1
|
Wang LT, Idris AH, Kisalu NK, Crompton PD, Seder RA. Monoclonal antibodies to the circumsporozoite proteins as an emerging tool for malaria prevention. Nat Immunol 2024; 25:1530-1545. [PMID: 39198635 DOI: 10.1038/s41590-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development. The protective epitopes on the circumsporozoite protein targeted by monoclonal antibodies have been defined. Cryogenic electron and multiphoton microscopy have enabled mechanistic structural and functional investigations of how antibodies bind to the circumsporozoite protein and neutralize sporozoites. Moreover, innovations in bioinformatics and antibody engineering have facilitated enhancement of antibody potency and durability. Here, we summarize the latest scientific advances in understanding how monoclonal antibodies to the circumsporozoite protein prevent malaria and highlight existing clinical data and future plans for how this emerging intervention can be used alone or alongside existing antimalarial interventions to control malaria across at-risk populations.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- PATH's Center for Vaccine Innovation and Access, Washington, DC, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Brown S, Antanasijevic A, Sewall LM, Garcia DM, Brouwer PJM, Sanders RW, Ward AB. Anti-Immune Complex Antibodies are Elicited During Repeated Immunization with HIV Env Immunogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585257. [PMID: 38559180 PMCID: PMC10979980 DOI: 10.1101/2024.03.15.585257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Early antibody responses to easily accessible epitopes on these antigens are directed to non-neutralizing epitopes instead of bnAb epitopes. Autologous neutralizing antibody responses appear upon boosting once immunodominant epitopes are saturated. Here we report another type of antibody response that arises after repeated immunizations with HIV Env immunogens and present the structures of six anti-immune complexes discovered using polyclonal epitope mapping. The anti-immune complex antibodies target idiotopes composed of framework regions of antibodies bound to Env. This work sheds light on current vaccine development efforts for HIV, as well as for other pathogens, in which repeated exposure to antigen is required.
Collapse
Affiliation(s)
- Sharidan Brown
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | | | - Leigh M. Sewall
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Daniel Montiel Garcia
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Philip J. M. Brouwer
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam; Amsterdam, The Netherlands
| | - Andrew B. Ward
- Department of Integrative, Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
3
|
Williams KL, Guerrero S, Flores-Garcia Y, Kim D, Williamson KS, Siska C, Smidt P, Jepson SZ, Li K, Dennison SM, Mathis-Torres S, Chen X, Wille-Reece U, MacGill RS, Walker M, Jongert E, King CR, Ockenhouse C, Glanville J, Moon JE, Regules JA, Tan YC, Cavet G, Lippow SM, Robinson WH, Dutta S, Tomaras GD, Zavala F, Ketchem RR, Emerling DE. A candidate antibody drug for prevention of malaria. Nat Med 2024; 30:117-129. [PMID: 38167935 PMCID: PMC10803262 DOI: 10.1038/s41591-023-02659-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
Over 75% of malaria-attributable deaths occur in children under the age of 5 years. However, the first malaria vaccine recommended by the World Health Organization (WHO) for pediatric use, RTS,S/AS01 (Mosquirix), has modest efficacy. Complementary strategies, including monoclonal antibodies, will be important in efforts to eradicate malaria. Here we characterize the circulating B cell repertoires of 45 RTS,S/AS01 vaccinees and discover monoclonal antibodies for development as potential therapeutics. We generated >28,000 antibody sequences and tested 481 antibodies for binding activity and 125 antibodies for antimalaria activity in vivo. Through these analyses we identified correlations suggesting that sequences in Plasmodium falciparum circumsporozoite protein, the target antigen in RTS,S/AS01, may induce immunodominant antibody responses that limit more protective, but subdominant, responses. Using binding studies, mouse malaria models, biomanufacturing assessments and protein stability assays, we selected AB-000224 and AB-007088 for advancement as a clinical lead and backup. We engineered the variable domains (Fv) of both antibodies to enable low-cost manufacturing at scale for distribution to pediatric populations, in alignment with WHO's preferred product guidelines. The engineered clone with the optimal manufacturing and drug property profile, MAM01, was advanced into clinical development.
Collapse
Affiliation(s)
| | | | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dongkyoon Kim
- Atreca, Inc., San Carlos, CA, USA
- Initium Therapeutics, Inc., Natick, MA, USA
| | | | | | | | | | - Kan Li
- Duke Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC, USA
| | - S Moses Dennison
- Duke Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Ulrike Wille-Reece
- BioNTech US, Inc., Cambridge, MA, USA
- PATH Center for Vaccine Innovation and Access, Washington DC, USA
| | | | | | | | - C Richter King
- PATH Center for Vaccine Innovation and Access, Washington DC, USA
| | | | | | - James E Moon
- Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason A Regules
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Yann Chong Tan
- Atreca, Inc., San Carlos, CA, USA
- Nuevocor Pte. Ltd, Singapore, Singapore
| | - Guy Cavet
- Atreca, Inc., San Carlos, CA, USA
- Paramune, Inc., San Carlos, CA, USA
| | | | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Georgia D Tomaras
- Duke Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC, USA
- Departments of Immunology, Molecular Genetics and Microbiology, Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
4
|
Bolton JS, MacGill RS, Locke E, Regules JA, Bergmann-Leitner ES. Novel antibody competition binding assay identifies distinct serological profiles associated with protection. Front Immunol 2023; 14:1303446. [PMID: 38152401 PMCID: PMC10752609 DOI: 10.3389/fimmu.2023.1303446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Pre-erythrocytic malaria vaccines hold the promise of inducing sterile protection thereby preventing the morbidity and mortality associated with Plasmodium infection. The main surface antigen of P. falciparum sporozoites, i.e., the circumsporozoite protein (CSP), has been extensively explored as a target of such vaccines with significant success in recent years. Systematic adjuvant selection, refinements of the immunization regimen, and physical properties of the antigen may all contribute to the potential of increasing the efficacy of CSP-based vaccines. Protection appears to be dependent in large part on CSP antibodies. However due to a knowledge gap related to the exact correlates of immunity, there is a critical need to improve our ability to down select candidates preclinically before entering clinical trials including with controlled human malaria infections (CHMI). Methods We developed a novel multiplex competition assay based on well-characterized monoclonal antibodies (mAbs) that target crucial epitopes across the CSP molecule. This new tool assesses both, quality and epitope-specific concentrations of vaccine-induced antibodies by measuring their equivalency with a panel of well-characterized, CSP-epitope-specific mAbs. Results Applying this method to RTS,S-immune sera from a CHMI trial demonstrated a quantitative epitope-specificity profile of antibody responses that can differentiate between protected vs. nonprotected individuals. Aligning vaccine efficacy with quantitation of the epitope fine specificity results of this equivalency assay reveals the importance of epitope specificity. Discussion The newly developed serological equivalence assay will inform future vaccine design and possibly even adjuvant selection. This methodology can be adapted to other antigens and disease models, when a panel of relevant mAbs exists, and could offer a unique tool for comparing and down-selecting vaccine formulations.
