1
|
Li Y, Wang X, Yu W, Cen X, Li Y, Zhang X, Xu M, Zhang D, Lu P, Bai H. Predicting bioavailable barium transfer in soil-bok choy systems: A study induced by shale gas extraction in Chongqing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177196. [PMID: 39490393 DOI: 10.1016/j.scitotenv.2024.177196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Barium (Ba) is a significant contaminant from shale gas extraction and is also used in various other industries. However, there has been very limited attention paid to Ba. Elucidating the Ba in soil-crop system are of great significance for both human health risk assessment and pollution control. In this study, the bioavailability of Ba in soils was studied by using various characterization methods. Then the major factors dominating the transfer of Ba in soil-bok choy system and a suitable predicted model was derived. The results showed that Ba was mainly accumulated in the roots (transfer factor < 0.3). The relationships between Ba in shoots and the bioavailability of Ba characterizing with different methods increased in the order of CH3COOH (R2 = 0.81) < ethylenediamine tetraacetic acid (R2 = 0.87) < pore water (R2 = 0.89) < diffusive gradients in thin film (R2 = 0.90) < CaCl2 (R2 = 0.91). The major soil properties affecting Ba in shoots were pH (r = -0.32, P > 0.05), cation exchange capacity (r = -0.43, P < 0.01) and labile Al (r = 0.38, P < 0.05). Bioavailability of Ba can preferably model the Ba transfer in soil-bok choy system. The best reliable model was LogBa[shoot] = 0.591LogBa[soil-Pore water] + 1.749 (R2 = 0.963, P < 0.001). This model without measuring soil physicochemical properties, making it easier and more convenient to use in practice. Overall, these results highlight the role of metal bioavailability in predicting their transfer in soil-plant systems.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiaoyu Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Weihan Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xingmin Cen
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yutong Li
- Chongqing Academy of Eco-environmental Science, Chongqing 401147, China
| | - Xin Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Min Xu
- Department of Environmental Science, College of Sichuan Agricultural University, Chengdu 611130, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Hongcheng Bai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| |
Collapse
|
2
|
Shaheen SW, Wen T, Zheng Z, Xue L, Baka J, Brantley SL. Wastewaters Coproduced with Shale Gas Drive Slight Regional Salinization of Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17862-17873. [PMID: 39321415 PMCID: PMC11466308 DOI: 10.1021/acs.est.4c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
While unconventional oil and gas (UOG) development is changing the world economy, processes that are used during UOG development such as high-volume hydraulic fracturing ("fracking") have been linked with water contamination. Water quality risks include leaks of gas and salty fluids (brines) that are coproduced at wellpads. Identifying the cause of contamination is difficult, however, because UOG wells are often colocated with other contaminant sources. We investigated the world's largest shale gas play with publicly accessible groundwater data (Marcellus Shale in Pennsylvania, U.S.A. with ∼29,000 analyses) and discovered that concentrations of brine-associated barium ([Ba]) and strontium ([Sr]) show small regional increases within 1 km of UOG development. Higher concentrations in groundwaters are associated with greater proximity to and density of UOG wells. Concentration increases are even larger when considering associations with the locations of (i) spill-related violations and (ii) some wastewater impoundments. These statistically significant relationships persist even after correcting for other natural and anthropogenic sources of salts. The most likely explanation is that UOG development slightly increases salt concentrations in regional groundwaters not because of fracking but because of the ubiquity of wastewater management issues. These results emphasize the need for stringent wastewater management practices across oil and gas operations.
Collapse
Affiliation(s)
- Samuel W. Shaheen
- Department
of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tao Wen
- Department
of Earth and Environmental Sciences, Syracuse
University, Syracuse, New York 13244, United States
| | - Zhong Zheng
- Department
of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lingzhou Xue
- Department
of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jennifer Baka
- Department
of Geography, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Earth
and Environmental Systems Institute, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Susan L. Brantley
- Department
of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Earth
and Environmental Systems Institute, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Wang G, Ma Q, Ren L, Hou J. Preparation and Properties of Lightweight Amphiphobic Proppant for Hydraulic Fracturing. Polymers (Basel) 2024; 16:2575. [PMID: 39339039 PMCID: PMC11435407 DOI: 10.3390/polym16182575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The wettability of the proppant is crucial in optimizing the flowback of fracturing fluids and improving the recovery of the produced hydrocarbons. Neutral wet proppants have been proven to improve the fluid flow by reducing the interaction between the fluid and the proppant surface. In this study, a lightweight amphiphobic proppant (LWAP) was prepared by coating a lightweight ceramic proppant (LWCP) with phenolic resin, epoxy resin, polytetrafluoroethylene (PTFE), and trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane (TMHFS) using a layer-by-layer method. The results indicated that the LWAP exhibited a breakage ratio of 2% under 52 MPa (7.5 K) closure stress, with an apparent density of 2.12 g/cm3 and a bulk density of 1.21 g/cm3. The contact angles of water and olive oil were 125° and 104°, respectively, changing to 124° and 96° after displacement by water and diesel oil. A comparison showed that the LWAP could transport over a significantly longer distance than the LWCP, with the length increasing by more than 80%. Meanwhile, the LWAP displayed notable resistance to scale deposition on the proppant surface compared to the LWCP. Furthermore, the maintained conductivity of the LWAP was higher than that of the LWCP after displacement by water and oil phases alternately. The modified proppant could minimize production declines during hydrocarbon extraction in unconventional reservoirs.
