1
|
Cañete PF, Yu D. Follicular T cells and the control of IgE responses. Allergol Int 2024:S1323-8930(24)00115-1. [PMID: 39455298 DOI: 10.1016/j.alit.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Atopy is considered the epidemic of the 21st century, and while decades of research have established a direct link between Th2 cells driving pathogenic IgE-mediated allergic disease, only in the past years have T follicular helper (Tfh) cells emerged as pivotal drivers of these responses. In this review, we will examine the molecular mechanisms governing the IgE response, with a particular emphasis on the key cytokines and signaling pathways. We will discuss the exclusion of IgE-producing B cells from germinal centers and explore the recently established role of follicular T cell function and heterogeneity in driving or curtailing these immune responses. Additionally, we will assess the current state of major monoclonal antibodies and allergen immunotherapies designed to counteract Th2-driven inflammation, as well as reflect on the need to investigate how these biologics impact Tfh cell activity, differentiation, and function, as these insights could pave the way for much-needed therapeutic innovation in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Pablo F Cañete
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Geiselhöringer AL, Kolland D, Patt AJ, Hammann L, Köhler A, Kreft L, Wichmann N, Hils M, Ruedl C, Riemann M, Biedermann T, Anz D, Diefenbach A, Voehringer D, Schmidt-Weber CB, Straub T, Pasztoi M, Ohnmacht C. Dominant immune tolerance in the intestinal tract imposed by RelB-dependent migratory dendritic cells regulates protective type 2 immunity. Nat Commun 2024; 15:9143. [PMID: 39443450 PMCID: PMC11500181 DOI: 10.1038/s41467-024-53112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Dendritic cells (DCs) are crucial for initiating protective immune responses and have also been implicated in the generation and regulation of Foxp3+ regulatory T cells (Treg cells). Here, we show that in the lamina propria of the small intestine, the alternative NF-κB family member RelB is necessary for the differentiation of cryptopatch and isolated lymphoid follicle-associated DCs (CIA-DCs). Moreover, single-cell RNA sequencing reveals a RelB-dependent signature in migratory DCs in mesenteric lymph nodes favoring DC-Treg cell interaction including elevated expression and release of the chemokine CCL22 from RelB-deficient conventional DCs (cDCs). In line with the key role of CCL22 to facilitate DC-Treg cell interaction, RelB-deficient DCs have a selective advantage to interact with Treg cells in an antigen-specific manner. In addition, DC-specific RelB knockout animals show increased total Foxp3+ Treg cell numbers irrespective of inflammatory status. Consequently, DC-specific RelB knockout animals fail to mount protective Th2-dominated immune responses in the intestine after infection with Heligmosomoides polygyrus bakeri. Thus, RelB expression in cDCs acts as a rheostat to establish a tolerogenic set point that is maintained even during strong type 2 immune conditions and thereby is a key regulator of intestinal homeostasis.
Collapse
Affiliation(s)
- Anna-Lena Geiselhöringer
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Daphne Kolland
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Arisha Johanna Patt
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Linda Hammann
- Division of Clinical Pharmacology, LMU University Hospital, LMU, Munich, Germany
| | - Amelie Köhler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Luisa Kreft
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076, Tuebingen, Germany
| | - Nina Wichmann
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Marc Riemann
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - David Anz
- Division of Clinical Pharmacology, LMU University Hospital, LMU, Munich, Germany
- Department of Medicine II, LMU University Hospital, LMU, Munich, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, 91054, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Unit, Biomedical Center, Ludwig-Maximilians-University, 82152, Planegg, Germany
| | - Maria Pasztoi
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
3
|
Galletta F, Gambadauro A, Foti Randazzese S, Passanisi S, Sinatra V, Caminiti L, Zirilli G, Manti S. Pathophysiology of Congenital High Production of IgE and Its Consequences: A Narrative Review Uncovering a Neglected Setting of Disorders. Life (Basel) 2024; 14:1329. [PMID: 39459629 PMCID: PMC11509725 DOI: 10.3390/life14101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Elevated serum IgE levels serve as a critical marker for uncovering hidden immunological disorders, particularly inborn errors of immunity (IEIs), which are often misdiagnosed as common allergic conditions. IgE, while typically associated with allergic diseases, plays a significant role in immune defense, especially against parasitic infections. However, extremely high levels of IgE can indicate more severe conditions, such as Hyper-IgE syndromes (HIES) and disorders with similar features, including Omenn syndrome, Wiskott-Aldrich syndrome, and IPEX syndrome. Novel insights into the genetic mutations responsible for these conditions highlight their impact on immune regulation and the resulting clinical features, including recurrent infections, eczema, and elevated IgE. This narrative review uniquely integrates recent advances in the genetic understanding of IEIs and discusses how these findings impact both diagnosis and treatment. Additionally, emerging therapeutic strategies, such as hematopoietic stem cell transplantation (HSCT) and gene therapies, are explored, underscoring the potential for personalized treatment approaches. Emphasizing the need for precise diagnosis and tailored interventions aims to enhance patient outcomes and improve the quality of care for those with elevated IgE levels and associated immunological disorders.
Collapse
Affiliation(s)
| | | | | | - Stefano Passanisi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| | | | | | | | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| |
Collapse
|
4
|
Ilangovan J, Neves JF, Santos AF. Innate lymphoid cells in immunoglobulin E-mediated food allergy. Curr Opin Allergy Clin Immunol 2024; 24:419-425. [PMID: 39132724 PMCID: PMC11356679 DOI: 10.1097/aci.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Recognition of the importance of innate lymphoid cells (ILCs) in the immune mechanisms of food allergy has grown in recent years. This review summarizes recent findings of ILCs in immunoglobulin E (IgE)-mediated food allergy. New research on ILCs in the context of the microbiome and other atopic diseases are also considered with respect to how they can inform understanding of the role of ILCs in food allergy. RECENT FINDINGS ILCs can mediate allergic and tolerogenic responses through multiple pathways. A novel subset of interleukin (IL)-10 producing ILC2s are associated with tolerance following immunotherapy to grass pollen, house dust mite allergy and lipid transfer protein allergy. ILC2s can drive food allergen-specific T cell responses in an antigen-specific manner. A memory subset of ILC2s has been identified through studies of other atopic diseases and is associated with effectiveness of response to therapy. SUMMARY The role of ILCs in food allergy and oral tolerance is relatively understudied compared to other diseases. ILCs can modulate immune responses through several mechanisms, and it is likely that these are of importance in the context of food allergy. Better understanding of theses pathways may help to answer fundamental questions regarding the development of food allergy and lead to novel therapeutic targets and treatment.
Collapse
Affiliation(s)
- Janarthanan Ilangovan
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Centre for Host Microbiome Interactions
| | | | - Alexandra F. Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London
- Children's Allergy Service, Guy's and St Thomas’ Hospital, London, UK
| |
Collapse
|
5
|
Yoshida Y, Iijima K, Matsunaga M, Masuda MY, Jheng MJ, Kobayashi T, Kita H. Oral mucosa effectively protects against peanut allergy in mice. J Allergy Clin Immunol 2024; 154:1060-1068. [PMID: 38795733 PMCID: PMC11456774 DOI: 10.1016/j.jaci.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Oral consumption of peanut products early in life reduces the incidence of peanut allergy in children. However, little is known about whether exposure via the oral mucosa alone is sufficient or whether the gastrointestinal tract must be engaged to protect against peanut allergy. OBJECTIVE We used a mouse model and examined the effects of peanut allergen administration to only the oral cavity on allergy development induced by environmental exposure. METHODS Naive BALB/c mice were administered peanut flour (PNF) sublingually, followed by epicutaneous exposure to PNF to mimic a human condition. The sublingual volume was adjusted to engage only the oral cavity and prevent it from reaching the esophagus or gastrointestinal tract. The efficacy was evaluated by examining the anaphylactic response, antibody titers, and T follicular helper cells. RESULTS The mice exposed epicutaneously to PNF developed peanut allergy, as demonstrated by increased plasma levels of peanut-specific IgE and the manifestation of acute systemic anaphylaxis following intraperitoneal challenge with peanut extract. The development of peanut allergy was suppressed when mice had been given PNF sublingually before epicutaneous exposure. There were fewer T follicular helper cells in the skin-draining lymph nodes of mice that received sublingual PNF than in the mice that received PBS. Suppression of IgE production was observed with sublingual PNF at 1/10 of the intragastric PNF dose. CONCLUSION Administration of peanut allergens only to the oral cavity effectively prevents the development of peanut allergy. The capacity of the oral mucosa to promote immunologic tolerance needs to be evaluated further to prevent food allergy.
