1
|
Du Pasquier L. The future of comparative immunology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105240. [PMID: 39182539 DOI: 10.1016/j.dci.2024.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
« Prediction is very difficult, especially if it is about the future of comparative immunology" could one say to paraphrase Niels Bohr. Yet, if one avoids mistakes of the past and fashions, if one remains ready to welcome surprises an do not to get drowned in big data while profiting from new technologies, if one keeps common sense between expanding and restricting one's scope of investigation in front of the enormous diversity of the tree of life, comparative immunologists are going, in new areas of research and with new tools, to keep contributing enormously to immunology. They will reveal, with the eyes open to homologies and analogies among multiple species, more variations on the theme of immunity and will put the human immune system in perspective a necessary situation to face the questions that remain to be answered in order to improve health or to understand evolution of immune systems. There will always be room in comparative immunology for fundamental approaches to these subjects. A proper education, aimed at combining competences, will be essential to achieve these goals.
Collapse
Affiliation(s)
- Louis Du Pasquier
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
2
|
Miller EC, Faucher R, Hart PB, Rincón-Sandoval M, Santaquiteria A, White WT, Baldwin CC, Miya M, Betancur-R R, Tornabene L, Evans K, Arcila D. Reduced evolutionary constraint accompanies ongoing radiation in deep-sea anglerfishes. Nat Ecol Evol 2024:10.1038/s41559-024-02586-3. [PMID: 39604701 DOI: 10.1038/s41559-024-02586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Colonization of a novel habitat is often followed by phenotypic diversification in the wake of ecological opportunity. However, some habitats should be inherently more constraining than others if the challenges of that environment offer few evolutionary solutions. We examined this push-and-pull on macroevolutionary diversification following habitat transitions in the anglerfishes (Lophiiformes). We constructed a phylogeny with extensive sampling (1,092 loci and ~38% of species), combined with three-dimensional phenotypic data from museum specimens. We used these datasets to examine the tempo and mode of phenotypic diversification. The deep-sea pelagic anglerfishes originated from a benthic ancestor and shortly after experienced rapid lineage diversification rates. This transition incurred shifts towards larger jaws, smaller eyes and a more laterally compressed body plan. Despite these directional trends, this lineage still evolved high phenotypic disparity in body, skull and jaw shapes. In particular, bathypelagic anglerfishes show high variability in body elongation, while benthic anglerfishes are constrained around optimal shapes. Within this radiation, phenotypic evolution was concentrated among recently diverged lineages, notably those that deviated from the archetypical globose body plan. Taken together, these results demonstrate that spectacular evolutionary radiations can unfold even within environments with few ecological resources and demanding physiological challenges.
Collapse
Affiliation(s)
- Elizabeth Christina Miller
- Department of Biology, University of Oklahoma, Norman, OK, USA.
- Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK, USA.
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA.
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA.
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Rose Faucher
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Pamela B Hart
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK, USA
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | | | | | - William T White
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, Tasmania, Australia
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Masaki Miya
- Department of Zoology, Natural History Museum and Institute, Chuo-ku, Chiba, Japan
| | - Ricardo Betancur-R
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Kory Evans
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Dahiana Arcila
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Bjørnestad SA, Solbakken MH, Krokene P, Thiede B, Hylland K, Jakobsen KS, Jentoft S, Bakke O, Progida C. The Atlantic Cod MHC I compartment has the properties needed for cross-presentation in the absence of MHC II. Sci Rep 2024; 14:25404. [PMID: 39455705 PMCID: PMC11511864 DOI: 10.1038/s41598-024-76225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Atlantic cod has a peculiar immune system, characterized by the loss of Major Histocompatibility Complex (MHC) class II pathway, and an extreme expansion of the MHC class I gene repertoire. This has led to the hypothesis that some of the MHC I variants have replaced MHC II by presenting exogenous-peptides in a process similar to cross-presentation. In mammals, MHC I loads endogenous antigens in the endoplasmic reticulum, but we recently found that different Atlantic cod MHC I gene variants traffic to endolysosomes. There, they colocalize with Tapasin and other components of the peptide-loading complex, indicating a plausible peptide-loading system outside the endoplasmic reticulum. In this study, we further characterize the identity of the Atlantic cod MHC I compartment (cMIC). We found that, similarly to mammalian MHC II compartment, cMIC contains late endosomal markers such as Rab7, LAMP1 and CD63. Furthermore, we identified Hsp90b1 (also known as grp94) and LRP1 (also known as CD91) as interactors of MHC I by mass spectrometry. As these two proteins are involved in cross-presentation in mammals, this further suggests that Atlantic cod MHC I might use a similar mechanism to present exogenous peptides, thus, compensating for the absence of MHC II.