Collapse
Affiliation(s)
- Guang Wang
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
- Bei Jing Kun Lun Long Yuan Petroleum Exploitation Technology Co., Ltd., Beijing 102200, China
- Liaoning Longyuan Sand Industry Co., Ltd., Fuxin 123200, China
| | - Qinyue Ma
- Bei Jing Kun Lun Long Yuan Petroleum Exploitation Technology Co., Ltd., Beijing 102200, China
| | - Longqiang Ren
- Bei Jing Kun Lun Long Yuan Petroleum Exploitation Technology Co., Ltd., Beijing 102200, China
- Liaoning Longyuan Sand Industry Co., Ltd., Fuxin 123200, China
| | - Jirui Hou
- Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
4
|
Aker AM, Friesen M, Ronald LA, Doyle-Waters MM, Takaro TK, Thickson W, Levin K, Meyer U, Caron-Beaudoin E, McGregor MJ. The human health effects of unconventional oil and gas development (UOGD): A scoping review of epidemiologic studies. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2024; 115:446-467. [PMID: 38457120 PMCID: PMC11133301 DOI: 10.17269/s41997-024-00860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Unconventional oil and gas development (UOGD, sometimes termed "fracking" or "hydraulic fracturing") is an industrial process to extract methane gas and/or oil deposits. Many chemicals used in UOGD have known adverse human health effects. Canada is a major producer of UOGD-derived gas with wells frequently located in and around rural and Indigenous communities. Our objective was to conduct a scoping review to identify the extent of research evidence assessing UOGD exposure-related health impacts, with an additional focus on Canadian studies. METHODS We included English- or French-language peer-reviewed epidemiologic studies (January 2000-December 2022) which measured exposure to UOGD chemicals directly or by proxy, and where health outcomes were plausibly caused by UOGD-related chemical exposure. Results synthesis was descriptive with results ordered by outcome and hierarchy of methodological approach. SYNTHESIS We identified 52 studies from nine jurisdictions. Only two were set in Canada. A majority (n = 27) used retrospective cohort and case-control designs. Almost half (n = 24) focused on birth outcomes, with a majority (n = 22) reporting one or more significant adverse associations of UOGD exposure with: low birthweight; small for gestational age; preterm birth; and one or more birth defects. Other studies identified adverse impacts including asthma (n = 7), respiratory (n = 13), cardiovascular (n = 6), childhood acute lymphocytic leukemia (n = 2), and all-cause mortality (n = 4). CONCLUSION There is a growing body of research, across different jurisdictions, reporting associations of UOGD with adverse health outcomes. Despite the rapid growth of UOGD, which is often located in remote, rural, and Indigenous communities, Canadian research on its effects on human health is remarkably sparse. There is a pressing need for additional evidence.
Collapse
Affiliation(s)
- Amira M Aker
- Université Laval, CHU de Quebec - Université Laval, Québec, QC, Canada
| | - Michael Friesen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa A Ronald
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Willow Thickson
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Karen Levin
- Emerald Environmental Consulting, Kent, OH, USA
| | - Ulrike Meyer
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Margaret J McGregor
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Gasparyan L, Duc J, Claustre L, Bosson-Rieutort D, Bouchard M, Bouchard MF, Owens-Beek N, West Moberly First Nations Chief And Council, Caron-Beaudoin É, Verner MA. Density and proximity of oil and gas wells and concentrations of trace elements in urine, hair, nails and tap water samples from pregnant individuals living in Northeastern British Columbia. ENVIRONMENT INTERNATIONAL 2024; 184:108398. [PMID: 38237504 DOI: 10.1016/j.envint.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Oil and gas exploitation can release several contaminants in the environment, including trace elements, with potentially deleterious effects on exposed pregnant individuals and their developing fetus. Currently, there is limited data on pregnant individuals' exposure to contaminants associated with oil and gas activity. OBJECTIVES We aimed to 1)measure concentrations of trace elements in biological and tap water samples collected from pregnant individuals participating in the EXPERIVA study; 2)compare with reference populations and health-based guidance values; 3)assess correlations across matrices; and 4)evaluate associations with the density/proximity of oil and gas wells. METHODS We collected tap water, hair, nails, and repeated urine samples from 85pregnant individuals, and measured concentrations of 21trace elements. We calculated oil and gas well density/proximity (Inverse Distance Weighting [IDW]) for 4buffer sizes (2.5 km, 5 km, 10 km, no buffer). We performed Spearman's rank correlation analyses to assess the correlations across elements and matrices. We used multiple linear regression models to evaluate the associations between IDWs and concentrations. RESULTS Some study participants had urinary trace element concentrations exceeding the 95th percentile of reference values; 75% of participants for V, 29% for Co, 22% for Ba, and 20% for Mn. For a given trace element, correlation coefficients ranged from -0.23 to 0.65 across matrices; correlations with tap water concentrations were strongest for hair, followed by nails, and urine. Positive (e.g., Cu, Cr, Sr, U, Ga, Ba, Al, Cd) and negative (e.g., Fe) associations were observed between IDW metrics and the concentrations of certain trace elements in water, hair, and nails. SIGNIFICANCE Our results suggest that pregnant individuals living in an area of oil and gas activity may be more exposed to certain trace elements (e.g., Mn, Sr, Co, Ba) than the general population. Association with density/proximity of wells remains unclear.