Collapse
Affiliation(s)
- Yuya Yoshida
- Division of Allergy, Asthma and Clinical Immunology, and Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Koji Iijima
- Division of Allergy, Asthma and Clinical Immunology, and Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Mayumi Matsunaga
- Division of Allergy, Asthma and Clinical Immunology, and Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Mia Y Masuda
- Immunology Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minn and Scottsdale, Ariz
| | - Min-Jhen Jheng
- Virology and Gene Therapy Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minn and Scottsdale, Ariz
| | - Takao Kobayashi
- Division of Allergy, Asthma and Clinical Immunology, and Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology, and Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn.
| |
Collapse
|
6
|
Ronchese F, Webb GR, Ochiai S, Lamiable O, Brewerton M. How type-2 dendritic cells induce Th2 differentiation: Instruction, repression, or fostering T cell-T cell communication? Allergy 2024. [PMID: 39324367 DOI: 10.1111/all.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Allergic disease is caused by the activation of allergen-specific CD4+ type-2 T follicular helper cells (Tfh2) and T helper 2 (Th2) effector cells that secrete the cytokines IL-4, IL-5, IL-9, and IL-13 upon allergen encounter, thereby inducing IgE production by B cells and tissue inflammation. While it is accepted that the priming and differentiation of naïve CD4+ T cells into Th2 requires allergen presentation by type 2 dendritic cells (DC2s), the underlying signals remain unidentified. In this review we focus on the interaction between allergen-presenting DC2s and naïve CD4+ T cells in lymph node (LN), and the potential mechanisms by which DC2s might instruct Th2 differentiation. We outline recent advances in characterizing DC2 development and heterogeneity. We review mechanisms of allergen sensing and current proposed mechanisms of Th2 differentiation, with specific consideration of the role of DC2s and how they might contribute to each mechanism. Finally, we assess recent publications reporting a detailed analysis of DC-T cell interactions in LNs and how they support Th2 differentiation. Together, these studies are starting to shape our understanding of this key initial step of the allergic immune response.
Collapse
Affiliation(s)
- Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Greta R Webb
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sotaro Ochiai
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Maia Brewerton
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Clinical Immunology and Allergy, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
7
|
Chen JS, Lee D, Gowthaman U. T follicular helper cells in food allergy. Curr Opin Immunol 2024; 91:102461. [PMID: 39276414 DOI: 10.1016/j.coi.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
T follicular helper (Tfh) cells help direct the production of antibodies by B cells. In addition to promoting antibody responses to vaccination and infection, Tfh cells have been found to mediate antibody production to food antigens. Work over the past decade has delineated the specific phenotypes of Tfh cells that induce antibodies to food while also clarifying the divergent Tfh cell requirement for different food-specific antibody isotypes. Furthermore, Tfh and antibody responses to food can occur at multiple barrier sites - namely, skin, airway, and gut. Depending on the context of food antigen exposure, the immune response to food at these sites can be protective, as in the case of tolerance or immunotherapy, or pathogenic, as in the case of allergy. This review will highlight recent advances in our understanding of how Tfh cells promote antibodies to food as well as future avenues for continued discovery.
Collapse
Affiliation(s)
- Jennifer S Chen
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA, USA
| | - Donguk Lee
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Uthaman Gowthaman
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Dent AL. Regulation of the IgE response by T follicular regulatory cells. Allergol Int 2024:S1323-8930(24)00086-8. [PMID: 39232918 DOI: 10.1016/j.alit.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/06/2024] Open
Abstract
Allergen-specific IgE is a major mediator of allergic responses and contributes greatly to allergic disease in the human population. Therapies that inhibit the production of IgE would be useful for lessening the burden of allergic disease. A great deal of research has focused on how IgE responses are regulated, and several factors that promote the production of allergic IgE have been characterized. T follicular helper (TFH) cells expressing IL-4 are required for the development of IgE expressing B cells in the germinal center (GC). Ig somatic hypermutation and B cell selection in the GC leads to the development of high affinity allergen-specific IgE that promotes anaphylaxis, a severe form of allergic response. T follicular regulatory (TFR) cells are also found in the GC response and act with TFH cells in the selection of high affinity IgE + B cells. This review examines the current literature on IgE responses and TFR cells. In mouse studies, TFR cells have a suppressive role on IgE responses in allergic airway disease, however TFR cells also play a helper role in the IgE response in food allergy. In human studies, TFR cells correlate with a decreased allergic response but evidence for a direct suppressive role of TFR cells on IgE in vivo is lacking. TFR cells may represent a new target for allergy therapies, but caution must be exercised to promote the suppressor activity of TFR cells and not the helper activity of TFR cells on IgE responses.
Collapse
Affiliation(s)
- Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 W. Walnut St., R2 302 Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Frischmeyer-Guerrerio PA, Young FD, Aktas ON, Haque T. Insights into the clinical, immunologic, and genetic underpinnings of food allergy. Immunol Rev 2024; 326:162-172. [PMID: 39034662 PMCID: PMC11436304 DOI: 10.1111/imr.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The last few decades have seen striking changes in the field of food allergy. The prevalence of the disease has risen dramatically in many parts of the globe, and management of the condition has undergone major revision. While delayed introduction of common allergenic foods during infancy was advised for many years, the learning early about peanut allergy (LEAP) trial and other studies led to a major shift in infant feeding practices, with deliberate early introduction of these foods now recommended. Additionally, the Food and Drug Administration approved the first treatment for food allergy in 2020-a peanut oral immunotherapy (OIT) product that likely represents just the beginning of new immunotherapy-based and other treatments for food allergy. Our knowledge of the environmental and genetic factors contributing to the pathogenesis of food allergy has also undergone transformational advances. Here, we will discuss our efforts to improve the clinical care of patients with food allergy and our understanding of the immunological mechanisms contributing to this common disease.
Collapse
Affiliation(s)
- Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Fernanda D Young
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozge N Aktas
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamara Haque
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Siniscalco ER, Williams A, Eisenbarth SC. All roads lead to IgA: Mapping the many pathways of IgA induction in the gut. Immunol Rev 2024; 326:66-82. [PMID: 39046160 DOI: 10.1111/imr.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The increasing prevalence of food allergy and related pathologies in recent years has underscored the need to understand the factors affecting adverse reactions to food. Food allergy is caused when food-specific IgE triggers the release of histamine from mast cells. However, other food-specific antibody isotypes exist as well, including IgG and IgA. IgA is the main antibody isotype in the gut and mediates noninflammatory reactions to toxins, commensal bacteria, and food antigens. It has also been thought to induce tolerance to food, thus antagonizing the role of food-specific IgE. However, this has remained unclear as food-specific IgA generation is poorly understood. Particularly, the location of IgA induction, the role of T cell help, and the fates of food-specific B cells remain elusive. In this review, we outline what is known about food-specific IgA induction and highlight areas requiring further study. We also explore how knowledge of food-specific IgA induction can be informed by and subsequently contribute to our overall knowledge of gut immunity.
Collapse
Affiliation(s)
- Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam Williams
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Xu X, Yuan J, Zhu M, Gao J, Meng X, Wu Y, Li X, Tong P, Chen H. The potential of orally exposed risk factors and constituents aggravating food allergy: Possible mechanism and target cells. Compr Rev Food Sci Food Saf 2024; 23:e70014. [PMID: 39230383 DOI: 10.1111/1541-4337.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
Food allergy is a significant concern for the health of humans worldwide. In addition to dietary exposure of food allergens, genetic and environmental factors also play an important role in the development of food allergy. However, only the tip of the iceberg of risk factors in food allergy has been identified. The importance of food allergy caused by orally exposed risk factors and constituents, including veterinary drugs, pesticides, processed foods/derivatives, nanoparticles, microplastics, pathogens, toxins, food additives, dietary intake of salt/sugar/total fat, vitamin D, and therapeutic drugs, are highlighted and discussed in this review. Moreover, the epithelial barrier hypothesis, which is closely associated with the occurrence of food allergy, is also introduced. Additionally, several orally exposed risk factors and constituents that have been reported to disrupt the epithelial barrier are elucidated. Finally, the possible mechanisms and key immune cells of orally exposed risk factors and constituents in aggravating food allergy are overviewed. Further work should be conducted to define the specific mechanism by which these risk factors and constituents are driving food allergy, which will be of central importance to the targeted therapy of food allergy.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Mengting Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
13
|
Rogers M, Kamath S, McManus D, Jones M, Gordon C, Navarro S. Schistosoma excretory/secretory products: an untapped library of tolerogenic immunotherapeutics against food allergy. Clin Transl Immunology 2024; 13:e70001. [PMID: 39221178 PMCID: PMC11359118 DOI: 10.1002/cti2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Food allergy (FA) is considered the 'second wave' of the allergy epidemic in developed countries after asthma and allergic rhinitis with a steadily growing burden of 40%. The absence of early childhood pathogen stimulation embodied by the hygiene hypothesis is one explanation, and in particular, the eradication of parasitic helminths could be at play. Infections with parasites Schistosoma spp. have been found to have a negative correlation with allergic diseases. Schistosomes induce regulatory responses to evade immune detection and ensure their long-term survival. This is achieved via excretory/secretory (E/S) products, consisting of proteins, lipids, metabolites, nucleic acids and extracellular vesicles, representing an untapped therapeutic avenue for the treatment of FA without the unpleasant side-effects and risks associated with live infection. Schistosome-derived immunotherapeutic development is in its infancy and novel discoveries are heavily technology dependent; thus, it is essential to better understand how newly identified molecules interact with host immune systems to ensure safety and successful translation. This review will outline the identified Schistosoma-derived E/S products at all life cycle stages and discuss known mechanisms of action and their ability to suppress FA.