Collapse
Affiliation(s)
- Jessica S. Bolton
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Randall S. MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC, United States
| | - Emily Locke
- Center for Vaccine Innovation and Access, PATH, Washington, DC, United States
| | - Jason A. Regules
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Elke S. Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| |
Collapse
|
5
|
Thai E, Murugan R, Binter Š, Burn Aschner C, Prieto K, Kassardjian A, Obraztsova AS, Kang RW, Flores-Garcia Y, Mathis-Torres S, Li K, Horn GQ, Huntwork RHC, Bolscher JM, de Bruijni MHC, Sauerwein R, Dennison SM, Tomaras GD, Zavala F, Kellam P, Wardemann H, Julien JP. Molecular determinants of cross-reactivity and potency by VH3-33 antibodies against the Plasmodium falciparum circumsporozoite protein. Cell Rep 2023; 42:113330. [PMID: 38007690 PMCID: PMC10720262 DOI: 10.1016/j.celrep.2023.113330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/27/2023] Open
Abstract
IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Špela Binter
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK
| | - Clare Burn Aschner
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ryu Won Kang
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kan Li
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Gillian Q Horn
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Richard H C Huntwork
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | | | | | | | - S Moses Dennison
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Paul Kellam
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Yuan M, Feng Z, Lv H, So N, Shen IR, Tan TJC, Teo QW, Ouyang WO, Talmage L, Wilson IA, Wu NC. Widespread impact of immunoglobulin V-gene allelic polymorphisms on antibody reactivity. Cell Rep 2023; 42:113194. [PMID: 37777966 PMCID: PMC10636607 DOI: 10.1016/j.celrep.2023.113194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
The ability of the human immune system to generate antibodies to any given antigen can be strongly influenced by immunoglobulin V-gene allelic polymorphisms. However, previous studies have provided only limited examples. Therefore, the prevalence of this phenomenon has been unclear. By analyzing >1,000 publicly available antibody-antigen structures, we show that many V-gene allelic polymorphisms in antibody paratopes are determinants for antibody binding activity. Biolayer interferometry experiments further demonstrate that paratope allelic polymorphisms on both heavy and light chains often abolish antibody binding. We also illustrate the importance of minor V-gene allelic polymorphisms with low frequency in several broadly neutralizing antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus. Overall, this study not only highlights the pervasive impact of V-gene allelic polymorphisms on antibody binding but also provides mechanistic insights into the variability of antibody repertoires across individuals, which in turn have important implications for vaccine development and antibody discovery.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivana R Shen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qi Wen Teo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan Talmage
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Martin GM, Torres JL, Pholcharee T, Oyen D, Flores-Garcia Y, Gibson G, Moskovitz R, Beutler N, Jung DD, Copps J, Lee WH, Gonzalez-Paez G, Emerling D, MacGill RS, Locke E, King CR, Zavala F, Wilson IA, Ward AB. Affinity-matured homotypic interactions induce spectrum of PfCSP structures that influence protection from malaria infection. Nat Commun 2023; 14:4546. [PMID: 37507365 PMCID: PMC10382551 DOI: 10.1038/s41467-023-40151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The generation of high-quality antibody responses to Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP), the primary surface antigen of Pf sporozoites, is paramount to the development of an effective malaria vaccine. Here we present an in-depth structural and functional analysis of a panel of potent antibodies encoded by the immunoglobulin heavy chain variable (IGHV) gene IGHV3-33, which is among the most prevalent and potent antibody families induced in the anti-PfCSP immune response and targets the Asn-Ala-Asn-Pro (NANP) repeat region. Cryo-electron microscopy (cryo-EM) reveals a remarkable spectrum of helical antibody-PfCSP structures stabilized by homotypic interactions between tightly packed fragments antigen binding (Fabs), many of which correlate with somatic hypermutation. We demonstrate a key role of these mutated homotypic contacts for high avidity binding to PfCSP and in protection from Pf malaria infection. Together, these data emphasize the importance of anti-homotypic affinity maturation in the frequent selection of IGHV3-33 antibodies and highlight key features underlying the potent protection of this antibody family.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Biochemistry, University of Oxford, Oxford, OX1 3DR, UK
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Pfizer Inc, San Diego, CA, 92121, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Grace Gibson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Re'em Moskovitz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Diana D Jung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gonzalo Gonzalez-Paez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | | | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, DC, 20001, USA
| | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC, 20001, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Aguirre-Botero MC, Wang LT, Formaglio P, Aliprandini E, Thiberge JM, Schön A, Flores-Garcia Y, Mathis-Torres S, Flynn BJ, da Silva Pereira L, Le Duff Y, Hurley M, Nacer A, Bowyer PW, Zavala F, Idris AH, Francica JR, Seder RA, Amino R. Cytotoxicity of human antibodies targeting the circumsporozoite protein is amplified by 3D substrate and correlates with protection. Cell Rep 2023; 42:112681. [PMID: 37389992 PMCID: PMC10468621 DOI: 10.1016/j.celrep.2023.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
Human monoclonal antibodies (hmAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on the sporozoite surface are a promising tool for preventing malaria infection. However, their mechanisms of protection remain unclear. Here, using 13 distinctive PfCSP hmAbs, we provide a comprehensive view of how PfCSP hmAbs neutralize sporozoites in host tissues. Sporozoites are most vulnerable to hmAb-mediated neutralization in the skin. However, rare but potent hmAbs additionally neutralize sporozoites in the blood and liver. Efficient protection in tissues mainly associates with high-affinity and high-cytotoxicity hmAbs inducing rapid parasite loss-of-fitness in the absence of complement and host cells in vitro. A 3D-substrate assay greatly enhances hmAb cytotoxicity and mimics the skin-dependent protection, indicating that the physical stress imposed on motile sporozoites by the skin is crucial for unfolding the protective potential of hmAbs. This functional 3D cytotoxicity assay can thus be useful for downselecting potent anti-PfCSP hmAbs and vaccines.
Collapse
Affiliation(s)
- Manuela C Aguirre-Botero
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France
| | - Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline Formaglio
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France
| | - Eduardo Aliprandini
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France
| | - Jean-Michel Thiberge
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lais da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yann Le Duff
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK
| | - Mathew Hurley
- Centre for Aids Reagents, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK
| | - Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK
| | - Paul W Bowyer
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, EN6 3QG, UK
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, F-75015, Paris, France.
| |
Collapse
|
9
|
Lim YW, Ramirez NJ, Asensio MA, Chiang Y, Müller G, Mrovecova P, Mitsuiki N, Krausz M, Camacho-Ordonez N, Warnatz K, Adler AS, Grimbacher B. Sequencing the B Cell Receptor Repertoires of Antibody-Deficient Individuals With and Without Infection Susceptibility. J Clin Immunol 2023; 43:940-950. [PMID: 36826743 PMCID: PMC10276080 DOI: 10.1007/s10875-023-01448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Most individuals with antibody deficiency (hypogammaglobulinemia) need immunoglobulin replacement therapy (IgG-RT) from healthy plasma donors to stay clear of infections. However, a small subset of hypogammaglobulinemic patients do not require this substitution therapy. We set out to investigate this clinical conundrum by asking whether the peripheral B cell receptor repertoires differ between antibody-deficient patients who do and do not need IgG-RT. METHODS We sequenced and analyzed IgG and IgM heavy chain B cell receptor repertoires from peripheral blood mononuclear cells (PBMCs) isolated from patients with low serum IgG concentrations who did or did not require IgG-RT. RESULTS Compared to the patients who did not need IgG-RT, those who needed IgG-RT had higher numbers of IgG antibody clones, higher IgM diversity, and less oligoclonal IgG and IgM repertoires. The patient cohorts had different heavy chain variable gene usage, and the patients who needed IgG-RT had elevated frequencies of IgG clones with higher germline identity (i.e., fewer somatic hypermutations). CONCLUSION Antibody-deficient patients with infection susceptibility who needed IgG-RT had more diverse peripheral antibody repertoires that were less diverged from germline and thus may not be as optimal for targeting pathogens, possibly contributing to infection susceptibility.
Collapse
Affiliation(s)
| | - Neftali Jose Ramirez
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | | | - Yao Chiang
- GigaGen, Inc. (A Grifols Company), San Carlos, CA, USA
| | - Gabriele Müller
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Pavla Mrovecova
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Noriko Mitsuiki
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Máté Krausz
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - Adam S Adler
- GigaGen, Inc. (A Grifols Company), San Carlos, CA, USA.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany.
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany.
