1
|
Beshara GM, Surin I, Agrachev M, Eliasson H, Otroshchenko T, Krumeich F, Erni R, Kondratenko EV, Pérez-Ramírez J. Mechanochemically-derived iron atoms on defective boron nitride for stable propylene production. EES CATALYSIS 2024; 2:1263-1276. [PMID: 39148890 PMCID: PMC11320177 DOI: 10.1039/d4ey00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Single-atom catalysts (SACs), possessing a uniform metal site structure, are a promising class of materials for selective oxidations of hydrocarbons. However, their design for targeted applications requires careful choice of metal-host combinations and suitable synthetic techniques. Here, we report iron atoms stabilised on defective hexagonal boron nitride (h-BN) via mechanochemical activation in a ball mill as an effective catalyst for propylene production via N2O-mediated oxidative propane dehydrogenation (N2O-ODHP), reaching 95% selectivity at 6% propane conversion and maintaining stable performance for 40 h on stream. This solvent-free synthesis allows simultaneous carrier exfoliation and surface defect generation, creating anchoring sites for catalytically-active iron atoms. The incorporation of a small metal quantity (0.5 wt%) predominantly generates a mix of atomically-dispersed Fe2+ and Fe3+ species, as confirmed by combining advanced microscopy and electron paramagnetic resonance, UV-vis and X-ray photoelectron spectroscopy analyses. Single-atom iron favours selective propylene formation, while metal oxide nanoparticles yield large quantities of CO x and cracking by-products. The lack of acidic functionalities on h-BN, hindering coke formation, and firm stabilisation of Fe sites, preventing metal sintering, ensure stable operation. These findings showcase N2O-ODHP as a promising propylene production technology and foster wider adoption of mechanochemical activation as a viable method for SACs synthesis.
Collapse
Affiliation(s)
- Gian Marco Beshara
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Ivan Surin
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Henrik Eliasson
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology (EMPA) Uberlandstrasse 129 8600 Dubendorf Switzerland
| | - Tatiana Otroshchenko
- Advanced Methods for Applied Catalysis, Leibniz-Institut fur Katalyse Albert Einstein-Strasse 29a 18059 Rostock Germany
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology (EMPA) Uberlandstrasse 129 8600 Dubendorf Switzerland
| | - Evgenii V Kondratenko
- Advanced Methods for Applied Catalysis, Leibniz-Institut fur Katalyse Albert Einstein-Strasse 29a 18059 Rostock Germany
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
2
|
Ma X, Yin H, Pu Z, Zhang X, Hu S, Zhou T, Gao W, Luo L, Li H, Zeng J. Propane wet reforming over PtSn nanoparticles on γ-Al 2O 3 for acetone synthesis. Nat Commun 2024; 15:8470. [PMID: 39349499 PMCID: PMC11443076 DOI: 10.1038/s41467-024-52702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Acetone serves as an important solvent and building block for the chemical industry, but the current industrial synthesis of acetone is generally accompanied by the energy-intensive and costly cumene process used for phenol production. Here we propose a sustainable route for acetone synthesis via propane wet reforming at a moderate temperature of 350 oC with the use of platinum-tin nanoparticles supported on γ-aluminium oxide (PtSn/γ-Al2O3) as catalyst. We achieve an acetone productivity of 858.4 μmol/g with a selectivity of 57.8% among all carbon-based products and 99.3% among all liquid products. Detailed spectroscopic and controlled experiments reveal that the acetone is formed through a tandem catalytic process involving propene and isopropanol as intermediates. We also demonstrate facile ketone synthesis via wet reforming with the use of different alkanes (e.g., n-butane, n-pentane, n-hexane, n-heptane, and n-octane) as substrates, proving the wide applicability of this strategy.
Collapse
Grants
- 22221003 National Natural Science Foundation of China (National Science Foundation of China)
- 22250007 National Natural Science Foundation of China (National Science Foundation of China)
- 21902149 National Natural Science Foundation of China (National Science Foundation of China)
- 22309171 National Natural Science Foundation of China (National Science Foundation of China)
- 22308346 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2021YFA1500500), CAS Project for Young Scientists in Basic Research (YSBR-051), National Science Fund for Distinguished Young Scholars (21925204), Fundamental Research Funds for the Central Universities, Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450000), Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP004), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022012), International Partnership Program of Chinese Academy of Sciences (123GJHZ2022101GC). J.Z. also acknowledges support from the Tencent Foundation through the XPLORER PRIZE.
- National Key Research and Development Program of China (2022YFA1505300),Joint Funds from the Hefei National Synchrotron Radiation Laboratory (KY9990000202), USTC Research Funds of the Double First-Class Initiative (YD9990002014)
Collapse
Affiliation(s)
- Xinlong Ma
- Deep Space Exploration Laboratory, Hefei, Anhui, 230088, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haibin Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhengtian Pu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinyan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tao Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weizhe Gao
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Laihao Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China.
| | - Jie Zeng
- Deep Space Exploration Laboratory, Hefei, Anhui, 230088, P. R. China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.
| |
Collapse
|
3
|
Liu Z, Mao M, Shu T, Cheng Q, Liu D, Wang J, Zhao Y, Liu L, Han Y. Highly Stable Propane Dehydrogenation on a Self-Supporting Single-Component Zn 2SiO 4 Catalyst. Angew Chem Int Ed Engl 2024:e202413297. [PMID: 39269331 DOI: 10.1002/anie.202413297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Current industrial propane dehydrogenation (PDH) processes predominantly use either toxic Cr-based or expensive Pt-based catalysts, necessitating urgent exploration for alternatives. Herein, we present Zn2SiO4, an easily prepared, cost-effective material, as a highly efficient and stable catalyst for PDH. Uniquely, Zn2SiO4 nanocrystals do not require dispersion on support materials, commonly needed for catalytic active oxide clusters, but function as a self-supporting catalyst instead. During the reaction's induction period, surface Zn species on the Zn2SiO4 crystal reduce to coordinately unsaturated ZnOx single sites, serving as highly active catalytic centers. The Zn2SiO4 catalyst demonstrates a stable performance over 200 hours of PDH operation at 550 °C. We further find that introducing a minuscule amount of CO2 into the propane feed significantly extends the catalyst lifespan to over 2000 hours. This enhancement arises from the special role of CO2 in facilitating the removal of strongly adsorbed H*, preventing the complete reduction of ZnOx. After prolonged reaction, the activity of Zn2SiO4 can be fully restored by etching the surface layer to expose fresh Zn species, available throughout the crystals. The combination of CO2introduction and catalytic site regeneration strategies is expected to enable a year-long PDH operation using a single batch of Zn2SiO4 catalyst.
Collapse
Affiliation(s)
- Zhaohui Liu
- Multi-Scale Porous Materials Center, School of Chemistry and Chemical Engineering & Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Min Mao
- Multi-Scale Porous Materials Center, School of Chemistry and Chemical Engineering & Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Tie Shu
- Multi-Scale Porous Materials Center, School of Chemistry and Chemical Engineering & Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Qingpeng Cheng
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Dong Liu
- Multi-Scale Porous Materials Center, School of Chemistry and Chemical Engineering & Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Jianjian Wang
- Multi-Scale Porous Materials Center, School of Chemistry and Chemical Engineering & Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yun Zhao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Lingmei Liu
- Multi-Scale Porous Materials Center, School of Chemistry and Chemical Engineering & Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Pei R, Chang W, He L, Wang T, Zhao Y, Liang Y, Wang X. Main-group compounds selectively activate natural gas alkanes under room temperature and atmospheric pressure. Nat Commun 2024; 15:7943. [PMID: 39261473 PMCID: PMC11391052 DOI: 10.1038/s41467-024-52185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Most C-H bond activations of natural gas alkanes rely on transition metal complexes. Activations by using main-group systems have been reported but required heating or photo-irradiation under high atmospheric pressure with rather low regioselectivity. Here we report that Lewis acid-carbene adducts facilely undergo oxidative additions to C-H bonds of ethane, propane and n-butane with high selectivity under room temperature and atmospheric pressure. The Lewis acids can be moved by the addition of a base and the carbene-derived products can be easily converted into aldehydes. This work offers a route for main-group element compounds to selectively functionalise C-H bonds of natural gas alkanes and other small molecules.
Collapse
Affiliation(s)
- Runbo Pei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- State Key laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenju Chang
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Liancheng He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- State Key laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- State Key laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Chen W, Liu Y, Liu Z, Zhu L, Wang D. In Situ Formation of B═O Bond in Oxidative Dehydrogenation of Propane and as a Hunter for Alkoxyl Radicals: A Computational Study. J Phys Chem Lett 2024; 15:8984-8989. [PMID: 39186247 DOI: 10.1021/acs.jpclett.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
B═O multiple bonds are fundamentally important owing to the unique property of B and its potential as a tool in catalysis. Herein by means of DFT calculations, we investigated the in situ generation of transient -B═O species in the nonmetallic inorganic boron oxides and demonstrated its superior ability to capture alkoxyl radicals under the conditions of oxidative dehydrogenation of propane (ODHP). Boron-containing materials are emerging as promising catalysts for ODHP, while an extensive understanding of the underlying mechanisms remains challenging. Through systematic mechanistic and characterization calculations, we show the feasibility for the presence of -B═O species under ODHP conditions and propose that its π nature dictates its inertness in the C-H activation of propane (ΔG⧧ = 57 kcal/mol) but offers its strong ability in capturing alkoxyl radicals (barrierless with ΔG = -30 kcal/mol), which can then transform to the ·C3H6OH radical. This explains the observation of enol in the experimental study. This specific behavior of the -B═O species makes it one of the key players in the complex reaction network of ODHP and also implicates the rational design of scavengers for reactive oxygen species (ROS) and other active oxygenated species.