Collapse
Affiliation(s)
- Madeleine Rogers
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sandip Kamath
- Institute of Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQLDAustralia
| | - Donald McManus
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Malcolm Jones
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of Science, School of Veterinary ScienceUniversity of QueenslandGattonQLDAustralia
| | - Catherine Gordon
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Severine Navarro
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Centre for Childhood Nutrition Research, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
14
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Hung L, Zientara B, Berin MC. Contribution of T cell subsets to different food allergic diseases. Immunol Rev 2024; 326:35-47. [PMID: 39054597 DOI: 10.1111/imr.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food allergies occur due to a lack of tolerance to the proteins found in foods. While IgE- and non-IgE-mediated food allergies have different clinical manifestations, epidemiology, pathophysiology, and management, they share dysregulated T cell responses. Recent studies have shed light on the contributions of different T cell subsets to the development and persistence of different food allergic diseases. This review discusses the role of T cells in both IgE- and non-IgE-mediated food allergies and considers the potential future investigations in this context.
Collapse
Affiliation(s)
- Lisa Hung
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brianna Zientara
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Kenney HM, Battaglia J, Herman K, Beck LA. Atopic dermatitis and IgE-mediated food allergy: Common biologic targets for therapy and prevention. Ann Allergy Asthma Immunol 2024; 133:262-277. [PMID: 38908432 DOI: 10.1016/j.anai.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE To highlight common mechanistic targets for the treatment of atopic dermatitis (AD) and IgE-mediated food allergy (IgE-FA) with potential to be effective for both diseases and prevent atopic progression. DATA SOURCES Data sources were PubMed searches or National Clinical Trials (NCT)-registered clinical trials related to AD, IgE-FA, and other atopic conditions, especially focused on the pediatric population. STUDY SELECTIONS Human seminal studies and/or articles published in the past decade were emphasized with reference to preclinical models when relevant. NCT-registered clinical trials were filtered by inclusion of pediatric subjects younger than 18 years with special focus on children younger than 12 years as a critical period when AD and IgE-FA diseases may often be concurrent. RESULTS AD and IgE-FA share several pathophysiologic features, including epithelial barrier dysfunction, innate and adaptive immune abnormalities, and microbial dysbiosis, which may be critical for the clinical progression between these diseases. Revolutionary advances in targeted biologic therapies have shown the benefit of inhibiting type 2 immune responses, using dupilumab (anti-interleukin-4Rα) or omalizumab (anti-IgE), to potentially reduce symptom burden for both diseases in pediatric populations. Although the potential for biologics to promote disease remission (AD) or sustained unresponsiveness (IgE-FA) remains unclear, the refinement of biomarkers to predict infants at risk for atopic disorders provides promise for prevention through timely intervention. CONCLUSION AD and IgE-FA exhibit common features that may be leveraged to develop biologic therapeutic strategies to treat both conditions and even prevent atopic progression. Future studies should be designed with consistent age stratification in the pediatric population and standardized regimens of adjuvant oral immunotherapy or dose escalation (IgE-FA) to improve cross-study interpretation.
Collapse
Affiliation(s)
- H Mark Kenney
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jennifer Battaglia
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Katherine Herman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York; Division of Allergy and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
17
|
Martinez-Blanco M, Mukhatayev Z, Chatila TA. Pathogenic mechanisms in the evolution of food allergy. Immunol Rev 2024; 326:219-226. [PMID: 39285835 PMCID: PMC11488529 DOI: 10.1111/imr.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.
Collapse
Affiliation(s)
- Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhussipbek Mukhatayev
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Akiyama M, Alshehri W, Ishigaki S, Saito K, Kaneko Y. Human T follicular helper cells and their impact on IgE and IgG4 production across allergy, malignancy, and IgG4-related disease. Allergol Int 2024:S1323-8930(24)00078-9. [PMID: 39164143 DOI: 10.1016/j.alit.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Human T follicular helper (Tfh) cells play a crucial role in orchestrating B cell differentiation, maturation, and immunoglobulin class switching. Recent studies have underscored the presence of Bcl-6 + Tfh cells not only in secondary lymphoid organs but also within tertiary lymphoid structures at inflammatory sites, emphasizing their pivotal role in disease pathogenesis. Furthermore, Tfh cells have been found to transit between lesion sites, lymph nodes, and peripheral blood, as revealed by T cell receptor repertoire analysis. Among Tfh subsets, Tfh2 cells have emerged as central orchestrators in driving the production of IgE and IgG4 from B cells. Their critical role in diseases such as allergy, malignancy, and IgG4-related disease highlights their profound impact on balancing inflammation and immune tolerance. Our current review provides the molecular characteristics of human Tfh cells, the differentiation pathways of Tfh subsets, mechanisms by which Tfh subsets induce IgE and IgG4 production, and their clinical implications in allergy, malignancy, and IgG4-related disease.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Waleed Alshehri
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Deobagkar-Lele M, Crawford G, Crockford TL, Back J, Hodgson R, Bhandari A, Bull KR, Cornall RJ. B cells require DOCK8 to elicit and integrate T cell help when antigen is limiting. Sci Immunol 2024; 9:eadd4874. [PMID: 39121196 PMCID: PMC7616390 DOI: 10.1126/sciimmunol.add4874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2023] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is characterized by a failure of the germinal center response, a process involving the proliferation and positive selection of antigen-specific B cells. Here, we describe how DOCK8-deficient B cells are blocked at a light-zone checkpoint in the germinal centers of immunized mice, where they are unable to respond to T cell-dependent survival and selection signals and consequently differentiate into plasma cells or memory B cells. Although DOCK8-deficient B cells can acquire and present antigen to initiate activation of cognate T cells, integrin up-regulation, B cell-T cell conjugate formation, and costimulation are insufficient for sustained B cell and T cell activation when antigen availability is limited. Our findings provide an explanation for the failure of the humoral response in DOCK8 immunodeficiency syndrome and insight into how the level of available antigen modulates B cell-T cell cross-talk to fine-tune humoral immune responses and immunological memory.
Collapse
Affiliation(s)
- Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Greg Crawford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Tanya L. Crockford
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Jennifer Back
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Rose Hodgson
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Aneesha Bhandari
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Katherine R Bull
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
- CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford
- Oxford Kidney Unit, Oxford University Hospitals Trust, Oxford
| | - Richard J. Cornall
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
- CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford
| |
Collapse
|
20
|
Ji P, Yang L, Zhu L, Hu L, Wang Y, Shi C, Jiang Q, Huang N, Yang Y, Chen H, Zhu R. Augmented type 2 inflammatory response in allergic rhinitis patients experiencing systemic reactions to house dust mite subcutaneous immunotherapy. Pediatr Allergy Immunol 2024; 35:e14207. [PMID: 39092594 DOI: 10.1111/pai.14207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Subcutaneous immunotherapy (SCIT) can induce systemic reactions (SRs) in certain patients, but the underlying mechanisms remain to be fully elucidated. METHODS AR patients who were undergoing standardized HDM SCIT (Alutard, ALK) between 2018 and 2022 were screened. Those who experienced two consecutive SRs were included in the study group. A control group was established, matched 1:1 by gender, age, and disease duration with the study group, who did not experience SRs during SCIT. Clinical and immunological parameters were recorded and analyzed both before SCIT and after 1 year of treatment. RESULTS A total of 161 patients were included, with 79 (49.07%) in the study group. The study group had a higher proportion of AR combined asthma (26.8% vs. 51.8%, p < 0.001) and higher levels of sIgE to HDM and HDM components (all p < .001). Serum IL-4 and IL-13 levels in the study group were higher than those in the control group (p < .05). The study group received a lower maintenance dosage of HDM extracts injections than control group due to SRs (50000SQ vs. 100000SQ, p < .05). After 1 year of SCIT, the VAS score, the lung function parameters of asthmatic patients over 14 years old significantly improved in both groups (all p < .05). After a 7-day exposure to 20 μg/mL HDM extracts, the percentages of Th1, Th17, Tfh10, and Th17.1 in PBMCs decreased, while the Tfh13 cells significantly increased in the study group (p < .05). CONCLUSION The type 2 inflammatory response is augmented in HDM-induced AR patients who experienced SRs during SCIT. Despite this, SCIT remains effective in these patients when administered with low-dosage allergen extracts.