Collapse
Affiliation(s)
- Lilit Gasparyan
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Juliette Duc
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada; Department of Health Policy, Management and Evaluation, School of Public Health, Université de Montréal, Montreal, QC, Canada
| | - Lucie Claustre
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Delphine Bosson-Rieutort
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada; Department of Health Policy, Management and Evaluation, School of Public Health, Université de Montréal, Montreal, QC, Canada
| | - Michèle Bouchard
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Maryse F Bouchard
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Institut national de la recherche scientifique, Laval, QC, Canada; Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | | | | | - Élyse Caron-Beaudoin
- Department of Health and Society, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada; Center for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Bai H, Li Y, Lu P, Li Y, Zhang L, Zhang D, Wang X, Zhou Y. Effect of environmental factors on accumulation of trace metals in a typical shale gas exploitation area: A comprehensive investigation by machine learning and geodetector models. CHEMOSPHERE 2024; 347:140724. [PMID: 37972868 DOI: 10.1016/j.chemosphere.2023.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Whether a certain relationship is exist between shale gas exploitation and accumulation of trace metals in soil is a controversial issue in recent years. To date, few study clearly reveal the intrinsic contributions of natural and anthropogenic factors to accumulation of trace metals in soil. In this study, machine learning and geodetector models were integrated to investigate to contribution of environmental factors to variations of trace metals concentration. Before modeling, there are 10.33%-25.87% of soil considered as metal pollution, and the value of Pn further suggest that the Ba contribute the most to the comprehensive pollution index of trace metals in soil. The initial prediction of trace metals concentration by machine learning models is less effectively indicating the need for alternative approaches. To address this problem, post-constraints approach was used, and the post-constraint MSLR model demonstrates superior performance (R2 = 0.81) Additionally, through the utilization of geodetector model, the explanatory power (q) of CEC and SOM were identified as dominant natural factors with value of 0.055 and 0.089. respectively. Moreover, distance from working sites and working status were identified as the dominant anthropogenic factors associating to the spatial heterogeneity of trace metals in soil. The interaction between natural and anthropogenic factors showed a siginifacnt nonlinear enhancement effect on accumulation of Cr, Ba and Sr, and the highest value of q was 0.38 for SOM and distance. This study indicated that the potential metal contamination was related to shale gas exploitation and provide reference for controlling soil pollution in shale gas exploitation area and making management strategy.
Collapse
Affiliation(s)
- Hongcheng Bai
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, 610106, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China; Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, China.
| | - Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China.
| | - Yutong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Environmental Science, Chongqing University, 400045, China
| | - Xing Wang
- College of International Studies, Yibin University, Yibin, Sichuan, 644000, China
| | - Yuxiao Zhou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
7
|
Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, Martinez-Morata I, Minovi D, Nigra AE, Olson ED, Schaider LA, Ward MH, Deziel NC. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:3-22. [PMID: 37739995 PMCID: PMC10907308 DOI: 10.1038/s41370-023-00597-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.
Collapse
Affiliation(s)
- Ronnie Levin
- Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- University of New Mexico Department of Geography & Environmental Studies, Albuquerque, NM, USA
| | | | - Carolina Donat-Vargas
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Darya Minovi
- Center for Science and Democracy, Union of Concerned Scientists, Washington, DC, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik D Olson
- Natural Resources Defense Council, Washington, DC, USA
| | | | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
8
|
Ma L, Hurtado A, Eguilior S, Llamas Borrajo JF. Acute and chronic risk assessment of BTEX in the return water of hydraulic fracturing operations in Marcellus Shale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167638. [PMID: 37813252 DOI: 10.1016/j.scitotenv.2023.167638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Environmental pollution caused by human activities is a pressing issue in developed countries. In this context, it is vital to establish methodologies for the early and reliable estimation of the health risks posed by potential pollutants. Flowback and produced water (return water) from shale gas operations can contain toxic compounds, of which BTEX (benzene, toluene, ethylbenzene, and xylenes) are of concern due to their toxicity and frequent presence above regulatory limits. The return water generated by these operations is stored in ponds or tanks before reaching its final destination. Over time, the composition of this water changes, and leaks or inadequate contact can harm the environment and human health. Here we developed a risk assessment framework to evaluate the temporal evolution of chronic and acute BTEX exposure risks caused by accidental return water leakage. We applied the approach to a hydraulic fracturing operation in the Marcellus Shale Formation. Starting with a time series of BTEX concentrations in the return water, our method deploys transport models to assess risk to health. Our approach compares exposure levels with regulatory limits for inhalation, ingestion, and dermal contact. By identifying the risk levels, exposure pathways, and control parameters in the case study for a range of periods after leakage, our study supports the implementation of appropriate risk mitigation strategies. In addition, by examining risk variation under arid, semi-arid, and humid climate scenarios, the study reveals the impact of climate change on soil characteristics and BTEX transport. The development and application of this methodology is an important step in addressing concerns regarding shale gas operations. The approach proposed paves the way for sustainable practices that prioritise the protection of human health and the environment.
