1
|
Wang Z, Zhou M, Li M, Li J, Zhang S, Wang J. Tailored endothelialization enabled by engineered endothelial cell vesicles accelerates remodeling of small-diameter vascular grafts. Bioact Mater 2024; 41:127-136. [PMID: 39131628 PMCID: PMC11314893 DOI: 10.1016/j.bioactmat.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Current gold standard for the replacement of small-diameter blood vessel (ID < 4 mm) is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts (SDVG) on weak endothelialization, intimal hyperplasia and low patency. Herein, we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling. The engineered endothelial cell vesicles were modified with azide groups (ECVs-N3) through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry, and thus fabricating ECVG (ECVs-N3 modified SDVG), which assists inhibition of platelet adhesion and activation, promotion of ECs adhesion and enhancement of anti-inflammation. Furthermore, In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL, and the tailored endothelialization enabled to convert endothelial cells (ECs) into some specific ECs clusters. One of the specific cluster, Endo_C5 cluster, was only detected in ECVG. Consequently, our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells, and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengxue Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
3
|
Wei X, Wang L, Xing Z, Chen P, He X, Tuo X, Su H, Zhou G, Liu H, Fan Y. Glutamine synthetase accelerates re-endothelialization of vascular grafts by mitigating endothelial cell dysfunction in a rat model. Biomaterials 2024; 314:122877. [PMID: 39378796 DOI: 10.1016/j.biomaterials.2024.122877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Endothelial cell (EC) dysfunction within the aorta has long been recognized as a prominent contributor to the progression of atherosclerosis and the subsequent failure of vascular graft transplantation. However, the direct relationship between EC dysfunction and vascular remodeling remains to be investigated. In this study, we sought to address this knowledge gap by employing a strategy involving the release of glutamine synthetase (GS), which effectively activated endothelial metabolism and mitigates EC dysfunction. To achieve this, we developed GS-loaded small-diameter vascular grafts (GSVG) through the electrospinning technique, utilizing dual-component solutions consisting of photo-crosslinkable hyaluronic acid and polycaprolactone. Through an in vitro model of oxidized low-density lipoprotein-induced injury in human umbilical vein endothelial cells (HUVECs), we provided compelling evidence that the GSVG promoted the restoration of motility, angiogenic sprouting, and proliferation in dysfunctional HUVECs by enhancing cellular metabolism. Furthermore, the sequencing results indicated that these effects were mediated by miR-122-5p-related signaling pathways. Remarkably, the GSVG also exhibited regulatory capabilities in shifting vascular smooth muscle cells towards a contractile phenotype, mitigating inflammatory responses and thereby preventing vascular calcification. Finally, our data demonstrated that GS incorporation significantly enhanced re-endothelialization of vascular grafts in a ferric chloride-injured rat model. Collectively, our results offer insights into the promotion of re-endothelialization in vascular grafts by restoring dysfunctional ECs through the augmentation of cellular metabolism.
Collapse
Affiliation(s)
- Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, 213164, PR China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Xiaoye Tuo
- Department of Reparative and Reconstructive Surgery, 9 Jinyuanzhuang Rd., Peking University Shougang Hospital, PR China
| | - Haoran Su
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| |
Collapse
|
4
|
Brennan PG, Mota L, Aridi T, Patel N, Liang P, Ferran C. Advancements in Omics and Breakthrough Gene Therapies: A Glimpse into the Future of Peripheral Artery Disease. Ann Vasc Surg 2024; 107:229-246. [PMID: 38582204 DOI: 10.1016/j.avsg.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Phillip G Brennan
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nyah Patel
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Division of Nephrology and the Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
5
|
Ciaramella M, LoGerfo F, Liang P. Lower Extremity Bypass for Occlusive Disease: A Brief History. Ann Vasc Surg 2024; 107:17-30. [PMID: 38582212 DOI: 10.1016/j.avsg.2023.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 04/08/2024]
Abstract
BACKGROUND This is a narrative review that aims to highlight key advancements that led to the current state of lower extremity bypass surgery. It focuses on key contributors during the last century who have driven the standardization of surgical treatment of peripheral arterial occlusive disease. METHODS A narrative review was conducted utilizing available resources in the scientific and historical literature to track landmark achievements in the development of modern lower extremity bypass surgery for occlusive disease, focusing primarily on the last century of advancement. RESULTS Several critical conceptual, technological, and technical landmarks were identified as critical components of modern lower extremity bypass surgery. This includes fundamental developments in the techniques of vascular anastomosis led by Carrel and others, a developing understanding of vascular occlusive disease as a localized and segmental process with broad implementation of the techniques of arteriography, and the development of safe thromboendarterectomy aided by the development and utilization of heparin for anticoagulation. These factors led to the first femoral-to-popliteal artery bypass by Jean Kunlin in 1948. From here, advances in vascular prosthetic material pioneered by Voorhees and others, alternative vascular conduits, increasing acceptance of tibial revascularization, and dispelling the myth of diabetic "small vessel" disease broadened revascularization options for patients with complex patterns of occlusive disease and those who have limited conduit availability. CONCLUSIONS Modern lower extremity bypass surgery for occlusive disease arose steadily over a course of a century, driven by complex problem-solving in the pathophysiological understanding of atherosclerosis, technical developments in vascular anastomosis and arteriography, and evolution of conduit materials and pharmacologic therapy. Future advancements in bypass surgery are targeted at solving the complex problems of anastomotic intimal hyperplasia, expanding technology for alternative vascular conduits, ongoing optimization of risk factors, and scrutinizing of outcomes to make patient-centered, evidence-based decisions regarding revascularization strategy.
Collapse
Affiliation(s)
- Michael Ciaramella
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Frank LoGerfo
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
6
|
Sun X, Wang N, Jiang H, Liu Q, Xiao C, Xu J, Wu Y, Mei J, Wu S, Lin Z. Insulin-transferrin-selenium promote formation of tissue-engineered vascular grafts in early stage of culture. Prep Biochem Biotechnol 2024; 54:1186-1195. [PMID: 38546975 DOI: 10.1080/10826068.2024.2333468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
To create tissue-engineered vascular grafts (TEVGs) in vitro, vascular smooth muscle cells (VSMCs) must function effectively and produce sufficient extracellular matrix (ECM) in a three-dimensional space. In this study, we investigated whether the addition of insulin-transferrin-selenium (ITS), a medium supplement, could enhance TEVG formation. PGA fabric was used as the scaffold, and 1% ITS was added to the medium. After two weeks, the tissues were examined using electron microscopy and staining. The ITS group exhibited a denser structure and increased collagen production. VSMCs were cultured in two dimensions with ITS and assessed for collagen production, cell growth, and glucose metabolism. The results showed that ITS supplementation increased collagen production, cell growth, glucose utilization, lactate production, and ATP levels. Furthermore, reducing the amount of fetal bovine serum (FBS) in the medium did not affect the TEVGs or VSMCs when ITS was present. In conclusion, ITS improves TEVG construction by promoting VSMCs growth and reducing the need for FBS.
Collapse
MESH Headings
- Tissue Engineering/methods
- Insulin/metabolism
- Animals
- Blood Vessel Prosthesis
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Selenium/pharmacology
- Selenium/chemistry
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Cells, Cultured
- Cell Proliferation/drug effects
- Rats
- Tissue Scaffolds/chemistry
- Collagen/metabolism
- Glucose/metabolism
Collapse
Affiliation(s)
- Xuheng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Nannan Wang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
| | - Hongjing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Jianyi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Yindi Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| | - Jingyi Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
| | - Shuting Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Province, P.R. China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, P.R. China
- JIHUA Laboratory, Foshan City, Guangdong Province, P.R. China
| |
Collapse
|
7
|
Shulunov V. Advanced roll porous scaffold 3D bioprinting technology. J Artif Organs 2024:10.1007/s10047-024-01470-y. [PMID: 39327399 DOI: 10.1007/s10047-024-01470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Improvements in the roll porous scaffold (RPS) 3D bioproduction technology will increase print density of 10-15 µm cells by ~ 20% up to ~ 1.5 × 108 cells/mL and purity of organoid formation by > 17%. The use of 360 and 1200 dpi inkjet printheads immediately enables biomanufacturing with 10-30 µm cells in a single organoid with performance > 1.8 L/h for 15 µm layer thickness. The spongy bioresorbable ribbon for RPS technology is designed to solve the problems of precise placement, leakage and increasing in the number of instantly useable cell types and superior to all currently dominant 3D bioprinting methods in speed, volume, and print density without the use of expensive equipment and components. The potential of RPS for parallel testing of new substances studied was not on animals, but using generated 3D biomodels "organ on a chip". Solid organoids are more suitable for personalized medicine with simultaneous checking of several treatment methods and drugs, targeted therapy for a specific patient in vitro using the 3D composition of his personal cells, and selection of the most effective ones with the least toxicity. Overcoming the shortage of organs for implantation and personal hormone replacement therapy for everyone was achieved using printed endocrine glands based on their DNA.