Collapse
Affiliation(s)
- Weixi Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuchen Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lihan Zhu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Zhang X, Dai X, Xie Z, Qi W. Borocarbonitride Catalyzed Ethylbenzene Oxidative Dehydrogenation: Activity Enhancement via Encapsulation of Mn Clusters inside the Tube. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401532. [PMID: 38699945 DOI: 10.1002/smll.202401532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Borocarbonitride (BCN) catalysts, boasting multiple redox sites, have shown considerable potential in alkane oxidative dehydrogenation (ODH) to olefin molecules. However, their catalytic efficiency still lags behind that of leading commercial catalysts, primarily due to the limited reactivity of oxygen functional groups. In this study, a groundbreaking hybrid catalyst is developed, featuring BCN nanotubes (BCNNTs) encapsulated with manganese (Mn) clusters, crafted through a meticulous supramolecular self-assembly and postcalcination strategy. This novel catalyst demonstrates a remarkable enhancement in activity, achieving 30% conversion and ≈100% selectivity toward styrene in ethylbenzene ODH reactions. Notably, its performance surpasses both pure BCNNTs and those hosting Mn nanoparticles. Structural and kinetic analyses unveil a robust interaction between BCNNTs and the Mn component, substantially boosting the catalytic activity of BCNNTs. Furthermore, density functional theory (DFT) calculations elucidate that BCNNTs encapsulated with Mn clusters not only stabilize key intermediates (─B─O─O─B─) but also enhance the nucleophilicity of active sites through electron transfer from the Mn cluster to the BCNNTs. This electron transfer mechanism effectively lowers the energy barrier for ─C─H cleavage, resulting in a 13% improvement in catalytic activity compared to pure BCNNTs.
Collapse
Affiliation(s)
- Xuefei Zhang
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fuzhou University, Fuzhou, Fujian, 350016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350016, China
| | - Xueya Dai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zailai Xie
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
7
|
Duan Z, Lv R, Huang Z, Li J, Xiao X, Zhang Z, Wan S, Wang S, Xiong H, Yi X, Wang Y, Lin J. Enhancing Efficiency and High-Value Chemicals Generation through Coupling Photocatalytic CO 2 Reduction with Propane Oxidation. CHEMSUSCHEM 2024; 17:e202301881. [PMID: 38467567 DOI: 10.1002/cssc.202301881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Conversion of CO2 into high-value chemicals using solar energy is one of promising approaches to achieve carbon neutrality. However, the oxidation of water in the photocatalytic CO2 reduction is kinetically unfavorable due to multi-electron and proton transfer processes, along with the difficulty in generating O-O bonds. To tackle these challenges, this study investigated the coupling reaction of photocatalytic CO2 reduction and selective propane oxidation using the Pd/P25 (1 wt%) catalyst. Our findings reveal a significant improvement in CO2 reduction, nearly fivefold higher, achieved by substituting water oxidation with selective propane oxidation. This substitution not only accelerates the process of CO2 reduction but also yields valuable propylene. The relative ease of propane oxidation, compared to water, appears to increase the density of photogenerated electrons, ultimately enhancing the efficiency of CO2 reduction. We further found that hydroxyl radicals and reduced intermediate (carboxylate species) played important roles in the photocatalytic reaction. These findings not only propose a potential approach for the efficient utilization of CO2 through the coupling of selective propane oxidation into propylene, but also provide insights into the mechanistic understanding of the coupling reaction.
Collapse
Affiliation(s)
- Zitao Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ruiqi Lv
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zongyi Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiwei Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaohong Xiao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhaoxia Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shaolong Wan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shuai Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haifeng Xiong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaodong Yi
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, United States
| | - Jingdong Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
8
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
9
|
Deng Z, Yang L, Xiong H, Liu J, Liu X, Zhou Z, Chen S, Wang Y, Wang H, Chen J, Deng S, Chen B, Wang J. Green and Scalable Preparation of an Isomeric CALF-20 Adsorbent with Tailored Pore Size for Molecular Sieving of Propylene from Propane. SMALL METHODS 2024:e2400838. [PMID: 39075810 DOI: 10.1002/smtd.202400838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Molecular sieving of propylene (C3H6) from propane (C3H8) is highly demanded for C3H6 purification. However, delicate control over aperture size to achieve both high C3H6 uptake and C3H6/C3H8 selectivity with low cost remains a significant challenge. Herein, a green and scalable approach is reported for preparing an isomeric CALF-20 adsorbent, termed as NCU-20, using water as the only solvent with a cost of $10 per kilogram. NCU-20 features a contracted pore size (4.2 × 4.7 Å2) compared to CALF-20 (5.2 × 5.7 Å2), which enables molecular sieving of C3H6 (4.16 × 4.65 Å2) from C3H8 (4.20 × 4.80 Å2). Notably, NCU-20 exhibits record-high C3H6 adsorption capacity (94.41 cm3 cm-3) at 298 K and 1.0 bar, outperforming all C3H6/C3H8 molecular sieving adsorbents. The sieving performances of C3H6/C3H8 are well maintained at elevated temperatures. Therefore, a delicate balance between C3H6 adsorption capacity (91.62 cm3 cm-3) and C3H6/C3H8 selectivity (uptake ratio of 22.2) is obtained on NCU-20 at 298 K and 0.5 bar. Furthermore, dynamic breakthrough experiments demonstrate a high productivity of 65.39 cm3 cm-3 for high-purity C3H6 (>99.5%) from an equimolar C3H6/C3H8 gas-mixture.
Collapse
Affiliation(s)
- Zhenning Deng
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Longsheng Yang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hanting Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Junhui Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xing Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenyu Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shixia Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yanan Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jingwen Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ, 85287, USA
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
10
|
Li Y, Xu CQ, Chen C, Zhang Y, Liu S, Zhuang Z, Zhang Y, Zhang Q, Li Z, Chen Z, Zheng L, Cheong WC, Wu K, Jiang G, Xiao H, Lian C, Wang D, Peng Q, Li J, Li Y. Carbon-Boosted and Nitrogen-Stabilized Isolated Single-Atom Sites for Direct Dehydrogenation of Lower Alkanes. J Am Chem Soc 2024. [PMID: 39031766 DOI: 10.1021/jacs.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Lower olefins are widely used in the chemical industry as basic carbon-based feedstocks. Here, we report the catalytic system featuring isolated single-atom sites of iridium (Ir1) that can function within the entire temperature range of 300-600 °C and transform alkanes with conversions close to thermodynamics-dictated levels. The high turnover frequency values of the Ir1 system are comparable to those of homogeneous catalytic reactions. Experimental data and theoretical calculations both indicate that Ir1 is the primary catalytic site, while the coordinating C and N atoms help to enhance the activity and stability, respectively; all three kinds of elements cooperatively contribute to the high performance of this novel active site. We have further immobilized this catalyst on particulate Al2O3, and we found that the resulting composite system under mimicked industrial conditions could still give high catalytic performances; in addition, we have also developed and established a new scheme of periodical in situ regeneration specifically for this composite particulate catalyst.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shoujie Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yaoyuan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Qiyang Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Weng-Chon Cheong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Konglin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Lian
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Chen S, Xu Y, Chang X, Pan Y, Sun G, Wang X, Fu D, Pei C, Zhao ZJ, Su D, Gong J. Defective TiO x overlayers catalyze propane dehydrogenation promoted by base metals. Science 2024; 385:295-300. [PMID: 39024431 DOI: 10.1126/science.adp7379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
The industrial catalysts utilized for propane dehydrogenation (PDH) to propylene, an important alternative to petroleum-based cracking processes, either use expensive metals or metal oxides that are environmentally unbenign. We report that a typically less-active oxide, titanium oxide (TiO2), can be combined with earth-abundant metallic nickel (Ni) to form an unconventional Ni@TiOx catalyst for efficient PDH. The catalyst demonstrates a 94% propylene selectivity at 40% propane conversion and superior stability under industrially relevant conditions. Complete encapsulation of Ni nanoparticles was allowed at elevated temperatures (>550°C). A mechanistic study suggested that the defective TiOx overlayer consisting of tetracoordinated Ti sites with oxygen vacancies is catalytically active. Subsurface metallic Ni acts as an electronic promoter to accelerate carbon-hydrogen bond activation and hydrogen (H2) desorption on the TiOx overlayer.
