratory, Yale University Schools of Medicine, Engineering and Applied Sciences, 300 George Street, 793 - 748C, New Haven, CT, 06511, USA.
| |
Collapse
|
19
|
Deshmukh V, Martin JF. SETD3 is a mechanosensitive enzyme that methylates actin on His73 to regulate mitochondrial dynamics and function. J Cell Sci 2024; 137:jcs261268. [PMID: 38896010 PMCID: PMC11304411 DOI: 10.1242/jcs.261268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Mitochondria, which act as sensors of metabolic homeostasis and metabolite signaling, form a dynamic intracellular network that continuously changes shape, size and localization to respond to localized cellular energy demands. Mitochondrial dynamics and function depend on interactions with the F-actin cytoskeleton that are poorly understood. Here, we show that SET domain protein 3 (SETD3), a recently described actin histidine methyltransferase, directly methylates actin at histidine-73 and enhances F-actin polymerization on mitochondria. SETD3 is a mechano-sensitive enzyme that is localized on the outer mitochondrial membrane and promotes actin polymerization around mitochondria. SETD3 loss of function leads to diminished F-actin around mitochondria and a decrease in mitochondrial branch length, branch number and mitochondrial movement. Our functional analysis revealed that SETD3 is required for oxidative phosphorylation, and mitochondrial complex I assembly and function. Our data further indicate that SETD3 regulates F-actin formation around mitochondria and is essential for maintaining mitochondrial morphology, movement and function. Finally, we discovered that SETD3 levels are regulated by extracellular matrix (ECM) stiffness and regulate mitochondrial shape in response to changes in ECM stiffness. These findings provide new insight into the mechanism for F-actin polymerization around mitochondria.
Collapse
Affiliation(s)
- Vaibhav Deshmukh
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - James F. Martin
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Cardiomyocyte Renewal Lab, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
20
|
Schiavon CR, Wang Y, Feng JW, Garrett S, Sung TC, Dayn Y, Wang C, Youle RJ, Quintero-Carmona OA, Shadel GS, Manor U. INF2-mediated actin polymerization at ER-organelle contacts regulates organelle size and movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602365. [PMID: 39005402 PMCID: PMC11245118 DOI: 10.1101/2024.07.06.602365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Proper regulation of organelle dynamics is critical for cellular function, but the mechanisms coordinating multiple organelles remain poorly understood. Here we show that actin polymerization mediated by the endoplasmic reticulum (ER)-anchored formin INF2 acts as a master regulator of organelle morphology and movement. Using high-resolution imaging, we demonstrate that INF2-polymerized actin filaments assemble at ER contact sites on mitochondria, endosomes, and lysosomes just prior to their fission. Genetic manipulation of INF2 activity alters the size, shape and motility of all three organelles. Our findings reveal a conserved mechanism by which the ER uses actin polymerization to control diverse organelles, with implications for understanding organelle dysfunction in neurodegenerative and other diseases. This work establishes INF2-mediated actin assembly as a central coordinator of organelle dynamics and inter-organelle communication.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Department of Cell & Developmental Biology, University of California, San Diego
| | - Yuning Wang
- Department of Cell & Developmental Biology, University of California, San Diego
| | | | - Stephanie Garrett
- Department of Cell & Developmental Biology, University of California, San Diego
| | | | | | - Chunxin Wang
- National Institute of Neurological Disorders and Stroke
| | | | | | | | - Uri Manor
- Department of Cell & Developmental Biology, University of California, San Diego
| |
Collapse
|
21
|
Hinton A, Claypool SM, Neikirk K, Senoo N, Wanjalla CN, Kirabo A, Williams CR. Mitochondrial Structure and Function in Human Heart Failure. Circ Res 2024; 135:372-396. [PMID: 38963864 PMCID: PMC11225798 DOI: 10.1161/circresaha.124.323800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Steven M. Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Nanami Senoo
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health (A.K.)
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH (C.R.W.)
| |
Collapse
|
22
|
Vilas-Boas EA, Kowaltowski AJ. Mitochondrial redox state, bioenergetics, and calcium transport in caloric restriction: A metabolic nexus. Free Radic Biol Med 2024; 219:195-214. [PMID: 38677486 DOI: 10.1016/j.freeradbiomed.2024.04.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria congregate central reactions in energy metabolism, many of which involve electron transfer. As such, they are expected to both respond to changes in nutrient supply and demand and also provide signals that integrate energy metabolism intracellularly. In this review, we discuss how mitochondrial bioenergetics and reactive oxygen species production is impacted by dietary interventions that change nutrient availability and impact on aging, such as calorie restriction. We also discuss how dietary interventions alter mitochondrial Ca2+ transport, regulating both mitochondrial and cytosolic processes modulated by this ion. Overall, a plethora of literature data support the idea that mitochondrial oxidants and calcium transport act as integrating signals coordinating the response to changes in nutritional supply and demand in cells, tissues, and animals.