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg im Breisgau, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center, Freiburg, Germany.
| |
Collapse
|
10
|
Yuan M, Feng Z, Lv H, So N, Shen IR, Tan TJ, WenTeo Q, Ouyang WO, Talmage L, Wilson IA, Wu NC. Widespread impact of immunoglobulin V gene allelic polymorphisms on antibody reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543969. [PMID: 37333077 PMCID: PMC10274783 DOI: 10.1101/2023.06.06.543969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The ability of human immune system to generate antibodies to any given antigen can be strongly influenced by immunoglobulin V gene (IGV) allelic polymorphisms. However, previous studies have provided only a limited number of examples. Therefore, the prevalence of this phenomenon has been unclear. By analyzing >1,000 publicly available antibody-antigen structures, we show that many IGV allelic polymorphisms in antibody paratopes are determinants for antibody binding activity. Biolayer interferometry experiment further demonstrates that paratope allelic mutations on both heavy and light chain often abolish antibody binding. We also illustrate the importance of minor IGV allelic variants with low frequency in several broadly neutralizing antibodies to SARS-CoV-2 and influenza virus. Overall, this study not only highlights the pervasive impact of IGV allelic polymorphisms on antibody binding, but also provides mechanistic insights into the variability of antibody repertoires across individuals, which in turn have important implications for vaccine development and antibody discovery.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, LaJolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, LaJolla, CA 92037, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivana R. Shen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
| | - Qi WenTeo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan Talmage
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, LaJolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Martin GM, Fernández-Quintero ML, Lee WH, Pholcharee T, Eshun-Wilson L, Liedl KR, Pancera M, Seder RA, Wilson IA, Ward AB. Structural basis of epitope selectivity and potent protection from malaria by PfCSP antibody L9. Nat Commun 2023; 14:2815. [PMID: 37198165 PMCID: PMC10192352 DOI: 10.1038/s41467-023-38509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
A primary objective in malaria vaccine design is the generation of high-quality antibody responses against the circumsporozoite protein of the malaria parasite, Plasmodium falciparum (PfCSP). To enable rational antigen design, we solved a cryo-EM structure of the highly potent anti-PfCSP antibody L9 in complex with recombinant PfCSP. We found that L9 Fab binds multivalently to the minor (NPNV) repeat domain, which is stabilized by a unique set of affinity-matured homotypic, antibody-antibody contacts. Molecular dynamics simulations revealed a critical role of the L9 light chain in integrity of the homotypic interface, which likely impacts PfCSP affinity and protective efficacy. These findings reveal the molecular mechanism of the unique NPNV selectivity of L9 and emphasize the importance of anti-homotypic affinity maturation in protective immunity against P. falciparum.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Monica L Fernández-Quintero
- Department of General, Inorganic, and Theoretical Chemistry, Center for Chemistry and Biomedicine, The University of Innsbruck; Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Biochemistry, University of Oxford, Oxford, OX1 3DR, UK
| | - Lisa Eshun-Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Klaus R Liedl
- Department of General, Inorganic, and Theoretical Chemistry, Center for Chemistry and Biomedicine, The University of Innsbruck; Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Oludada OE, Costa G, Burn Aschner C, Obraztsova AS, Prieto K, Canetta C, Hoffman SL, Kremsner PG, Mordmüller B, Murugan R, Julien JP, Levashina EA, Wardemann H. Molecular and functional properties of human Plasmodium falciparum CSP C-terminus antibodies. EMBO Mol Med 2023:e17454. [PMID: 37082831 DOI: 10.15252/emmm.202317454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Human monoclonal antibodies (mAbs) against the central repeat and junction domain of Plasmodium falciparum circumsporozoite protein (PfCSP) have been studied extensively to guide malaria vaccine design compared to antibodies against the PfCSP C terminus. Here, we describe the molecular characteristics and protective potential of 73 germline and mutated human mAbs against the highly immunogenic PfCSP C-terminal domain. Two mAbs recognized linear epitopes in the C-terminal linker with sequence similarity to repeat and junction motifs, whereas all others targeted conformational epitopes in the α-thrombospondin repeat (α-TSR) domain. Specificity for the polymorphic Th2R/Th3R but not the conserved RII+/CS.T3 region in the α-TSR was associated with IGHV3-21/IGVL3-21 or IGLV3-1 gene usage. Although the C terminus specific mAbs showed signs of more efficient affinity maturation and class-switching compared to anti-repeat mAbs, live sporozoite binding and inhibitory activity was limited to a single C-linker reactive mAb with cross-reactivity to the central repeat and junction. The data provide novel insights in the human anti-C-linker and anti-α-TSR antibody response that support exclusion of the PfCSP C terminus from malaria vaccine designs.
Collapse
Affiliation(s)
- Opeyemi Ernest Oludada
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, Germany
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, Germany
| | - Katherine Prieto
- The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Caterina Canetta
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Peter G Kremsner
- Institute of Tropical Medicine, Tübingen, Germany
- Centre de Recherches de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Tübingen, Germany
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Philippe Julien
- The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON, Canada
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
13
|
Ludwig J, Scally SW, Costa G, Hoffmann S, Murugan R, Lossin J, Prieto K, Obraztcova A, Lobeto N, Franke-Fayard B, Janse CJ, Lebas C, Collin N, Binter S, Kellam P, Levashina EA, Wardemann H, Julien JP. Glycosylated nanoparticle-based PfCSP vaccine confers long-lasting antibody responses and sterile protection in mouse malaria model. NPJ Vaccines 2023; 8:52. [PMID: 37029167 PMCID: PMC10080175 DOI: 10.1038/s41541-023-00653-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The development of an effective and durable vaccine remains a central goal in the fight against malaria. Circumsporozoite protein (CSP) is the major surface protein of sporozoites and the target of the only licensed Plasmodium falciparum (Pf) malaria vaccine, RTS,S/AS01. However, vaccine efficacy is low and short-lived, highlighting the need for a second-generation vaccine with superior efficacy and durability. Here, we report a Helicobacter pylori apoferritin-based nanoparticle immunogen that elicits strong B cell responses against PfCSP epitopes that are targeted by the most potent human monoclonal antibodies. Glycan engineering of the scaffold and fusion of an exogenous T cell epitope enhanced the anti-PfCSP B cell response eliciting strong, long-lived and protective humoral immunity in mice. Our study highlights the power of rational vaccine design to generate a highly efficacious second-generation anti-infective malaria vaccine candidate and provides the basis for its further development.
Collapse
Affiliation(s)
- Julia Ludwig
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sandro Hoffmann
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Lossin
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anna Obraztcova
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Lobeto
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Blandine Franke-Fayard
- Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia Lebas
- Vaccine Formulation Institute, Plan-les-Ouates, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Institute, Plan-les-Ouates, Switzerland
| | - Spela Binter
- Kymab a Sanofi Company, Babraham Research Campus, Cambridge, UK
| | - Paul Kellam
- Kymab a Sanofi Company, Babraham Research Campus, Cambridge, UK
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Tripathi P, Bender MF, Lei H, Da Silva Pereira L, Shen CH, Bonilla B, Dillon M, Ou L, Pancera M, Wang LT, Zhang B, Batista FD, Idris AH, Seder RA, Kwong PD. Cryo-EM structures of anti-malarial antibody L9 with circumsporozoite protein reveal trimeric L9 association and complete 27-residue epitope. Structure 2023; 31:480-491.e4. [PMID: 36931276 PMCID: PMC10237622 DOI: 10.1016/j.str.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
Monoclonal antibody L9 recognizes the Plasmodium falciparum circumsporozoite protein (PfCSP) and is highly protective following controlled human malaria challenge. To gain insight into its function, we determined cryoelectron microscopy (cryo-EM) structures of L9 in complex with full-length PfCSP and assessed how this recognition influenced protection by wild-type and mutant L9s. Cryo-EM reconstructions at 3.6- and 3.7-Å resolution revealed L9 to recognize PfCSP as an atypical trimer. Each of the three L9s in the trimer directly recognized an Asn-Pro-Asn-Val (NPNV) tetrapeptide on PfCSP and interacted homotypically to facilitate L9-trimer assembly. We analyzed peptides containing different repeat tetrapeptides for binding to wild-type and mutant L9s to delineate epitope and homotypic components of L9 recognition; we found both components necessary for potent malaria protection. Last, we found the 27-residue stretch recognized by L9 to be highly conserved in P. falciparum isolates, suggesting the newly revealed complete L9 epitope to be an attractive vaccine target.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haotian Lei
- Research Technology Branch Electron Microscopy Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lais Da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Facundo D Batista
- Departments of Immunology and Microbiology, Harvard Medical School, Boston, MA 02139, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
16
|
Kucharska I, Binter Š, Murugan R, Scally SW, Ludwig J, Prieto K, Thai E, Costa G, Li K, Horn GQ, Flores-Garcia Y, Bosch A, Sicard T, Rubinstein JL, Zavala F, Dennison SM, Tomaras GD, Levashina EA, Kellam P, Wardemann H, Julien JP. High-density binding to Plasmodium falciparum circumsporozoite protein repeats by inhibitory antibody elicited in mouse with human immunoglobulin repertoire. PLoS Pathog 2022; 18:e1010999. [PMID: 36441829 PMCID: PMC9762590 DOI: 10.1371/journal.ppat.1010999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Špela Binter
- Kymab Ltd., The Bennet Building (B930) Babraham Research Campus, Cambridge, United Kingdom
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Stephen W. Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Julia Ludwig
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kan Li
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Gillian Q. Horn
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - John L. Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - S. Moses Dennison
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Elena A. Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Paul Kellam
- Kymab Ltd., The Bennet Building (B930) Babraham Research Campus, Cambridge, United Kingdom
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Banach BB, Tripathi P, Da Silva Pereira L, Gorman J, Nguyen TD, Dillon M, Fahad AS, Kiyuka PK, Madan B, Wolfe JR, Bonilla B, Flynn B, Francica JR, Hurlburt NK, Kisalu NK, Liu T, Ou L, Rawi R, Schön A, Shen CH, Teng IT, Zhang B, Pancera M, Idris AH, Seder RA, Kwong PD, DeKosky BJ. Highly protective antimalarial antibodies via precision library generation and yeast display screening. J Exp Med 2022; 219:e20220323. [PMID: 35736810 PMCID: PMC9242090 DOI: 10.1084/jem.20220323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023] Open
Abstract
The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.