Collapse
Affiliation(s)
- Sai Chen
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Yiyi Xu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Xin Chang
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guodong Sun
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xianhui Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Donglong Fu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Chunlei Pei
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China
| |
Collapse
|
12
|
Sun S, Zhao M, Liu H, Li D, Lei Y. Photothermal oxidative dehydrogenation of propane to propylene over Cu/BN catalysts. Front Chem 2024; 12:1439185. [PMID: 39091277 PMCID: PMC11291193 DOI: 10.3389/fchem.2024.1439185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Oxidative dehydrogenation of propane (ODHP) is a reaction with significant practical significance. As for the industrial application of ODHP, it is challenging to achieve high activity and high propylene selectivity simultaneously. In this study, to overcome this obstacle, we designed a series of Cu/BN catalysts with unique morphologies for establishing a photothermal ODHP system with high efficiency and selectivity. Characterization and evaluation results revealed that Cu/BN-NS and Cu/BN-NF with enlarged specific surface areas exhibited higher catalytic activities. The localized surface plasmon resonance (LSPR) effect of Cu nanoparticles further enhanced the photothermal catalytic performances of Cu/BN catalysts under visible light irradiation. To the best of our knowledge, it is the first time to establish a BN-based photothermal ODHP catalytic system. This study is expected to pave pathways to realize high activity and propylene selectivity for the practical application of ODHP.
Collapse
Affiliation(s)
- Shaoyuan Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| | - Manqi Zhao
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| | - Dezheng Li
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| | - Yiming Lei
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
- Department of Chemistry (Inorganic Chemistry), Faculty of Sciences, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
13
|
Liu H, Sun S, Li D, Lei Y. Catalyst development for O 2-assisted oxidative dehydrogenation of propane to propylene. Chem Commun (Camb) 2024; 60:7535-7554. [PMID: 38949820 DOI: 10.1039/d4cc01948b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
O2-Assisted oxidative dehydrogenation of propane (O2-ODHP) could convert abundant shale gas into propylene as an important chemical raw material, meaning O2-ODHP has practical significance. Thermodynamically, high temperature is beneficial for O2-ODHP; however, high reaction temperature always causes the overoxidation of propylene, leading to a decline in its selectivity. In this regard, it is crucial to achieve low temperatures while maintaining high efficiency and selectivity during O2-ODHP. The use of catalytic technology provides more opportunities for achieving high-efficiency O2-ODHP under mild conditions. Up to now, many kinds of catalytic systems have been elaborately designed, including transition metal oxide catalysts (such as vanadium-based catalysts, molybdenum-based catalysts, etc.), transition metal-based catalysts (such as Pt nanoclusters), rare earth metal oxide catalysts (especially CeO2 related catalysts), and non-metallic catalysts (BN, other B-containing catalysts, and C-based catalysts). In this review, we have summarized the development progress of mainstream catalysts in O2-ODHP, aiming at providing a clear picture to the catalysis community and advancing this research field further.
Collapse
Affiliation(s)
- Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Shaoyuan Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Dezheng Li
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Yiming Lei
- Departament de Química (Unitat de Química Inorgànica), Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Valles, 08193, Barcelona, Spain.
| |
Collapse
|
14
|
Li P, Yao Y, Chai S, Li Z, Xue F, Wang X. Modulating Electron Density of Boron-Oxygen Groups in Borate via Metal Electronegativity for Propane Oxidative Dehydrogenation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2868. [PMID: 38930237 PMCID: PMC11205058 DOI: 10.3390/ma17122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The robust electronegativity of the [BO3]3- structure enables the extraction of electrons from adjacent metals, offering a strategy for modulating oxygen activation in propane oxidative dehydrogenation. Metals (Ni 1.91, Al 1.5, and Ca 1.0) with varying electronegativities were employed to engineer borate catalysts. Metals in borate lacked intrinsic catalytic activity for propane conversion; instead, they modulated [BO3]3- group reactivity through adjustments in electron density. Moderate metal electronegativity favored propane oxidative dehydrogenation to propylene, whereas excessively low electronegativity led to propane overoxidation to carbon dioxide. Aluminum, with moderate electronegativity, demonstrated optimal performance. Catalyst AlBOx-1000 achieved a propane conversion of 47.5%, with the highest propylene yield of 30.89% at 550 °C, and a total olefin yield of 51.51% with a 58.92% propane conversion at 575 °C. Furthermore, the stable borate structure prevents boron element loss in harsh conditions and holds promise for industrial-scale catalysis.
Collapse
Affiliation(s)
- Panpan Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (P.L.); (Y.Y.); (S.C.); (Z.L.); (F.X.)
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Yongbin Yao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (P.L.); (Y.Y.); (S.C.); (Z.L.); (F.X.)
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Shanshan Chai
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (P.L.); (Y.Y.); (S.C.); (Z.L.); (F.X.)
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Zhijian Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (P.L.); (Y.Y.); (S.C.); (Z.L.); (F.X.)
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Fan Xue
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (P.L.); (Y.Y.); (S.C.); (Z.L.); (F.X.)
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (P.L.); (Y.Y.); (S.C.); (Z.L.); (F.X.)
- Tangshan Research Institute of Beijing Jiaotong University, Tangshan 063000, China
| |
Collapse
|
15
|
Wang J, Xu T, Wang W, Zhang Z. Miracle in "White":Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400489. [PMID: 38794993 DOI: 10.1002/smll.202400489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Indexed: 05/27/2024]
Abstract
The exploration of 2D materials has captured significant attention due to their unique performances, notably focusing on graphene and hexagonal boron nitride (h-BN). Characterized by closely resembling atomic structures arranged in a honeycomb lattice, both graphene and h-BN share comparable traits, including exceptional thermal conductivity, impressive carrier mobility, and robust pi-pi interactions with organic molecules. Notably, h-BN has been extensively examined for its exceptional electrical insulating properties, inert passivation capabilities, and provision of an ideal ultraflat surface devoid of dangling bonds. These distinct attributes, contrasting with those of h-BN, such as its conductive versus insulating behavior, active versus inert nature, and absence of dangling surface bonds versus absorbent tendencies, render it a compelling material with broad application potential. Moreover, the unity of such contradictions endows h-BN with intriguing possibilities for unique applications in specific contexts. This review aims to underscore these key attributes and elucidate the intriguing contradictions inherent in current investigations of h-BN, fostering significant insights into the understanding of material properties.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 10084, P. R. China
| | - Tongzhou Xu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 10084, P. R. China
| | - Weipeng Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 10084, P. R. China
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 10084, P. R. China
| |
Collapse
|
16
|
Liang J, Song Q, Zhang H, Liu Z, Li Y, Jiang Z, Lou XWD, Lee CS. Oxygen-Activated Boron Nitride for Selective Photocatalytic Coupling of Methanol to Ethylene Glycol. Angew Chem Int Ed Engl 2024; 63:e202318236. [PMID: 38323753 DOI: 10.1002/anie.202318236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
The controllable photocatalytic C-C coupling of methanol to produce ethylene glycol (EG) is a highly desirable but challenging objective for replacing the current energy-intensive thermocatalytic process. Here, we develop a metal-free porous boron nitride catalyst that demonstrates exceptional selectivity in the photocatalytic production of EG from methanol under mild conditions. Comprehensive experiments and calculations are conducted to thoroughly investigate the reaction mechanism, revealing that the OB3 unit in the porous BN plays a critical role in the preferential activation of C-H bond in methanol to form ⋅CH2OH via a concerted proton-electron transfer mechanism. More prominent energy barriers are observed for the further dehydrogenation of the ⋅CH2OH intermediate on the OB3 unit, inhibiting the formation of some other by-products during the catalytic process. Additionally, a small downhill energy barrier for the coupling of ⋅CH2OH in the OB3 unit promotes the selective generation of EG. This study provides valuable insights into the underlying mechanisms and can serve as a guide for the design and optimization of photocatalysts for efficient and selective EG production under mild conditions.
Collapse
Affiliation(s)
- Jianli Liang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Kowloon, Hong Kong, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, 999077, Kowloon, Hong Kong, P. R. China
| | - Qianqian Song
- College of Physics and Materials Science, Tianjin Normal University, 300387, Tianjin, P. R. China
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Zheyang Liu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, P. R. China
| | - Yang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Kowloon, Hong Kong, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, 999077, Kowloon, Hong Kong, P. R. China
| | - Zhifeng Jiang
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, P. R. China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Kowloon, Hong Kong, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Kowloon, Hong Kong, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, 999077, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
17
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
18
|
Rawal P, Gupta P. Mapping the Catalytic-Space for the Reactivity of Metal-free Boron Nitride with O 2 for H 2O-Mediated Conversion of Methane to HCHO and CO. Chemistry 2024; 30:e202303371. [PMID: 38221895 DOI: 10.1002/chem.202303371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Transition-metal based catalysts have been widely employed to catalyze partial oxidation of light alkanes. Recently, metal-free hexagonal-boron nitride (h-BN) has emerged as a promising catalyst for the oxidation of CH4 to HCHO and CO; however, the intricate catalytic surface of h-BN at molecular and electronic levels remains inadequately understood. Key questions include how electron-deficient boron atoms in h-BN reduce O2, and whether the partial oxidation of methane over h-BN exhibits similarities to traditional transition-metal catalysts. In our study, we computationally-mapped in-detail the surface catalytic-space of h-BN for methane oxidation. We considered different structures of h-BN and show that these structures contain numerous sites for O2 binding and therefore various routes for methane oxidation are possible. The activation barriers for methane oxidation via various paths varies from ~83 to ~123 kcal mol-1. To comprehend the differences in activation barriers, we employed geometrical, orbital and distortion/interaction analysis (DIA). Orbital analysis reveals that methane activation over h-BN in presence of dioxygen follows a standard hydrogen atom transfer mechanism. It is also shown that water plays an intriguing role in reducing the barrier for HCHO and CO formation by acting as a bridge.