Collapse
Affiliation(s)
- Eloisa A Vilas-Boas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
23
|
Kondadi AK, Reichert AS. Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. Annu Rev Biophys 2024; 53:147-168. [PMID: 38166176 DOI: 10.1146/annurev-biophys-030822-020736] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (a) within an individual mitochondrion, (b) among mitochondria, and (c) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| |
Collapse
|
24
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
25
|
Fan R, Deng A, Lin R, Zhang S, Cheng C, Zhuang J, Hai Y, Zhao M, Yang L, Wei G. A platinum(IV)-artesunate complex triggers ferroptosis by boosting cytoplasmic and mitochondrial lipid peroxidation to enhance tumor immunotherapy. MedComm (Beijing) 2024; 5:e570. [PMID: 38774917 PMCID: PMC11106517 DOI: 10.1002/mco2.570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/24/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death form that initiates lipid peroxidation (LPO) in tumors. In recent years, there has been growing interest on ferroptosis, but how to propel it forward translational medicine remains in mist. Although experimental ferroptosis inducers such as RSL3 and erastin have demonstrated bioactivity in vitro, the poor antitumor outcome in animal model limits their development. In this study, we reveal a novel ferroptosis inducer, oxaliplatin-artesunate (OART), which exhibits substantial bioactivity in vitro and vivo, and we verify its feasibility in cancer immunotherapy. For mechanism, OART induces cytoplasmic and mitochondrial LPO to promote tumor ferroptosis, via inhibiting glutathione-mediated ferroptosis defense system, enhancing iron-dependent Fenton reaction, and initiating mitochondrial LPO. The destroyed mitochondrial membrane potential, disturbed mitochondrial fusion and fission, as well as downregulation of dihydroorotate dehydrogenase mutually contribute to mitochondrial LPO. Consequently, OART enhances tumor immunogenicity by releasing damage associated molecular patterns and promoting antigen presenting cells maturation, thereby transforming tumor environment from immunosuppressive to immunosensitive. By establishing in vivo model of tumorigenesis and lung metastasis, we verified that OART improves the systematic immune response. In summary, OART has enormous clinical potential for ferroptosis-based cancer therapy in translational medicine.
Collapse
Affiliation(s)
- Renming Fan
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Aohua Deng
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Ruizhuo Lin
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Shuo Zhang
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Caiyan Cheng
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Precision Pharmacy & Drug Development CenterDepartment of PharmacyTangdu HospitalAir Force Military Medical UniversityXi'anChina
| | - Junyan Zhuang
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Yongrui Hai
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| | - Minggao Zhao
- Precision Pharmacy & Drug Development CenterDepartment of PharmacyTangdu HospitalAir Force Military Medical UniversityXi'anChina
| | - Le Yang
- Precision Pharmacy & Drug Development CenterDepartment of PharmacyTangdu HospitalAir Force Military Medical UniversityXi'anChina
| | - Gaofei Wei
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
- Research & Development Institute of Northwestern Polytechnical University in ShenzhenShenzhenChina
| |
Collapse
|
26
|
Castellaneta A, Losito I, Porcelli V, Barile S, Maresca A, Del Dotto V, Losacco V, Guadalupi LS, Calvano CD, Chan DC, Carelli V, Palmieri L, Cataldi TRI. Lipidomics reveals the reshaping of the mitochondrial phospholipid profile in cells lacking OPA1 and mitofusins. J Lipid Res 2024; 65:100563. [PMID: 38763493 PMCID: PMC11225846 DOI: 10.1016/j.jlr.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography coupled with electrospray ionization-high resolution MS to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts knocked out for OPA1 and Mfn1/2 genes. One hundred sixty-seven different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PCs, 63), phosphatidylethanolamines (55), phosphatidylinositols (21), and cardiolipins (28). A slight decrease in the cardiolipin/PC ratio was found for Mfn1/2-knockout mitochondria. Principal component analysis and hierarchical cluster analysis were subsequently used to further process hydrophilic interaction liquid chromatography-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and phosphatidylethanolamine classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to WT mouse embryonic fibroblasts. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially Mfns, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes.
Collapse
Affiliation(s)
- Andrea Castellaneta
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Vito Porcelli
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Serena Barile
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Valentina Del Dotto
- Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Valentina Losacco
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Cosima Damiana Calvano
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Luigi Palmieri
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy; CNR-Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
27
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
28
|
Hinton AO, N'jai AU, Vue Z, Wanjalla C. Connection Between HIV and Mitochondria in Cardiovascular Disease and Implications for Treatments. Circ Res 2024; 134:1581-1606. [PMID: 38781302 PMCID: PMC11122810 DOI: 10.1161/circresaha.124.324296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.