Collapse
Affiliation(s)
- Vyacheslav Shulunov
- Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Science, Ulan-Ude, Russia.
| |
Collapse
|
8
|
Jiao K, Liu H, Zhang T, Li X, Cheng X, Zhao G, Zheng G. Optimization of mechanical properties of small diameter artificial blood vessels based on alginate/chitosan/gelatin. Int J Biol Macromol 2024; 280:136076. [PMID: 39341307 DOI: 10.1016/j.ijbiomac.2024.136076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Due to the rise in cardiovascular disease and the problem of autologous transplant limitation, the emergence of 3D bioprinted blood vessels using natural polymer materials as ink is becoming increasingly important in the field of small-diameter artificial blood vessels (φ ≤ 6 mm). In this paper, gelatin was firstly adopted to explore alginate/chitosan composite hydrogel properties and solve the current issues of poor mechanical performance and suboptimal printability of small-diameter blood vessels, which indicated that the modification caused a 17.7 % increase in compressive strength and a 63.2 % enhancement in tensile properties. The material microstructure evaluation showed that the samples with gelatin(4 %) presented the excellent water absorption rate(>90 %) significantly increasing their porosities. A self-developed 3D bioprinter was utilized to clarify the controllable mechanism of small-diameter artificial blood vessel, which has superior performance and excellent printability. This study provides a new reference solution to the current challenges in the bio-ink performance and printability of small-diameter artificial blood vessels.
Collapse
Affiliation(s)
- Kunpeng Jiao
- School of Mechanical Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, China
| | - Huanbao Liu
- School of Mechanical Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, China.
| | - Tao Zhang
- School of Mechanical Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, China
| | - Xiaoxi Li
- School of Mechanical Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, China
| | - Xiang Cheng
- School of Mechanical Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, China
| | - Guangxi Zhao
- School of Mechanical Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, China
| | - Guangming Zheng
- School of Mechanical Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, China
| |
Collapse
|
9
|
Feliciano AJ, Alaoui Selsouli Y, Habibovic P, Birgani ZNT, Moroni L, Baker MB. Granular polyrotaxane microgels as injectable hydrogels for corneal tissue regeneration. Biomater Sci 2024; 12:4993-5009. [PMID: 39169887 DOI: 10.1039/d4bm00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Corneal diseases, a leading cause of global vision impairment, present challenges in treatment due to corneal tissue donor scarcity and transplant rejection. Hydrogel biomaterials in the form of corneal implants for tissue regeneration, while promising, have faced obstacles related to cellular and tissue integration. This study develops and investigates the potential of granular polyrotaxane (GPR) hydrogels as a scaffold for corneal keratocyte growth and transparent tissue generation. Employing host-guest driven supramolecular interactions, we developed injectable, cytocompatible hydrogels. By optimizing cyclodextrin (CD) concentrations in thiol-ene crosslinked PEG microgels, we observed improved mechanical properties and thermoresponsiveness while preserving injectability. These microgels, adaptable for precise defect filling, 3D printing or tissue culture facilitate enhanced cellular integration with corneal keratocytes and exhibit tissue-like structures in culture. Our findings demonstrate the promise of GPR hydrogels as a minimally invasive avenue for corneal tissue regeneration. These results have the potential to address transplantation challenges, enhance clinical outcomes, and restore vision.
Collapse
Affiliation(s)
- Antonio J Feliciano
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands.
| | - Yousra Alaoui Selsouli
- Department of Instructive Biomaterial Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterial Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Zeinab Niloofar Tahmasebi Birgani
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands.
- Department of Instructive Biomaterial Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands.
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands.
- Department of Instructive Biomaterial Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, the Netherlands
| |
Collapse
|
10
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
11
|
Ye T, Chai M, Wang Z, Shao T, Liu J, Shi X. 3D-Printed Hydrogels with Engineered Nanocrystalline Domains as Functional Vascular Constructs. ACS NANO 2024; 18:25765-25777. [PMID: 39231281 DOI: 10.1021/acsnano.4c08359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Three-dimensionally printed (3DP) hydrogel-based vascular constructs have been investigated in response to the impaired function of blood vessels or organs by replicating exactly the 3D structural geometry to approach their function. However, they are still challenged by their intrinsic brittleness, which could not sustain the suture piercing and enable the long-term structural and functional stability during the direct contact with blood. Here, we reported the high-fidelity digital light processing (DLP) 3D printing of hydrogel-based vascular constructs from poly(vinyl alcohol)-based inks, followed by mechanical strengthening through engineering the nanocrystalline domains and subsequent surface modification. The as-prepared high-precision hydrogel vascular constructs were imparted with highly desirable mechanical robustness, suture tolerance, swelling resistance, antithrombosis, and long-term patency. Notably, the hydrogel-based bionic vein grafts, with precise valve structures, exhibited excellent control over the unidirectional flow and successfully fulfilled the biological functionalities and patency during a 4-week implantation within the deep veins of beagles, thus corroborating the promising potential for treating chronic venous insufficiency.
Collapse
Affiliation(s)
- Tan Ye
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Muyuan Chai
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan 523000, P. R. China
| | - Zhenxing Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingru Shao
- Department of Oral & Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Yilmaz G. Foundational Engineering of Artificial Blood Vessels' Biomechanics: The Impact of Wavy Geometric Designs. Biomimetics (Basel) 2024; 9:546. [PMID: 39329568 PMCID: PMC11430736 DOI: 10.3390/biomimetics9090546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The design of wavy structures and their mechanical implications on artificial blood vessels (ABVs) have been insufficiently studied in the existing literature. This research aims to explore the influence of various wavy geometric designs on the mechanical properties of ABVs and to establish a foundational framework for advancing and applying these designs. Computer-aided design (CAD) and finite element method (FEM) simulations, in conjunction with physical sample testing, were utilized. A geometric model incorporating concave and convex curves was developed and analyzed with a symbolic mathematical tool. Subsequently, a total of ten CAD models were subjected to increasing internal pressures using a FEM simulation to evaluate the expansion of internal areas. Additionally, physical experiments were conducted further to investigate the expansion of ABV samples under pressure. The results demonstrated that increased wave numbers significantly enhance the flexibility of ABVs. Samples with 22 waves exhibited a 45% larger area under 24 kPa pressure than those with simple circles. However, the increased number of waves also led to undesirable high-pressure gradients at elevated pressures. Furthermore, a strong correlation was observed between the experimental outcomes and the simulation results, with a notably low error margin, ranging from 19.88% to 3.84%. Incorporating wavy designs into ABVs can effectively increase both vessel flexibility and the internal area under pressure. Finally, it was found that expansion depending on the wave number can be efficiently modeled with a simple linear equation, which could be utilized in future designs.
Collapse
Affiliation(s)
- Galip Yilmaz
- Electronics and Automation Department, Bayburt University, Bayburt 69000, Turkey
| |
Collapse
|
13
|
Wen K, Zhang C, Zhang G, Wang M, Mei G, Zhang Z, Zhao W, Guo W, Zhou Q, Liu E, Zhu Y, Bai J, Zhu M, Wang W, Liu Z, Zhou X. Jellyfish-Inspired Artificial Spider Silk for Luminous Surgical Sutures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314158. [PMID: 39081084 DOI: 10.1002/adma.202314158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/08/2024] [Indexed: 09/19/2024]
Abstract
The development of functional surgical sutures with excellent mechanical properties, good fluorescence, and high cytocompatibility is highly required in the field of medical surgeries. Achieving fibers that simultaneously exhibit high mechanical robustness, good spinnability, and durable fluorescence emission has remained challenging up to now. Taking inspiration from the spinning process of spider silk and the luminescence mechanism of jellyfish, this work reports a luminous artificial spider silk prepared with the aim of balancing the fiber spinnability and mechanical robustness. This is realized by employing highly hydrated segments with aggregation-induced luminescence for enhancing the fiber spinnability and polyhydroxyl segments for increasing the fiber mechanical robustness. Twist insertion during fiber spinning improves the fiber strength, toughness, and fluorescence emission. Furthermore, coating the fiber with an additional polymer layer results in a "sheath-core" architecture with improved mechanical properties and capacity to withstand water. This work provides a new design strategy for performing luminescent and robust surgical sutures.
Collapse
Affiliation(s)
- Kai Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meilin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weiqiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenjin Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Zhou
- Department of Orthopaedics, Tianjin First Central Hospital, Nankai University, Tianjin, 300071, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutian Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
14
|
Zhu T, Hu Y, Cui H, Cui H. 3D Multispheroid Assembly Strategies towards Tissue Engineering and Disease Modeling. Adv Healthc Mater 2024; 13:e2400957. [PMID: 38924326 DOI: 10.1002/adhm.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Cell spheroids (esp. organoids) as 3D culture platforms are popular models for representing cell-cell and cell-extracellular matrix (ECM) interactions, bridging the gap between 2D cell cultures and natural tissues. 3D cell models with spatially organized multiple cell types are preferred for gaining comprehensive insights into tissue pathophysiology and constructing in vitro tissues and disease models because of the complexities of natural tissues. In recent years, an assembly strategy using cell spheroids (or organoids) as living building blocks has been developed to construct complex 3D tissue models with spatial organization. Here, a comprehensive overview of recent advances in multispheroid assembly studies is provided. The different mechanisms of the multispheroid assembly techniques, i.e., automated directed assembly, noncontact remote assembly, and programmed self-assembly, are introduced. The processing steps, advantages, and technical limitations of the existing methodologies are summarized. Applications of the multispheroid assembly strategies in disease modeling, drug screening, tissue engineering, and organogenesis are reviewed. Finally, this review concludes by emphasizing persistent issues and future perspectives, encouraging researchers to adopt multispheroid assembly techniques for generating advanced 3D cell models that better resemble real tissues.