Collapse
Affiliation(s)
- Lanting Ma
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Antonio Hurtado
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avda. Complutense 40, Edif. 20, 28040 Madrid, Spain
| | - Sonsoles Eguilior
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avda. Complutense 40, Edif. 20, 28040 Madrid, Spain.
| | - Juan F Llamas Borrajo
- Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Calle de Ríos Rosas 21, 28003 Madrid, Spain
| |
Collapse
|
9
|
Peng S, Li Z, Zhang D, Lu P, Zhou S. Changes in community structure and microbiological risks in a small stream after receiving treated shale gas wastewater for two years. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122799. [PMID: 37918774 DOI: 10.1016/j.envpol.2023.122799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Discharge of treated shale gas wastewater is becoming prevalent in the Sichuan Basin in China, and the resulting potential environmental impacts have raised concern. In this study, the responses of microbial community in the receiving water to discharge of treated shale gas wastewater were assessed during a two-year study period, covering two wet seasons and one dry season. The results showed that the discharge of treated shale gas wastewater had no significant effects on alpha diversity in the two wet seasons, but had significant effects in the dry season after 15 months of discharge. Obvious changes in microbial community structure were observed in all three seasons at the downstream sites near the wastewater outfall, as compared to the control site. Multimetric indices indicated that the impacts of wastewater discharge on microbial ecosystem occurred with the extension of the discharge period. Moreover, special attention was given to the microbiological risks associated with antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and pathogenic antibiotic resistant bacteria (PARBs) in the dry season in sediments of the receiving water. At downstream sites near the outfall, five subtypes of ARGs and seven VFGs showed a significant increase in relative abundance. Forty-two PARBs carrying ARGs and VFGs were detected, and three PARBs (Pseudomonas aeruginosa, Pseudomonas stutzeri and Pseudomonas fluorescens) increased obviously in relative abundance at the downstream site near the outfall. In conclusion, long-term wastewater discharge had effects on the microbial community, and limited microbiological risks existed in the receiving waters.
Collapse
Affiliation(s)
- Shuchan Peng
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Zhiqiang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Daijun Zhang
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Shangbo Zhou
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
10
|
Siegel HG, Nason SL, Warren JL, Prunas O, Deziel NC, Saiers JE. Investigation of Sources of Fluorinated Compounds in Private Water Supplies in an Oil and Gas-Producing Region of Northern West Virginia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17452-17464. [PMID: 37923386 PMCID: PMC10653085 DOI: 10.1021/acs.est.3c05192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of toxic organic compounds that have been widely used in consumer applications and industrial activities, including oil and gas production. We measured PFAS concentrations in 45 private wells and 8 surface water sources in the oil and gas-producing Doddridge, Marshall, Ritchie, Tyler, and Wetzel Counties of northern West Virginia and investigated relationships between potential PFAS sources and drinking water receptors. All surface water samples and 60% of the water wells sampled contained quantifiable levels of at least one targeted PFAS compound, and four wells (8%) had concentrations above the proposed maximum contaminant level (MCL) for perfluorooctanoic acid (PFOA). Individual concentrations of PFOA and perfluorobutanesulfonic acid exceeded those measured in finished public water supplies. Total targeted PFAS concentrations ranged from nondetect to 36.8 ng/L, with surface water concentrations averaging 4-fold greater than groundwater. Semiquantitative, nontargeted analysis showed concentrations of emergent PFAS that were potentially higher than targeted PFAS. Results from a multivariate latent variable hierarchical Bayesian model were combined with insights from analyses of groundwater chemistry, topographic characteristics, and proximity to potential PFAS point sources to elucidate predictors of PFAS concentrations in private wells. Model results reveal (i) an increased vulnerability to contamination in upland recharge zones, (ii) geochemical controls on PFAS transport likely driven by adsorption, and (iii) possible influence from nearby point sources.
Collapse
Affiliation(s)
- Helen G. Siegel
- School
of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Sara L. Nason
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06504, United States
| | - Joshua L. Warren
- School
of Public Health, Yale University, 60 College Street, New Haven, Connecticut 06510, United States
| | - Ottavia Prunas
- Swiss
Tropical and Public Health Institute, 2 Kreuzstrasse, Allschwill, Basel 4123, Switzerland
| | - Nicole C. Deziel
- School
of Public Health, Yale University, 60 College Street, New Haven, Connecticut 06510, United States
| | - James E. Saiers
- School
of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
11
|
Sharma VK, Ma X, Zboril R. Single atom catalyst-mediated generation of reactive species in water treatment. Chem Soc Rev 2023; 52:7673-7686. [PMID: 37855667 DOI: 10.1039/d3cs00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Water is one of the most essential components in the sustainable development goals (SDGs) of the United Nations. With worsening global water scarcity, especially in some developing countries, water reuse is gaining increasing acceptance. A key challenge in water treatment by conventional treatment processes is the difficulty of treating low concentrations of pollutants (micromolar to nanomolar) in the presence of much higher levels of inorganic ions and natural organic matter (NOM) in water (or real water matrices). Advanced oxidation processes (AOPs) have emerged as an attractive treatment technology that generates reactive species with high redox potentials (E0) (e.g., hydroxyl radical (HO˙), singlet oxygen (1O2), sulfate radical (SO4˙-), and high-valent metals like iron(IV) (Fe(IV)), copper(III) (Cu(III)), and cobalt(IV) (Co(IV))). The use of single atom catalysts (SACs) in AOPs and water treatment technologies has appeared only recently. This review introduces the application of SACs in the activation of hydrogen peroxide and persulfate to produce reactive species in treatment processes. A significant part of the review is devoted to the mechanistic aspects of traditional AOPs and their comparison with those triggered by SACs. The radical species, SO4˙- and HO˙, which are produced in both traditional and SACs-activated AOPs, have higher redox potentials than non-radical species, 1O2 and high-valent metal species. However, SO4˙- and HO˙ radicals are non-selective and easily affected by components of water while non-radicals resist the impact of such constituents in water. Significantly, SACs with varying coordination environments and structures can be tuned to exclusively generate non-radical species to treat water with a complex matrix. Almost no influence of chloride, carbonate, phosphate, and NOM was observed on the performance of SACs in treating pollutants in water when nonradical species dominate. Therefore, the appropriately designed SACs represent game-changers in purifying water vs. AOPs with high efficiency and minimal interference from constituents of polluted water to meet the goals of water sustainability.