Collapse
Affiliation(s)
- Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Alhaji U N'jai
- Biological Sciences, Fourah Bay College and College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone and Koinadugu College, Kabala (A.U.N.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.W.)
| |
Collapse
|
29
|
Ren W, Ge X, Li M, Sun J, Li S, Gao S, Shan C, Gao B, Xi P. Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe. LIGHT, SCIENCE & APPLICATIONS 2024; 13:116. [PMID: 38782912 PMCID: PMC11116397 DOI: 10.1038/s41377-024-01463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024]
Abstract
Mitochondria are crucial organelles closely associated with cellular metabolism and function. Mitochondrial DNA (mtDNA) encodes a variety of transcripts and proteins essential for cellular function. However, the interaction between the inner membrane (IM) and mtDNA remains elusive due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vivo probes specifically targeting the IM. Here, we have developed a novel fluorescence probe called HBmito Crimson, characterized by exceptional photostability, fluorogenicity within lipid membranes, and low saturation power. We successfully achieved over 500 frames of low-power stimulated emission depletion microscopy (STED) imaging to visualize the IM dynamics, with a spatial resolution of 40 nm. By utilizing dual-color imaging of the IM and mtDNA, it has been uncovered that mtDNA tends to habitat at mitochondrial tips or branch points, exhibiting an overall spatially uniform distribution. Notably, the dynamics of mitochondria are intricately associated with the positioning of mtDNA, and fusion consistently occurs in close proximity to mtDNA to minimize pressure during cristae remodeling. In healthy cells, >66% of the mitochondria are Class III (i.e., mitochondria >5 μm or with >12 cristae), while it dropped to <18% in ferroptosis. Mitochondrial dynamics, orchestrated by cristae remodeling, foster the even distribution of mtDNA. Conversely, in conditions of apoptosis and ferroptosis where the cristae structure is compromised, mtDNA distribution becomes irregular. These findings, achieved with unprecedented spatiotemporal resolution, reveal the intricate interplay between cristae and mtDNA and provide insights into the driving forces behind mtDNA distribution.
Collapse
Affiliation(s)
- Wei Ren
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Shiyi Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China
| | - Shu Gao
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chunyan Shan
- School of Life Sciences, Peking University, Beijing, 100871, China.
- National Center for Protein Sciences, Peking University, Beijing, 100871, China.
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, 071002, China.
| | - Peng Xi
- Department of Biomedical Engineering, National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
31
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
32
|
Li F, Xiang R, Liu Y, Hu G, Jiang Q, Jia T. Approaches and challenges in identifying, quantifying, and manipulating dynamic mitochondrial genome variations. Cell Signal 2024; 117:111123. [PMID: 38417637 DOI: 10.1016/j.cellsig.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Mitochondria, the cellular powerhouses, possess their own unique genetic system, including replication, transcription, and translation. Studying these processes is crucial for comprehending mitochondrial disorders, energy production, and their related diseases. Over the past decades, various approaches have been applied in detecting and quantifying mitochondrial genome variations with also the purpose of manipulation of mitochondria or mitochondrial genome for therapeutics. Understanding the scope and limitations of above strategies is not only fundamental to the understanding of basic biology but also critical for exploring disease-related novel target(s), as well to develop innovative therapies. Here, this review provides an overview of different tools and techniques for accurate mitochondrial genome variations identification, quantification, and discuss novel strategies for the manipulation of mitochondria to develop innovative therapeutic interventions, through combining the insights gained from the study of mitochondrial genetics with ongoing single cell omics combined with advanced single molecular tools.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guoliang Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Quanbo Jiang
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; CNRS-UMR9187, INSERM U1196, PSL-Research University, 91405 Orsay, France; CNRS-UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France.