Collapse
Affiliation(s)
- Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
15
|
Su Z, Xing Y, Xiao Y, Guo J, Wang C, Wang F, Xu Z, Wu W, Gu Y. Decellularized, Heparinized Small-Caliber Tissue-Engineered "Biological Tubes" for Allograft Vascular Grafts. ACS Biomater Sci Eng 2024; 10:5154-5167. [PMID: 39079153 DOI: 10.1021/acsbiomaterials.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
There remains a lack of small-caliber tissue-engineered blood vessels (TEBVs) with wide clinical use. Biotubes were developed by electrospinning and in-body tissue architecture (iBTA) technology to prepare small-caliber TEBVs with promising applications. Different ratios of hybrid fibers of poly(l-lactic-co-ε-caprolactone) (PLCL) and polyurethane (PU) were obtained by electrospinning, and the electrospun tubes were then implanted subcutaneously in the abdominal area of a rabbit (as an in vivo bioreactor). The biotubes were harvested after 4 weeks. They were then decellularized and cross-linked with heparin. PLCL/PU electrospun vascular tubes, decellularized biotubes (D-biotubes), and heparinized combined decellularized biotubes (H + D-biotubes) underwent carotid artery allograft transplantation in a rabbit model. Vascular ultrasound follow-up and histological observation revealed that the biotubes developed based on electrospinning and iBTA technology, after decellularization and heparinization cross-linking, showed a better patency rate, adequate mechanical properties, and remodeling ability in the rabbit model. IBTA technology caused a higher patency, and the heparinization cross-linking process gave the biotubes stronger mechanical properties.
Collapse
Affiliation(s)
- Zhixiang Su
- Vascular Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045 Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100086 Beijing, China
| | - Julong Guo
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Cong Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Fei Wang
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Zeqin Xu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| | - Weiwei Wu
- Vascular Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Yongquan Gu
- Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
| |
Collapse
|
16
|
Yang C, Yuan W, Liao G, Tang Z, Zhu T, Jia Y, Yu Q, Wang L. Customized Vascular Repair Microenvironment: Poly(lactic acid)-Gelatin Nanofibrous Scaffold Decorated with bFGF and Ag@Fe 3O 4 Core-Shell Nanowires. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40787-40804. [PMID: 39072379 DOI: 10.1021/acsami.4c09269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Vascular defects caused by trauma or vascular diseases can significantly impact normal blood circulation, resulting in serious health complications. Vascular grafts have evolved as a popular approach for vascular reconstruction with promising outcomes. However, four of the greatest challenges for successful application of small-diameter vascular grafts are (1) postoperative anti-infection, (2) preventing thrombosis formation, (3) utilizing the inflammatory response to the graft to induce tissue regeneration and repair, and (4) noninvasive monitoring of the scaffold and integration. The present study demonstrated a basic fibroblast growth factor (bFGF) and oleic acid dispersed Ag@Fe3O4 core-shell nanowires (OA-Ag@Fe3O4 CSNWs) codecorated poly(lactic acid) (PLA)/gelatin (Gel) multifunctional electrospun vascular grafts (bAPG). The Ag@Fe3O4 CSNWs have sustained Ag+ release and exceptional photothermal capabilities to effectively suppress bacterial infections both in vitro and in vivo, noninvasive magnetic resonance imaging (MRI) modality to monitor the position of the graft, and antiplatelet adhesion properties to promise long-term patency. The gradually released bFGF from the bAPG scaffold promotes the M2 macrophage polarization and enhances the recruitment of macrophages, endothelial cells (ECs) and fibroblast cells. This significant regulation of diverse cell behavior has been proven to be beneficial to vascular repair and regeneration both in vitro and in vivo. Therefore, this study supplies a method to prepare multifunctional vascular-repair materials and is expected to represent a significant guidance and reference to the development of biomaterials for vascular tissue engineering.
Collapse
Affiliation(s)
- Congyi Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Weiwen Yuan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Guoxing Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Zhe Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Tong Zhu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yifan Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
Jiang H, Sun X, Wu Y, Xu J, Xiao C, Liu Q, Fang L, Liang Y, Zhou J, Wu Y, Lin Z. Contribution of Tregs to the promotion of constructive remodeling after decellularized extracellular matrix material implantation. Mater Today Bio 2024; 27:101151. [PMID: 39104900 PMCID: PMC11298607 DOI: 10.1016/j.mtbio.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Host remodeling of decellularized extracellular matrix (dECM) material through the appropriate involvement of immune cells is essential for achieving functional organ/tissue regeneration. As many studies have focused on the role of macrophages, only few have evaluated the role of regulatory T cells (Tregs) in dECM remodeling. In this study, we used a mouse model of traumatic muscle injury to determine the role of Tregs in the constructive remodeling of vascular-derived dECM. According to the results, a certain number of Tregs could be recruited after dECM implantation. Notably, using anti-CD25 to reduce the number of Tregs recruited by the dECM was significantly detrimental to material remodeling based on a significant reduction in the number of M2 macrophages. In addition, collagen and elastic fibers, which maintain the integrity and mechanical properties of the material, rapidly degraded during the early stages of implantation. In contrast, the use of CD28-SA antibodies to increase the number of Tregs recruited by dECM promoted constructive remodeling, resulting in a decreased inflammatory response at the material edge, thinning of the surrounding fibrous connective tissue, uniform infiltration of host cells, and significantly improved tissue remodeling scores. The number of M2 macrophages increased whereas that of M1 macrophages decreased. Moreover, Treg-conditioned medium further enhanced material-induced M2 macrophage polarization in vitro. Overall, Treg is an important cell type that influences constructive remodeling of the dECM. Such findings contribute to the design of next-generation biomaterials to optimize the remodeling and regeneration of dECM materials.
Collapse
Affiliation(s)
- Hongjing Jiang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Xuheng Sun
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yindi Wu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Jianyi Xu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Cong Xiao
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Qing Liu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Lijun Fang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yuanfeng Liang
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510006, Guangzhou, Guangdong, China
| | - Jiahui Zhou
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Yueheng Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| |
Collapse
|
18
|
Zheng Z, Li X, Dai X, Du C. Layer-by-Layer Construction of Antibacterial and Anticoagulant Blood Contacting Materials. Macromol Biosci 2024; 24:e2400015. [PMID: 38695486 DOI: 10.1002/mabi.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Vascular transplantation is a common treatment for Cardiovascular disease (CVD). However, the mismatch of mechanical, structural, or microenvironmental properties of materials limits the clinical application. Therefore, the functional construction of artificial vessels or other blood contact materials remains an urgent challenge. In this paper, the composite nanofibers of polycaprolactone (PCL) with dopamine and polyethylenimine (PEI) coating are first prepared, which are further self-assembled by anticoagulant hirudin (rH) and antimicrobial peptide (AMP) of HHC36 through layer-by-layer (LBL) method. The results of FTIR and XPS analysis show that hirudin and AMP are successfully loaded on PEI-PDA/PCL nanofibers and the hydrophilicity is improved. They also show good mechanical properties that the ultimate tensile strength and elongation at break are better than natural blood vessels. The antibacterial results show that the antibacterial effect is still 93% against E. coli on the fifth day because of the stable and continuous release of HHC36 and rH. The performance of anticoagulant activity also exhibited the same results, which APTT is even 9.7s longer in the experimental group than the control group on the fifth day. The novel materials would be effectively solve the formation of thrombosis around artificial blood vessel grafts and the treatment of inflammation.
Collapse
Affiliation(s)
- Zhiwen Zheng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xueyang Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xin Dai
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chang Du
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
19
|
Sun XH, Jiang HJ, Liu Q, Xiao C, Xu JY, Wu Y, Mei JY, Wu ST, Lin ZY. Low concentrations of TNF-α in vitro transform the phenotype of vascular smooth muscle cells and enhance their survival in a three-dimensional culture system. Artif Organs 2024; 48:839-848. [PMID: 38660762 DOI: 10.1111/aor.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) are commonly used as seed cells in tissue-engineered vascular constructions. However, their variable phenotypes and difficult to control functions pose challenges. This study aimed to overcome these obstacles using a three-dimensional culture system. METHODS Calf VSMCs were administered tumor necrosis factor-alpha (TNF-α) before culturing in two- and three-dimensional well plates and polyglycolic acid (PGA) scaffolds, respectively. The phenotypic markers of VSMCs were detected by immunofluorescence staining and western blotting, and the proliferation and migration abilities of VSMCs were detected by CCK-8, EDU, cell counting, scratch, and Transwell assays. RESULTS TNF-α rapidly decreased the contractile phenotypic markers and elevated the synthetic phenotypic markers of VSMCs, as well as markedly increasing the proliferation and migration ability of VSMCs under two- and three-dimensional culture conditions. CONCLUSIONS TNF-α can rapidly induce a phenotypic shift in VSMCs and change their viability on PGA scaffolds.