Collapse
Affiliation(s)
- Ping Ji
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lintao Hu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Wang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cancan Shi
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Jiang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Huang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Hesser LA, Puente AA, Arnold J, Ionescu E, Mirmira A, Talasani N, Lopez J, Maccio-Maretto L, Mimee M, Nagler CR. A synbiotic of Anaerostipes caccae and lactulose prevents and treats food allergy in mice. Cell Host Microbe 2024; 32:1163-1176.e6. [PMID: 38906158 PMCID: PMC11239278 DOI: 10.1016/j.chom.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
Depletion of beneficial microbes by modern lifestyle factors correlates with the rising prevalence of food allergies. Re-introduction of allergy-protective bacteria may be an effective treatment strategy. We characterized the fecal microbiota of healthy and food-allergic infants and found that the anaerobe Anaerostipes caccae (A. caccae) was representative of the protective capacity of the healthy microbiota. We isolated a strain of A. caccae from the feces of a healthy infant and identified lactulose as a prebiotic to optimize butyrate production by A. caccae in vitro. Administration of a synbiotic composed of our isolated A. caccae strain and lactulose increased luminal butyrate in gnotobiotic mice colonized with feces from an allergic infant and in antibiotic-treated specific pathogen-free (SPF) mice, and prevented or treated an anaphylactic response to allergen challenge. The synbiotic's efficacy in two models and microbial contexts suggests that it may be a promising approach for the treatment of food allergy.
Collapse
Affiliation(s)
- Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Armando A Puente
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Anjali Mirmira
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Nidhi Talasani
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Lopez
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Mark Mimee
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA; Department of Pathology, The University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
23
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
24
|
Kumar S, Basto AP, Ribeiro F, Almeida SCP, Campos P, Peres C, Pulvirenti N, Al-Khalidi S, Kilbey A, Tosello J, Piaggio E, Russo M, Gama-Carvalho M, Coffelt SB, Roberts EW, Geginat J, Florindo HF, Graca L. Specialized Tfh cell subsets driving type-1 and type-2 humoral responses in lymphoid tissue. Cell Discov 2024; 10:64. [PMID: 38834551 DOI: 10.1038/s41421-024-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Effective antibody responses are essential to generate protective humoral immunity. Different inflammatory signals polarize T cells towards appropriate effector phenotypes during an infection or immunization. Th1 and Th2 cells have been associated with the polarization of humoral responses. However, T follicular helper cells (Tfh) have a unique ability to access the B cell follicle and support the germinal center (GC) responses by providing B cell help. We investigated the specialization of Tfh cells induced under type-1 and type-2 conditions. We first studied homogenous Tfh cell populations generated by adoptively transferred TCR-transgenic T cells in mice immunized with type-1 and type-2 adjuvants. Using a machine learning approach, we established a gene expression signature that discriminates Tfh cells polarized towards type-1 and type-2 response, defined as Tfh1 and Tfh2 cells. The distinct signatures of Tfh1 and Tfh2 cells were validated against datasets of Tfh cells induced following lymphocytic choriomeningitis virus (LCMV) or helminth infection. We generated single-cell and spatial transcriptomics datasets to dissect the heterogeneity of Tfh cells and their localization under the two immunizing conditions. Besides a distinct specialization of GC Tfh cells under the two immunizations and in different regions of the lymph nodes, we found a population of Gzmk+ Tfh cells specific for type-1 conditions. In human individuals, we could equally identify CMV-specific Tfh cells that expressed Gzmk. Our results show that Tfh cells acquire a specialized function under distinct types of immune responses and with particular properties within the B cell follicle and the GC.
Collapse
Affiliation(s)
- Saumya Kumar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Afonso P Basto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Filipa Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Silvia C P Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Patricia Campos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
| | | | - Sarwah Al-Khalidi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Jimena Tosello
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Momtchilo Russo
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Margarida Gama-Carvalho
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Ed W Roberts
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare, Milano, Italy
- Università degli studi di Milano, DISCCO, Milano, Italy
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
25
|
Zhang B, Chen S, Yin X, McBride CD, Gertie JA, Yurieva M, Bielecka AA, Hoffmann B, Travis Hinson J, Grassmann J, Xu L, Siniscalco ER, Soldatenko A, Hoyt L, Joseph J, Norton EB, Uthaman G, Palm NW, Liu E, Eisenbarth SC, Williams A. Metabolic fitness of IgA + plasma cells in the gut requires DOCK8. Mucosal Immunol 2024; 17:431-449. [PMID: 38159726 DOI: 10.1016/j.mucimm.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) mutations lead to a primary immunodeficiency associated with recurrent gastrointestinal infections and poor antibody responses but, paradoxically, heightened IgE to food antigens, suggesting that DOCK8 is central to immune homeostasis in the gut. Using Dock8-deficient mice, we found that DOCK8 was necessary for mucosal IgA production to multiple T cell-dependent antigens, including peanut and cholera toxin. Yet DOCK8 was not necessary in T cells for this phenotype. Instead, B cell-intrinsic DOCK8 was required for maintenance of antigen-specific IgA-secreting plasma cells (PCs) in the gut lamina propria. Unexpectedly, DOCK8 was not required for early B cell activation, migration, or IgA class switching. An unbiased interactome screen revealed novel protein partners involved in metabolism and apoptosis. Dock8-deficient IgA+ B cells had impaired cellular respiration and failed to engage glycolysis appropriately. These results demonstrate that maintenance of the IgA+ PC compartment requires DOCK8 and suggest that gut IgA+ PCs have unique metabolic requirements for long-term survival in the lamina propria.
Collapse
Affiliation(s)
- Biyan Zhang
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caleb D McBride
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Immunoregulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Brian Hoffmann
- Mass Spectrometry and Protein Chemistry, The Jackson Laboratory for Genomic Medicine, Bar Harbor, ME 04609, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Cardiology center, Department of Medicine, UConn Health, Farmington, CT, USA
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Lan Xu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily R Siniscalco
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arielle Soldatenko
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura Hoyt
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gowthaman Uthaman
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elise Liu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Adam Williams
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
26
|
Patil SU, Dougan SK, Dougan M. Leaping toward Tolerance. NEJM EVIDENCE 2024; 3:EVIDe2400127. [PMID: 38804783 DOI: 10.1056/evide2400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Sarita U Patil
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston
| | - Michael Dougan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
27
|
Burk CM, Shreffler WG. Triggers for eosinophilic esophagitis (EoE): The intersection of food allergy and EoE. J Allergy Clin Immunol 2024; 153:1500-1509. [PMID: 38849185 PMCID: PMC11414349 DOI: 10.1016/j.jaci.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Eosinophilic esophagitis and IgE-mediated food allergy are both food-triggered diseases that are increasing in prevalence. They share many clinical links, including significant comorbidity and similar food triggers, and as atopic diseases, they likely share upstream mechanisms related to barrier function and signals leading to TH2 skewing. In this review, we focus on links between eosinophilic esophagitis and IgE-mediated food allergy with an emphasis on what insights may be derived from overlapping food triggers and immune phenotypes. Through further investigation of these connections, we may be able to better understand not only IgE-mediated food allergy and eosinophilic esophagitis but also general atopic response to food proteins and evolution of allergic response to food.