Collapse
Affiliation(s)
- Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, USA.
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.
- Nanotechnology Centre, for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
12
|
Li Y, Bai H, Li Y, Zhang X, Zhang L, Zhang D, Xu M, Zhang H, Lu P. An integrated approach to identify the source apportionment of potentially toxic metals in shale gas exploitation area soil, and the associated ecological and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132006. [PMID: 37453347 DOI: 10.1016/j.jhazmat.2023.132006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Public awareness of the potential environmental risks of shale gas extraction has increased in recent years. However, the status and environmental risks of potentially toxic metals (PTMs) in shale gas field soil remain unclear. A total of 96 topsoil samples were collected from the first shale gas exploitation area in China. The sources of nine PTMs in the soils were identified using positive matrix factorization and correlation analysis, and the ecological and human health risks of toxic metals from different sources under the two land use types were calculated. The results showed that mean pollution load index (PLI) values for farmland (1.18) and woodland (1.40) indicated moderate pollution, As, Cd and Ni were the most serious contaminants among all nine PTMs. The following four sources were identified: shale gas extraction activities (43.90%), nature sources (31.90%), agricultural and traffic activities (17.55%) and industrial activities (6.55%). For ecological risk, the mean ecological risk index (RI) values for farmlands (161.95) and woodlands (185.27) reaching considerable risk. The contribution ratio of shale gas extraction activities for farmlands and woodlands were 5.70% and 8.90%, respectively. Regarding human health risk, noncarcinogenic risks for adults in farmlands and woodlands were negligible. Industrial activities, agricultural and traffic activities were estimated to be the important sources of health risks. Overall, shale gas extraction activities had little impact on the ecological and human health risk. This study provides scientific evidence regarding the soil contamination potential of shale gas development activities.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Hongcheng Bai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yutong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Chongqing Academy of Eco-environmental Science, Chongqing 401147, China
| | - Xin Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Min Xu
- Department of Environmental Science, College of Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
13
|
Wang X, Qian J, Ma H, Ma L, Zhou D, Sun H. Prediction of post-Darcy flow based on the spatial non-local distribution of hydraulic gradient: Preliminary assessment of wastewater management. CHEMOSPHERE 2023; 334:139013. [PMID: 37224972 DOI: 10.1016/j.chemosphere.2023.139013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Understanding high-velocity pollutant transport dependent on the large hydraulic gradient and/or heterogeneity of the aquifer and criteria for the onset of post-Darcy flow have attracted considerable attention in water resources and environmental engineering applications. In this study, a parameterized model is established based on the equivalent hydraulic gradient (EHG) which affected by spatial nonlocality of nonlinear head distribution due to the inhomogeneity at a wide range of scales. Two parameters relevant to the spatially non-local effect were selected to predict the development of post-Darcy flow. Over 510 sets of laboratory one-dimensional (1-D) steady hydraulic experimental data were used to validate the performance of this parameterized EHG model. The results show that (1) the spatial nonlocal effect of the whole upstream is related to the mean grain size of the medium, and the anomalous variation due to the small grain size implies the existence of the particle size threshold. (2) The parameterized EHG model can effectively capture the nonlinear trend that fails to be described by the traditional local form of nonlinear models, even if the specific discharge stabilizes at the later stages. (3) The Sub-Darcy flow distinguished by the parameterized EHG model can be equated to the post-Darcy flow, and then the criteria for the post-Darcy flow will be strictly distinguished under the premise of determining the hydraulic conductivity. The results of this study facilitate the identification and prediction of high-velocity non-Darcian flow in wastewater management and provide insight into mass transport by advection at the fine-scale.
Collapse
Affiliation(s)
- Xiuxuan Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jiazhong Qian
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Haichun Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dongbao Zhou
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - HongGuang Sun
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
14
|
Willems DJ, Kumar A, Nugegoda D. Mixture Toxicity of Three Unconventional Gas Fracking Chemicals, Barium, O-Cresol, and Sodium Chloride, to the Freshwater Shrimp Paratya australiensis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:481-494. [PMID: 36511521 PMCID: PMC10107621 DOI: 10.1002/etc.5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The 96-h acute toxicity of barium (Ba2+ ), o-cresol, and sodium chloride (NaCl) to Paratya australiensis was assessed in single, binary, and ternary combinations in addition to three biochemical assays: glutathione S-transferase, acetylcholinesterase, and sodium-potassium adenosine triphosphatase. The 96-h lethal concentrations that expressed 50% mortality (LC50) in the single-toxicant exposures were Ba2+ = 23.4 mg/L, o-cresol = 12.2 mg/L, and NaCl = 4198 mg/L. Mortality from o-cresol exposure occurred between 11 and 22 mg/L, whereas Ba2+ was more gradual across 