Collapse
Affiliation(s)
- Bailey B. Banach
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Lais Da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Ahmed S. Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Jacy R. Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
| | - Brian Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Barbara Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Nicholas K. Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Brandon J. DeKosky
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
18
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
19
|
Antibody homotypic interactions are encoded by germline light chain complementarity determining region 2. Proc Natl Acad Sci U S A 2022; 119:e2201562119. [PMID: 35653561 PMCID: PMC9191654 DOI: 10.1073/pnas.2201562119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Weak transient interactions are fundamental to immune responses, enabling avidity-driven triggers for pathogen neutralization and cellular regulation. In contrast to obligate binding interactions that can be directly investigated structurally, the low or transitory abundance of weak interactions make them difficult to identify and characterize. This study leverages receptor agonism systems that are sensitive to oligomerization to investigate transient homotypic interfaces between antibody Fab regions. Our results show that self-association determinants are encoded naturally by the antibody germline through light chain complementarity determining region 2 (CDRL2), and these determinants can be engineered into antibodies to enhance their therapeutic properties. Insights into avidity-driven interactions create opportunities for optimization, and accordingly this work expands the engineering toolbox for antibody-based drugs. The utilization of avidity to drive and tune functional responses is fundamental to antibody biology and often underlies the mechanisms of action of monoclonal antibody drugs. There is increasing evidence that antibodies leverage homotypic interactions to enhance avidity, often through weak transient interfaces whereby self-association is coupled with target binding. Here, we comprehensively map the Fab–Fab interfaces of antibodies targeting DR5 and 4-1BB that utilize homotypic interaction to promote receptor activation and demonstrate that both antibodies have similar self-association determinants primarily encoded within a germline light chain complementarity determining region 2 (CDRL2). We further show that these determinants can be grafted onto antibodies of distinct target specificity to substantially enhance their activity. An expanded characterization of all unique germline CDRL2 sequences reveals additional self-association sequence determinants encoded in the human germline repertoire. Our results suggest that this phenomenon is unique to CDRL2, and is correlated with the less frequent antigen interaction and lower somatic hypermutation associated with this loop. This work reveals a previously unknown avidity mechanism in antibody native biology that can be exploited for the engineering of biotherapeutics.
Collapse
|
20
|
Moehrle JJ. Development of New Strategies for Malaria Chemoprophylaxis: From Monoclonal Antibodies to Long-Acting Injectable Drugs. Trop Med Infect Dis 2022; 7:tropicalmed7040058. [PMID: 35448833 PMCID: PMC9024890 DOI: 10.3390/tropicalmed7040058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Drug discovery for malaria has traditionally focused on orally available drugs that kill the abundant, parasitic blood stage. Recently, there has also been an interest in injectable medicines, in the form of monoclonal antibodies (mAbs) with long-lasting plasma half-lives or long-lasting depot formulations of small molecules. These could act as prophylactic drugs, targeting the sporozoites and other earlier parasitic stages in the liver, when the parasites are less numerous, or as another intervention strategy targeting the formation of infectious gametocytes. Generally speaking, the development of mAbs is less risky (costly) than small-molecule drugs, and they have an excellent safety profile with few or no off-target effects. Therefore, populations who are the most vulnerable to malaria, i.e., pregnant women and young children would have access to such new treatments much faster than is presently the case for new antimalarials. An analysis of mAbs that were successfully developed for oncology illustrates some of the feasibility aspects, and their potential as affordable drugs in low- and middle-income countries.
Collapse
Affiliation(s)
- Joerg J Moehrle
- Integrated Sciences, R&D, Medicines for Malaria Venture, Route de Pré Bois 20, CH-1215 Geneva 15, Switzerland
| |
Collapse
|
21
|
Beutler N, Pholcharee T, Oyen D, Flores-Garcia Y, MacGill RS, Garcia E, Calla J, Parren M, Yang L, Volkmuth W, Locke E, Regules JA, Dutta S, Emerling D, Early AM, Neafsey DE, Winzeler EA, King CR, Zavala F, Burton DR, Wilson IA, Rogers TF. A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathog 2022; 18:e1010409. [PMID: 35344575 PMCID: PMC8989322 DOI: 10.1371/journal.ppat.1010409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/07/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved β-sheet face of the ctCSP (denoted β-ctCSP). Antibodies to the β-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the β-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.
Collapse
Affiliation(s)
- Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Randall S. MacGill
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jaeson Calla
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Linlin Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wayne Volkmuth
- Atreca Inc., South San Francisco, California, United States of America
| | - Emily Locke
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Jason A. Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Daniel Emerling
- Atreca Inc., South San Francisco, California, United States of America
| | - Angela M. Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - C. Richter King
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
22
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
23
|
Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. Nat Commun 2022; 13:933. [PMID: 35177602 PMCID: PMC8854392 DOI: 10.1038/s41467-022-28601-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 01/01/2023] Open
Abstract
Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets. Antibodies can have synergistic effects, but mechanisms are not well understood. Here, Ragotte et al. identify three antibodies that bind neighbouring epitopes on CyRPA, a malaria vaccine candidate, and show that lateral interactions between the antibodies slow dissociation and inhibit parasite growth synergistically.