Collapse
Affiliation(s)
- Parveen Rawal
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
19
|
Samudrala K, Akram MO, Dutton JL, Martin CD, Conley MP. Formation of Strong Boron Lewis Acid Sites on Silica. Inorg Chem 2024; 63:4939-4946. [PMID: 38451151 PMCID: PMC10951953 DOI: 10.1021/acs.inorgchem.3c04121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Bis(1-methyl-ortho-carboranyl)borane (HBMeoCb2) is a very strong Lewis acid that reacts with the isolated silanols present on silica partially dehydroxylated at 700 °C (SiO2-700) to form the well-defined Lewis site MeoCb2B(OSi≡) (1) and H2. 11B{1H} magic-angle spinning (MAS) nuclear magnetic resonance (NMR) data of 1 are consistent with that of a three-coordinate boron site. Contacting 1 with O═PEt3 (triethylphosphine oxide TEPO) and measuring 31P{1H} MAS NMR spectra show that 1 preserves the strong Lewis acidity of HBMeoCb2. Hydride ion affinity and fluoride ion affinity calculations using small molecules analogs of 1 also support the strong Lewis acidity of the boron sites in this material. Reactions of 1 with Cp2Hf(13CH3)2 show that the Lewis sites are capable of abstracting methide groups from Hf to form [Cp2Hf-13CH3][H313C-B(MeoCb2)OSi≡], but with a low overall efficiency.
Collapse
Affiliation(s)
| | - Manjur O. Akram
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Jason L. Dutton
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Caleb D. Martin
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Matthew P. Conley
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Wang Y, Jiang ZJ, Wang DR, Lu W, Li D. Machine Learning-Assisted Discovery of Propane-Selective Metal-Organic Frameworks. J Am Chem Soc 2024; 146:6955-6961. [PMID: 38422479 DOI: 10.1021/jacs.3c14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Machine learning is gaining momentum in the prediction and discovery of materials for specific applications. Given the abundance of metal-organic frameworks (MOFs), computational screening of the existing MOFs for propane/propylene (C3H8/C3H6) separation could be equally important for developing new MOFs. Herein, we report a machine learning-assisted strategy for screening C3H8-selective MOFs from the CoRE MOF database. Among the four algorithms applied in machine learning, the random forest (RF) algorithm displays the highest degree of accuracy. We experimentally verified the identified top-performing MOF (JNU-90) with its benchmark selectivity and separation performance of directly producing C3H6. Considering its excellent hydrolytic stability, JNU-90 shows great promise in the energy-efficient separation of C3H8/C3H6. This work may accelerate the development of MOFs for challenging separations.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zhi-Jie Jiang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dong-Rong Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Liu Z, Lu AH, Wang D. Deep Potential Molecular Dynamics Study of Propane Oxidative Dehydrogenation. J Phys Chem A 2024; 128:1656-1664. [PMID: 38394031 DOI: 10.1021/acs.jpca.3c07859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Oxidative dehydrogenation (ODH) of light alkanes is a key process in the oxidative conversion of alkanes to alkenes, oxygenated hydrocarbons, and COx (x = 1,2). Understanding the underlying mechanisms extensively is crucial to keep the ODH under control for target products, e.g., alkenes rather than COx, with minimal energy consumption, e.g., during the alkene production or maximal energy release, e.g., during combustion. In this work, deep potential (DP), a neural network atomic potential developed in recent years, was employed to conduct large-scale accurate reactive dynamic simulations. The model was trained on a sufficient data set obtained at the density functional theory level. The intricate reaction network was elucidated and organized in the form of a hierarchical network to demonstrate the key features of the ODH mechanisms, including the activation of propane and oxygen, the influence of propyl reaction pathways on the propene selectivity, and the role of rapid H2O2 decomposition for sustainable and efficient ODH reactions. The results indicate the more complex reaction mechanism of propane ODH than that of ethane ODH and are expected to provide insights in the ODH catalyst optimization. In addition, this work represents the first application of deep potential in the ODH mechanistic study and demonstrates the ample advantages of DP in the study of mechanism and dynamics of complex systems.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Cao Y, Huang Z, Han C, Zhou Y. Product Peroxidation Inhibition in Methane Photooxidation into Methanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306891. [PMID: 38234232 DOI: 10.1002/advs.202306891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Methane photooxidation into methanol offers a practical approach for the generation of high-value chemicals and the efficient storage of solar energy. However, the propensity for C─H bonds in the desired products to cleave more easily than those in methane molecules results in a continuous dehydrogenation process, inevitably leading to methanol peroxidation. Consequently, inhibiting methanol peroxidation is perceived as one of the most formidable challenges in the field of direct conversion of methane to methanol. This review offers a thorough overview of the typical mechanisms involved radical mechanism and active site mechanism and the regulatory methods employed to inhibit product peroxidation in methane photooxidation. Additionally, several perspectives on the future research direction of this crucial field are proposed.
Collapse
Affiliation(s)
- Yuehan Cao
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zeai Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chunqiu Han
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Zhou
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
23
|
Li C, Zhang H, Liu W, Sheng L, Cheng MJ, Xu B, Luo G, Lu Q. Efficient conversion of propane in a microchannel reactor at ambient conditions. Nat Commun 2024; 15:884. [PMID: 38287034 PMCID: PMC10825187 DOI: 10.1038/s41467-024-45179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
The oxidative dehydrogenation of propane, primarily sourced from shale gas, holds promise in meeting the surging global demand for propylene. However, this process necessitates high operating temperatures, which amplifies safety concerns in its application due to the use of mixed propane and oxygen. Moreover, these elevated temperatures may heighten the risk of overoxidation, leading to carbon dioxide formation. Here we introduce a microchannel reaction system designed for the oxidative dehydrogenation of propane within an aqueous environment, enabling highly selective and active propylene production at room temperature and ambient pressure with mitigated safety risks. A propylene selectivity of over 92% and production rate of 19.57 mmol mCu-2 h-1 are simultaneously achieved. This exceptional performance stems from the in situ creation of a highly active, oxygen-containing Cu catalytic surface for propane activation, and the enhanced propane transfer via an enlarged gas-liquid interfacial area and a reduced diffusion path by establishing a gas-liquid Taylor flow using a custom-made T-junction microdevice. This microchannel reaction system offers an appealing approach to accelerate gas-liquid-solid reactions limited by the solubility of gaseous reactant.
Collapse
Affiliation(s)
- Chunsong Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Haochen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Wenxuan Liu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Lin Sheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Guangsheng Luo
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Zhang D, Wang S, Zhang C, He L, Sun W. Chemically exfoliated boron nanosheets for efficient oxidative dehydrogenation of propane. NANOSCALE 2024; 16:1312-1319. [PMID: 38131277 DOI: 10.1039/d3nr05212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Oxidative dehydrogenation of propane (ODHP) is a promising technique for producing propene due to its low operative temperature and coke-resistant feature. Recently, boron-based catalysts have been widely investigated for ODHP owing to their brilliant performance. Herein, we report that boron in the form of nanosheets can be prepared feasibly by exfoliating layered MgB2 with hydrochloric acid, and can efficiently and stably catalyze ODHP. At 530 °C, the catalyst exhibits propene and ethene selectivities as high as 63.5% and 18.4%, respectively, at a 40% propane conversion. The olefin productivity reaches 2.48 golefin gcat-1 h-1, superior to the commercial h-BN and other reported boron-based catalysts. Even after testing for 100 h at 530 °C, the catalyst still maintains excellent stability. This work expands the effective boron-based catalyst family for ODHP and demonstrates the great potential of the new type of 2D material-boron nanosheet for energy and catalytic applications.
Collapse
Affiliation(s)
- Dake Zhang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Shenghua Wang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | - Chengcheng Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Le He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wei Sun
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| |
Collapse
|
25
|
Gadore V, Mishra SR, Singh AK, Ahmaruzzaman M. Advances in boron nitride-based nanomaterials for environmental remediation and water splitting: a review. RSC Adv 2024; 14:3447-3472. [PMID: 38259991 PMCID: PMC10801356 DOI: 10.1039/d3ra08323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Boron nitride has gained wide-spread attention globally owing to its outstanding characteristics, such as a large surface area, high thermal resistivity, great mechanical strength, low density, and corrosion resistance. This review compiles state-of-the-art synthesis techniques, including mechanical exfoliation, chemical exfoliation, chemical vapour deposition (CVD), and green synthesis for the fabrication of hexagonal boron nitride and its composites, their structural and chemical properties, and their applications in hydrogen production and environmental remediation. Additionally, the adsorptive and photocatalytic properties of boron nitride-based nanocomposites for the removal of heavy metals, dyes, and pharmaceuticals from contaminated waters are discussed. Lastly, the scope of future research, including the facile synthesis and large-scale applicability of boron nitride-based nanomaterials for wastewater treatment, is presented. This review is expected to deliver preliminary knowledge of the present state and properties of boron nitride-based nanomaterials, encouraging the future study and development of these materials for their applications in various fields.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Ashish Kumar Singh
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
26
|
Li F, Lai Y, Zeng Y, Chen X, Wang T, Yang X, Guo Q. Photocatalytic ethane conversion on rutile TiO 2(110): identifying the role of the ethyl radical. Chem Sci 2023; 15:307-316. [PMID: 38131087 PMCID: PMC10732131 DOI: 10.1039/d3sc05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Oxidative dehydrogenation of ethane (C2H6, ODHE) is a promising approach to producing ethene (C2H4) in the chemical industry. However, the ODHE needs to be operated at a high temperature, and realizing the ODHE under mild conditions is still a big challenge. Herein, using photocatalytic ODHE to obtain C2H4 has been achieved successfully on a model rutile(R)-TiO2(110) surface with high selectivity. Initially, the C2H6 reacts with hole trapped OTi- centers to produce ethyl radicals , which can be precisely detected by a sensitive TOF method, and then the majority of the radicals spontaneously dehydrogenate into C2H4 without another photo-generated hole. In addition, parts of the radicals rebound with diversified surface sites to produce C2 products via migration along the surface. The mechanistic model built in this work not only advances our knowledge of the C-H bond activation and low temperature C2H6 conversion, but also provides new opportunities for realizing the ODHE with high C2H4 efficiency under mild conditions.