Collapse
Affiliation(s)
- Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Yindi Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Jing-Yi Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Shu-Ting Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, P.R. China
| | - Zhan-Yi Lin
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| |
Collapse
|
20
|
Yang Y, Zhang X, Yan H, Zhao R, Zhang R, Zhu L, Zhang J, Midgley AC, Wan Y, Wang S, Qian M, Zhao Q, Ai D, Wang T, Kong D, Huang X, Wang K. Versatile Design of NO-Generating Proteolipid Nanovesicles for Alleviating Vascular Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401844. [PMID: 38884204 PMCID: PMC11336937 DOI: 10.1002/advs.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Vascular injury is central to the pathogenesis and progression of cardiovascular diseases, however, fostering alternative strategies to alleviate vascular injury remains a persisting challenge. Given the central role of cell-derived nitric oxide (NO) in modulating the endogenous repair of vascular injury, NO-generating proteolipid nanovesicles (PLV-NO) are designed that recapitulate the cell-mimicking functions for vascular repair and replacement. Specifically, the proteolipid nanovesicles (PLV) are versatilely fabricated using membrane proteins derived from different types of cells, followed by the incorporation of NO-generating nanozymes capable of catalyzing endogenous donors to produce NO. Taking two vascular injury models, two types of PLV-NO are tailored to meet the individual requirements of targeted diseases using platelet membrane proteins and endothelial membrane proteins, respectively. The platelet-based PLV-NO (pPLV-NO) demonstrates its efficacy in targeted repair of a vascular endothelium injury model through systemic delivery. On the other hand, the endothelial cell (EC)-based PLV-NO (ePLV-NO) exhibits suppression of thrombosis when modified onto a locally transplanted small-diameter vascular graft (SDVG). The versatile design of PLV-NO may enable a promising therapeutic option for various vascular injury-evoked cardiovascular diseases.
Collapse
Affiliation(s)
- Yueyue Yang
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Rongping Zhao
- School of MedicineNankai UniversityTianjin300071China
| | - Ruixin Zhang
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Liuyang Zhu
- First Central Clinical CollegeTianjin Medical UniversityTianjin300192China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Ye Wan
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Songdi Wang
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Meng Qian
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Ding Ai
- Department of Physiology and PathophysiologyTianjin Medical UniversityTianjin300070China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission ResearchCollege of Environmental Science and EngineeringNankai UniversityTianjin300071China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| |
Collapse
|
21
|
Das A, Smith RJ, Andreadis ST. Harnessing the potential of monocytes/macrophages to regenerate tissue-engineered vascular grafts. Cardiovasc Res 2024; 120:839-854. [PMID: 38742656 PMCID: PMC11218695 DOI: 10.1093/cvr/cvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Cell-free tissue-engineered vascular grafts provide a promising alternative to treat cardiovascular disease, but timely endothelialization is essential for ensuring patency and proper functioning post-implantation. Recent studies from our lab showed that blood cells like monocytes (MCs) and macrophages (Mϕ) may contribute directly to cellularization and regeneration of bioengineered arteries in small and large animal models. While MCs and Mϕ are leucocytes that are part of the innate immune response, they share common developmental origins with endothelial cells (ECs) and are known to play crucial roles during vessel formation (angiogenesis) and vessel repair after inflammation/injury. They are highly plastic cells that polarize into pro-inflammatory and anti-inflammatory phenotypes upon exposure to cytokines and differentiate into other cell types, including EC-like cells, in the presence of appropriate chemical and mechanical stimuli. This review focuses on the developmental origins of MCs and ECs; the role of MCs and Mϕ in vessel repair/regeneration during inflammation/injury; and the role of chemical signalling and mechanical forces in Mϕ inflammation that mediates vascular graft regeneration. We postulate that comprehensive understanding of these mechanisms will better inform the development of strategies to coax MCs/Mϕ into endothelializing the lumen and regenerate the smooth muscle layers of cell-free bioengineered arteries and veins that are designed to treat cardiovascular diseases and perhaps the native vasculature as well.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
| | - Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY 14203, USA
- Cell, Gene and Tissue Engineering (CGTE) Center, University at Buffalo, The State University of New York, 813 Furnas Hall, Buffalo, NY 14260-4200, USA
| |
Collapse
|
22
|
Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics (Basel) 2024; 9:377. [PMID: 39056818 PMCID: PMC11274842 DOI: 10.3390/biomimetics9070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| | | | | | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| |
Collapse
|
23
|
Hernandez-Sanchez D, Comtois-Bona M, Muñoz M, Ruel M, Suuronen EJ, Alarcon EI. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024; 27:109845. [PMID: 38799581 PMCID: PMC11126982 DOI: 10.1016/j.isci.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Maxime Comtois-Bona
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Erik J. Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Emilio I. Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
24
|
Crnic A, Rohringer S, Tyschuk T, Holnthoner W. Engineering blood and lymphatic microvascular networks. Atherosclerosis 2024; 393:117458. [PMID: 38320921 DOI: 10.1016/j.atherosclerosis.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The human vasculature plays a crucial role in the blood supply of nearly all organs as well as the drainage of the interstitial fluid. Consequently, if these physiological systems go awry, pathological changes might occur. Hence, the regeneration of existing vessels, as well as approaches to engineer artificial blood and lymphatic structures represent current challenges within the field of vascular research. In this review, we provide an overview of both the vascular blood circulation and the long-time neglected but equally important lymphatic system, with regard to their organotypic vasculature. We summarize the current knowledge within the field of vascular tissue engineering focusing on the design of co-culture systems, thereby mainly discussing suitable cell types, scaffold design and disease models. This review will mainly focus on addressing those subjects concerning atherosclerosis. Moreover, current technological approaches such as vascular organ-on-a-chip models and microfluidic devices will be discussed.
Collapse
Affiliation(s)
- Aldina Crnic
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1020 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1020 Vienna, Austria
| | - Sabrina Rohringer
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1020 Vienna, Austria; Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Tatiana Tyschuk
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1020 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1020 Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Donaueschingenstraße 13, 1020 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1020 Vienna, Austria.
| |
Collapse
|
25
|
Chen H, Bian F, Luo Z, Zhao Y. Biomimetic Anticoagulated Porous Particles with Self-Reporting Structural Colors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400189. [PMID: 38520728 PMCID: PMC11165554 DOI: 10.1002/advs.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Anticoagulation is vital to maintain blood fluidic status and physiological functions in the field of clinical blood-related procedures. Here, novel biomimetic anticoagulated porous inverse opal hydrogel particles is presented as anticoagulant bearing dynamic screening capability. The inverse opal hydrogel particles possess abundant sulfonic and carboxyl groups, which serve as binding sites with multiple coagulation factors and inhibit the blood coagulation process. Owing to the variations of refractive index and pore sizes during the binding process, the particles appeared corresponding structure color variations, which can be adopted as sensory index of anticoagulation. Based on these features, a sensor containing these diverse structure color particle units is constructed for pattern recognition of coagulation factors level in clinical plasma samples. By analyzing the sensory information of the unit, the colorimetric "fingerprint" for each target can be obtained and summarized as a database. Besides, a portable test-strip integrating sensory units is developed to distinguish the sample regarding abnormal coagulation factors-derived diseases via multivariate data analysis. It is believed that such biomimetic anticoagulated structural color particles and their derived sensor will open new avenue for clinical detection and disease diagnosis.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Shenzhen Research InstituteSoutheast UniversityShenzhen518038China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
26
|
Xiang Z, Chen H, Xu B, Wang H, Zhang T, Guan X, Ma Z, Liang K, Shi Q. Gelatin/heparin coated bio-inspired polyurethane composite fibers to construct small-caliber artificial blood vessel grafts. Int J Biol Macromol 2024; 269:131849. [PMID: 38670202 DOI: 10.1016/j.ijbiomac.2024.131849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Long-term patency and ability for revascularization remain challenges for small-caliber blood vessel grafts to treat cardiovascular diseases clinically. Here, a gelatin/heparin coated bio-inspired polyurethane composite fibers-based artificial blood vessel with continuous release of NO and biopeptides to regulate vascular tissue repair and maintain long-term patency is fabricated. A biodegradable polyurethane elastomer that can catalyze S-nitrosothiols in the blood to release NO is synthesized (NPU). Then, the NPU core-shell structured nanofiber grafts with requisite mechanical properties and biopeptide release for inflammation manipulation are fabricated by electrospinning and lyophilization. Finally, the surface of tubular NPU nanofiber grafts is coated with heparin/gelatin and crosslinked with glutaraldehyde to obtain small-caliber artificial blood vessels (ABVs) with the ability of vascular revascularization. We demonstrate that artificial blood vessel grafts promote the growth of endothelial cells but inhibit the growth of smooth muscle cells by the continuous release of NO; vascular grafts can regulate inflammatory balance for vascular tissue remodel without excessive collagen deposition through the release of biological peptides. Vascular grafts prevent thrombus and vascular stenosis to obtain long-term patency. Hence, our work paves a new way to develop small-caliber artificial blood vessel grafts that can maintain long-term patency in vivo and remodel vascular tissue successfully.
Collapse
Affiliation(s)
- Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong 519000, China
| | - Honghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baofeng Xu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun 130021, China; Hunan Provincial Key Laboratory of the R&D of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China.