10-105 mg/L, and most of the NaCl mortality occurred between 2050 and 4100 mg/L. Toxic units were used to assess the binary and ternary interactions of the toxicants. A more than additive effect was observed for most combinations in the binary chemical exposures, with the ternary combinations yielding highly synergistic interactions. Greater synergism was observed with the 96-h LC50 of o-cresol in combination with the three concentrations of NaCl (1025, 2050, and 3075 mg/L) compared with Ba2+ , with toxic units of 0.38, 0.48, and 0.10 (o-cresol) and 0.71, 0.67, and 0.50 (Ba2+ ). No notable enzyme activity trends were observed in the enzyme biomarker responses from both individual and mixture exposures. Although acute single-species toxicity tests tend to underestimate the effects of Ba2+ , o-cresol, and NaCl on populations, communities, and ecosystems in seminatural (e.g., mesocosms) and natural systems, there are currently no published acute toxicity data available for P. australiensis and the three toxicants used in the present study. The present study shows that chemicals with different toxicity mechanisms can potentially lead to more synergistic responses. Environ Toxicol Chem 2023;42:481-494. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel J. Willems
- Ecotoxicology Research Group, School of Science, Bundoora West CampusRoyal Melbourne Institute of Technology UniversityBundooraVictoriaAustralia
- Environment Business UnitCommonwealth Scientific and Industrial Research OrganisationUrrbraeSouth AustraliaAustralia
| | - Anupama Kumar
- Environment Business UnitCommonwealth Scientific and Industrial Research OrganisationUrrbraeSouth AustraliaAustralia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, Bundoora West CampusRoyal Melbourne Institute of Technology UniversityBundooraVictoriaAustralia
| |
Collapse
|
15
|
Xie H, Chen B, Lin H, Li R, Shen L, Yu G, Yang L. Efficient oil-water emulsion treatment via novel composite membranes fabricated by CaCO 3-based biomineralization and TA-Ti(IV) coating strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159183. [PMID: 36202361 DOI: 10.1016/j.scitotenv.2022.159183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Continuous increasing discharge of industrial oily wastewater and frequent occurrence of oil spill accidents have taken heavy tolls on global environment and human health. Organic-inorganic modifications can fabricate superhydrophilic/submerged superoleophobic membranes for efficient oil-water separation/treatment though they still suffer from complex operation, non-environmental friendliness, expensive cost or uneven distribution. Herein, a new strategy regarding tannic acid (TA)-Ti(IV) coating and CaCO3-based biomineralization through simple inkjet printing processes was proposed to modify polyvinylidene fluoride (PVDF) membrane, endowing the membrane with high hydrophilicity (water contact angle (WCA) decreased from 86.01° to 14.94°) and underwater superoleophobicity (underwater contact angle (UOCA) > 155°). The optimized TA-Ti(IV)-CaCO3 modified membrane possessed perfect water permeation to various oil/water emulsions (e.g., 355.7 L·m-2·h-1 for gasoline emulsion) under gravity with superior separation efficiency (>98.8 %), leading the way in oil/water emulsion separation performance of PVDF membranes modified with polyphenolic surfaces to our knowledge. Moreover, the modified membrane displayed rather high flux recovery after eight cycles of filtration while maintaining the original excellent separation efficiency. The modification process proposed in this study is almost independent of the nature of the substrate, and meets the demand for simple, inexpensive, rapid preparation of highly hydrophilic antifouling membranes, showing abroad application prospect for oil-water emulsion separation/treatment.
Collapse
Affiliation(s)
- Hongli Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
16
|
Huang Z, Shen L, Lin H, Li B, Chen C, Xu Y, Li R, Zhang M, Zhao D. Fabrication of fibrous MXene nanoribbons (MNRs) membrane with efficient performance for oil-water separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Soriano MA, Deziel NC, Saiers JE. Regional Scale Assessment of Shallow Groundwater Vulnerability to Contamination from Unconventional Hydrocarbon Extraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12126-12136. [PMID: 35960643 PMCID: PMC9454823 DOI: 10.1021/acs.est.2c00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 05/19/2023]
Abstract
Concerns over unconventional oil and gas (UOG) development persist, especially in rural communities that rely on shallow groundwater for drinking and other domestic purposes. Given the continued expansion of the industry, regional (vs local scale) models are needed to characterize groundwater contamination risks faced by the increasing proportion of the population residing in areas that accommodate UOG extraction. In this paper, we evaluate groundwater vulnerability to contamination from surface spills and shallow subsurface leakage of UOG wells within a 104,000 km2 region in the Appalachian Basin, northeastern USA. We test a computationally efficient ensemble approach for simulating groundwater flow and contaminant transport processes to quantify vulnerability with high resolution. We also examine metamodels, or machine learning models trained to emulate physically based models, and investigate their spatial transferability. We identify predictors describing proximity to UOG, hydrology, and topography that are important for metamodels to make accurate vulnerability predictions outside their training regions. Using our approach, we estimate that 21,000-30,000 individuals in our study area are dependent on domestic water wells that are vulnerable to contamination from UOG activities. Our novel modeling framework could be used to guide groundwater monitoring, provide information for public health studies, and assess environmental justice issues.