Collapse
Affiliation(s)
- Fangliang Li
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Yuemiao Lai
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Yi Zeng
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Tao Wang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Xueming Yang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 PR China
- Hefei National Laboratory Hefei 230088 PR China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| |
Collapse
|
27
|
Cendejas MC, Paredes Mellone OA, Kurumbail U, Zhang Z, Jansen JH, Ibrahim F, Dong S, Vinson J, Alexandrova AN, Sokaras D, Bare SR, Hermans I. Tracking Active Phase Behavior on Boron Nitride during the Oxidative Dehydrogenation of Propane Using Operando X-ray Raman Spectroscopy. J Am Chem Soc 2023; 145:25686-25694. [PMID: 37931025 DOI: 10.1021/jacs.3c08679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Hexagonal boron nitride (hBN) is a highly selective catalyst for the oxidative dehydrogenation of propane (ODHP) to propylene. Using a variety of ex situ characterization techniques, the activity of the catalyst has been attributed to the formation of an amorphous boron oxyhydroxide surface layer. The ODHP reaction mechanism proceeds via a combination of surface mediated and gas phase propagated radical reactions with the relative importance of both depending on the surface-to-void-volume ratio. Here we demonstrate the unique capability of operando X-ray Raman spectroscopy (XRS) to investigate the oxyfunctionalization of the catalyst under reaction conditions (1 mm outer diameter reactor, 500 to 550 °C, P = 30 kPa C3H8, 15 kPa O2, 56 kPa He). We probe the effect of a water cofeed on the surface of the activated catalyst and find that water removes boron oxyhydroxide from the surface, resulting in a lower reaction rate when the surface reaction dominates and an enhanced reaction rate when the gas phase contribution dominates. Computational description of the surface transformations at an atomic-level combined with high precision XRS spectra simulations with the OCEAN code rationalize the experimental observations. This work establishes XRS as a powerful technique for the investigation of light element-containing catalysts under working conditions.
Collapse
Affiliation(s)
- Melissa C Cendejas
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Oscar A Paredes Mellone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Unni Kurumbail
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jacob H Jansen
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Faysal Ibrahim
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Son Dong
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - John Vinson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ive Hermans
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Wisconsin Energy Institute, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Zhang D, Wang S, Lu X, Zhang C, Feng K, He L, Zhang H, Sun W, Yang D. Self-evolved BO x anchored on Mg 2B 2O 5 crystallites for high-performance oxidative dehydrogenation of propane. iScience 2023; 26:108135. [PMID: 37876808 PMCID: PMC10590969 DOI: 10.1016/j.isci.2023.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Oxidative dehydrogenation of propane (ODHP) is a promising process for producing propene. Recently, some boron-based catalysts have exhibited excellent olefin selectivity in ODHP. However, their complex synthetic routes and poor stability under high-temperature reaction conditions have hindered their practical application. Herein, we report a self-evolution method rather than conventional assembly approaches to acquire structures with excellent stability under a high propane conversion, from a single precursor-MgB2. The catalyst feasibly prepared and optimized exhibited a striking performance: 60% propane conversion with a 43.2% olefin yield at 535°C. The BOx corona pinned by the strong interaction with the borate enabled zero loss of the high conversion (around 40%) and olefins selectivity (above 80%) for over 100 h at 520°C. This all-in-one strategy of deriving all the necessary components from just one raw chemical provides a new way to synthesize effective and economic catalysts for potential industrial implementation.
Collapse
Affiliation(s)
- Dake Zhang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Shenghua Wang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Chengcheng Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kai Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Le He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hui Zhang
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People’s Republic of China
| | - Wei Sun
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| |
Collapse
|
29
|
Lu Y, Li B, Xu N, Zhou Z, Xiao Y, Jiang Y, Li T, Hu S, Gong Y, Cao Y. One-atom-thick hexagonal boron nitride co-catalyst for enhanced oxygen evolution reactions. Nat Commun 2023; 14:6965. [PMID: 37907502 PMCID: PMC10618520 DOI: 10.1038/s41467-023-42696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Developing efficient (co-)catalysts with optimized interfacial mass and charge transport properties is essential for enhanced oxygen evolution reaction (OER) via electrochemical water splitting. Here we report one-atom-thick hexagonal boron nitride (hBN) as an attractive co-catalyst with enhanced OER efficiency. Various electrocatalytic electrodes are encapsulated with centimeter-sized hBN films which are dense and impermeable so that only the hBN surfaces are directly exposed to reactive species. For example, hBN covered Ni-Fe (oxy)hydroxide anodes show an ultralow Tafel slope of ~30 mV dec-1 with improved reaction current by about 10 times, reaching ~2000 mA cm-2 (at an overpotential of ~490 mV) for over 150 h. The mass activity of hBN co-catalyst is found exceeding that of commercialized catalysts by up to five orders of magnitude. Using isotope experiments and simulations, we attribute the results to the adsorption of oxygen-containing intermediates at the insulating co-catalyst, where localized electrons facilitate the deprotonation processes at electrodes. Little impedance to electron transfer is observed from hBN film encapsulation due to its ultimate thickness. Therefore, our work also offers insights into mechanisms of interfacial reactions at the very first atomic layer of electrodes.
Collapse
Affiliation(s)
- Yizhen Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bixuan Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Na Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhihua Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Teng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
- Tianmushan Laboratory, Hangzhou, 310023, China.
| | - Yang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
30
|
Wang R, Zhang F, Yang K, Xiong Y, Tang J, Chen H, Duan M, Li Z, Zhang H, Xiong B. Review of two-dimensional nanomaterials in tribology: Recent developments, challenges and prospects. Adv Colloid Interface Sci 2023; 321:103004. [PMID: 37837702 DOI: 10.1016/j.cis.2023.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
From our ordinary lives to various mechanical systems, friction and wear are often unavoidable phenomena that are heavily responsible for excessive expenditures of nonrenewable energy, the damages and failures of system movement components, as well as immense economic losses. Thus, achieving low friction and high anti-wear performance is critical for minimization of these adverse factors. Two-dimensional (2D) nanomaterials, including transition metal dichalcogenides, single elements, transition metal carbides, nitrides and carbonitrides, hexagonal boron nitride, and metal-organic frameworks have attracted remarkable interests in friction and wear reduction of various applications, owing to their atomic-thin planar morphologies and tribological potential. In this paper, we systematically review the current tribological progress on 2D nanomaterials when used as lubricant additives, reinforcement phases in the coatings and bulk materials, or a major component of superlubricity system. Additionally, the conclusions and prospects on 2D nanomaterials with the existing drawbacks, challenges and future direction in such tribological fields are briefly provided. Finally, we sincerely hope such a review will offer valuable lights for 2D nanomaterial-related researches dedicated on tribology in the future.
Collapse
Affiliation(s)
- Ruili Wang
- Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou 450000, China
| | - Feizhi Zhang
- Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Central South University of Forestry & Technology, Changsha 410004, China; Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China.
| | - Kang Yang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China.
| | - Yahui Xiong
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Jun Tang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Hao Chen
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Mengchen Duan
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Zhenjie Li
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Honglei Zhang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Bangying Xiong
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| |
Collapse
|
31
|
Xu G, Zhang X, Dong Z, Liang W, Xiao T, Chen H, Ma Y, Pan Y, Fu Y. Ferric Single-Site Catalyst Confined in a Zeolite Framework for Propane Dehydrogenation. Angew Chem Int Ed Engl 2023; 62:e202305915. [PMID: 37696765 DOI: 10.1002/anie.202305915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Non-oxidative dehydrogenation of propane is a highly efficient approach for industrial preparation of propene that is commonly catalyzed by noble Pt or toxic Cr catalysts and suffers from coking. In this work, ferric catalyst confined in a zeolite framework was synthesized by a hydrothermal procedure. The isolated Fe in the framework formed distorted tetrahedra, which were beneficial for the selective dehydrogenation of propane and reached over 95 % propene selectivity and over 99 % total olefins selectivity. This catalyst had a silanol-free structure and was oxygen tolerant, hydrothermally stable, and coke free, with a deactivation constant of 0.01 h-1 . This study provided guidance for the synthesis of structural heteroatomic zeolite and efficient propane non-oxidative dehydrogenation over early transition metals.