Collapse
Affiliation(s)
- Caitlin M Burk
- Food Allergy Center, Division of Pediatric Allergy and Immunology, and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Wayne G Shreffler
- Food Allergy Center, Division of Pediatric Allergy and Immunology, and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
28
|
Virkud YV, Styles JN, Kelly RS, Patil SU, Ruiter B, Smith NP, Clish C, Wheelock CE, Celedón JC, Litonjua AA, Bunyavanich S, Weiss ST, Baker ES, Lasky-Su JA, Shreffler WG. Metabolomics of IgE-Mediated Food Allergy and Oral Immunotherapy Outcomes based on Metabolomic Profiling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.31.24308233. [PMID: 38952781 PMCID: PMC11216533 DOI: 10.1101/2024.05.31.24308233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Background The immunometabolic mechanisms underlying variable responses to oral immunotherapy (OIT) in patients with IgE-mediated food allergy are unknown. Objective To identify novel pathways associated with tolerance in food allergy, we used metabolomic profiling to find pathways important for food allergy in multi-ethnic cohorts and responses to OIT. Methods Untargeted plasma metabolomics data were generated from the VDAART healthy infant cohort (N=384), a Costa Rican cohort of children with asthma (N=1040), and a peanut OIT trial (N=20) evaluating sustained unresponsiveness (SU, protection that lasts after therapy) versus transient desensitization (TD, protection that ends immediately afterwards). Generalized linear regression modeling and pathway enrichment analysis identified metabolites associated with food allergy and OIT outcomes. Results Compared with unaffected children, those with food allergy were more likely to have metabolomic profiles with altered histidines and increased bile acids. Eicosanoids (e.g., arachidonic acid derivatives) (q=2.4×10 -20 ) and linoleic acid derivatives (q=3.8×10 -5 ) pathways decreased over time on OIT. Comparing SU versus TD revealed differing concentrations of bile acids (q=4.1×10 -8 ), eicosanoids (q=7.9×10 -7 ), and histidine pathways (q=0.015). In particular, the bile acid lithocholate (4.97[1.93,16.14], p=0.0027), the eicosanoid leukotriene B4 (3.21[1.38,8.38], p=0.01), and the histidine metabolite urocanic acid (22.13[3.98,194.67], p=0.0015) were higher in SU. Conclusions We observed distinct profiles of bile acids, histidines, and eicosanoids that vary among patients with food allergy, over time on OIT and between SU and TD. Participants with SU had higher levels of metabolites such as lithocholate and urocanic acid, which have immunomodulatory roles in key T-cell subsets, suggesting potential mechanisms of tolerance in immunotherapy. Key Messages - Compared with unaffected controls, children with food allergy demonstrated higher levels of bile acids and distinct histidine/urocanic acid profiles, suggesting a potential role of these metabolites in food allergy. - In participants receiving oral immunotherapy for food allergy, those who were able to maintain tolerance-even after stopping therapyhad lower overall levels of bile acid and histidine metabolites, with the exception of lithocholic acid and urocanic acid, two metabolites that have roles in T cell differentiation that may increase the likelihood of remission in immunotherapy. Capsule summary This is the first study of plasma metabolomic profiles of responses to OIT in individuals with IgE-mediated food allergy. Identification of immunomodulatory metabolites in allergic tolerance may help identify mechanisms of tolerance and guide future therapeutic development.
Collapse
|
29
|
Zhou Y, Chen B, Fu Y, Wan C, Li H, Wang L, Huang X, Wu Z, Li G, Xiong L, Qin D. Cang-ai volatile oil alleviates nasal inflammation via Th1/Th2 cell imbalance regulation in a rat model of ovalbumin-induced allergic rhinitis. Front Pharmacol 2024; 15:1332036. [PMID: 38835658 PMCID: PMC11148258 DOI: 10.3389/fphar.2024.1332036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
We previously revealed that Cang-ai volatile oil (CAVO) regulates T-cell activity, enhancing the immune response in people with chronic respiratory diseases. However, the effects of CAVO on allergic rhinitis (AR) have not been investigated. Herein, we established an ovalbumin (OVA)-induced AR rat model to determine these effects. Sprague-Dawley (SD) rats were exposed to OVA for 3 weeks. CAVO or loratadine (positive control) was given orally once daily for 2 weeks to OVA-exposed rats. Behavior modeling nasal allergies was observed. Nasal mucosa, serum, and spleen samples of AR rats were analyzed. CAVO treatment significantly reduced the number of nose rubs and sneezes, and ameliorated several hallmarks of nasal mucosa tissue remodeling: inflammation, eosinophilic infiltration, goblet cell metaplasia, and mast cell hyperplasia. CAVO administration markedly upregulated expressions of interferon-γ, interleukin (IL)-2, and IL-12, and downregulated expressions of serum tumor necrosis factor-α, IL-4, IL-5, IL-6, IL-13, immunoglobulin-E, and histamine. CAVO therapy also increased production of IFN-γ and T-helper type 1 (Th1)-specific T-box transcription factor (T-bet) of the cluster of differentiation-4+ T-cells in splenic lymphocytes, and protein and mRNA expressions of T-bet in nasal mucosa. In contrast, levels of the Th2 cytokine IL-4 and Th2-specific transcription factor GATA binding protein-3 were suppressed by CAVO. These cumulative findings demonstrate that CAVO therapy can alleviate AR by regulating the balance between Th1 and Th2 cells.
Collapse
Affiliation(s)
- Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Bojun Chen
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Yi Fu
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunping Wan
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lin Wang
- School of Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhao Wu
- School of Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Lei Xiong
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
30
|
Han X, He X, Wang X, Luo L, Li Y, Lai D, Liu H, Liu J, Rao S, Liu G. Comparative analysis of tropomyosin allergenicity in three different species of molluscs: insights into the role of amino acid composition in IgE epitopes. Food Funct 2024; 15:5397-5413. [PMID: 38639426 DOI: 10.1039/d4fo00958d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Limited research has been conducted on the differences in allergenicity among Alectryonella plicatula tropomyosin (ATM), Haliotis discus hannai tropomyosin (HTM), and Mimachlamys nobilis tropomyosin (MTM) in molluscs. Our study aimed to comprehensively analyze and compare their immunoreactivity, sensitization, and allergenicity while simultaneously elucidating the underlying molecular mechanisms involved. We assessed the immune binding activity of TM utilizing 86 sera from allergic patients and evaluated sensitization and allergenicity through two different types of mouse models. The dot-blot and basophil activation test assays revealed strong immunoreactivity for HTM, ATM, and MTM, with HTM exhibiting significantly lower levels compared to ATM. In the BALB/c mouse sensitization model, all TM groups stimulated the production of specific antibodies, elicited IgE-mediated immediate hypersensitivity responses, and caused an imbalance in the IL-4/IFN-γ ratio. Similarly, in the BALB/c mouse model of food allergy, all TM variants induced IgE-mediated type I hypersensitivity responses, leading to the development of food allergies characterized by clinical symptoms and an imbalance in the IL-4/IFN-γ ratio. The stimulation ability of sensitization and the severity of food allergies consistently ranked as ATM > MTM > HTM. Through an in-depth analysis of non-polar amino acid frequency and polar hydrogen bonds, HTM exhibited higher frequencies of non-polar amino acids in its amino acid sequence and IgE epitopes, in comparison with ATM and MTM. Furthermore, HTM demonstrated a lower number of polar hydrogen bonds in IgE epitopes. Overall, HTM exhibited the lowest allergenic potential in both allergic patients and mouse models, likely due to its lower polarity in the amino acid sequence and IgE epitopes.
Collapse
Affiliation(s)
- Xinyu Han
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Xinrong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Xinya Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resources, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Yubao Li
- Medical Center of Jimei University, Xiamen, Fujian 361021, China
| | - Dong Lai
- Xiamen Medical College Affiliated Second Hospital, Xiamen, Fujian 361021, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Shitao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350122, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| |
Collapse
|
31
|
Feng L, Chen G, Guo Z, Yao W, Li X, Mu G, Zhu X. Both live and heat killed Lactiplantibacillus plantarum DPUL-F232 alleviate whey protein-induced food allergy by regulating cellular immunity and repairing the intestinal barrier. Food Funct 2024; 15:5496-5509. [PMID: 38690869 DOI: 10.1039/d4fo00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Postbiotics have been proposed as clinically viable alternatives to probiotics, addressing limitations and safety concerns associated with probiotic use. However, direct comparisons between the functional differences and health benefits of probiotics and postbiotics remain scarce. This study compared directly the desensitization effect of probiotics and postbiotics derived from Lactiplantibacillus plantarum strain DPUL-F232 in the whey protein-induced allergic rat model. The results demonstrate that administering both live and heat killed F232 significantly alleviated allergy symptoms, reduced intestinal inflammation, and decreased serum antibody and histamine levels in rats. Both forms of F232 were effective in regulating the Th1/Th2 balance, promoting the secretion of the regulatory cytokine IL-10, inhibiting mast cell degranulation and restoring the integrity of the intestinal barrier through the upregulation of tight junction proteins. Considering the enhanced stability and reduced safety concerns of postbiotics compared to probiotics, alongside their ability to regulate allergic reactions, we suggest that postbiotics may serve as viable substitutes for probiotics in managing food allergies and potentially other diseases.
Collapse
Affiliation(s)
- Lu Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| | - Gangliang Chen
- Xinjiang Wangyuan Camel Milk Industrial Co., Ltd, Fuhai, Xinjiang, 836400, P. R. China
| | - Zihao Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| | - Wenpu Yao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| | - Xinling Li
- Urumqi Dairy Industry Association, Urumqi, Xinjiang, 830000, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, P. R. China.