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Kuntang Liang
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong 519000, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
27
|
Wang J, Yang X, Xu M, Liu H, Liu L, Tan Z. Distinct cellular microenvironment with cytotypic effects regulates orderly regeneration of vascular tissues. Mater Today Bio 2024; 26:101033. [PMID: 38533377 PMCID: PMC10963652 DOI: 10.1016/j.mtbio.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Regeneration of the architecturally complex blood vascular system requires precise temporal and spatial control of cell behaviours. Additional components must be integrated into the structure to achieve clinical success for in situ tissue engineering. Consequently, this study proposed a universal method for including any substrate type in vascular cell extracellular matrices (VCEM) via regulating selective adhesion to promote vascular tissue regeneration. The results uncovered that the VCEM worked as cell adhesion substrates, exhibited cell type specificity, and functioned as an address signal for recognition by vascular cells, which resulted in matching with the determined cells. The qPCR and immunofluorescence results revealed that a cell type-specific VCEM could be designed to promote or inhibit cell adhesion, consistenting with the expression patterns of eyes absent 3 (Eya3). In addition, a 3D vascular graft combined with VCEM which could recapitulate the vascular cell-like microenvironment was fabricated. The vascular graft revealed a prospective role for cellular microenvironment in the establishment of vascular cell distribution and tissue architecture, and potentiated the orderly regeneration and functional recovery of vascular tissues in vivo. The findings demonstrate that differential adhesion between cell types due to the cellular microenvironment is sufficient to drive the complex assembly of engineered blood vessel functional units, and underlies hierarchical organization during vascular regeneration.
Collapse
Affiliation(s)
- Jian Wang
- College of Biology, Hunan University, Changsha, 410082, China
- Institute of Shenzhen, Hunan University Shenzhen, 518000, China
| | - Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University), Shenzhen, 518028, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Miaomiao Xu
- College of Biology, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Hui Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University), Shenzhen, 518028, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, 410082, China
- Institute of Shenzhen, Hunan University Shenzhen, 518000, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| |
Collapse
|
28
|
Zoneff E, Wang Y, Jackson C, Smith O, Duchi S, Onofrillo C, Farrugia B, Moulton SE, Williams R, Parish C, Nisbet DR, Caballero-Aguilar LM. Controlled oxygen delivery to power tissue regeneration. Nat Commun 2024; 15:4361. [PMID: 38778053 PMCID: PMC11111456 DOI: 10.1038/s41467-024-48719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Oxygen plays a crucial role in human embryogenesis, homeostasis, and tissue regeneration. Emerging engineered regenerative solutions call for novel oxygen delivery systems. To become a reality, these systems must consider physiological processes, oxygen release mechanisms and the target application. In this review, we explore the biological relevance of oxygen at both a cellular and tissue level, and the importance of its controlled delivery via engineered biomaterials and devices. Recent advances and upcoming trends in the field are also discussed with a focus on tissue-engineered constructs that could meet metabolic demands to facilitate regeneration.
Collapse
Affiliation(s)
- Elizabeth Zoneff
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT, Australia
| | - Oliver Smith
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT, Australia
| | - Serena Duchi
- Department of Surgery, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Carmine Onofrillo
- Department of Surgery, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Brooke Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Simon E Moulton
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia
- Department of Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Richard Williams
- IMPACT, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Clare Parish
- The Florey Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia.
| | - Lilith M Caballero-Aguilar
- The Graeme Clark Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Dasgupta I, Rangineni DP, Abdelsaid H, Ma Y, Bhushan A. Tiny Organs, Big Impact: How Microfluidic Organ-on-Chip Technology Is Revolutionizing Mucosal Tissues and Vasculature. Bioengineering (Basel) 2024; 11:476. [PMID: 38790343 PMCID: PMC11117503 DOI: 10.3390/bioengineering11050476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Organ-on-chip (OOC) technology has gained importance for biomedical studies and drug development. This technology involves microfluidic devices that mimic the structure and function of specific human organs or tissues. OOCs are a promising alternative to traditional cell-based models and animals, as they provide a more representative experimental model of human physiology. By creating a microenvironment that closely resembles in vivo conditions, OOC platforms enable the study of intricate interactions between different cells as well as a better understanding of the underlying mechanisms pertaining to diseases. OOCs can be integrated with other technologies, such as sensors and imaging systems to monitor real-time responses and gather extensive data on tissue behavior. Despite these advances, OOCs for many organs are in their initial stages of development, with several challenges yet to be overcome. These include improving the complexity and maturity of these cellular models, enhancing their reproducibility, standardization, and scaling them up for high-throughput uses. Nonetheless, OOCs hold great promise in advancing biomedical research, drug discovery, and personalized medicine, benefiting human health and well-being. Here, we review several recent OOCs that attempt to overcome some of these challenges. These OOCs with unique applications can be engineered to model organ systems such as the stomach, cornea, blood vessels, and mouth, allowing for analyses and investigations under more realistic conditions. With this, these models can lead to the discovery of potential therapeutic interventions. In this review, we express the significance of the relationship between mucosal tissues and vasculature in organ-on-chip (OOC) systems. This interconnection mirrors the intricate physiological interactions observed in the human body, making it crucial for achieving accurate and meaningful representations of biological processes within OOC models. Vasculature delivers essential nutrients and oxygen to mucosal tissues, ensuring their proper function and survival. This exchange is critical for maintaining the health and integrity of mucosal barriers. This review will discuss the OOCs used to represent the mucosal architecture and vasculature, and it can encourage us to think of ways in which the integration of both can better mimic the complexities of biological systems and gain deeper insights into various physiological and pathological processes. This will help to facilitate the development of more accurate predictive models, which are invaluable for advancing our understanding of disease mechanisms and developing novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA; (I.D.); (D.P.R.); (H.A.); (Y.M.)
| |
Collapse
|
30
|
Meng C, Liu X, Li R, Malekmohammadi S, Feng Y, Song J, Gong RH, Li J. 3D Poly (L-lactic acid) fibrous sponge with interconnected porous structure for bone tissue scaffold. Int J Biol Macromol 2024; 268:131688. [PMID: 38642688 DOI: 10.1016/j.ijbiomac.2024.131688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Large bone defects, often resulting from trauma and disease, present significant clinical challenges. Electrospun fibrous scaffolds closely resembling the morphology and structure of natural ECM are highly interested in bone tissue engineering. However, the traditional electrospun fibrous scaffold has some limitations, including lacking interconnected macropores and behaving as a 2D scaffold. To address these challenges, a sponge-like electrospun poly(L-lactic acid) (PLLA)/polycaprolactone (PCL) fibrous scaffold has been developed by an innovative and convenient method (i.e., electrospinning, homogenization, progen leaching and shaping). The resulting scaffold exhibited a highly porous structure (overall porosity = 85.9 %) with interconnected, regular macropores, mimicking the natural extracellular matrix. Moreover, the incorporation of bioactive glass (BG) particles improved the hydrophilicity (water contact angle = 79.7°) and biocompatibility and promoted osteoblast cell growth. In-vitro 10-day experiment revealed that the scaffolds led to high cell viability. The increment of the proliferation rates was 195.4 % at day 7 and 281.6 % at day 10. More importantly, Saos-2 cells could grow, proliferate, and infiltrate into the scaffold. Therefore, this 3D PLLA/PCL with BG sponge holds great promise for bone defect repair in tissue engineering applications.
Collapse
Affiliation(s)
- Chen Meng
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhao Liu
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Renzhi Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | | | - Yangyang Feng
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - R Hugh Gong
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
31
|
Qiao S, Peijie T, Nan J. Crosslinking strategies of decellularized extracellular matrix in tissue regeneration. J Biomed Mater Res A 2024; 112:640-671. [PMID: 37990863 DOI: 10.1002/jbm.a.37650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
By removing the immunogenic cellular components through various decellularization methods, decellularized extracellular matrix (dECM) is considered a promising material in the field of tissue engineering and regenerative medicine with highly preserved physicochemical properties and superior biocompatibility. However, decellularization treatment can lead to some loss of structural integrity, mechanical strength, degradation stability, and biological performance of dECM biomaterials. Therefore, physical and chemical crosslinking methods are preferred to restore or even improve the biomechanical properties, stability, and bioactivity, and to achieve a delicate balance between degradation of the implanted biomaterial and regeneration of the host tissue. This review provides an overview of dECM biomaterials, and describes and compares the mechanisms and characteristics of commonly used crosslinking methods for dECM, with a focus on the potential applications of versatile dECM-based biomaterials derived from skin, cardiac tissues (pericardium, heart valves, myocardial tissue), blood vessels, liver, and kidney, modified with different chemical crosslinking reagents, in tissue and organ regeneration.