| |
Collapse
|
33
|
Ma X, Niu M, Ni HM, Ding WX. Mitochondrial dynamics, quality control, and mtDNA in alcohol-associated liver disease and liver cancer. Hepatology 2024:01515467-990000000-00861. [PMID: 38683546 DOI: 10.1097/hep.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Mitochondria are intracellular organelles responsible for energy production, glucose and lipid metabolism, cell death, cell proliferation, and innate immune response. Mitochondria are highly dynamic organelles that constantly undergo fission, fusion, and intracellular trafficking, as well as degradation and biogenesis. Mitochondrial dysfunction has been implicated in a variety of chronic liver diseases including alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, and HCC. In this review, we provide a detailed overview of mitochondrial dynamics, mitophagy, and mitochondrial DNA-mediated innate immune response, and how dysregulation of these mitochondrial processes affects the pathogenesis of alcohol-associated liver disease and HCC. Mitochondrial dynamics and mitochondrial DNA-mediated innate immune response may thereby represent an attractive therapeutic target for ameliorating alcohol-associated liver disease and alcohol-associated HCC.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Mobility, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
34
|
Huang Y, Chang M, Gao X, Fang J, Ding W, Liu J, Shen B, Zhang X. NRhFluors: Quantitative Revealing the Interaction between Protein Homeostasis and Mitochondria Dysfunction via Fluorescence Lifetime Imaging. ACS CENTRAL SCIENCE 2024; 10:842-851. [PMID: 38680572 PMCID: PMC11046461 DOI: 10.1021/acscentsci.3c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
Degenerative diseases are closely related to the changes of protein conformation beyond the steady state. The development of feasible tools for quantitative detection of changes in the cellular environment is crucial for investigating the process of protein conformational variations. Here, we have developed a near-infrared AIE probe based on the rhodamine fluorophore, which exhibits dual responses of fluorescence intensity and lifetime to local viscosity changes. Notably, computational analysis reveals that NRhFluors fluorescence activation is due to inhibition of the RACI mechanism in viscous environment. In the chemical regulation of rhodamine fluorophores, we found that variations of electron density distribution can effectively regulate CI states and achieve fluorescence sensitivity of NRhFluors. In addition, combined with the AggTag method, the lifetime of probe A9-Halo exhibits a positive correlation with viscosity changes. This analytical capacity allows us to quantitatively monitor protein conformational changes using fluorescence lifetime imaging (FLIM) and demonstrate that mitochondrial dysfunction leads to reduced protein expression in HEK293 cells. In summary, this work developed a set of near-infrared AIE probes activated by the RACI mechanism, which can quantitatively detect cell viscosity and protein aggregation formation, providing a versatile tool for exploring disease-related biological processes and therapeutic approaches.
Collapse
Affiliation(s)
- Yubo Huang
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Meiyi Chang
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaochen Gao
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiabao Fang
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wenjing Ding
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiachen Liu
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Baoxing Shen
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xin Zhang
- Department
of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang China
| |
Collapse
|
35
|
Lei Y, Gan M, Qiu Y, Chen Q, Wang X, Liao T, Zhao M, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Zhu L, Shen L. The role of mitochondrial dynamics and mitophagy in skeletal muscle atrophy: from molecular mechanisms to therapeutic insights. Cell Mol Biol Lett 2024; 29:59. [PMID: 38654156 PMCID: PMC11036639 DOI: 10.1186/s11658-024-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Skeletal muscle is the largest metabolic organ of the human body. Maintaining the best quality control and functional integrity of mitochondria is essential for the health of skeletal muscle. However, mitochondrial dysfunction characterized by mitochondrial dynamic imbalance and mitophagy disruption can lead to varying degrees of muscle atrophy, but the underlying mechanism of action is still unclear. Although mitochondrial dynamics and mitophagy are two different mitochondrial quality control mechanisms, a large amount of evidence has indicated that they are interrelated and mutually regulated. The former maintains the balance of the mitochondrial network, eliminates damaged or aged mitochondria, and enables cells to survive normally. The latter degrades damaged or aged mitochondria through the lysosomal pathway, ensuring cellular functional health and metabolic homeostasis. Skeletal muscle atrophy is considered an urgent global health issue. Understanding and gaining knowledge about muscle atrophy caused by mitochondrial dysfunction, particularly focusing on mitochondrial dynamics and mitochondrial autophagy, can greatly contribute to the prevention and treatment of muscle atrophy. In this review, we critically summarize the recent research progress on mitochondrial dynamics and mitophagy in skeletal muscle atrophy, and expound on the intrinsic molecular mechanism of skeletal muscle atrophy caused by mitochondrial dynamics and mitophagy. Importantly, we emphasize the potential of targeting mitochondrial dynamics and mitophagy as therapeutic strategies for the prevention and treatment of muscle atrophy, including pharmacological treatment and exercise therapy, and summarize effective methods for the treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yuhang Lei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanhao Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiuyang Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengying Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
36
|
Zhou Z, Ma A, Moore TM, Wolf DM, Yang N, Tran P, Segawa M, Strumwasser AR, Ren W, Fu K, Wanagat J, van der Bliek AM, Crosbie-Watson R, Liesa M, Stiles L, Acin-Perez R, Mahata S, Shirihai O, Goodarzi MO, Handzlik M, Metallo CM, Walker DW, Hevener AL. Drp1 controls complex II assembly and skeletal muscle metabolism by Sdhaf2 action on mitochondria. SCIENCE ADVANCES 2024; 10:eadl0389. [PMID: 38569044 PMCID: PMC10990287 DOI: 10.1126/sciadv.adl0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alice Ma
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy M. Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dane M. Wolf
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicole Yang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tran
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mayuko Segawa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenjuan Ren
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kai Fu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | - Rachelle Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marc Liesa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca Acin-Perez
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sushil Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Orian Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90095, USA
| | - Michal Handzlik
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M. Metallo
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David W. Walker
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea L. Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Iris Cantor UCLA Women’s Health Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine and VA Greater Los Angeles Healthcare System GRECC, Los Angeles, CA 90073, USA
| |
Collapse
|
37
|
Jenkins BC, Neikirk K, Katti P, Claypool SM, Kirabo A, McReynolds MR, Hinton A. Mitochondria in disease: changes in shapes and dynamics. Trends Biochem Sci 2024; 49:346-360. [PMID: 38402097 PMCID: PMC10997448 DOI: 10.1016/j.tibs.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Mitochondrial structure often determines the function of these highly dynamic, multifunctional, eukaryotic organelles, which are essential for maintaining cellular health. The dynamic nature of mitochondria is apparent in descriptions of different mitochondrial shapes [e.g., donuts, megamitochondria (MGs), and nanotunnels] and crista dynamics. This review explores the significance of dynamic alterations in mitochondrial morphology and regulators of mitochondrial and cristae shape. We focus on studies across tissue types and also describe new microscopy techniques for detecting mitochondrial morphologies both in vivo and in vitro that can improve understanding of mitochondrial structure. We highlight the potential therapeutic benefits of regulating mitochondrial morphology and discuss prospective avenues to restore mitochondrial bioenergetics to manage diseases related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steven M Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801, USA.