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian, Liaoning, 116034, P. R. China
| |
Collapse
|
32
|
Pacheco GA, Rao V, Yoo DK, Saghaei S, Tong P, Kumar S, Marini-Rapoport O, Allahyari Z, Moghaddam AS, Esbati R, Alirezaee A, Parnes A, Patil SU, Wesemann DR. Origins and diversity of pan-isotype human bone marrow plasma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592267. [PMID: 38766053 PMCID: PMC11100731 DOI: 10.1101/2024.05.08.592267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bone marrow plasma cells (BMPCs) produce durable, protective IgM, IgG, and IgA antibodies, and in some cases, pro-allergic IgE antibodies, but their properties and sources are unclear. We charted single BMPC transcriptional and clonal heterogeneity in food-allergic and non-allergic individuals across CD19 protein expression given its inverse correlation to BMPC longevity. Transcriptional and clonal diversity revealed distinct functional profiles. Additionally, distribution of somatic hypermutation and intraclonal antibody sequence variance suggest that CD19low and CD19high BMPCs arise from recalled memory and germinal center B cells, respectively. Most IgE BMPCs were from peanut-allergic individuals; two out of 32 from independent donors bound peanut antigens in vitro and in vivo. These findings shed light on BMPC origins and highlight the bone marrow as a source of pathogenic IgE in peanut allergy.
Collapse
Affiliation(s)
- Gaspar A. Pacheco
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Vishal Rao
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Duck Kyun Yoo
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Shahab Saghaei
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Pei Tong
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Sachin Kumar
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Orlee Marini-Rapoport
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital; Boston, MA 02115, USA
| | - Zahra Allahyari
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Ali S. Moghaddam
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Romina Esbati
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Aida Alirezaee
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| | - Aric Parnes
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital; Boston, MA 02115, USA
| | - Sarita U. Patil
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital; Boston, MA 02115, USA
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Harvard Medical School; Boston, MA 02115, USA
- The Broad Institute of MIT and Harvard; Cambridge, MA 02124, USA
- The Ragon Institute of MGH, MIT and Harvard; Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness; Boston, MA 02115, USA
| |
Collapse
|
33
|
Dai R, Xiang Y, Fang R, Zheng HH, Zhao QS, Wang Y. Lonicerin alleviates ovalbumin-induced asthma of mice via inhibiting enhancer of zeste homolog 2/nuclear factor-kappa B signaling pathway. Exp Anim 2024; 73:154-161. [PMID: 37952975 PMCID: PMC11091354 DOI: 10.1538/expanim.23-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Asthma is the most common chronic disease in the respiratory system of children caused by abnormal immunity that responses to common antigens. Lonicerin exerts anti-inflammatory activity in other inflammatory models through targeting enhancer of zeste homolog 2 (EZH2) that is related to asthma. We sought to explore the role and mechanism of lonicerin in regulating allergic airway inflammation. Mice were intraperitoneally injected 10 µg ovalbumin (OVA) on postnatal day 5 (P5) and P10, and then inhaled 3% aerosolized OVA for 10 min every day on P18-20, to establish asthmatic mice model. Lonicerin (10 or 30 mg/kg) was given to mice by intragastric administration on P16-P20. Notably, the administration of lonicerin amended infiltration of inflammatory cells and mucus hypersecretion. OVA-specific IgE level, inflammatory cell count and inflammatory cytokines in asthmatic mice were reduced after lonicerin treatment. Moreover, it suppressed the activity of EZH2 and activation of nuclear factor-kappa B (NF-κB) as evidenced by decreasing tri-methylation of histone H3 at lysine 27 and reducing nuclear translocation of NF-κB p65. In a word, Lonicerin may attenuate asthma by inhibiting EZH2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rui Dai
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Yun Xiang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Rui Fang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Hai-Han Zheng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Qing-Song Zhao
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Yan Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| |
Collapse
|
34
|
Kratchmarov R, Djeddi S, Dunlap G, He W, Jia X, Burk CM, Ryan T, McGill A, Allegretti JR, Kataru RP, Mehrara BJ, Taylor EM, Agarwal S, Bhattacharyya N, Bergmark RW, Maxfield AZ, Lee S, Roditi R, Dwyer DF, Boyce JA, Buchheit KM, Laidlaw TM, Shreffler WG, Rao DA, Gutierrez-Arcelus M, Brennan PJ. TCF1-LEF1 co-expression identifies a multipotent progenitor cell (T H2-MPP) across human allergic diseases. Nat Immunol 2024; 25:902-915. [PMID: 38589618 DOI: 10.1038/s41590-024-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.
Collapse
Affiliation(s)
- Radomir Kratchmarov
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenqin He
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojiong Jia
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Burk
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tessa Ryan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin M Taylor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Neil Bhattacharyya
- Massachusetts Eye & Ear Institute, Harvard Medical School, Boston, MA, USA
| | - Regan W Bergmark
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Boston, MA, USA
| | - Alice Z Maxfield
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Lee
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Roditi
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Moss RB. T-cells and precision medicine for allergic bronchopulmonary aspergillosis. Eur Respir J 2024; 63:2400549. [PMID: 38754948 DOI: 10.1183/13993003.00549-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Richard B Moss
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Identification of a human multipotent T H2 progenitor. Nat Immunol 2024; 25:735-736. [PMID: 38632340 DOI: 10.1038/s41590-024-01818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
37
|
Luo RG, Wu YF, Lu HW, Weng D, Xu JY, Wang LL, Zhang LS, Zhao CQ, Li JX, Yu Y, Jia XM, Xu JF. Th2-skewed peripheral T-helper cells drive B-cells in allergic bronchopulmonary aspergillosis. Eur Respir J 2024; 63:2400386. [PMID: 38514095 PMCID: PMC11096668 DOI: 10.1183/13993003.00386-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.
Collapse
Affiliation(s)
- Rong-Guang Luo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Yi-Fan Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Dong Weng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Jia-Yan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Le-Le Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Li-Sha Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Cai-Qi Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Jian-Xiong Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yong Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
38
|
Forconi CS, Nixon C, Wu HW, Odwar B, Pond-Tor S, Ong'echa JM, Kurtis J, Moormann AM. T follicular helper cell profiles differ by malaria antigen and for children compared to adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589352. [PMID: 38659768 PMCID: PMC11042194 DOI: 10.1101/2024.04.13.589352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Circulating T-follicular helper (cT FH ) cells have the potential to provide an additional correlate of protection against Plasmodium falciparum ( Pf) as they are essential to promote B cell production of long-lasting antibodies. Assessing the specificity of cT FH subsets to individual malaria antigens is vital to understanding the variation observed in antibody responses and identifying promising malaria vaccine candidates. Methods Using spectral flow cytometry and unbiased clustering analysis we assessed antigen-specific cT FH cell recall responses in vitro to malaria vaccine candidates Pf SEA-1A and Pf GARP within a cross-section of children and adults living in a malaria holoendemic region of western Kenya. Findings In children, a broad array of cT FH subsets (defined by cytokine and transcription factor expression) were reactive to both malaria antigens, Pf SEA-1A and Pf GARP, while adults had a narrow profile centering on cT FH 17- and cT FH 1/17-like subsets following stimulation with Pf GARP only. Interpretation Because T FH 17 cells are involved in the maintenance of memory antibody responses within the context of parasitic infections, our results suggest that Pf GARP might generate longer lived antibody responses compared to Pf SEA-1A. These findings have intriguing implications for evaluating malaria vaccine candidates as they highlight the importance of including cT FH profiles when assessing interdependent correlates of protective immunity.
Collapse
|
39
|
Hils M, Hoffard N, Iuliano C, Kreft L, Chakrapani N, Swiontek K, Fischer K, Eberlein B, Köberle M, Fischer J, Hilger C, Ohnmacht C, Kaesler S, Wölbing F, Biedermann T. IgE and anaphylaxis specific to the carbohydrate alpha-gal depend on IL-4. J Allergy Clin Immunol 2024; 153:1050-1062.e6. [PMID: 38135009 PMCID: PMC10997276 DOI: 10.1016/j.jaci.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Alpha-gal (Galα1-3Galβ1-4GlcNAc) is a carbohydrate with the potential to elicit fatal allergic reactions to mammalian meat and drugs of mammalian origin. This type of allergy is induced by tick bites, and therapeutic options for this skin-driven food allergy are limited to the avoidance of the allergen and treatment of symptoms. Thus, a better understanding of the immune mechanisms resulting in sensitization through the skin is crucial, especially in the case of a carbohydrate allergen for which underlying immune responses are poorly understood. OBJECTIVE We aimed to establish a mouse model of alpha-gal allergy for in-depth immunologic analyses. METHODS Alpha-galactosyltransferase 1-deficient mice devoid of alpha-gal glycosylations were sensitized with the alpha-gal-carrying self-protein mouse serum albumin by repetitive intracutaneous injections in combination with the adjuvant aluminum hydroxide. The role of basophils and IL-4 in sensitization was investigated by antibody-mediated depletion. RESULTS Alpha-gal-sensitized mice displayed increased levels of alpha-gal-specific IgE and IgG1 and developed systemic anaphylaxis on challenge with both alpha-gal-containing glycoproteins and glycolipids. In accordance with alpha-gal-allergic patients, we detected elevated numbers of basophils at the site of sensitization as well as increased numbers of alpha-gal-specific B cells, germinal center B cells, and B cells of IgE and IgG1 isotypes in skin-draining lymph nodes. By depleting IL-4 during sensitization, we demonstrated for the first time that sensitization and elicitation of allergy to alpha-gal and correspondingly to a carbohydrate allergen is dependent on IL-4. CONCLUSION These findings establish IL-4 as a potential target to interfere with alpha-gal allergy elicited by tick bites.