Collapse
Affiliation(s)
- Guangyue Xu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Xiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Zhuoya Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wanying Liang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Tianci Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huiyong Chen
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
32
|
Chang S, Yan Y, Geng Y. Local Nanostrain Engineering of Monolayer MoS 2 Using Atomic Force Microscopy-Based Thermomechanical Nanoindentation. NANO LETTERS 2023; 23:9219-9226. [PMID: 37824813 DOI: 10.1021/acs.nanolett.3c01809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Strain engineering in two-dimensional materials (2DMs) has important application potential for electronic and optoelectronic devices. However, achieving precise spatial control, adjustable sizing, and permanent strain with nanoscale resolution remains challenging. Herein, a thermomechanical nanoindentation method is introduced, inspired by skin edema caused by mosquito bites, which can induce localized nanostrain and bandgap modulation in monolayer molybdenum disulfide (MoS2) transferred onto a poly(methyl methacrylate) film utilizing a heated atomic force microscopy nanotip. Via adjustment of the machining parameters, the strains of MoS2 are manipulated, achieving an average strain of ≤2.6% on the ring-shaped expansion structure. The local bandgap of MoS2 is spatially modulated using three types of nanostructures. Among them, the nanopit has the largest range of bandgap regulation, with a substantial change of 56 meV. These findings demonstrate the capability of the proposed method to create controllable and reproducible nanostrains in 2DMs.
Collapse
Affiliation(s)
- Shunyu Chang
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yongda Yan
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Yanquan Geng
- The State Key Laboratory of Robotics and Systems, Robotics Institute, Harbin Institute of Technology, Harbin, Heilongjiang 150080, P. R. China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
33
|
Tian H, Li W, He L, Zhong Y, Xu S, Xiao H, Xu B. Rationalizing kinetic behaviors of isolated boron sites catalyzed oxidative dehydrogenation of propane. Nat Commun 2023; 14:6520. [PMID: 37845252 PMCID: PMC10579386 DOI: 10.1038/s41467-023-42403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
Boron-based catalysts exhibit high alkene selectivity in oxidative dehydrogenation of propane (ODHP) but the mechanistic understanding remains incomplete. In this work, we show that the hydroxylation of framework boron species via steaming not only enhances the ODHP rate on both B-MFI and B-BEA, but also impacts the kinetics of the reaction. The altered activity, propane reaction order and the activation energy could be attributed to the hydrolysis of framework [B(OSi≡)3] unit to [B(OSi≡)3-x(OH···O(H)Si≡)x] (x = 1, 2, "···" represents hydrogen bonding). DFT calculations confirm that hydroxylated framework boron sites could stabilize radical species, e.g., hydroperoxyl radical, further facilitating the gas-phase radical mechanism. Variations in the contributions from gas-phase radical mechanisms in ODHP lead to the linear correlation between activation enthalpy and entropy on borosilicate zeolites. Insights gained in this work offer a general mechanistic framework to rationalize the kinetic behavior of the ODHP on boron-based catalysts.
Collapse
Affiliation(s)
- Hao Tian
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Wenying Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Linhai He
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yunzhu Zhong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China.
| |
Collapse
|
34
|
Li Z, Dong X, Zeng W. Adsorption of CH 4, CO, and H 2S on a MoTe 2 Monolayer Doped with Metal Atoms (Au and Ru): An Ab Initio Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13228-13241. [PMID: 37676751 DOI: 10.1021/acs.langmuir.3c01664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Detecting toxic gases, such as CH4, CO, and H2S, in everyday life holds great significance. This research article focuses on investigating the adsorption characteristics of CH4, CO, and H2S on MoTe2 and MoTe2 doped with Au and Ru using the density functional theory. The study examines various aspects, including adsorption energy, charge transfer, density of states, and charge density difference of the adsorption configuration. The findings demonstrate that the adsorption properties of Ru-doped MoTe2 exhibit a significant enhancement for all three gases, with CO displaying the highest adsorption performance. Through comparative analysis, it is evident that the adsorption affinity between MoTe2-Ru and the three gases is robust, thus indicating improved gas detection capabilities.
Collapse
Affiliation(s)
- Ziteng Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Xiaoyang Dong
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Wen Zeng
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
35
|
Wang G, Chen S, Duan Q, Wei F, Lin S, Xie Z. Surface Chemistry and Catalytic Reactivity of Borocarbonitride in Oxidative Dehydrogenation of Propane. Angew Chem Int Ed Engl 2023; 62:e202307470. [PMID: 37523147 DOI: 10.1002/anie.202307470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Borocarbonitride (BCN) materials are newly developed oxidative dehydrogenation catalysts that can efficiently convert alkanes to alkenes. However, BCN materials tend to form bulky B2 O3 due to over-oxidation at the high reaction temperature, resulting in significant deactivation. Here, we report a series of super stable BCN nanosheets for the oxidative dehydrogenation of propane (ODHP) reaction. The catalytic performance of the BCN nanosheets can be easily regulated by changing the guanine dosage. The control experiment and structural characterization indicate that the introduction of a suitable amount of carbon could prevent the formation of excessive B2 O3 from BCN materials and maintain the 2D skeleton at a high temperature of 520 °C. The best-performing catalyst BCN exhibits 81.9 % selectivity towards olefins with a stable propane conversion of 35.8 %, and the propene productivity reaches 16.2 mmol h-1 g-1 , which is much better than hexagonal BN (h-BN) catalysts. Density functional theory calculation results show that the presence of dispersed rather than aggregated carbon atoms can significantly affect the electronic microenvironment of h-BN, thereby boosting the catalytic activity of BCN.
Collapse
Affiliation(s)
- Guangming Wang
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Shunhua Chen
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Qiwei Duan
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Fenfei Wei
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Sen Lin
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Zailai Xie
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| |
Collapse
|
36
|
Wang W, Chen S, Pei C, Luo R, Sun J, Song H, Sun G, Wang X, Zhao ZJ, Gong J. Tandem propane dehydrogenation and surface oxidation catalysts for selective propylene synthesis. Science 2023; 381:886-890. [PMID: 37498988 DOI: 10.1126/science.adi3416] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Direct propane dehydrogenation (PDH) to propylene is a desirable commercial reaction but is highly endothermic and severely limited by thermodynamic equilibrium. Routes that oxidatively remove hydrogen as water have safety and cost challenges. We coupled chemical looping-selective hydrogen (H2) combustion and PDH with multifunctional ferric vanadate-vanadium oxide (FeVO4-VOx) redox catalysts. Well-dispersed VOx supported on aluminum oxide (Al2O3) provides dehydrogenation sites, and adjacent nanoscale FeVO4 acts as an oxygen carrier for subsequent H2 combustion. We achieved an integral performance of 81.3% propylene selectivity at 42.7% propane conversion at 550°C for 200 chemical looping cycles for the reoxidization of FeVO4. Based on catalytic experiments, spectroscopic characterization, and theory calculations, we propose a hydrogen spillover-mediated coupling mechanism. The hydrogen species generated at the VOx sites migrated to adjacent FeVO4 for combustion, which shifted PDH toward propylene. This mechanism is favored by the proximity between the dehydrogenation and combustion sites.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ran Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jiachen Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongbo Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xianhui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
37
|
Zhang Z, Hermans I, Alexandrova AN. Off-Stoichiometric Restructuring and Sliding Dynamics of Hexagonal Boron Nitride Edges in Conditions of Oxidative Dehydrogenation of Propane. J Am Chem Soc 2023; 145:17265-17273. [PMID: 37506379 DOI: 10.1021/jacs.3c04613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Boron-containing materials, such as hexagonal boron nitride (h-BN), recently shown to be active and selective catalysts for the oxidative dehydrogenation of propane (ODHP), have been shown to undergo significant surface oxyfunctionalization and restructuring. Although experimental ex situ studies have probed the change in chemical environment on the surface, the structural evolution of it under varying reaction conditions has not been established. Herein, we perform global optimization structure search with a grand canonical genetic algorithm to explore the chemical space of off-stoichiometric restructuring of the h-BN surface under ambient as well as ODHP-relevant conditions. A grand canonical ensemble representation of the surface is established, and the predicted 11B solid-state NMR spectra are consistent with previous experimental reports. In addition, we investigated the relative sliding of h-BN sheets and how it influences the surface chemistry with ab initio molecular dynamics simulations. The B-O linkages on the edges are found to be significantly strained during the sliding, causing the metastable sliding configurations to have higher reactivity toward the activation of propane and water.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ive Hermans
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
38
|
Perras FA, Thomas H, Heintz P, Behera R, Yu J, Viswanathan G, Jing D, Southern SA, Kovnir K, Stanley L, Huang W. The Structure of Boron Monoxide. J Am Chem Soc 2023; 145:14660-14669. [PMID: 37378579 DOI: 10.1021/jacs.3c02070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Boron monoxide (BO), prepared by the thermal condensation of tetrahydroxydiboron, was first reported in 1955; however, its structure could not be determined. With the recent attention on boron-based two-dimensional materials, such as borophene and hexagonal boron nitride, there is renewed interest in BO. A large number of stable BO structures have been computationally identified, but none are supported by experiments. The consensus is that the material likely forms a boroxine-based two-dimensional material. Herein, we apply advanced 11B NMR experiments to determine the relative orientations of B(B)O2 centers in BO. We find that the material is composed of D2h-symmetric O2B-BO2 units that organize to form larger B4O2 rings. Further, powder diffraction experiments additionally reveal that these units organize to form two-dimensional layers with a random stacking pattern. This observation is in agreement with earlier density functional theory (DFT) studies that showed B4O2-based structures to be the most stable.