Collapse
|
24
|
Wang LT, Hurlburt NK, Schön A, Flynn BJ, Flores-Garcia Y, Pereira LS, Kiyuka PK, Dillon M, Bonilla B, Zavala F, Idris AH, Francica JR, Pancera M, Seder RA. The light chain of the L9 antibody is critical for binding circumsporozoite protein minor repeats and preventing malaria. Cell Rep 2022; 38:110367. [PMID: 35172158 PMCID: PMC8896312 DOI: 10.1016/j.celrep.2022.110367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 01/23/2023] Open
Abstract
L9 is a potent human monoclonal antibody (mAb) that preferentially binds two adjacent NVDP minor repeats and cross-reacts with NANP major repeats of the Plasmodium falciparum circumsporozoite protein (PfCSP) on malaria-infective sporozoites. Understanding this mAb's ontogeny and mechanisms of binding PfCSP will facilitate vaccine development. Here, we isolate mAbs clonally related to L9 and show that this B cell lineage has baseline NVDP affinity and evolves to acquire NANP reactivity. Pairing the L9 kappa light chain (L9κ) with clonally related heavy chains results in chimeric mAbs that cross-link two NVDPs, cross-react with NANP, and more potently neutralize sporozoites in vivo compared with their original light chain. Structural analyses reveal that the chimeric mAbs bound minor repeats in a type-1 β-turn seen in other repeat-specific antibodies. These data highlight the importance of L9κ in binding NVDP on PfCSP to neutralize sporozoites and suggest that PfCSP-based immunogens might be improved by presenting ≥2 NVDPs.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas K Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patience K Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Wahl I, Wardemann H. How to induce protective humoral immunity against Plasmodium falciparum circumsporozoite protein. J Exp Med 2022; 219:212951. [PMID: 35006242 PMCID: PMC8754000 DOI: 10.1084/jem.20201313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
26
|
Langowski MD, Khan FA, Savransky S, Brown DR, Balasubramaniyam A, Harrison WB, Zou X, Beck Z, Matyas GR, Regules JA, Miller R, Soisson LA, Batchelor AH, Dutta S. Restricted valency (NPNA) n repeats and junctional epitope-based circumsporozoite protein vaccines against Plasmodium falciparum. NPJ Vaccines 2022; 7:13. [PMID: 35087099 PMCID: PMC8795123 DOI: 10.1038/s41541-022-00430-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
The Circumsporozoite Protein (CSP) of Plasmodium falciparum contains an N-terminal region, a conserved Region I (RI), a junctional region, 25-42 copies of major (NPNA) and minor repeats followed by a C-terminal domain. The recently approved malaria vaccine, RTS,S/AS01 contains NPNAx19 and the C-terminal region of CSP. The efficacy of RTS,S against natural infection is low and short-lived, and mapping epitopes of inhibitory monoclonal antibodies may allow for rational improvement of CSP vaccines. Tobacco Mosaic Virus (TMV) was used here to display the junctional epitope (mAb CIS43), Region I (mAb 5D5), NPNAx5, and NPNAx20 epitope of CSP (mAbs 317 and 580). Protection studies in mice revealed that Region I did not elicit protective antibodies, and polyclonal antibodies against the junctional epitope showed equivalent protection to NPNAx5. Combining the junctional and NPNAx5 epitopes reduced immunogenicity and efficacy, and increasing the repeat valency to NPNAx20 did not improve upon NPNAx5. TMV was confirmed as a versatile vaccine platform for displaying small epitopes defined by neutralizing mAbs. We show that polyclonal antibodies against engineered VLPs can recapitulate the binding specificity of the mAbs and immune-focusing by reducing the structural complexity of an epitope may be superior to immune-broadening as a vaccine design approach. Most importantly the junctional and restricted valency NPNA epitopes can be the basis for developing highly effective second-generation malaria vaccine candidates.
Collapse
Affiliation(s)
- Mark D Langowski
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Farhat A Khan
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sofya Savransky
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dallas R Brown
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Arasu Balasubramaniyam
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - William B Harrison
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Zoltan Beck
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Pfizer, 401N Middletown Rd, Pearl River, NY, 10965, USA
| | - Gary R Matyas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason A Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Robin Miller
- United States Agency for International Development, Washington, DC, USA
| | | | - Adrian H Batchelor
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
27
|
Kucharska I, Hossain L, Ivanochko D, Yang Q, Rubinstein JL, Pomès R, Julien JP. Structural basis of Plasmodium vivax inhibition by antibodies binding to the circumsporozoite protein repeats. eLife 2022; 11:e72908. [PMID: 35023832 PMCID: PMC8809896 DOI: 10.7554/elife.72908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is a global health burden, with Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) responsible for the majority of infections worldwide. Circumsporozoite protein (CSP) is the most abundant protein on the surface of Plasmodium sporozoites, and antibodies targeting the central repeat region of CSP can prevent parasite infection. Although much has been uncovered about the molecular basis of antibody recognition of the PfCSP repeats, data remains scarce for PvCSP. Here, we performed molecular dynamics simulations for peptides comprising the PvCSP repeats from strains VK210 and VK247 to reveal how the PvCSP central repeats are highly disordered, with minor propensities to adopt turn conformations. Next, we solved eight crystal structures to unveil the interactions of two inhibitory monoclonal antibodies (mAbs), 2F2 and 2E10.E9, with PvCSP repeats. Both antibodies can accommodate subtle sequence variances in the repeat motifs and recognize largely coiled peptide conformations that also contain isolated turns. Our structural studies uncover various degrees of Fab-Fab homotypic interactions upon recognition of the PvCSP central repeats by these two inhibitory mAbs, similar to potent mAbs against PfCSP. These findings augment our understanding of host-Plasmodium interactions and contribute molecular details of Pv inhibition by mAbs to unlock structure-based engineering of PvCSP-based vaccines.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Lamia Hossain
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Qiren Yang
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Régis Pomès
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Immunology, University of TorontoTorontoCanada
| |
Collapse
|
28
|
Sangesland M, Lingwood D. Public Immunity: Evolutionary Spandrels for Pathway-Amplifying Protective Antibodies. Front Immunol 2021; 12:708882. [PMID: 34956170 PMCID: PMC8696009 DOI: 10.3389/fimmu.2021.708882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Humoral immunity is seeded by affinity between the B cell receptor (BCR) and cognate antigen. While the BCR is a chimeric display of diverse antigen engagement solutions, we discuss its functional activity as an ‘innate-like’ immune receptor, wherein genetically hardwired antigen complementarity can serve as reproducible templates for pathway-amplifying otherwise immunologically recessive antibody responses. We propose that the capacity for germline reactivity to new antigen emerged as a set of evolutionary spandrels or coupled traits, which can now be exploited by rational vaccine design to focus humoral immunity upon conventionally immune-subdominant antibody targets. Accordingly, we suggest that evolutionary spandrels account for the necessary but unanticipated antigen reactivity of the germline antibody repertoire.
Collapse
Affiliation(s)
- Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
29
|
Vaccination in a humanized mouse model elicits highly protective PfCSP-targeting anti-malarial antibodies. Immunity 2021; 54:2859-2876.e7. [PMID: 34788599 PMCID: PMC9087378 DOI: 10.1016/j.immuni.2021.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.
Collapse
|
30
|
Wang LT, Pereira LS, Kiyuka PK, Schön A, Kisalu NK, Vistein R, Dillon M, Bonilla BG, Molina-Cruz A, Barillas-Mury C, Tan J, Idris AH, Francica JR, Seder RA. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog 2021; 17:e1010133. [PMID: 34871332 PMCID: PMC8675929 DOI: 10.1371/journal.ppat.1010133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human "repeat" mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.
Collapse
Affiliation(s)
- Lawrence T. Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lais S. Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian G. Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
31
|
Ronsard L, Yousif AS, Peabody J, Okonkwo V, Devant P, Mogus AT, Barnes RM, Rohrer D, Lonberg N, Peabody D, Chackerian B, Lingwood D. Engineering an Antibody V Gene-Selective Vaccine. Front Immunol 2021; 12:730471. [PMID: 34566992 PMCID: PMC8459710 DOI: 10.3389/fimmu.2021.730471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The ligand-binding surface of the B cell receptor (BCR) is formed by encoded and non-encoded antigen complementarity determining regions (CDRs). Genetically reproducible or ‘public’ antibodies can arise when the encoded CDRs play deterministic roles in antigen recognition, notably within human broadly neutralizing antibodies against HIV and influenza virus. We sought to exploit this by engineering virus-like-particle (VLP) vaccines that harbor multivalent affinity against gene-encoded moieties of the BCR antigen binding site. As proof of concept, we deployed a library of RNA bacteriophage VLPs displaying random peptides to identify a multivalent antigen that selectively triggered germline BCRs using the human VH gene IGVH1-2*02. This VLP selectively primed IGHV1-2*02 BCRs that were present within a highly diversified germline antibody repertoire within humanized mice. Our approach thus provides methodology to generate antigens that engage specific BCR configurations of interest, in the absence of structure-based information.
Collapse
Affiliation(s)
- Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Julianne Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Vintus Okonkwo
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Pascal Devant
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Alemu Tekewe Mogus
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | | | - Daniel Rohrer
- Bristol-Myers Squibb, Redwood City, CA, United States
| | - Nils Lonberg
- Bristol-Myers Squibb, Redwood City, CA, United States
| | - David Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| |
Collapse
|
32
|
Cools T, Jeanpierre M, Soulard V. [L9, a novel and promising monoclonal antibody against Malaria]. Med Sci (Paris) 2021; 37:807-811. [PMID: 34491193 DOI: 10.1051/medsci/2021125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dans le cadre de leur module d’analyse scientifique, des étudiants de la promotion 2020-2021 des Master 2 « Immunologie Translationnelle et Biothérapies » (ITB) et « Immunologie Intégrative et Systémique » (I2S) (Mention Biologie Moléculaire et Cellulaire, Parcours Immunologie, Sorbonne Université) se sont penchés sur la littérature et ont pris la plume pour partager avec les lecteurs de m/s quelques-uns des faits marquants de l’actualité en immunologie. Voici une sélection de quelques-unes de ces nouvelles, illustrant la large palette des axes de recherche en cours sur les mécanismes physiopathologiques des maladies infectieuses, auto-immunes, inflammatoires et tumorales et sur le développement d’immunothérapies pour le traitement de ces maladies.