Collapse
Affiliation(s)
- Mario A. Soriano
- School
of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Nicole C. Deziel
- School
of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - James E. Saiers
- School
of the Environment, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
18
|
Zhou S, Li Z, Peng S, Zhang D, Li W, Hong M, Li X, Yang J, Lu P. Combining eDNA and morphological approaches to reveal the impacts of long-term discharges of shale gas wastewaters on receiving waters. WATER RESEARCH 2022; 222:118869. [PMID: 35870390 DOI: 10.1016/j.watres.2022.118869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The potential threats of shale gas wastewater discharges to receiving waters is of great concern. In this study, chemical analyses and biomonitoring were performed three times in a small river that received treated wastewater over a two-year period. The results of chemical analyses showed that the concentrations of chloride, conductivity, barium, and strontium increased at the discharge site, but their concentrations decreased considerably farther downstream (≥500 m). The concentrations of toxic organic compounds (16 US EPA priority polycyclic aromatic hydrocarbons and 6 priority phthalates), trace metals (strontium, arsenic, zinc, copper, chromium, lead, cadmium, nickel, and neodymium), and natural radionuclides (40K, 238U, 226Ra, and 232Th) were comparable to the corresponding background values or did not exhibit obvious accumulation in sediments with continued discharge. Morphological and environmental DNA approaches were used to reveal the potential effects of wastewater discharges on aquatic ecosystems. The results showed that the community structure of benthic invertebrates was not altered by the long-term discharges of shale gas wastewaters. However, the biodiversity indices (richness and Shannon) from the two approaches showed inconsistencies, which were caused by multiple reasons, and that substrates had a strong influence on the morphological biodiversity indices. A multimetric index was proposed to further analyze morphological and environmental DNA data, and the results showed no significant difference between the upstream and downstream sites. Generally, the chemical and biological results both demonstrated that the discharges of shale gas wastewaters had limited impacts on river ecosystems within two years.
Collapse
Affiliation(s)
- Shangbo Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiqiang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Shuchan Peng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Weichang Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mingyu Hong
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xingquan Li
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
19
|
Shaheen SW, Wen T, Herman A, Brantley SL. Geochemical Evidence of Potential Groundwater Contamination with Human Health Risks Where Hydraulic Fracturing Overlaps with Extensive Legacy Hydrocarbon Extraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10010-10019. [PMID: 35767873 PMCID: PMC9302435 DOI: 10.1021/acs.est.2c00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unconventional oil and gas development (UOGD) sometimes impacts water resources, including incidents of methane (CH4) migration from compromised wells and spills that degrade water with salts, organics, and metals. We hypothesized that contamination may be more common where UOGD overlaps with legacy coal, oil, and gas extraction. We tested this hypothesis on ∼7000 groundwater analyses from the largest U.S. shale gas play (Marcellus), using data mining techniques to explore UOGD contamination frequency. Corroborating the hypothesis, we discovered small, statistically significant regional correlations between groundwater chloride concentrations ([Cl]) and UOGD proximity and density where legacy extraction was extremely dense (southwestern Pennsylvania (SWPA)) but no such correlations where it was minimal (northeastern Pennsylvania). On the other hand, legacy extraction of shallow gas in SWPA may have lessened today's gas leakage, as no regional correlation was detected for [CH4] in SWPA. We identify hotspots where [Cl] and [CH4] increase by 3.6 and 3.0 mg/L, respectively, per UOG well drilled in SWPA. If the [Cl] correlations document contamination via brines leaked from wellbores, impoundments, or spills, we calculate that thallium concentrations could exceed EPA limits in the most densely developed hotspots, thus posing a potential human health risk.
Collapse
Affiliation(s)
- Samuel W. Shaheen
- Department
of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tao Wen
- Department
of Earth and Environmental Sciences, Syracuse
University, Syracuse, New York 13244, United States
| | - Alison Herman
- Earth
and Environmental Systems Institute, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Susan L. Brantley
- Department
of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Earth
and Environmental Systems Institute, Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
20
|
Willis MD, Hill EL, Kile ML, Carozza S, Hystad P. Associations between residential proximity to oil and gas extraction and hypertensive conditions during pregnancy: a difference-in-differences analysis in Texas, 1996-2009. Int J Epidemiol 2022; 51:525-536. [PMID: 34897479 PMCID: PMC9082796 DOI: 10.1093/ije/dyab246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Oil and gas extraction produces air pollutants that are associated with increased risks of hypertension. To date, no study has examined residential proximity to oil and gas extraction and hypertensive conditions during pregnancy. This study quantifies associations between residential proximity to oil and gas development on gestational hypertension and eclampsia. METHODS We utilized a population-based retrospective birth cohort in Texas (1996-2009), where mothers reside <10 km from an active or future drilling site (n = 2 845 144.) Using full-address data, we linked each maternal residence at delivery to assign exposure and evaluate this exposure with respect to gestational hypertension and eclampsia. In a difference-in-differences framework, we model the interaction between maternal health before (unexposed) or after (exposed) the start of drilling activity (exposed) and residential proximity near (0-1, >1-2 or >2-3 km) or far (≥3-10 km) from an active or future drilling site. RESULTS Among pregnant women residing 0-1 km from an active oil or gas extraction site, we estimate 5% increased odds of gestational hypertension [95% confidence interval (CI): 1.00, 1.10] and 26% increased odds of eclampsia (95% CI: 1.05, 1.51) in adjusted models. This association dissipates in the 1- to 3-km buffer zones. In restricted models, we find elevated odds ratios among maternal ages ≤35 years at delivery, maternal non-Hispanic White race, ≥30 lbs gained during pregnancy, nulliparous mothers and maternal educational attainment beyond high school. CONCLUSIONS Living within 1 km of an oil or gas extraction site during pregnancy is associated with increased odds of hypertensive conditions during pregnancy.
Collapse
Affiliation(s)
- Mary D Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Elaine L Hill
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Susan Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
21
|
Hill EL, Ma L. Drinking water, fracking, and infant health. JOURNAL OF HEALTH ECONOMICS 2022; 82:102595. [PMID: 35172241 PMCID: PMC8986614 DOI: 10.1016/j.jhealeco.2022.102595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
This study assesses the health risks associated with drinking water contamination using variation in the timing and location of shale gas development (SGD). Our novel dataset, linking health and drinking water outcomes to shale gas activity through water sources, enables us to provide new estimates of the causal effects of water pollution on health and to isolate drinking water as a specific mechanism of exposure for SGD. We find consistent and robust evidence that drilling shale gas wells negatively impacts both drinking water quality and infant health. These results indicate large social costs of water pollution and provide impetus for re-visiting the regulation of public drinking water.