Collapse
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Henry Thomas
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Patrick Heintz
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Ranjan Behera
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jiaqi Yu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Gayatri Viswanathan
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Scott A Southern
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Kirill Kovnir
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
39
|
Chen S, Luo R, Zhao ZJ, Pei C, Xu Y, Lu Z, Zhao C, Song H, Gong J. Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation. Nat Commun 2023; 14:2620. [PMID: 37147344 PMCID: PMC10163216 DOI: 10.1038/s41467-023-38284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production which has received extensive attention in recent years. Nevertheless, existing non-oxidative dehydrogenation technologies still suffer from the thermodynamic equilibrium limitations and severe coking. Here, we develop the intensified propane dehydrogenation to propylene by the chemical looping engineering on nanoscale core-shell redox catalysts. The core-shell redox catalyst combines dehydrogenation catalyst and solid oxygen carrier at one particle, preferably compose of two to three atomic layer-type vanadia coating ceria nanodomains. The highest 93.5% propylene selectivity is obtained, sustaining 43.6% propylene yield under 300 long-term dehydrogenation-oxidation cycles, which outperforms an analog of industrially relevant K-CrOx/Al2O3 catalysts and exhibits 45% energy savings in the scale-up of chemical looping scheme. Combining in situ spectroscopies, kinetics, and theoretical calculation, an intrinsically dynamic lattice oxygen "donator-acceptor" process is proposed that O2- generated from the ceria oxygen carrier is boosted to diffuse and transfer to vanadia dehydrogenation sites via a concerted hopping pathway at the interface, stabilizing surface vanadia with moderate oxygen coverage at pseudo steady state for selective dehydrogenation without significant overoxidation or cracking.
Collapse
Affiliation(s)
- Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ran Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Zhenpu Lu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Chengjie Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Hongbo Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- National Industry-Education Platform of Energy Storage, Tianjin, 300350, China.
| |
Collapse
|
40
|
Han P, Yan R, Wei Y, Li L, Luo J, Pan Y, Wang B, Lin J, Wan S, Xiong H, Wang Y, Wang S. Mechanistic Insights into Radical-Induced Selective Oxidation of Methane over Nonmetallic Boron Nitride Catalysts. J Am Chem Soc 2023; 145:10564-10575. [PMID: 37130240 DOI: 10.1021/jacs.2c13648] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Boron-based nonmetallic materials (such as B2O3 and BN) emerge as promising catalysts for selective oxidation of light alkanes by O2 to form value-added products, resulting from their unique advantage in suppressing CO2 formation. However, the site requirements and reaction mechanism of these boron-based catalysts are still in vigorous debate, especially for methane (the most stable and abundant alkane). Here, we show that hexagonal BN (h-BN) exhibits high selectivities to formaldehyde and CO in catalyzing aerobic oxidation of methane, similar to Al2O3-supported B2O3 catalysts, while h-BN requires an extra induction period to reach a steady state. According to various structural characterizations, we find that active boron oxide species are gradually formed in situ on the surface of h-BN, which accounts for the observed induction period. Unexpectedly, kinetic studies on the effects of void space, catalyst loading, and methane conversion all indicate that h-BN merely acts as a radical generator to induce gas-phase radical reactions of methane oxidation, in contrast to the predominant surface reactions on B2O3/Al2O3 catalysts. Consequently, a revised kinetic model is developed to accurately describe the gas-phase radical feature of methane oxidation over h-BN. With the aid of in situ synchrotron vacuum ultraviolet photoionization mass spectroscopy, the methyl radical (CH3•) is further verified as the primary reactive species that triggers the gas-phase methane oxidation network. Theoretical calculations elucidate that the moderate H-abstraction ability of predominant CH3• and CH3OO• radicals renders an easier control of the methane oxidation selectivity compared to other oxygen-containing radicals generally proposed for such processes, bringing deeper understanding of the excellent anti-overoxidation ability of boron-based catalysts.
Collapse
Affiliation(s)
- Peijie Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ran Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuqing Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Leisu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinsong Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingdong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shaolong Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Shuai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
41
|
Yuan Y, Zhao Z, Lobo RF, Xu B. Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207756. [PMID: 36897033 PMCID: PMC10161086 DOI: 10.1002/advs.202207756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Metal-exchanged zeolites are well-known propane dehydrogenation (PDH) catalysts; however, the structure of the active species remains unresolved. In this review, existing PDH catalysts are first surveyed, and then the current understanding of metal-exchanged zeolite catalysts is described in detail. The case of Ga/H-ZSM-5 is employed to showcase that advances in the understanding of structure-activity relations are often accompanied by technological or conceptional breakthroughs. The understanding of Ga speciation at PDH conditions has evolved owing to the advent of in situ/operando characterizations and to the realization that the local coordination environment of Ga species afforded by the zeolite support has a decisive impact on the active site structure. In situ/operando quantitative characterization of catalysts, rigorous determination of intrinsic reaction rates, and predictive computational modeling are all significant in identifying the most active structure in these complex systems. The reaction mechanism could be both intricately related to and nearly independent of the details of the assumed active structure, as in the two main proposed PDH mechanisms on Ga/H-ZSM-5, that is, the carbenium mechanism and the alkyl mechanism. Perspectives on potential approaches to further elucidate the active structure of metal-exchanged zeolite catalysts and reaction mechanisms are discussed in the final section.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Zhaoqi Zhao
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Raul F. Lobo
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Bingjun Xu
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
42
|
Wang Y, Li T, Li L, Lin RB, Jia X, Chang Z, Wen HM, Chen XM, Li J. Construction of Fluorinated Propane-Trap in Metal-Organic Frameworks for Record Polymer-Grade Propylene Production under High Humidity Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207955. [PMID: 36659826 DOI: 10.1002/adma.202207955] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Propane/propene (C3 H8 /C3 H6 ) separation is essential in the petrochemical industry but challenging because of their similar physical and chemical properties. Adsorptive separation with C3 H8 -selective porous materials can energy-efficiently produce high-purity C3 H6 , which is highly promising for replacing conventional cryogenic distillation but suffers from unsatisfactory performance. Herein, through the precise incorporation of fluorinated functional groups into the confined pore space, a new fluorinated metal-organic framework (FDMOF-2) featuring the unique and strong C3 H8 -trap is successfully constructed. FDMOF-2 exhibits an unprecedented C3 H8 capture capacity of 140 cm3 cm-3 and excellent C3 H8 /C3 H6 (1:1, v/v) selectivity up to 2.18 (298 K and 1 bar), thus setting new benchmarks for all reported porous materials. Single-crystal X-ray diffraction studies reveal that the tailored pore confinement in FDMOF-2 provides stronger and multiple attractive interactions with C3 H8 , enabling excellent binding affinities. Breakthrough experiments demonstrate that C3 H8 can be directly extracted from various C3 H8 /C3 H6 mixtures with FDMOF-2, affording an outstanding C3 H6 production (501 mmol L-1 ) with over 99.99% purity. Benefiting from the robust framework and hydrophobic ligands, the separation performance of FDMOF-2 can be well maintained even under 70% relative humidity conditions.
Collapse
Affiliation(s)
- Yong Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Tong Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Libo Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Rui-Biao Lin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoxia Jia
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Zeyu Chang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiao-Ming Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
43
|
Cao L, Yan P, Wen S, Bao W, Jiang Y, Zhang Q, Yu N, Zhang Y, Cao K, Dai P, Xie J. Antiexfoliating h-BN⊃In 2O 3 Catalyst for Oxidative Dehydrogenation of Propane in a High-Temperature and Water-Rich Environment. J Am Chem Soc 2023; 145:6184-6193. [PMID: 36893194 DOI: 10.1021/jacs.2c12136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Hexagonal boron nitride (h-BN) is regarded as one of the most efficient catalysts for oxidative dehydrogenation of propane (ODHP) with high olefin selectivity and productivity. However, the loss of the boron component under a high concentration of water vapor and high temperature seriously hinders its further development. How to make h-BN a stable ODHP catalyst is one of the biggest scientific challenges at present. Herein, we construct h-BN⊃xIn2O3 composite catalysts through the atomic layer deposition (ALD) process. After high-temperature treatment in ODHP reaction conditions, the In2O3 nanoparticles (NPs) are dispersed on the edge of h-BN and observed to be encapsulated by ultrathin boron oxide (BOx) overlayer. A novel strong metal oxide-support interaction (SMOSI) effect between In2O3 NPs and h-BN is observed for the first time. The material characterization reveals that the SMOSI not only improves the interlayer force between h-BN layers with a pinning model but also reduces the affinity of the B-N bond toward O• for inhibiting oxidative cutting of h-BN into fragments at a high temperature and water-rich environment. With the pinning effect of the SMOSI, the catalytic stability of h-BN⊃70In2O3 has been extended nearly five times than that of pristine h-BN, and the intrinsic olefin selectivity/productivity of h-BN is well maintained.