Collapse
Affiliation(s)
- Théo Cools
- Master 2 Immunologie Translationnelle et Biothérapies (ITB), Parcours Immunologie, Mention BMC, Sorbonne Université, Paris, France
| | - Marie Jeanpierre
- Master 2 Immunologie Translationnelle et Biothérapies (ITB), Parcours Immunologie, Mention BMC, Sorbonne Université, Paris, France
| | - Valérie Soulard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses-Paris, CIMI-PARIS, 75013 Paris, France
| |
Collapse
|
33
|
Gaudinski MR, Berkowitz NM, Idris AH, Coates EE, Holman LA, Mendoza F, Gordon IJ, Plummer SH, Trofymenko O, Hu Z, Campos Chagas A, O'Connell S, Basappa M, Douek N, Narpala SR, Barry CR, Widge AT, Hicks R, Awan SF, Wu RL, Hickman S, Wycuff D, Stein JA, Case C, Evans BP, Carlton K, Gall JG, Vazquez S, Flach B, Chen GL, Francica JR, Flynn BJ, Kisalu NK, Capparelli EV, McDermott A, Mascola JR, Ledgerwood JE, Seder RA. A Monoclonal Antibody for Malaria Prevention. N Engl J Med 2021; 385:803-814. [PMID: 34379916 PMCID: PMC8579034 DOI: 10.1056/nejmoa2034031] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Additional interventions are needed to reduce the morbidity and mortality caused by malaria. METHODS We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with Plasmodium falciparum. Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria. Participants received CIS43LS subcutaneously or intravenously at one of three escalating dose levels. A subgroup of participants from Part A continued to Part B, and some received a second CIS43LS infusion. Additional participants were enrolled in Part B and received CIS43LS intravenously. To assess the protective efficacy of CIS43LS, some participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying P. falciparum sporozoites 4 to 36 weeks after administration of CIS43LS. RESULTS A total of 25 participants received CIS43LS at a dose of 5 mg per kilogram of body weight, 20 mg per kilogram, or 40 mg per kilogram, and 4 of the 25 participants received a second dose (20 mg per kilogram regardless of initial dose). No safety concerns were identified. We observed dose-dependent increases in CIS43LS serum concentrations, with a half-life of 56 days. None of the 9 participants who received CIS43LS, as compared with 5 of 6 control participants who did not receive CIS43LS, had parasitemia according to polymerase-chain-reaction testing through 21 days after controlled human malaria infection. Two participants who received 40 mg per kilogram of CIS43LS and underwent controlled human malaria infection approximately 36 weeks later had no parasitemia, with serum concentrations of CIS43LS of 46 and 57 μg per milliliter at the time of controlled human malaria infection. CONCLUSIONS Among adults who had never had malaria infection or vaccination, administration of the long-acting monoclonal antibody CIS43LS prevented malaria after controlled infection. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 612 ClinicalTrials.gov number, NCT04206332.).
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Protozoan/blood
- Antimalarials/administration & dosage
- Antimalarials/adverse effects
- Antimalarials/pharmacokinetics
- Antimalarials/therapeutic use
- Dose-Response Relationship, Drug
- Healthy Volunteers
- Humans
- Infusions, Intravenous/adverse effects
- Injections, Subcutaneous/adverse effects
- Malaria, Falciparum/prevention & control
- Middle Aged
- Plasmodium falciparum/immunology
- Plasmodium falciparum/isolation & purification
Collapse
Affiliation(s)
- Martin R Gaudinski
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Nina M Berkowitz
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Azza H Idris
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Emily E Coates
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - LaSonji A Holman
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Floreliz Mendoza
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Ingelise J Gordon
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Sarah H Plummer
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Olga Trofymenko
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Zonghui Hu
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Andrezza Campos Chagas
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Sarah O'Connell
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Manjula Basappa
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Naomi Douek
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Sandeep R Narpala
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Christopher R Barry
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Alicia T Widge
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Renunda Hicks
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Seemal F Awan
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Richard L Wu
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Somia Hickman
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Diane Wycuff
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Judy A Stein
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Christopher Case
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Brian P Evans
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Kevin Carlton
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Jason G Gall
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Sandra Vazquez
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Britta Flach
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Grace L Chen
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Joseph R Francica
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Barbara J Flynn
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Neville K Kisalu
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Edmund V Capparelli
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Adrian McDermott
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - John R Mascola
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Julie E Ledgerwood
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| | - Robert A Seder
- From the Vaccine Research Center (M.R.G., N.M.B., A.H.I., E.E.C., L.A.H., F.M., I.J.G., S.H.P., O.T., S.O., M.B., N.D., S.R.N., C.R.B., A.T.W., R.H., S.F.A., R.L.W., S.H., D.W., J.A.S., K.C., J.G.G., S.V., B.F., G.L.C., J.R.F., B.J.F., N.K.K., A.M., J.R.M., J.E.L., R.A.S.) and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, the U.S. Public Health Service Commissioned Corps, Rockville (M.R.G.), the Entomology Branch, Walter Reed Army Institute of Research, Silver Spring (A.C.C., B.P.E.), and the Vaccine Clinical Materials Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick (C.C.) - all in Maryland; and the School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego (E.V.C.)
| |
Collapse
|
34
|
Mikocziova I, Greiff V, Sollid LM. Immunoglobulin germline gene variation and its impact on human disease. Genes Immun 2021; 22:205-217. [PMID: 34175903 PMCID: PMC8234759 DOI: 10.1038/s41435-021-00145-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Immunoglobulins (Ig) play an important role in the immune system both when expressed as antigen receptors on the cell surface of B cells and as antibodies secreted into extracellular fluids. The advent of high-throughput sequencing methods has enabled the investigation of human Ig repertoires at unprecedented depth. This has led to the discovery of many previously unreported germline Ig alleles. Moreover, it is becoming clear that convergent and stereotypic antibody responses are common where different individuals recognise defined antigenic epitopes with the use of the same Ig V genes. Thus, germline V gene variation is increasingly being linked to the differential capacity of generating an effective immune response, which might lead to varying disease susceptibility. Here, we review recent evidence of how germline variation in Ig genes impacts the Ig repertoire and its subsequent effects on the adaptive immune response in vaccination, infection, and autoimmunity.
Collapse
Affiliation(s)
- Ivana Mikocziova
- Department of Immunology, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Ludvig M Sollid
- Department of Immunology, University of Oslo, Oslo, Norway.
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
35
|
Tan J, Cho H, Pholcharee T, Pereira LS, Doumbo S, Doumtabe D, Flynn BJ, Schön A, Kanatani S, Aylor SO, Oyen D, Vistein R, Wang L, Dillon M, Skinner J, Peterson M, Li S, Idris AH, Molina-Cruz A, Zhao M, Olano LR, Lee PJ, Roth A, Sinnis P, Barillas-Mury C, Kayentao K, Ongoiba A, Francica JR, Traore B, Wilson IA, Seder RA, Crompton PD. Functional human IgA targets a conserved site on malaria sporozoites. Sci Transl Med 2021; 13:eabg2344. [PMID: 34162751 PMCID: PMC7611206 DOI: 10.1126/scitranslmed.abg2344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.
Collapse
Affiliation(s)
- Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852, USA.
| | - Hyeseon Cho
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Samantha O Aylor
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - David Oyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lisa Renee Olano
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Patricia J Lee
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
36
|
Williams WB, Meyerhoff RR, Edwards RJ, Li H, Manne K, Nicely NI, Henderson R, Zhou Y, Janowska K, Mansouri K, Gobeil S, Evangelous T, Hora B, Berry M, Abuahmad AY, Sprenz J, Deyton M, Stalls V, Kopp M, Hsu AL, Borgnia MJ, Stewart-Jones GBE, Lee MS, Bronkema N, Moody MA, Wiehe K, Bradley T, Alam SM, Parks RJ, Foulger A, Oguin T, Sempowski GD, Bonsignori M, LaBranche CC, Montefiori DC, Seaman M, Santra S, Perfect J, Francica JR, Lynn GM, Aussedat B, Walkowicz WE, Laga R, Kelsoe G, Saunders KO, Fera D, Kwong PD, Seder RA, Bartesaghi A, Shaw GM, Acharya P, Haynes BF. Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell 2021; 184:2955-2972.e25. [PMID: 34019795 PMCID: PMC8135257 DOI: 10.1016/j.cell.2021.04.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023]
Abstract
Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.