Collapse
Affiliation(s)
- Elaine L Hill
- Department of Public Health Sciences & Department of Economics, University of Rochester Medical Center, 265 Crittenden Blvd., Box 420644, Rochester, NY 14642, United States.
| | - Lala Ma
- Department of Economics, Gatton College of Business and Economics, University of Kentucky, Business & Economics Building, Lexington, KY 40506, United States
| |
Collapse
|
22
|
Clark CJ, Xiong B, Soriano MA, Gutchess K, Siegel HG, Ryan EC, Johnson NP, Cassell K, Elliott EG, Li Y, Cox AJ, Bugher N, Glist L, Brenneis RJ, Sorrentino KM, Plano J, Ma X, Warren JL, Plata DL, Saiers JE, Deziel NC. Assessing Unconventional Oil and Gas Exposure in the Appalachian Basin: Comparison of Exposure Surrogates and Residential Drinking Water Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1091-1103. [PMID: 34982938 PMCID: PMC10259677 DOI: 10.1021/acs.est.1c05081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Health studies report associations between metrics of residential proximity to unconventional oil and gas (UOG) development and adverse health endpoints. We investigated whether exposure through household groundwater is captured by existing metrics and a newly developed metric incorporating groundwater flow paths. We compared metrics with detection frequencies/concentrations of 64 organic and inorganic UOG-related chemicals/groups in residential groundwater from 255 homes (Pennsylvania n = 94 and Ohio n = 161). Twenty-seven chemicals were detected in ≥20% of water samples at concentrations generally below U.S. Environmental Protection Agency standards. In Pennsylvania, two organic chemicals/groups had reduced odds of detection with increasing distance to the nearest well: 1,2-dichloroethene and benzene (Odds Ratio [OR]: 0.46, 95% confidence interval [CI]: 0.23-0.93) and m- and p-xylene (OR: 0.28, 95% CI: 0.10-0.80); results were consistent across metrics. In Ohio, the odds of detecting toluene increased with increasing distance to the nearest well (OR: 1.48, 95% CI: 1.12-1.95), also consistent across metrics. Correlations between inorganic chemicals and metrics were limited (all |ρ| ≤ 0.28). Limited associations between metrics and chemicals may indicate that UOG-related water contamination occurs rarely/episodically, more complex metrics may be needed to capture drinking water exposure, and/or spatial metrics in health studies may better reflect exposure to other stressors.
Collapse
Affiliation(s)
- Cassandra J Clark
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| | - Boya Xiong
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
- University of Minnesota, Department of Civil, Environmental and Geo-Engineering, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - Mario A Soriano
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Kristina Gutchess
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Helen G Siegel
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Emma C Ryan
- Tufts University, Department of Public Health and Community Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Nicholaus P Johnson
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| | - Kelsie Cassell
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, Connecticut 06510, United States
| | - Elise G Elliott
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yunpo Li
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Austin J Cox
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Nicolette Bugher
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Lukas Glist
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Rebecca J Brenneis
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Keli M Sorrentino
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, 1 Church Street, New Haven, Connecticut 06510, United States
| | - Julie Plano
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, 1 Church Street, New Haven, Connecticut 06510, United States
| | - Xiaomei Ma
- Yale School of Public Health, Department of Chronic Disease Epidemiology, 60 College Street, New Haven, Connecticut 06510, United States
| | - Joshua L Warren
- Yale School of Public Health, Department of Biostatistics, 60 College Street, New Haven, Connecticut 06510, United States
| | - Desiree L Plata
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - James E Saiers
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
23
|
Bonetti P, Leuz C, Michelon G. Large-sample evidence on the impact of unconventional oil and gas development on surface waters. Science 2021; 373:896-902. [PMID: 34413233 DOI: 10.1126/science.aaz2185] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2020] [Accepted: 06/14/2021] [Indexed: 11/02/2022]
Abstract
The impact of unconventional oil and gas development on water quality is a major environmental concern. We built a large geocoded database that combines surface water measurements with horizontally drilled wells stimulated by hydraulic fracturing (HF) for several shales to examine whether temporal and spatial well variation is associated with anomalous salt concentrations in United States watersheds. We analyzed four ions that could indicate water impact from unconventional development. We found very small concentration increases associated with new HF wells for barium, chloride, and strontium but not bromide. All ions showed larger, but still small-in-magnitude, increases 91 to 180 days after well spudding. Our estimates were most pronounced for wells with larger amounts of produced water, wells located over high-salinity formations, and wells closer and likely upstream from water monitors.
Collapse
Affiliation(s)
- Pietro Bonetti
- IESE Business School, University of Navarra, 21 Avenida Pearson, 08034 Barcelona, Spain
| | - Christian Leuz
- Booth School of Business, University of Chicago, and the National Bureau of Economic Research, 5807 South Woodlawn Avenue, Chicago, IL 60637, USA.
| | - Giovanna Michelon
- School of Accounting and Finance, University of Bristol, 15-19 Tyndall's Park Road, Bristol BS8 1PQ, UK
| |
Collapse
|
24
|
Hill E, Ma L. The fracking concern with water quality. Science 2021; 373:853-854. [PMID: 34413223 DOI: 10.1126/science.abk3433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Elaine Hill
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA.
| | - Lala Ma
- Department of Economics, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|