Collapse
Affiliation(s)
- Su Qiao
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tan Peijie
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Nan
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Zhan Y, Jiang W, Liu Z, Wang Z, Guo K, Sun J. Utilizing bioprinting to engineer spatially organized tissues from the bottom-up. Stem Cell Res Ther 2024; 15:101. [PMID: 38589956 PMCID: PMC11003108 DOI: 10.1186/s13287-024-03712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
In response to the growing demand for organ substitutes, tissue engineering has evolved significantly. However, it is still challenging to create functional tissues and organs. Tissue engineering from the 'bottom-up' is promising on solving this problem due to its ability to construct tissues with physiological complexity. The workflow of this strategy involves two key steps: the creation of building blocks, and the subsequent assembly. There are many techniques developed for the two pivotal steps. Notably, bioprinting is versatile among these techniques and has been widely used in research. With its high level of automation, bioprinting has great capacity in engineering tissues with precision and holds promise to construct multi-material tissues. In this review, we summarize the techniques applied in fabrication and assembly of building blocks. We elaborate mechanisms and applications of bioprinting, particularly in the 'bottom-up' strategy. We state our perspectives on future trends of bottom-up tissue engineering, hoping to provide useful reference for researchers in this field.
Collapse
Affiliation(s)
- Yichen Zhan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhirong Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Ke Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| |
Collapse
|
33
|
Shen Y, Pan Y, Liang F, Song J, Yu X, Cui J, Cai G, EL-Newehy M, Abdulhameed MM, Gu H, Sun B, Yin M, Mo X. Development of 3D printed electrospun vascular graft loaded with tetramethylpyrazine for reducing thrombosis and restraining aneurysmal dilatation. BURNS & TRAUMA 2024; 12:tkae008. [PMID: 38596623 PMCID: PMC11002459 DOI: 10.1093/burnst/tkae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
Background Small-diameter vascular grafts have become the focus of attention in tissue engineering. Thrombosis and aneurysmal dilatation are the two major complications of the loss of vascular access after surgery. Therefore, we focused on fabricating 3D printed electrospun vascular grafts loaded with tetramethylpyrazine (TMP) to overcome these limitations. Methods Based on electrospinning and 3D printing, 3D-printed electrospun vascular grafts loaded with TMP were fabricated. The inner layer of the graft was composed of electrospun poly(L-lactic-co-caprolactone) (PLCL) nanofibers and the outer layer consisted of 3D printed polycaprolactone (PCL) microfibers. The characterization and mechanical properties were tested. The blood compatibility and in vitro cytocompatibility of the grafts were also evaluated. Additionally, rat abdominal aortas were replaced with these 3D-printed electrospun grafts to evaluate their biosafety. Results Mechanical tests demonstrated that the addition of PCL microfibers could improve the mechanical properties. In vitro experimental data proved that the introduction of TMP effectively inhibited platelet adhesion. Afterwards, rat abdominal aorta was replaced with 3D-printed electrospun grafts. The 3D-printed electrospun graft loaded with TMP showed good biocompatibility and mechanical strength within 6 months and maintained substantial patency without the occurrence of acute thrombosis. Moreover, no obvious aneurysmal dilatation was observed. Conclusions The study demonstrated that 3D-printed electrospun vascular grafts loaded with TMP may have the potential for injured vascular healing.
Collapse
Affiliation(s)
- Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Jiahui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Guangfang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Mohamed EL-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hongbing Gu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201600, PR China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
34
|
Fan Y, Pei J, Qin Y, Du H, Qu X, Li W, Huang B, Tan J, Liu Y, Li G, Ke M, Xu Y, Zhu C. Construction of tissue-engineered vascular grafts with enhanced patency by integrating heparin, cell-adhesive peptide, and carbon monoxide nanogenerators into acellular blood vessels. Bioact Mater 2024; 34:221-236. [PMID: 38235307 PMCID: PMC10792202 DOI: 10.1016/j.bioactmat.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs.
Collapse
Affiliation(s)
- Yonghong Fan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610083, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Juan Pei
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yinhua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Huifang Du
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohang Qu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wenya Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Boyue Huang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ming Ke
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Youqian Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
35
|
Wang T, Lu P, Wan Z, He Z, Cheng S, Zhou Y, Liao S, Wang M, Wang T, Shu C. Adaptation process of decellularized vascular grafts as hemodialysis access in vivo. Regen Biomater 2024; 11:rbae029. [PMID: 38638701 PMCID: PMC11026144 DOI: 10.1093/rb/rbae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Arteriovenous grafts (AVGs) have emerged as the preferred option for constructing hemodialysis access in numerous patients. Clinical trials have demonstrated that decellularized vascular graft exhibits superior patency and excellent biocompatibility compared to polymer materials; however, it still faces challenges such as intimal hyperplasia and luminal dilation. The absence of suitable animal models hinders our ability to describe and explain the pathological phenomena above and in vivo adaptation process of decellularized vascular graft at the molecular level. In this study, we first collected clinical samples from patients who underwent the construction of dialysis access using allogeneic decellularized vascular graft, and evaluated their histological features and immune cell infiltration status 5 years post-transplantation. Prior to the surgery, we assessed the patency and intimal hyperplasia of the decellularized vascular graft using non-invasive ultrasound. Subsequently, in order to investigate the in vivo adaptation of decellularized vascular grafts in an animal model, we attempted to construct an AVG model using decellularized vascular grafts in a small animal model. We employed a physical-chemical-biological approach to decellularize the rat carotid artery, and histological evaluation demonstrated the successful removal of cellular and antigenic components while preserving extracellular matrix constituents such as elastic fibers and collagen fibers. Based on these results, we designed and constructed the first allogeneic decellularized rat carotid artery AVG model, which exhibited excellent patency and closely resembled clinical characteristics. Using this animal model, we provided a preliminary description of the histological features and partial immune cell infiltration in decellularized vascular grafts at various time points, including Day 7, Day 21, Day 42, and up to one-year post-implantation. These findings establish a foundation for further investigation into the in vivo adaptation process of decellularized vascular grafts in small animal model.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Zicheng Wan
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Zhenyu He
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Siyuan Cheng
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Yang Zhou
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Sheng Liao
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Mo Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Tianjian Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Institute of Vascular Diseases, Central South University, Changsha 410011, China
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
36
|
Das A, Nikhil A, Kumar A. Antioxidant and Trilayered Electrospun Small-Diameter Vascular Grafts Maintain Patency and Promote Endothelialisation in Rat Femoral Artery. ACS Biomater Sci Eng 2024; 10:1697-1711. [PMID: 38320085 DOI: 10.1021/acsbiomaterials.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Vascular grafts with a small diameter encounter inadequate patency as a result of intimal hyperplasia development. In the current study, trilayered electrospun small-diameter vascular grafts (PU-PGACL + GA) were fabricated using a poly(glycolic acid) and poly(caprolactone) blend as the middle layer and antioxidant polyurethane with gallic acid as the innermost and outermost layers. The scaffolds exhibited good biocompatibility and mechanical properties, as evidenced by their 6 MPa elastic modulus, 4 N suture retention strength, and 2500 mmHg burst pressure. Additionally, these electrospun grafts attenuated cellular oxidative stress and demonstrated minimal hemolysis (less than 1%). As a proof-of-concept, the preclinical evaluation of the grafts was carried out in the femoral artery of rodents, where the conduits demonstrated satisfactory patency. After 35 days of implantation, ultrasound imaging depicted adequate blood flow through the grafts, and the computed vessel diameter and histological staining showed no significant stenosis issue. Immunohistochemical analysis confirmed matrix deposition (38% collagen I and 16% elastin) and cell infiltration (42% for endothelial cells and 55% for smooth muscle cells) in the explanted grafts. Therefore, PU-PGACL + GA showed characteristics of a clinically relevant small-diameter vascular graft, facilitating re-endothelialization while preserving the anticoagulant properties of the synthetic blood vessels.
Collapse
Affiliation(s)
- Ankita Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India
| | - Aman Nikhil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India
- Centre of Excellence in Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, U.P., India
| |
Collapse
|
37
|
Guo A, Zhang S, Yang R, Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications. Mater Today Bio 2024; 24:100939. [PMID: 38249436 PMCID: PMC10797197 DOI: 10.1016/j.mtbio.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have gained significant traction in diverse tissue engineering applications through the utilization of 3D printing technology. As an artificial hydrogel possessing remarkable processability, GelMA has emerged as a pioneering material in the advancement of tissue engineering due to its exceptional biocompatibility and degradability. The integration of 3D printing technology facilitates the precise arrangement of cells and hydrogel materials, thereby enabling the creation of in vitro models that simulate artificial tissues suitable for transplantation. Consequently, the potential applications of GelMA in tissue engineering are further expanded. In tissue engineering applications, the mechanical properties of GelMA are often modified to overcome the hydrogel material's inherent mechanical strength limitations. This review provides a comprehensive overview of recent advancements in enhancing the mechanical properties of GelMA at the monomer, micron, and nano scales. Additionally, the diverse applications of GelMA in soft tissue engineering via 3D printing are emphasized. Furthermore, the potential opportunities and obstacles that GelMA may encounter in the field of tissue engineering are discussed. It is our contention that through ongoing technological progress, GelMA hydrogels with enhanced mechanical strength can be successfully fabricated, leading to the production of superior biological scaffolds with increased efficacy for tissue engineering purposes.