Collapse
Affiliation(s)
- Lei Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pu Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Sheng Wen
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Wenda Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yilan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Qing Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kecheng Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengcheng Dai
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Jin Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
44
|
Gao X, Zhu L, Yang F, Zhang L, Xu W, Zhou X, Huang Y, Song H, Lin L, Wen X, Ma D, Yao S. Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation. Nat Commun 2023; 14:1478. [PMID: 36932098 PMCID: PMC10023692 DOI: 10.1038/s41467-023-37261-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Oxidative dehydrogenation of propane is a promising technology for the preparation of propene. Boron-based nonmetal catalysts exhibit remarkable selectivity toward propene and limit the generation of COx byproducts due to unique radical-mediated C-H activation. However, due to the high barrier of O-H bond cleavage in the presence of O2, the radical initialization of the B-based materials requires a high temperature to proceed, which decreases the thermodynamic advantages of the oxidative dehydrogenation reaction. Here, we report that the boron oxide overlayer formed in situ over metallic Ni nanoparticles exhibits extraordinarily low-temperature activity and selectivity for the ODHP reaction. With the assistance of subsurface Ni, the surface specific activity of the BOx overlayer reaches 93 times higher than that of bare boron nitride. A mechanistic study reveals that the strong affinity of the subsurface Ni to the oxygen atoms reduces the barrier of radical initiation and thereby balances the rates of the BO-H cleavage and the regeneration of boron hydroxyl groups, accounting for the excellent low-temperature performance of Ni@BOx/BN catalysts.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, Peking University, 100871, Beijing, China
| | - Ling Zhu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Post Office Box 165, 030001, Taiyuan, Shanxi, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wenhao Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yongkang Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Houhong Song
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Post Office Box 165, 030001, Taiyuan, Shanxi, China.
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, Peking University, 100871, Beijing, China.
| | - Siyu Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
45
|
Zhang X, Shen Y, Liu Y, Zheng J, Deng J, Yan T, Cheng D, Zhang D. Unraveling the Unique Promotion Effects of a Triple Interface in Ni Catalysts for Methane Dry Reforming. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Xiaoyu Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yuying Liu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiajia Zheng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Danhong Cheng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
46
|
Sun Y, Yang Z, Dai S. Nonclassical Strong Metal-Support Interactions for Enhanced Catalysis. J Phys Chem Lett 2023; 14:2364-2377. [PMID: 36848324 DOI: 10.1021/acs.jpclett.2c03915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Strong metal-support interaction (SMSI), which encompasses reversible encapsulation and de-encapsulation and modulation of surface adsorption properties, imposes great impacts on the performance of heterogeneous catalysts. Recent development of SMSI has surpassed the prototypical encapsulated Pt-TiO2 catalyst, affording a series of conceptually novel and practically advantageous catalytic systems. Here we provide our perspective on recent progress in nonclassical SMSIs for enhanced catalysis. Unravelling the structural complexity of SMSI necessitates the combination of multiple characterization techniques at different scales. Synthesis strategies leveraging chemical, photonic, and mechanochemical driving forces further expand the definition and application scope of SMSI. Exquisite structure engineering permits elucidation of the interface, entropy, and size effect on the geometric and electronic characteristics. Materials innovation places the atomically thin two-dimensional materials at the forefront of interfacial active site control. A broader space is awaiting exploration, where exploitation of metal-support interactions brings compelling catalytic activity, selectivity, and stability.
Collapse
Affiliation(s)
- Yifan Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
47
|
Unraveling Radical and Oxygenate Routes in the Oxidative Dehydrogenation of Propane over Boron Nitride. J Am Chem Soc 2023; 145:7910-7917. [PMID: 36867720 PMCID: PMC10103127 DOI: 10.1021/jacs.2c12970] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Oxidative dehydrogenation of propane (ODHP) is an emerging technology to meet the global propylene demand with boron nitride (BN) catalysts likely to play a pivotal role. It is widely accepted that gas-phase chemistry plays a fundamental role in the BN-catalyzed ODHP. However, the mechanism remains elusive because short-lived intermediates are difficult to capture. We detect short-lived free radicals (CH3•, C3H5•) and reactive oxygenates, C2-4 ketenes and C2-3 enols, in ODHP over BN by operando synchrotron photoelectron photoion coincidence spectroscopy. In addition to a surface-catalyzed channel, we identify a gas-phase H-acceptor radical- and H-donor oxygenate-driven route, leading to olefin production. In this route, partially oxidized enols propagate into the gas phase, followed by dehydrogenation (and methylation) to form ketenes and finally yield olefins by decarbonylation. Quantum chemical calculations predict the >BO dangling site to be the source of free radicals in the process. More importantly, the easy desorption of oxygenates from the catalyst surface is key to prevent deep oxidation to CO2.
Collapse
|
48
|
Effect of yttrium on catalytic performance of Y-doped TiO2 catalysts for propane dehydrogenation. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
49
|
Itskou I, L’Hermitte A, Marchesini S, Tian T, Petit C. How to Tailor Porous Boron Nitride Properties for Applications in Interfacial Processes. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:143-155. [PMID: 36873082 PMCID: PMC9972479 DOI: 10.1021/accountsmr.2c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The research of new porous materials for applications in interfacial processes is key to addressing global energy and sustainability challenges. For example, porous materials can be used to store fuels such as hydrogen or methane or to separate chemical mixtures reducing the energy currently required by thermal separation processes. Their catalytic properties can be exploited to convert adsorbed molecules into valuable or less hazardous chemicals, thereby reducing energy consumption or pollutants emissions. Porous boron nitride (BN) has appeared as a promising material for applications in molecular separations, gas storage, and catalysis owing to its high surface area and thermal stability, as well as its tunable physical properties and chemistry. However, the production of porous BN is still limited to the laboratory scale, and its formation mechanism, as well as ways to control porosity and chemistry, are yet to be fully understood. In addition, studies have pointed toward the instability of porous BN materials when exposed to humidity, which could significantly impact performance in industrial applications. Studies on porous BN performance and recyclability when employed in adsorption, gas storage, and catalysis remain limited, despite encouraging preliminary studies. Moreover, porous BN powder must be shaped into macrostructures (e.g., pellets) to be used commercially. However, common methods to shape porous materials into macrostructures often cause a reduction in the surface area and/or mechanical strength. In recent years, research groups, including ours, have started addressing the challenges discussed above. Herein, we summarize our collective findings through a selection of key studies. First, we discuss the chemistry and structure of BN, clarifying confusion around terminology and discussing the hydrolytic instability of the material in relation to its structure and chemistry. We demonstrate a way to reduce the instability in water while still maintaining high specific surface area. We propose a mechanism for the formation of porous BN and discuss the effects of different synthesis parameters on the structure and chemistry of porous BN, therefore providing a way to tune its properties for selected applications. While the syntheses covered often lead to a powder product, we also present ways to shape porous BN powders into macrostructures while still maintaining high accessible surface area for interfacial processes. Finally, we evaluate porous BN performance for chemical separations, gas storage, and catalysis. While the above highlights key advances in the field, further work is needed to allow deployment of porous BN. Specifically, we suggest evaluating its hydrolytic stability, refining the ways to shape the material into stable and reproducible macrostructures, establishing clear design rules to produce BN with specific chemistry and porosity, and, finally, providing standardized test procedures to evaluate porous BN catalytic and sorptive properties to facilitate comparison.
Collapse
Affiliation(s)
- Ioanna Itskou
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, United
Kingdom
| | - Anouk L’Hermitte
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, United
Kingdom
- Department
of Materials, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Sofia Marchesini
- National
Physical Laboratory, Hampton Road, TeddingtonTW11 0LW, United Kingdom
| | - Tian Tian
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, United
Kingdom
| | - Camille Petit
- Barrer
Centre, Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, United
Kingdom
| |
Collapse
|
50
|
Zhang J, Cao Y, Ding F, Zheng L, Ma Y, Cai Z, Zhou L, Huang K, Jiang L. Few-Layered Hexagonal Boron Nitrides as Highly Effective and Stable Solid Adsorbents for Ammonia Separation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Jiayin Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, 523 Gongye Rd, Fuzhou, Fujian 350002, China
| | - Yanning Cao
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, 523 Gongye Rd, Fuzhou, Fujian 350002, China
- Qingyuan Innovation Laboratory, 1 Xueyuan Rd, Quanzhou, Fujian 362801, China
| | - Fengyun Ding
- Institute of Materials, China Academy of Engineering Physics, 64 Mianshan Rd, Mianyang, Sichuan 621908, China
| | - Lu Zheng
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, 523 Gongye Rd, Fuzhou, Fujian 350002, China
| | - Yongde Ma
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, 523 Gongye Rd, Fuzhou, Fujian 350002, China
| | - Zhenping Cai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, 523 Gongye Rd, Fuzhou, Fujian 350002, China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, 64 Mianshan Rd, Mianyang, Sichuan 621908, China
| | - Kuan Huang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, 523 Gongye Rd, Fuzhou, Fujian 350002, China
- Qingyuan Innovation Laboratory, 1 Xueyuan Rd, Quanzhou, Fujian 362801, China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, 523 Gongye Rd, Fuzhou, Fujian 350002, China
- Qingyuan Innovation Laboratory, 1 Xueyuan Rd, Quanzhou, Fujian 362801, China
| |
Collapse
|