Collapse
Affiliation(s)
- Wilton B Williams
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| | - R Ryan Meyerhoff
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - R J Edwards
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | - Rory Henderson
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | | | | | | | | | - Bhavna Hora
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | | | | | | | | | - Megan Kopp
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | - Matthew S Lee
- Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Naomi Bronkema
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | - Thomas Oguin
- Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - David C Montefiori
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Michael Seaman
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - John Perfect
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | - Geoffrey M Lynn
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA; Avidea Technologies, Inc., Baltimore, MD, USA
| | | | | | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA
| | - Peter D Kwong
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Biochemistry, Duke University, Durham, NC 27705, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Higgins MK. Staging an Antibody Contest to Fight Malaria. Immunity 2021; 53:697-699. [PMID: 33053324 DOI: 10.1016/j.immuni.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Immunity, Wang et al. report isolation of a human antibody derived from volunteers immunized during a malaria vaccine trial. This antibody binds a novel epitope and proves potent at preventing mosquito transmission of the malaria parasite.
Collapse
Affiliation(s)
- Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
38
|
Rapp M, Guo Y, Reddem ER, Yu J, Liu L, Wang P, Cerutti G, Katsamba P, Bimela JS, Bahna FA, Mannepalli SM, Zhang B, Kwong PD, Huang Y, Ho DD, Shapiro L, Sheng Z. Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class. Cell Rep 2021; 35:108950. [PMID: 33794145 PMCID: PMC7972811 DOI: 10.1016/j.celrep.2021.108950] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
Antibodies with heavy chains that derive from the VH1-2 gene constitute some of the most potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies yet identified. To provide insight into whether these genetic similarities inform common modes of recognition, we determine the structures of the SARS-CoV-2 spike in complex with three VH1-2-derived antibodies: 2-15, 2-43, and H4. All three use VH1-2-encoded motifs to recognize the receptor-binding domain (RBD), with heavy-chain N53I-enhancing binding and light-chain tyrosines recognizing F486RBD. Despite these similarities, class members bind both RBD-up and -down conformations of the spike, with a subset of antibodies using elongated CDRH3s to recognize glycan N343 on a neighboring RBD-a quaternary interaction accommodated by an increase in RBD separation of up to 12 Å. The VH1-2 antibody class, thus, uses modular recognition encoded by modular genetic elements to effect potent neutralization, with the VH-gene component specifying recognition of RBD and the CDRH3 component specifying quaternary interactions.
Collapse
Affiliation(s)
- Micah Rapp
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Eswar R Reddem
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gabriele Cerutti
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Phinikoula Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jude S Bimela
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fabiana A Bahna
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Seetha M Mannepalli
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
39
|
Chatterjee D, Lewis FJ, Sutton HJ, Kaczmarski JA, Gao X, Cai Y, McNamara HA, Jackson CJ, Cockburn IA. Avid binding by B cells to the Plasmodium circumsporozoite protein repeat suppresses responses to protective subdominant epitopes. Cell Rep 2021; 35:108996. [PMID: 33852850 PMCID: PMC8052187 DOI: 10.1016/j.celrep.2021.108996] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/07/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Antibodies targeting the NANP/NVDP repeat domain of the Plasmodium falciparum circumsporozoite protein (CSPRepeat) can protect against malaria. However, it has also been suggested that the CSPRepeat is a decoy that prevents the immune system from mounting responses against other domains of CSP. Here, we show that, following parasite immunization, B cell responses to the CSPRepeat are immunodominant over responses to other CSP domains despite the presence of similar numbers of naive B cells able to bind these regions. We find that this immunodominance is driven by avid binding of the CSPRepeat to cognate B cells that are able to expand at the expense of B cells with other specificities. We further show that mice immunized with repeat-truncated CSP molecules develop responses to subdominant epitopes and are protected against malaria. These data demonstrate that the CSPRepeat functions as a decoy, but truncated CSP molecules may be an approach for malaria vaccination.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Fiona J Lewis
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Henry J Sutton
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Gao
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yeping Cai
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Hayley A McNamara
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
40
|
Thai E, Costa G, Weyrich A, Murugan R, Oyen D, Flores-Garcia Y, Prieto K, Bosch A, Valleriani A, Wu NC, Pholcharee T, Scally SW, Wilson IA, Wardemann H, Julien JP, Levashina EA. A high-affinity antibody against the CSP N-terminal domain lacks Plasmodium falciparum inhibitory activity. J Exp Med 2021; 217:152019. [PMID: 32790871 PMCID: PMC7596816 DOI: 10.1084/jem.20200061] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 11/04/2022] Open
Abstract
Malaria is a global health concern, and research efforts are ongoing to develop a superior vaccine to RTS,S/AS01. To guide immunogen design, we seek a comprehensive understanding of the protective humoral response against Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). In contrast to the well-studied responses to the repeat region and the C-terminus, the antibody response against the N-terminal domain of PfCSP (N-CSP) remains obscure. Here, we characterized the molecular recognition and functional efficacy of the N-CSP-specific monoclonal antibody 5D5. The crystal structure at 1.85-Å resolution revealed that 5D5 binds an α-helical epitope in N-CSP with high affinity through extensive shape and charge complementarity and the unusual utilization of an antibody N-linked glycan. Nevertheless, functional studies indicated low 5D5 binding to live Pf sporozoites and lack of sporozoite inhibition in vitro and in vivo. Overall, our data do not support the inclusion of the 5D5 N-CSP epitope into the next generation of CSP-based vaccines.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anna Weyrich
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Institute, Heidelberg, Germany
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Angelo Valleriani
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Institute, Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
41
|
Livingstone MC, Bitzer AA, Giri A, Luo K, Sankhala RS, Choe M, Zou X, Dennison SM, Li Y, Washington W, Ngauy V, Tomaras GD, Joyce MG, Batchelor AH, Dutta S. In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Sci Rep 2021; 11:5318. [PMID: 33674699 PMCID: PMC7970865 DOI: 10.1038/s41598-021-84622-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/11/2021] [Indexed: 01/23/2023] Open
Abstract
Plasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.
Collapse
Affiliation(s)
- Merricka C Livingstone
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alexis A Bitzer
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alish Giri
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kun Luo
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rajeshwer S Sankhala
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Yuanzhang Li
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - William Washington
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Viseth Ngauy
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
- Departments of Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - M Gordon Joyce
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Adrian H Batchelor
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
42
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
43
|
Pholcharee T, Oyen D, Flores-Garcia Y, Gonzalez-Paez G, Han Z, Williams KL, Volkmuth W, Emerling D, Locke E, Richter King C, Zavala F, Wilson IA. Structural and biophysical correlation of anti-NANP antibodies with in vivo protection against P. falciparum. Nat Commun 2021; 12:1063. [PMID: 33594061 PMCID: PMC7887213 DOI: 10.1038/s41467-021-21221-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
The most advanced P. falciparum circumsporozoite protein-based malaria vaccine, RTS,S/AS01 (RTS,S), confers partial protection but with antibody titers that wane relatively rapidly, highlighting the need to elicit more potent and durable antibody responses. Here, we elucidate crystal structures, binding affinities and kinetics, and in vivo protection of eight anti-NANP antibodies derived from an RTS,S phase 2a trial and encoded by three different heavy-chain germline genes. The structures reinforce the importance of homotypic Fab-Fab interactions in protective antibodies and the overwhelmingly dominant preference for a germline-encoded aromatic residue for recognition of the NANP motif. In this study, antibody apparent affinity correlates best with protection in an in vivo mouse model, with the more potent antibodies also recognizing epitopes with repeating secondary structural motifs of type I β- and Asn pseudo 310 turns; such insights can be incorporated into design of more effective immunogens and antibodies for passive immunization.