Collapse
Affiliation(s)
- Ao Guo
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Shengting Zhang
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cong Sui
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| |
Collapse
|
38
|
Liu H, Zhao Y, Zhao G, Deng Y, Chen YE, Zhang J. SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies. Cells 2024; 13:168. [PMID: 38247859 PMCID: PMC10814623 DOI: 10.3390/cells13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation. In this review, we provide a summary of research related to the involvement of the SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries shed light on our understanding of VSMC biology and pave the way for developing innovative therapeutic strategies in CVD treatment.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| |
Collapse
|
39
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
40
|
Ding C, Ma J, Teng Y, Chen S. The Effect of Plasma Treatment on the Mechanical and Biological Properties of Polyurethane Artificial Blood Vessel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7231. [PMID: 38005160 PMCID: PMC10673499 DOI: 10.3390/ma16227231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
In recent years, the incidence of cardiovascular disease has increased annually, and the demand for artificial blood vessels has been increasing. Due to the formation of thrombosis and stenosis after implantation, the application of many materials in the human body has been inhibited. Therefore, the choice of surface modification process is very important. In this paper, small-diameter polyurethane artificial blood vessels were prepared through electrospinning, and their surfaces were treated with plasma to improve their biological properties. The samples before and after plasma treatment were characterized by SEM, contact angle, XPS, and tensile testing; meanwhile, the cell compatibility and blood compatibility were evaluated. The results show that there are no significant changes to the fiber morphology or diameter distribution on the surface of the sample before and after plasma treatment. Plasma treatment can increase the proportion of oxygen-containing functional groups on the surface of the sample and improve its wettability, thereby increasing the infiltration ability of cells and promoting cell proliferation. Plasma treatment can reduce the risk of hemolysis, and does not cause platelet adhesion. Due to the etching effect of plasma, the mechanical properties of the samples decreased with the extension of plasma treatment time, which should be used as a basis to balance the mechanical property and biological property of artificial blood vessels. But on the whole, plasma treatment has positive significance for improving the comprehensive performance of samples.
Collapse
Affiliation(s)
- Cheng Ding
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China;
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Jing Ma
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Yingxue Teng
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China;
| | - Shanshan Chen
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
| |
Collapse
|
41
|
Luo Q, Shang K, Zhu J, Wu Z, Cao T, Ahmed AAQ, Huang C, Xiao L. Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. MATERIALS HORIZONS 2023; 10:4662-4685. [PMID: 37705440 DOI: 10.1039/d3mh00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Biomimetic cell culture, which involves creating a biomimetic microenvironment for cells in vitro by engineering approaches, has aroused increasing interest given that it maintains the normal cellular phenotype, genotype and functions displayed in vivo. Therefore, it can provide a more precise platform for disease modelling, drug development and regenerative medicine than the conventional plate cell culture. In this review, initially, we discuss the principle of biomimetic cell culture in terms of the spatial microenvironment, chemical microenvironment, and physical microenvironment. Then, the main strategies of biomimetic cell culture and their state-of-the-art progress are summarized. To create a biomimetic microenvironment for cells, a variety of strategies has been developed, ranging from conventional scaffold strategies, such as macroscopic scaffolds, microcarriers, and microgels, to emerging scaffold-free strategies, such as spheroids, organoids, and assembloids, to simulate the native cellular microenvironment. Recently, 3D bioprinting and microfluidic chip technology have been applied as integrative platforms to obtain more complex biomimetic structures. Finally, the challenges in this area are discussed and future directions are discussed to shed some light on the community.
Collapse
Affiliation(s)
- Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Keyuan Shang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510070, China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
42
|
Thorens L, Måløy KJ, Flekkøy EG, Sandnes B, Bourgoin M, Santucci S. Capillary washboarding during slow drainage of a frictional fluid. SOFT MATTER 2023. [PMID: 37856239 DOI: 10.1039/d3sm00717k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Numerous natural and industrial processes involve the mixed displacement of liquids, gases and granular materials through confining structures. However, understanding such three-phase flows remains a formidable challenge, despite their tremendous economic and environmental impact. To unveil the complex interplay of capillary and granular stresses in such flows, we consider here a model configuration where a frictional fluid (an immersed sedimented granular layer) is slowly drained out of a horizontal capillary. Analyzing how liquid/air menisci displace particles from such granular beds, we reveal various drainage patterns, notably the periodic formation of dunes, analogous to road washboard instability. Considering the competitive role of friction and capillarity, a 2D theoretical approach supported by numerical simulations of a meniscus bulldozing a front of particles provides quantitative criteria for the emergence of those dunes. A key element is the strong increase of the frictional forces, as the bulldozed particles accumulate and bend the meniscus horizontally. Interestingly, this frictional enhancement with the attack angle is also crucial in small-legged animals' locomotion over granular media.
Collapse
Affiliation(s)
- Louison Thorens
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
- PoreLab, The Njord Centre, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway
| | - Knut J Måløy
- PoreLab, The Njord Centre, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway
- PoreLab, Dep. of Geoscience and Petroleum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eirik G Flekkøy
- PoreLab, The Njord Centre, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway
- PoreLab, Dep. of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørnar Sandnes
- Department of Chemical Engineering, Swansea University, Bay Campus, Swansea, UK
| | | | | |
Collapse
|
43
|
Li S, Zhao F, Tang Y, Zhang Y, Rong H, Liu L, Gao R, Liu X, Huangfu Y, Bai Y, Feng Z, Guo Z, Dong A, Wang W, Kong D, Huang P. Bioinspired, Anticoagulative, 19 F MRI-Visualizable Bilayer Hydrogel Tubes as High Patency Small-Diameter Vascular Grafts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302621. [PMID: 37340585 DOI: 10.1002/smll.202302621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Indexed: 06/22/2023]
Abstract
The clinical patency of small-diameter vascular grafts (SDVGs) (ID < 6 mm) is limited, with the formation of mural thrombi being a major threat of this limitation. Herein, a bilayered hydrogel tube based on the essential structure of native blood vessels is developed by optimizing the relation between vascular functions and the molecular structure of hydrogels. The inner layer of the SDVGs comprises a zwitterionic fluorinated hydrogel, avoiding the formation of thromboinflammation-induced mural thrombi. Furthermore, the position and morphology of the SDVGs can be visualized via 19 F/1 H magnetic resonance imaging. The outer poly(N-acryloyl glycinamide) hydrogel layer of SDVGs provides matched mechanical properties with native blood vessels through the multiple and controllable intermolecular hydrogen-bond interactions, which can withstand the accelerated fatigue test under pulsatile radial pressure for 380 million cycles (equal to a service life of 10 years in vivo). Consequently, the SDVGs exhibit higher patency (100%) and more stable morphology following porcine carotid artery transplantation for 9 months and rabbit carotid artery transplantation for 3 months. Therefore, such a bioinspired, antithrombotic, and visualizable SDVG presents a promising design approach for long-term patency products and great potential of helping patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Feng Zhao
- Chest hospital, Tianjin University, Tianjin, 300222, China
| | - Yipeng Tang
- Chest hospital, Tianjin University, Tianjin, 300222, China
| | - Yiqun Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hui Rong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lingyuan Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiang Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yini Huangfu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunpeng Bai
- Chest hospital, Tianjin University, Tianjin, 300222, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zhigang Guo
- Chest hospital, Tianjin University, Tianjin, 300222, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin, 300072, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
44
|
Zhao Q, Du X, Wang M. Electrospinning and Cell Fibers in Biomedical Applications. Adv Biol (Weinh) 2023; 7:e2300092. [PMID: 37166021 DOI: 10.1002/adbi.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Indexed: 05/12/2023]
Abstract
Human body tissues such as muscle, blood vessels, tendon/ligaments, and nerves have fiber-like fascicle morphologies, where ordered organization of cells and extracellular matrix (ECM) within the bundles in specific 3D manners orchestrates cells and ECM to provide tissue functions. Through engineering cell fibers (which are fibers containing living cells) as living building blocks with the help of emerging "bottom-up" biomanufacturing technologies, it is now possible to reconstitute/recreate the fiber-like fascicle morphologies and their spatiotemporally specific cell-cell/cell-ECM interactions in vitro, thereby enabling the modeling, therapy, or repair of these fibrous tissues. In this article, a concise review is provided of the "bottom-up" biomanufacturing technologies and materials usable for fabricating cell fibers, with an emphasis on electrospinning that can effectively and efficiently produce thin cell fibers and with properly designed processes, 3D cell-laden structures that mimic those of native fibrous tissues. The importance and applications of cell fibers as models, therapeutic platforms, or analogs/replacements for tissues for areas such as drug testing, cell therapy, and tissue engineering are highlighted. Challenges, in terms of biomimicry of high-order hierarchical structures and complex dynamic cellular microenvironments of native tissues, as well as opportunities for cell fibers in a myriad of biomedical applications, are discussed.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuemin Du
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
45
|
Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol 2023; 246:125672. [PMID: 37406920 DOI: 10.1016/j.ijbiomac.2023.125672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues are made up of three parts: extracellular matrix (ECM), signaling systems, and cells. Therefore, biomimetic ECM scaffold is one of the best candidates for tissue engineering scaffolds. Among the many scaffold materials of biomimetic ECM structure, decellularized ECM scaffolds (dECMs) obtained from natural ECM after acellular treatment stand out because of their inherent natural components and microenvironment. First, an overview of the family of dECMs is provided. The principle, mechanism, advances, and shortfalls of various decellularization technologies, including physical, chemical, and biochemical methods are then critically discussed. Subsequently, a comprehensive review is provided on recent advances in the versatile applications of dECMs including but not limited to decellularized small intestinal submucosa, dermal matrix, amniotic matrix, tendon, vessel, bladder, heart valves. And detailed examples are also drawn from scientific research and practical work. Furthermore, we outline the underlying development directions of dECMs from the perspective that tissue engineering scaffolds play an important role as an important foothold and fulcrum at the intersection of materials and medicine. As scaffolds that have already found diverse applications, dECMs will continue to present both challenges and exciting opportunities for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Min
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
46
|
Yan H, Cheng Q, Si J, Wang S, Wan Y, Kong X, Wang T, Zheng W, Rafique M, Li X, He J, Midgley AC, Zhu Y, Wang K, Kong D. Functionalization of in vivo tissue-engineered living biotubes enhance patency and endothelization without the requirement of systemic anticoagulant administration. Bioact Mater 2023; 26:292-305. [PMID: 36950151 PMCID: PMC10027480 DOI: 10.1016/j.bioactmat.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
Vascular regeneration and patency maintenance, without anticoagulant administration, represent key developmental trends to enhance small-diameter vascular grafts (SDVG) performance. In vivo engineered autologous biotubes have emerged as SDVG candidates with pro-regenerative properties. However, mechanical failure coupled with thrombus formation hinder translational prospects of biotubes as SDVGs. Previously fabricated poly(ε-caprolactone) skeleton-reinforced biotubes (PBs) circumvented mechanical issues and achieved vascular regeneration, but orally administered anticoagulants were required. Here, highly efficient and biocompatible functional modifications were introduced to living cells on PB lumens. The 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-methoxy (DMPE)-PEG-conjugated anti-coagulant bivalirudin (DPB) and DMPE-PEG-conjugated endothelial progenitor cell (EPC)-binding TPS-peptide (DPT) modifications possessed functionality conducive to promoting vascular graft patency. Co-modification of DPB and DPT swiftly attained luminal saturation without influencing cell viability. DPB repellent of non-specific proteins, DPB inhibition of thrombus formation, and DPB protection against functional masking of DPT's EPC-capture by blood components, which promoted patency and rapid endothelialization in rat and canine artery implantation models without anticoagulant administration. This strategy offers a safe, facile, and fast technical approach to convey additional functionalization to living cells within tissue-engineered constructs.