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Filice M, Gattuso A, Imbrogno S, Mazza R, Amelio D, Caferro A, Agnisola C, Icardo JM, Cerra MC. Functional, structural, and molecular remodelling of the goldfish (Carassius auratus) heart under moderate hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:667-685. [PMID: 38198074 PMCID: PMC11021278 DOI: 10.1007/s10695-024-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The goldfish (Carassius auratus) is known for its physiologic ability to survive even long periods of oxygen limitation (hypoxia), adapting the cardiac performance to the requirements of peripheral tissue perfusion. We here investigated the effects of short-term moderate hypoxia on the heart, focusing on ventricular adaptation, in terms of hemodynamics and structural traits. Functional evaluations revealed that animals exposed to 4 days of environmental hypoxia increased the hemodynamic performance evaluated on ex vivo cardiac preparations. This was associated with a thicker and more vascularized ventricular compact layer and a reduced luminal lacunary space. Compared to normoxic animals, ventricular cardiomyocytes of goldfish exposed to hypoxia showed an extended mitochondrial compartment and a modulation of proteins involved in mitochondria dynamics. The enhanced expression of the pro-fission markers DRP1 and OMA1, and the modulation of the short and long forms of OPA1, suggested a hypoxia-related mitochondria fission. Our data propose that under hypoxia, the goldfish heart undergoes a structural remodelling associated with a potentiated cardiac activity. The energy demand for the highly performant myocardium is supported by an increased number of mitochondria, likely occurring through fission events.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy.
| | - Rosa Mazza
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Daniela Amelio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Alessia Caferro
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Claudio Agnisola
- Department of Biological Sciences, University of Naples Federico II, Naples, Italy
| | - José Manuel Icardo
- Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
39
|
Edington AR, Connor OM, Marlar-Pavey M, Friedman JR. Human CCDC51 and yeast Mdm33 are functionally conserved mitochondrial inner membrane proteins that demarcate a subset of organelle fission events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586162. [PMID: 38562768 PMCID: PMC10983960 DOI: 10.1101/2024.03.21.586162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mitochondria are highly dynamic double membrane-bound organelles that exist in a semi-continuous network. Mitochondrial morphology arises from the complex interplay of numerous processes, including opposing fission and fusion dynamics and the formation of highly organized cristae invaginations of the inner membrane. While extensive work has examined the mechanisms of mitochondrial fission, it remains unclear how fission is coordinated across two membrane bilayers and how mitochondrial inner membrane organization is coupled with mitochondrial fission dynamics. Previously, the yeast protein Mdm33 was implicated in facilitating fission by coordinating with inner membrane homeostasis pathways. However, Mdm33 is not conserved outside fungal species and its precise mechanistic role remains unclear. Here, we use a bioinformatic approach to identify a putative structural ortholog of Mdm33 in humans, CCDC51 (also called MITOK). We find that the mitochondrial phenotypes associated with altered CCDC51 levels implicate the protein in mitochondrial fission dynamics. Further, using timelapse microscopy, we spatially and temporally resolve Mdm33 and CCDC51 to a subset of mitochondrial fission events. Finally, we show that CCDC51 can partially rescue yeast Δmdm33 cells, indicating the proteins are functionally analogous. Our data reveal that Mdm33/CCDC51 are conserved mediators of mitochondrial morphology and suggest the proteins play a crucial role in maintaining normal mitochondrial dynamics and organelle homeostasis.