Collapse
Affiliation(s)
- Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nils Hoffard
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caterina Iuliano
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Kreft
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Neera Chakrapani
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kyra Swiontek
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Konrad Fischer
- Department of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Köberle
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM) and Institute of Allergy Research, Technical University of Munich, School of Medicine, and Helmholtz Center Munich, Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Kaesler
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wölbing
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
40
|
Wellford SA, Schwartzberg PL. Help me help you: emerging concepts in T follicular helper cell differentiation, identity, and function. Curr Opin Immunol 2024; 87:102421. [PMID: 38733669 PMCID: PMC11482284 DOI: 10.1016/j.coi.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Effective high-affinity, long-term humoral immunity requires T cell help provided by a subset of differentiated CD4+ T cells known as T follicular helper (Tfh) cells. Classically, Tfh cells provide contact-dependent help for the generation of germinal centers (GCs) in secondary lymphoid organs (SLOs). Recent studies have expanded the conventional definition of Tfh cells, revealing new functions, new descriptions of Tfh subsets, new factors regulating Tfh differentiation, and new roles outside of SLO GCs. Together, these data suggest that one Tfh is not equivalent to another, helping redefine our understanding of Tfh cells and their biology.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Cell Signalling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- Cell Signalling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Li JC, Rotter NS, Stieb ES, Stockbridge JL, Theodorakakis MD, Shreffler WG. Utility of food allergy thresholds. Ann Allergy Asthma Immunol 2024; 132:321-327. [PMID: 38114041 DOI: 10.1016/j.anai.2023.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Food allergy is a prevalent disease worldwide that is a significant quality-of-life burden, and accidental exposures to food allergens may elicit severe, life-threatening reactions such as anaphylaxis. The threshold level, or the dose that triggers an allergic reaction determined by oral food challenges, varies considerably among individuals suffering from food allergies. Moreover, IgE concentration, diversity, or function can only partially explain this variation in threshold; pathogenic effector TH2 cells have also been found to contribute to the eliciting dose. Though very sensitive to cofactors such as physical activity/stress, the threshold is a stable and reproducible feature of an individual's allergy over periods of many months, made clear in the past several years from treatment studies in which repeated threshold determination has been used as a treatment outcome; however, there also seem to be age-related changes at a population level. More routine determination of food allergy thresholds may help patients stratify risk to improve the management of their food allergy. Precautionary allergen labeling, such as "may contain" labels, often causes confusion since they are inconsistent and regularly contain little to trace allergen residues; thus, food products with such labeling may be unnecessarily avoided. Population-based eliciting dose levels have been determined in the literature; patients at lower risk with higher thresholds may be more confident with introducing foods with precautionary allergen labels. Understanding a patient's threshold level could aid in shared decision-making to determine the most suitable treatment options for patients, including the starting dose for oral immunotherapy and/or the use of biologics.
Collapse
Affiliation(s)
- Jennifer C Li
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nancy S Rotter
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Elisabeth S Stieb
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer L Stockbridge
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts
| | - Maria D Theodorakakis
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Wayne G Shreffler
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
42
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
43
|
Silverberg JI, Smith-Norowitz TA, Kohlhoff S, Joks R. Phosphorylated p38 MAP kinase expression by leucocytes is increased in allergic humans and associated with IgE responses. Scand J Immunol 2024; 99:e13343. [PMID: 38441376 DOI: 10.1111/sji.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 03/07/2024]
Abstract
Mitogen-activated protein kinases (MAPK) activate cascades that regulate cell proliferation, differentiation and death. Phosphorylated (phos-)p38 MAPK is a cell-signalling pathway associated with Th2 cytokine responses, which is required for immunoglobulin (Ig)E production. It is unknown whether MAPK are associated with IgE production. We examine the evidence linking p38 MAPK to inflammatory responses. Phos-p38, extracellular signal-related kinase (ERK) and c-JUN-n terminal (JNK) MAPK expression by blood leucocyte subsets and levels of serum Igs were measured in blood from adults with asthma and/or rhinoconjunctivitis (N = 28) and non-asthma (N = 10) (flow cytometry, microfluorenzymeimmunoassay). Peripheral blood mononuclear cells (PBMC) from allergic subjects were cultured for 10 days ± anti-CD40/recombinant IL-4 ± inhibitor of phos-P38. Culture supernatants were assayed for IgE (ELISA). Phos-p38 MAPK expression by all leucocyte subsets of allergic subjects was associated with serum IgE levels (p ≤ 0.01), after adjusting for cell counts, age, sex, race and smoking status (p ≤ 0.04). Leucocyte expression of phos-ERK and JNK did not correlate with IgE (p = 0.09-0.99). Instead, phos-ERK expression was associated with serum IgG. When PBMC from atopic subjects were cultured for 10 days with anti-CD40/rhIL-4, IgE levels were 26.2 ± 18 ng/mL. Inclusion of SB202190 (5-20 μg/mL), a specific inhibitor of phos-p38 MAPK, in culture suppressed IgE production in dose-dependent manner, with peak suppression obtained with SB202190 at 20 μg/mL (82.1% ± 11.8) (p = 0.0001), with virtually no cytotoxicity (<5%). Different MAPK pathways may be associated with IgE (p38) and IgG (ERK) responses. Phos-p38 MAPK can be a potential anti-allergy drug target.
Collapse
Affiliation(s)
- Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Tamar A Smith-Norowitz
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Stephan Kohlhoff
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Rauno Joks
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
44
|
Ashley SE, Bosco A, Tang MLK. Transcriptomic changes associated with oral immunotherapy for food allergy. Pediatr Allergy Immunol 2024; 35:e14106. [PMID: 38520061 DOI: 10.1111/pai.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024]
Abstract
This review summarizes recent advances in characterizing the transcriptional pathways associated with outcomes following Oral Immunotherapy. Recent technological advances including single-cell sequencing are transforming the ways in which the transcriptional landscape is understood. The application of these technologies is still in its infancy in food allergy but here we summarize current understanding of gene expression changes following oral immunotherapy for food allergy and specific signatures underpinning the different clinical outcomes of desensitization and remission (sustained unresponsiveness). T helper 2A cells have been identified as a cell type which correlates with disease activity and is modified by treatment. Molecular features at study entry may differentiate individuals who achieve more positive outcomes during OIT. Recent findings point to T cell anergy and Type 1 interferon pathways as potential mechanisms supporting redirection of the allergen-specific immune response away from allergy towards remission. Despite these developments in our understanding of immune mechanisms following OIT, there are still significant gaps. Additional studies examining immune signatures associated with long term and well-defined clinical outcomes are required to gain a more complete understanding of the pathways leading to remission of allergy, in order to optimize treatments and gain improved outcomes for patients.
Collapse
Affiliation(s)
- Sarah E Ashley
- Allergy Immunology, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Mimi L K Tang
- Allergy Immunology, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Yanagi M, Ikegami I, Kamekura R, Sato T, Sato T, Kamiya S, Murayama K, Jitsukawa S, Ito F, Yorozu A, Kihara M, Abe T, Takaki H, Kawata K, Shigehara K, Miyajima S, Nishikiori H, Sato A, Tohse N, Takano KI, Chiba H, Ichimiya S. Bob1 maintains T follicular helper cells for long-term humoral immunity. Commun Biol 2024; 7:185. [PMID: 38360857 PMCID: PMC10869348 DOI: 10.1038/s42003-024-05827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Humoral immunity is vital for host protection, yet aberrant antibody responses can trigger harmful inflammation and immune-related disorders. T follicular helper (Tfh) cells, central to humoral immunity, have garnered significant attention for unraveling immune mechanisms. This study shows the role of B-cell Oct-binding protein 1 (Bob1), a transcriptional coactivator, in Tfh cell regulation. Our investigation, utilizing conditional Bob1-deficient mice, suggests that Bob1 plays a critical role in modulating inducible T-cell costimulator expression and cellular respiration in Tfh cells. This regulation maintains the long-term functionality of Tfh cells, enabling their reactivation from central memory T cells to produce antibodies during recall responses. In a bronchial asthma model induced by house dust mite (HDM) inhalation, Bob1 is observed to enhance HDM-specific antibodies, including IgE, highlighting its pivotal function in Tfh cell regulation. Further exploration of Bob1-dependent mechanisms in Tfh cells holds promise for governing protective immunity and addressing immune-related disorders.