Collapse
Affiliation(s)
- Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianghua Si
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songdi Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ye Wan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaofeng Li
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
47
|
Kirkton RD, Watson JDB, Houston R, Prichard HL, Niklason LE, Rasmussen TE. Evaluation of vascular repair by tissue-engineered human acellular vessels or expanded polytetrafluoroethylene grafts in a porcine model of limb ischemia and reperfusion. J Trauma Acute Care Surg 2023; 95:234-241. [PMID: 36943014 PMCID: PMC10389495 DOI: 10.1097/ta.0000000000003974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND This study evaluated performance of a tissue-engineered human acellular vessel (HAV) in a porcine model of acute vascular injury and ischemia. The HAV is an engineered blood vessel consisted of human vascular extracellular matrix proteins. Limb reperfusion and vascular outcomes of the HAV were compared with those from synthetic expanded polytetrafluoroethylene (ePTFE) grafts. METHODS Thirty-six pigs were randomly assigned to four treatment groups, receiving either the HAV or a PTFE graft following a hind limb ischemia period of either 0 or 6 hours. All grafts were 3-cm-long interposition 6-mm diameter grafts implanted within the right iliac artery. Animals were not immunosuppressed and followed for up to 28 days after surgery. Assessments performed preoperatively and postoperatively included evaluation of graft patency, hind limb function, and biochemical markers of tissue ischemia or reperfusion injury. Histological analysis was performed on explants to assess host cell responses. RESULTS Postoperative gait assessment and biochemical analysis confirmed that ischemia and reperfusion injury were caused by 6-hour ischemia, regardless of vascular graft type. Hind limb function and tissue damage biomarkers improved in all groups postoperatively. Final patency rates at postoperative day 28 were higher for HAV than for ePTFE graft in both the 0-hour (HAV, 85.7%; ePTFE, 66.7%) and 6-hour (HAV, 100%; ePTFE, 75%) ischemia groups, but these differences were not statistically significant. Histological analyses identified some intimal hyperplasia and host reactivity to the xenogeneic HAV and also to the synthetic ePTFE graft. Positive host integration and vascular cell infiltration were identified in HAV but not ePTFE explants. CONCLUSION Based on the functional performance and the histologic profile of explanted HAVs, this study supports further investigation to evaluate long-term performance of the HAV when used to repair traumatic vascular injuries.
Collapse
|
48
|
Wang J, Blalock SK, Levitan GS, Prichard HL, Niklason LE, Kirkton RD. Biological mechanisms of infection resistance in tissue engineered blood vessels compared to synthetic expanded polytetrafluoroethylene grafts. JVS Vasc Sci 2023; 4:100120. [PMID: 37662589 PMCID: PMC10474492 DOI: 10.1016/j.jvssci.2023.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/24/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Synthetic expanded polytetrafluoroethylene (ePTFE) grafts are known to be susceptible to bacterial infection. Results from preclinical and clinical studies of bioengineered human acellular vessels (HAVs) have shown relatively low rates of infection. This study evaluates the interactions of human neutrophils and bacteria with ePTFE and HAV vascular conduits to determine whether there is a correlation between neutrophil-conduit interactions and observed differences of their infectivity in vivo. Methods A phase III comparative clinical study between investigational HAVs (n = 177) and commercial ePTFE grafts (n = 178) used for hemodialysis access (ClinicalTrials.gov Identifier: NCT02644941) was evaluated for conduit infection rates followed by histological analyses of HAV and ePTFE tissue explants. The clinical histopathology of HAV and ePTFE conduits reported to be infected was compared with immunohistochemistry of explanted materials from a preclinical model of bacterial contamination. Mechanistic in vitro studies were then conducted using isolated human neutrophils seeded directly onto HAV and ePTFE materials to analyze neutrophil viability, morphology, and function. Results Clinical trial results showed that the HAV had a significantly lower (0.93%; P = .0413) infection rate than that of ePTFE (4.54%). Histological analysis of sections from infected grafts explanted approximately 1 year after implantation revealed gram-positive bacteria near cannulation sites. Immunohistochemistry of HAV and ePTFE implanted in a well-controlled rodent infection model suggested that the ePTFE matrix permitted bacterial infiltration and colonization but may be inaccessible to neutrophils. In the same model, the HAV showed host recellularization and lacked detectable bacteria at the 2-week explant. In vitro results demonstrated that the viability of human neutrophils decreased significantly upon exposure to ePTFE, which was associated with neutrophil elastase release in the absence of bacteria. In contrast, neutrophils exposed to the HAV material retained high viability and native morphology. Cocultures of neutrophils and Staphylococcus aureus on the conduit materials demonstrated that neutrophils were more effective at ensnaring and degrading bacteria on the HAV than on ePTFE. Conclusions The HAV material seems to demonstrate a resistance to bacterial infection. This infection resistance is likely due to the HAV's native-like material composition, which may be more biocompatible with host neutrophils than synthetic vascular graft material.
Collapse
|
49
|
Sokolov O, Shaprynskyi V, Skupyy O, Stanko O, Yurets S, Yurkova Y, Niklason LE. Use of bioengineered human acellular vessels to treat traumatic injuries in the Ukraine-Russia conflict. THE LANCET REGIONAL HEALTH. EUROPE 2023; 29:100650. [PMID: 37213923 PMCID: PMC10195980 DOI: 10.1016/j.lanepe.2023.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/23/2023]
Affiliation(s)
| | - Vasyl Shaprynskyi
- State Institution of Science Research and Practical Center of Preventive and Clinical Medicine, Kyiv, Ukraine
| | - Oleh Skupyy
- Vinnytsya Regional Clinical Hospital, Vinnytsya, Ukraine
| | | | - Serhii Yurets
- Vinnytsya Regional Clinical Hospital, Vinnytsya, Ukraine
| | | | - Laura E. Niklason
- Humacyte Global, Inc., NC, USA
- Corresponding author. Humacyte Global, Inc., 2525 NC 54, Durham, 27713, NC, USA.
| |
Collapse
|
50
|
Garcia LR, Garzesi AM, Brito FDS, Felicio ML, Bertanha M. Scaffolds for Use in Blood Vessel Bioengineering: What are the Prospects? Arq Bras Cardiol 2023; 120:e20230341. [PMID: 37403875 PMCID: PMC10344349 DOI: 10.36660/abc.20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Affiliation(s)
- Leonardo Rufino Garcia
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cirurgia Cardiovascular e Transplante Cardíaco, São Paulo, SP – Brasil
| | - André Monti Garzesi
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cirurgia Cardiovascular e Transplante Cardíaco, São Paulo, SP – Brasil
| | - Flávio de Souza Brito
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cardiologia, São Paulo, SP – Brasil
| | - Marcello Laneza Felicio
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cirurgia Cardiovascular e Transplante Cardíaco, São Paulo, SP – Brasil
| | - Matheus Bertanha
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cirurgia Vascular, São Paulo, SP – Brasil
| |
Collapse
|