Collapse
Affiliation(s)
- Alia R Edington
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Olivia M Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
40
|
Liu Y, Huo JL, Ren K, Pan S, Liu H, Zheng Y, Chen J, Qiao Y, Yang Y, Feng Q. Mitochondria-associated endoplasmic reticulum membrane (MAM): a dark horse for diabetic cardiomyopathy treatment. Cell Death Discov 2024; 10:148. [PMID: 38509100 PMCID: PMC10954771 DOI: 10.1038/s41420-024-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM. The interplay between mitochondria and the ER is mediated by the mitochondria-associated ER membrane (MAM), which participates in regulating energy metabolism, calcium homeostasis, mitochondrial dynamics, autophagy, ER stress, inflammation, and other cellular processes. Recent studies have proven that MAM is closely related to the initiation and progression of DCM. In this study, we aim to summarize the recent research progress on MAM, elaborate on the key role of MAM in DCM, and discuss the potential of MAM as an important therapeutic target for DCM, thereby providing a theoretical reference for basic and clinical studies of DCM treatment.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Jin-Ling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
41
|
Isaac RS, Tullius TW, Hansen KG, Dubocanin D, Couvillion M, Stergachis AB, Churchman LS. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA. Nat Struct Mol Biol 2024; 31:568-577. [PMID: 38347148 PMCID: PMC11370055 DOI: 10.1038/s41594-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
Cellular metabolism relies on the regulation and maintenance of mitochondrial DNA (mtDNA). Hundreds to thousands of copies of mtDNA exist in each cell, yet because mitochondria lack histones or other machinery important for nuclear genome compaction, it remains unresolved how mtDNA is packaged into individual nucleoids. In this study, we used long-read single-molecule accessibility mapping to measure the compaction of individual full-length mtDNA molecules at near single-nucleotide resolution. We found that, unlike the nuclear genome, human mtDNA largely undergoes all-or-none global compaction, with most nucleoids existing in an inaccessible, inactive state. Highly accessible mitochondrial nucleoids are co-occupied by transcription and replication components and selectively form a triple-stranded displacement loop structure. In addition, we showed that the primary nucleoid-associated protein TFAM directly modulates the fraction of inaccessible nucleoids both in vivo and in vitro, acting consistently with a nucleation-and-spreading mechanism to coat and compact mitochondrial nucleoids. Together, these findings reveal the primary architecture of mtDNA packaging and regulation in human cells.
Collapse
Affiliation(s)
- R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas W Tullius
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Katja G Hansen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mary Couvillion
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Spinazzola A, Perez-Rodriguez D, Ježek J, Holt IJ. Mitochondrial DNA competition: starving out the mutant genome. Trends Pharmacol Sci 2024; 45:225-242. [PMID: 38402076 DOI: 10.1016/j.tips.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
High levels of pathogenic mitochondrial DNA (mtDNA) variants lead to severe genetic diseases, and the accumulation of such mutants may also contribute to common disorders. Thus, selecting against these mutants is a major goal in mitochondrial medicine. Although mutant mtDNA can drift randomly, mounting evidence indicates that active forces play a role in the selection for and against mtDNA variants. The underlying mechanisms are beginning to be clarified, and recent studies suggest that metabolic cues, including fuel availability, contribute to shaping mtDNA heteroplasmy. In the context of pathological mtDNAs, remodeling of nutrient metabolism supports mitochondria with deleterious mtDNAs and enables them to outcompete functional variants owing to a replicative advantage. The elevated nutrient requirement represents a mutant Achilles' heel because small molecules that restrict nutrient consumption or interfere with nutrient sensing can purge cells of deleterious mtDNAs and restore mitochondrial respiration. These advances herald the dawn of a new era of small-molecule therapies to counteract pathological mtDNAs.
Collapse
Affiliation(s)
- Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK.
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Jan Ježek
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK; Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE (Basque Foundation for Science), 48013 Bilbao, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain; Universidad de País Vasco, Barrio Sarriena s/n, 48940 Leioa, Bilbao, Spain.
| |
Collapse
|
43
|
Lee A, Sung G, Shin S, Lee SY, Sim J, Nhung TTM, Nghi TD, Park SK, Sathieshkumar PP, Kang I, Mun JY, Kim JS, Rhee HW, Park KM, Kim K. OrthoID: profiling dynamic proteomes through time and space using mutually orthogonal chemical tools. Nat Commun 2024; 15:1851. [PMID: 38424052 PMCID: PMC10904832 DOI: 10.1038/s41467-024-46034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes.
Collapse
Affiliation(s)
- Ara Lee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gihyun Sung
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jaehwan Sim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Imkyeung Kang
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Microbiology, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea.
| | - Kimoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea.