Collapse
Affiliation(s)
- Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Taiki Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Kosuke Murayama
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Sumito Jitsukawa
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Fumie Ito
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Akira Yorozu
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Hiromi Takaki
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Katsunori Shigehara
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Satsuki Miyajima
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Akinori Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
- Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa, 061-1449, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| |
Collapse
|
46
|
Koenig JFE, Knudsen NPH, Phelps A, Bruton K, Hoof I, Lund G, Libera DD, Lund A, Christensen LH, Glass DR, Walker TD, Fang A, Waserman S, Jordana M, Andersen PS. Type 2-polarized memory B cells hold allergen-specific IgE memory. Sci Transl Med 2024; 16:eadi0944. [PMID: 38324637 DOI: 10.1126/scitranslmed.adi0944] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Allergen-specific immunoglobulin E (IgE) antibodies mediate pathology in diseases such as allergic rhinitis and food allergy. Memory B cells (MBCs) contribute to circulating IgE by regenerating IgE-producing plasma cells upon allergen encounter. Here, we report a population of type 2-polarized MBCs defined as CD23hi, IL-4Rαhi, and CD32low at both the transcriptional and surface protein levels. These MBC2s are enriched in IgG1- and IgG4-expressing cells while constitutively expressing germline transcripts for IgE. Allergen-specific B cells from patients with allergic rhinitis and food allergy were enriched in MBC2s. Furthermore, MBC2s generated allergen-specific IgE during sublingual immunotherapy, thereby identifying these cells as a major reservoir for IgE. The identification of MBC2s provides insights into the maintenance of IgE memory, which is detrimental in allergic diseases but could be beneficial in protection against venoms and helminths.
Collapse
Affiliation(s)
- Joshua F E Koenig
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | - Allyssa Phelps
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kelly Bruton
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ilka Hoof
- ALK-Abelló A/S, 2970 Hørsholm, Denmark
| | | | - Danielle Della Libera
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | | | - David R Glass
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tina D Walker
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Allison Fang
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Susan Waserman
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Manel Jordana
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | |
Collapse
|
47
|
Choi J, Crotty S, Choi YS. Cytokines in Follicular Helper T Cell Biology in Physiologic and Pathologic Conditions. Immune Netw 2024; 24:e8. [PMID: 38455461 PMCID: PMC10917579 DOI: 10.4110/in.2024.24.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
Follicular helper T cells (Tfh) play a crucial role in generating high-affinity antibodies (Abs) and establishing immunological memory. Cytokines, among other functional molecules produced by Tfh, are central to germinal center (GC) reactions. This review focuses on the role of cytokines, including IL-21 and IL-4, in regulating B cell responses within the GC, such as differentiation, affinity maturation, and plasma cell development. Additionally, this review explores the impact of other cytokines like CXCL13, IL-10, IL-9, and IL-2 on GC responses and their potential involvement in autoimmune diseases, allergies, and cancer. This review highlights contributions of Tfh-derived cytokines to both protective immunity and immunopathology across a spectrum of diseases. A deeper understanding of Tfh cytokine biology holds promise for insights into biomedical conditions.
Collapse
Affiliation(s)
- Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
48
|
Zhou CZ, Xiong X, Tan WJ, Wang YF, Yang Z, Li XY, Yang XW, Liu XF, Yu SF, Wang LC, Geng S. Inhibition of Bcl-6 Expression Ameliorates Asthmatic Characteristics in Mice. Curr Med Sci 2024; 44:110-120. [PMID: 38277017 DOI: 10.1007/s11596-023-2800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/08/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE The function of Bcl-6 in T follicular helper (Tfh) cell maturation is indispensable, and Tfh cells play a pivotal role in asthma. This study investigated the impact of Bcl-6 on asthmatic traits. METHODS The microscopic pathological alterations, airway resistance (AR), and lung compliance (LC) were determined in asthmatic mice and Bcl-6 interference mice. The surface molecular markers of Tfh cells and the Bcl-6 mRNA and protein expression were determined by flow cytometry, RT-qPCR, and Western blotting, respectively. The relationships between the Tfh cell ratio and the IgE and IgG1 concentrations in peripheral blood mononuclear cells (PBMCs) and bronchoalveolar lavage fluid (BALF) were determined. RESULTS Asthmatic inflammatory changes were observed in the lung tissue and were attenuated by Bcl-6 siRNA and dexamethasone (DXM). Asthmatic mice exhibited an increased AR and a decreased LC, while Bcl-6 siRNA or DXM mitigated these changes. The percentages of Tfh cells and eosinophils were significantly increased in the asthmatic mice, and they significantly decreased after Bcl-6 inhibition or DXM treatment. RT-qPCR and Western blotting analyses revealed that the Bcl-6 expression level in PBMCs was significantly higher in asthmatic mice, and it decreased following Bcl-6 inhibition or DXM treatment. The IgE expression in the serum and BALF and the B cell expression in PBMCs exhibited a similar trend. In asthmatic mice, the ratio of Tfh cells in the peripheral blood showed a strong positive correlation with the IgE levels in the serum and BALF, but not with the IgG1 levels. CONCLUSION The amelioration of airway inflammation and airway hyper-responsiveness is achieved through Bcl-6 suppression, which effectively hinders Tfh cell differentiation, ultimately resulting in a concurrent reduction in IgE production.
Collapse
Affiliation(s)
- Chang-Zhi Zhou
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiong Xiong
- Department of General Surgery, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Wei-Jun Tan
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ya-Fei Wang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhen Yang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xue-Ying Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiu-Wen Yang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiao-Fan Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Sun-Feng Yu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Liang-Chao Wang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Shuang Geng
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
49
|
Immormino RM, Smeekens JM, Mathai PI, Clough KM, Nguyen JT, Ghio AJ, Cook DN, Kulis MD, Moran TP. Different airborne particulates trigger distinct immune pathways leading to peanut allergy in a mouse model. Allergy 2024; 79:432-444. [PMID: 37804001 PMCID: PMC11017991 DOI: 10.1111/all.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Environmental exposure to peanut through non-oral routes is a risk factor for peanut allergy. Early-life exposure to air pollutants, including particulate matter (PM), is associated with sensitization to foods through unknown mechanisms. We investigated whether PM promotes sensitization to environmental peanut and the development of peanut allergy in a mouse model. METHODS C57BL/6J mice were co-exposed to peanut and either urban particulate matter (UPM) or diesel exhaust particles (DEP) via the airways and assessed for peanut sensitization and development of anaphylaxis following peanut challenge. Peanut-specific CD4+ T helper (Th) cell responses were characterized by flow cytometry and Th cytokine production. Mice lacking select innate immune signaling genes were used to study mechanisms of PM-induced peanut allergy. RESULTS Airway co-exposure to peanut and either UPM- or DEP-induced systemic sensitization to peanut and anaphylaxis following peanut challenge. Exposure to UPM or DEP triggered activation and migration of lung dendritic cells to draining lymph nodes and induction of peanut-specific CD4+ Th cells. UPM- and DEP-induced distinct Th responses, but both stimulated expansion of T follicular helper (Tfh) cells essential for peanut allergy development. MyD88 signaling was critical for UPM- and DEP-induced peanut allergy, whereas TLR4 signaling was dispensable. DEP-induced peanut allergy and Tfh-cell differentiation depended on IL-1 but not IL-33 signaling, whereas neither cytokine alone was necessary for UPM-mediated sensitization. CONCLUSION Environmental co-exposure to peanut and PM induces peanut-specific Tfh cells and peanut allergy in mice.
Collapse
Affiliation(s)
- Robert M. Immormino
- Department of Pediatrics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Johanna M. Smeekens
- Department of Pediatrics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC Food Allergy Initiative, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Priscilla I. Mathai
- Department of Pediatrics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katelyn M. Clough
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Andrew J. Ghio
- Human Studies Facility, United States Environmental Protection Agency, Chapel Hill, North Carolina, USA
| | - Donald N. Cook
- Division of Intramural Research, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina, USA
| | - Michael D. Kulis
- Department of Pediatrics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC Food Allergy Initiative, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Timothy P. Moran
- Department of Pediatrics, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|