Collapse
Affiliation(s)
- Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Pfizer Inc, San Diego, CA, USA
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gonzalo Gonzalez-Paez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zhen Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Wondfo USA Co., Ltd, San Diego, CA, USA
| | | | | | | | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, DC, USA
| | | | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
44
|
Chatterjee D, Cockburn IA. The challenges of a circumsporozoite protein-based malaria vaccine. Expert Rev Vaccines 2021; 20:113-125. [PMID: 33554669 DOI: 10.1080/14760584.2021.1874924] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A safe and effective vaccine will likely be necessary for the control or eradication of malaria which kills 400,000 annually. Our most advanced vaccine candidate to date is RTS,S which is based on the Plasmodium falciparum circumsporozoite protein (PfCSP) of the malaria parasite. However, protection by RTS,S is incomplete and short-lived. AREAS COVERED Here we summarize results from recent clinical trials of RTS,S and critically evaluate recent studies that aim to understand the correlates of protective immunity and why vaccine-induced protection is short-lived. In particular, recent systems serology studies have highlighted a key role for the necessity of inducing functional antibodies. In-depth analyses of immune responses to CSP in both mouse models and vaccinated humans have also highlighted difficulties in generating the maintaining high-quality antibody responses. Finally, in recent years biophysical and structural studies of antibody binding to PfCSP have led to a better understanding of how highly potent antibodies can block infection, which can inform vaccine design. EXPERT OPINION We highlight how both structure-guided vaccine design and a better understanding of the immune response to PfCSP can inform a second generation of PfCSP-based vaccines stimulating a broader range of protective targets within PfCSP.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Ian Andrew Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| |
Collapse
|
45
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Kucharska I, Thai E, Srivastava A, Rubinstein JL, Pomès R, Julien JP. Structural ordering of the Plasmodium berghei circumsporozoite protein repeats by inhibitory antibody 3D11. eLife 2020; 9:e59018. [PMID: 33253113 PMCID: PMC7704109 DOI: 10.7554/elife.59018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Plasmodium sporozoites express circumsporozoite protein (CSP) on their surface, an essential protein that contains central repeating motifs. Antibodies targeting this region can neutralize infection, and the partial efficacy of RTS,S/AS01 - the leading malaria vaccine against P. falciparum (Pf) - has been associated with the humoral response against the repeats. Although structural details of antibody recognition of PfCSP have recently emerged, the molecular basis of antibody-mediated inhibition of other Plasmodium species via CSP binding remains unclear. Here, we analyze the structure and molecular interactions of potent monoclonal antibody (mAb) 3D11 binding to P. berghei CSP (PbCSP) using molecular dynamics simulations, X-ray crystallography, and cryoEM. We reveal that mAb 3D11 can accommodate all subtle variances of the PbCSP repeating motifs, and, upon binding, induces structural ordering of PbCSP through homotypic interactions. Together, our findings uncover common mechanisms of antibody evolution in mammals against the CSP repeats of Plasmodium sporozoites.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Ananya Srivastava
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Régis Pomès
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Immunology, University of TorontoTorontoCanada
| |
Collapse
|
47
|
Yan L, Wang S. Shaping Polyclonal Responses via Antigen-Mediated Antibody Interference. iScience 2020; 23:101568. [PMID: 33083735 PMCID: PMC7530306 DOI: 10.1016/j.isci.2020.101568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/05/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) recognize conserved features of rapidly mutating pathogens and confer universal protection, but they emerge rarely in natural infection. Increasing evidence indicates that seemingly passive antibodies may interfere with natural selection of B cells. Yet, how such interference modulates polyclonal responses is unknown. Here we provide a framework for understanding the role of antibody interference—mediated by multi-epitope antigens—in shaping B cell clonal makeup and the fate of bnAb lineages. We find that, under heterogeneous interference, clones with different intrinsic fitness can collectively persist. Furthermore, antagonism among fit clones (specific for variable epitopes) promotes expansion of unfit clones (targeting conserved epitopes), at the cost of repertoire potency. This trade-off, however, can be alleviated by synergy toward the unfit. Our results provide a physical basis for antigen-mediated clonal interactions, stress system-level impacts of molecular synergy and antagonism, and offer principles to amplify naturally rare clones. Multi-epitope antigens mediate antibody interference that couples B cell lineages Trade-off exists between repertoire potency and persistence of broad lineages Antigen-mediated synergy toward intrinsically unfit clones alleviates the trade-off Amplifying rare clones by leveraging molecular interference structure
Collapse
Affiliation(s)
- Le Yan
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Coelho CH, Duffy PE. Unwanted Feedback: Malaria Antibodies Hinder Vaccine Boosting. Cell Host Microbe 2020; 28:504-506. [PMID: 33031767 PMCID: PMC7540281 DOI: 10.1016/j.chom.2020.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-organism vaccination is a promising approach to prevent malaria. In this issue of Cell Host & Microbe, McNamara and colleagues identify epitope masking as a hindrance to antibody boosting after repeated administration of attenuated Plasmodium falciparum sporozoite vaccine.
Collapse
Affiliation(s)
- Camila H Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Wang LT, Pereira LS, Flores-Garcia Y, O'Connor J, Flynn BJ, Schön A, Hurlburt NK, Dillon M, Yang ASP, Fabra-García A, Idris AH, Mayer BT, Gerber MW, Gottardo R, Mason RD, Cavett N, Ballard RB, Kisalu NK, Molina-Cruz A, Nelson J, Vistein R, Barillas-Mury C, Amino R, Baker D, King NP, Sauerwein RW, Pancera M, Cockburn IA, Zavala F, Francica JR, Seder RA. A Potent Anti-Malarial Human Monoclonal Antibody Targets Circumsporozoite Protein Minor Repeats and Neutralizes Sporozoites in the Liver. Immunity 2020; 53:733-744.e8. [PMID: 32946741 PMCID: PMC7572793 DOI: 10.1016/j.immuni.2020.08.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023]
Abstract
Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - James O'Connor
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia; The Australian National University Medical School, Canberra, ACT 2601, Australia
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas K Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amanda Fabra-García
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Monica W Gerber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Cavett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reid B Ballard
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jorgen Nelson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Neil P King
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Robert W Sauerwein
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ian A Cockburn
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Thompson HA, Hogan AB, Walker PGT, White MT, Cunnington AJ, Ockenhouse CF, Ghani AC. Modelling the roles of antibody titre and avidity in protection from Plasmodium falciparum malaria infection following RTS,S/AS01 vaccination. Vaccine 2020; 38:7498-7507. [PMID: 33041104 PMCID: PMC7607256 DOI: 10.1016/j.vaccine.2020.09.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Models capturing key malaria life-cycle stages can help us evaluate vaccine candidates. Model fitting revealed antibody avidity to be an important determinant of RTS,S vaccine efficacy. High avidity and titre were associated with increased levels of vaccine efficacy. Did not identify any thresholds of protection for either immune marker.
Anti-circumsporozoite antibody titres have been established as an essential indicator for evaluating the immunogenicity and protective capacity of the RTS,S/AS01 malaria vaccine. However, a new delayed-fractional dose regime of the vaccine was recently shown to increase vaccine efficacy, from 62.5% (95% CI 29.4–80.1%) under the original dosing schedule to 86.7% (95% CI, 66.8–94.6%) without a corresponding increase in antibody titres. Here we reanalyse the antibody data from this challenge trial to determine whether IgG avidity may help to explain efficacy better than IgG titre alone by adapting a within-host mathematical model of sporozoite inoculation. We demonstrate that a model incorporating titre and avidity provides a substantially better fit to the data than titre alone. These results also suggest that in individuals with a high antibody titre response that also show high avidity (both metrics in the top tercile of observed values) delayed-fractional vaccination provided near perfect protection upon first challenge (98.2% [95% Credible Interval 91.6–99.7%]). This finding suggests that the quality of the vaccine induced antibody response is likely to be an important determinant in the development of highly efficacious pre-erythrocytic vaccines against malaria.
Collapse
Affiliation(s)
- Hayley A Thompson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom.
| | - Alexandra B Hogan
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Patrick G T Walker
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Michael T White
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | | | | | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|