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
44
|
Sanyal S, Kouznetsova A, Ström L, Björkegren C. A system for inducible mitochondria-specific protein degradation in vivo. Nat Commun 2024; 15:1454. [PMID: 38365818 PMCID: PMC10873288 DOI: 10.1038/s41467-024-45819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Targeted protein degradation systems developed for eukaryotes employ cytoplasmic machineries to perform proteolysis. This has prevented mitochondria-specific analysis of proteins that localize to multiple locations, for example, the mitochondria and the nucleus. Here, we present an inducible mitochondria-specific protein degradation system in Saccharomyces cerevisiae based on the Mesoplasma florum Lon (mf-Lon) protease and its corresponding ssrA tag (called PDT). We show that mitochondrially targeted mf-Lon protease efficiently and selectively degrades a PDT-tagged reporter protein localized to the mitochondrial matrix. The degradation can be induced by depleting adenine from the medium, and tuned by altering the promoter strength of the MF-LON gene. We furthermore demonstrate that mf-Lon specifically degrades endogenous, PDT-tagged mitochondrial proteins. Finally, we show that mf-Lon-dependent PDT degradation can also be achieved in human mitochondria. In summary, this system provides an efficient tool to selectively analyze the mitochondrial function of dually localized proteins.
Collapse
Affiliation(s)
- Swastika Sanyal
- Karolinska Institutet, Department of Biosciences and Nutrition, Neo, Hälsovägen 7c, 141 83, Huddinge, Sweden.
| | - Anna Kouznetsova
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77, Stockholm, Sweden
| | - Lena Ström
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77, Stockholm, Sweden
| | - Camilla Björkegren
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, 171 77, Stockholm, Sweden.
| |
Collapse
|
45
|
Chen PX, Zhang L, Chen D, Tian Y. Mitochondrial stress and aging: Lessons from C. elegans. Semin Cell Dev Biol 2024; 154:69-76. [PMID: 36863917 DOI: 10.1016/j.semcdb.2023.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Aging is accompanied by a progressive decline in mitochondrial function, which in turn contributes to a variety of age-related diseases. Counterintuitively, a growing number of studies have found that disruption of mitochondrial function often leads to increased lifespan. This seemingly contradictory observation has inspired extensive research into genetic pathways underlying the mitochondrial basis of aging, particularly within the model organism Caenorhabditis elegans. The complex and antagonistic roles of mitochondria in the aging process have altered the view of mitochondria, which not only serve as simple bioenergetic factories but also as signaling platforms for the maintenance of cellular homeostasis and organismal health. Here, we review the contributions of C. elegans to our understanding of mitochondrial function in the aging process over the past decades. In addition, we explore how these insights may promote future research of mitochondrial-targeted strategies in higher organisms to potentially slow aging and delay age-related disease progression.
Collapse
Affiliation(s)
- Peng X Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Leyuan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
46
|
Hirabayashi Y, Lewis TL, Du Y, Virga DM, Decker AM, Coceano G, Alvelid J, Paul MA, Hamilton S, Kneis P, Takahashi Y, Gaublomme JT, Testa I, Polleux F. Most axonal mitochondria in cortical pyramidal neurons lack mitochondrial DNA and consume ATP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579972. [PMID: 38405915 PMCID: PMC10888904 DOI: 10.1101/2024.02.12.579972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In neurons of the mammalian central nervous system (CNS), axonal mitochondria are thought to be indispensable for supplying ATP during energy-consuming processes such as neurotransmitter release. Here, we demonstrate using multiple, independent, in vitro and in vivo approaches that the majority (~80-90%) of axonal mitochondria in cortical pyramidal neurons (CPNs), lack mitochondrial DNA (mtDNA). Using dynamic, optical imaging analysis of genetically encoded sensors for mitochondrial matrix ATP and pH, we demonstrate that in axons of CPNs, but not in their dendrites, mitochondrial complex V (ATP synthase) functions in a reverse way, consuming ATP and protruding H+ out of the matrix to maintain mitochondrial membrane potential. Our results demonstrate that in mammalian CPNs, axonal mitochondria do not play a major role in ATP supply, despite playing other functions critical to regulating neurotransmission such as Ca2+ buffering.
Collapse
Affiliation(s)
- Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo; Tokyo, 113-8656, Japan
| | - Tommy L. Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yudan Du
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo; Tokyo, 113-8656, Japan
| | - Daniel M. Virga
- Department of Biological Sciences, Columbia University; New York, NY, 10027, USA
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Aubrianna M. Decker
- Department of Biological Sciences, Columbia University; New York, NY, 10027, USA
| | - Giovanna Coceano
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jonatan Alvelid
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
| | - Maëla A. Paul
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL; Paris, France
| | - Stevie Hamilton
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yasufumi Takahashi
- Department of Electronics, Graduate School of Engineering, Nagoya University, 464-8603, Nagoya, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920–1192 Japan
| | - Jellert T. Gaublomme
- Department of Biological Sciences, Columbia University; New York, NY, 10027, USA
| | - Ilaria Testa
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Franck Polleux
- Department of Neuroscience, Columbia University; New York, NY, 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University; New York, NY, 10027, USA
| |
Collapse
|
47
|
Chen B, Lynn-Nguyen TM, Jadhav P, Halligan BS, Rossiter NJ, Guerra RM, Koshkin S, Koo I, Morlacchi P, Hanna DA, Lin J, Banerjee R, Pagliarini DJ, Patterson AD, Mosalaganti S, Sexton JZ, Calì T, Lyssiotis CA, Shah YM. BRD4-mediated epigenetic regulation of endoplasmic reticulum-mitochondria contact sites is governed by the mitochondrial complex III. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578646. [PMID: 38352460 PMCID: PMC10862858 DOI: 10.1101/2024.02.02.578646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2024]
Abstract
Inter-organellar communication is critical for cellular metabolic homeostasis. One of the most abundant inter-organellar interactions are those at the endoplasmic reticulum and mitochondria contact sites (ERMCS). However, a detailed understanding of the mechanisms governing ERMCS regulation and their roles in cellular metabolism are limited by a lack of tools that permit temporal induction and reversal. Through unbiased screening approaches, we identified fedratinib, an FDA-approved drug, that dramatically increases ERMCS abundance by inhibiting the epigenetic modifier BRD4. Fedratinib rapidly and reversibly modulates mitochondrial and ER morphology and alters metabolic homeostasis. Moreover, ERMCS modulation depends on mitochondria electron transport chain complex III function. Comparison of fedratinib activity to other reported inducers of ERMCS revealed common mechanisms of induction and function, providing clarity and union to a growing body of experimental observations. In total, our results uncovered a novel epigenetic signaling pathway and an endogenous metabolic regulator that connects ERMCS and cellular metabolism.
Collapse
|
48
|
McCall AD. Colocalization by cross-correlation, a new method of colocalization suited for super-resolution microscopy. BMC Bioinformatics 2024; 25:55. [PMID: 38308215 PMCID: PMC10837882 DOI: 10.1186/s12859-024-05675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND A common goal of scientific microscopic imaging is to determine if a spatial correlation exists between two imaged structures. This is generally accomplished by imaging fluorescently labeled structures and measuring their spatial correlation with a class of image analysis algorithms known as colocalization. However, the most commonly used methods of colocalization have strict limitations, such as requiring overlap in the fluorescent markers and reporting requirements for accurate interpretation of the data, that are often not met. Due to the development of novel super-resolution techniques, which reduce the overlap of the fluorescent signals, a new colocalization method is needed that does not have such strict requirements. RESULTS In order to overcome the limitations of other colocalization algorithms, I developed a new ImageJ/Fiji plugin, Colocalization by cross-correlation (CCC). This method uses cross-correlation over space to identify spatial correlations as a function of distance, removing the overlap requirement and providing more comprehensive results. CCC is compatible with 3D and time-lapse images, and was designed to be easy to use. CCC also generates new images that only show the correlating labeled structures from the input images, a novel feature among the cross-correlating algorithms. CONCLUSIONS CCC is a versatile, powerful, and easy to use colocalization and spatial correlation tool that is available through the Fiji update sites. Full and up to date documentation can be found at https://imagej.net/plugins/colocalization-by-cross-correlation . CCC source code is available at https://github.com/andmccall/Colocalization_by_Cross_Correlation .
Collapse
Affiliation(s)
- Andrew D McCall
- Optical Imaging and Analysis Facility, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
49
|
Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, Grotjahn DA, Towers CG, Tremblay MÈ, Donnelly MP, Ghosh S, Medina M, Rocha S, Rodriguez-Enriquez R, Chevez JA, Lemersal I, Manor U, Shadel GS. Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nat Cell Biol 2024; 26:194-206. [PMID: 38332353 PMCID: PMC11026068 DOI: 10.1038/s41556-023-01343-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Gladys R Rojas
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | - Matthew P Donnelly
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sagnika Ghosh
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Sienna Rocha
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Joshua A Chevez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ian Lemersal
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Uri Manor
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
50
|
Voeltz GK, Sawyer EM, Hajnóczky G, Prinz WA. Making the connection: How membrane contact sites have changed our view of organelle biology. Cell 2024; 187:257-270. [PMID: 38242082 DOI: 10.1016/j.cell.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
The view of organelles and how they operate together has changed dramatically over the last two decades. The textbook view of organelles was that they operated largely independently and were connected by vesicular trafficking and the diffusion of signals through the cytoplasm. We now know that all organelles make functional close contacts with one another, often called membrane contact sites. The study of these sites has moved to center stage in cell biology as it has become clear that they play critical roles in healthy and developing cells and during cell stress and disease states. Contact sites have important roles in intracellular signaling, lipid metabolism, motor-protein-mediated membrane dynamics, organelle division, and organelle biogenesis. Here, we summarize the major conceptual changes that have occurred in cell biology as we have come to appreciate how contact sites integrate the activities of organelles.
Collapse
Affiliation(s)
- G K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - E M Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - G Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - W A Prinz
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|