Collapse
Affiliation(s)
| | - Monica Hongrø Solbakken
- Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| | - Pia Krokene
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Sissel Jentoft
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2024:10.1038/s41577-024-01083-9. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Wang HY, Chen JY, Li Y, Zhang X, Liu X, Lu Y, He H, Li Y, Chen H, Liu Q, Huang Y, Jia Z, Li S, Zhang Y, Han S, Jiang S, Yang M, Zhang Y, Zhou L, Tan F, Ji Q, Meng L, Wang R, Liu Y, Liu K, Wang Q, Seim I, Zou J, Fan G, Liu S, Shao C. Single-cell RNA sequencing illuminates the ontogeny, conservation and diversification of cartilaginous and bony fish lymphocytes. Nat Commun 2024; 15:7627. [PMID: 39227568 PMCID: PMC11372145 DOI: 10.1038/s41467-024-51761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Elucidating cellular architecture and cell-type evolution across species is central to understanding immune system function and susceptibility to disease. Adaptive immunity is a shared trait of the common ancestor of cartilaginous and bony fishes. However, evolutionary features of lymphocytes in these two jawed vertebrates remain unclear. Here, we present a single-cell RNA sequencing atlas of immune cells from cartilaginous (white-spotted bamboo shark) and bony (zebrafish and Chinese tongue sole) fishes. Cross-species comparisons show that the same cell types across different species exhibit similar transcriptional profiles. In the bamboo shark, we identify a phagocytic B cell population expressing several pattern recognition receptors, as well as a T cell sub-cluster co-expressing both T and B cell markers. In contrast to a division by function in the bony fishes, we show close linkage and poor functional specialization among lymphocytes in the cartilaginous fish. Our cross-species single-cell comparison presents a resource for uncovering the origin and evolution of the gnathostome immune system.
Collapse
Affiliation(s)
- Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jian-Yang Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yanan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianghui Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Yifang Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Hang He
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yubang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Hongxi Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Qun Liu
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yingyi Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yangqing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shenglei Han
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shuhong Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Mingming Yang
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yingying Zhang
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Li Zhou
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Fujian Tan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | | | - Liang Meng
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Rui Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
- BGI Research, Shenzhen, 518083, China
| | | | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
6
|
Downie AE, Barre RS, Robinson A, Yang J, Chen YH, Lin JD, Oyesola O, Yeung F, Cadwell K, Loke P, Graham AL. Assessing immune phenotypes using simple proxy measures: promise and limitations. DISCOVERY IMMUNOLOGY 2024; 3:kyae010. [PMID: 39045514 PMCID: PMC11264049 DOI: 10.1093/discim/kyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/25/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
The study of immune phenotypes in wild animals is beset by numerous methodological challenges, with assessment of detailed aspects of phenotype difficult to impossible. This constrains the ability of disease ecologists and ecoimmunologists to describe immune variation and evaluate hypotheses explaining said variation. The development of simple approaches that allow characterization of immune variation across many populations and species would be a significant advance. Here we explore whether serum protein concentrations and coarse-grained white blood cell profiles, immune quantities that can easily be assayed in many species, can predict, and therefore serve as proxies for, lymphocyte composition properties. We do this in rewilded laboratory mice, which combine the benefits of immune phenotyping of lab mice with the natural context and immune variation found in the wild. We find that easily assayed immune quantities are largely ineffective as predictors of lymphocyte composition, either on their own or with other covariates. Immunoglobulin G (IgG) concentration and neutrophil-lymphocyte ratio show the most promise as indicators of other immune traits, but their explanatory power is limited. Our results prescribe caution in inferring immune phenotypes beyond what is directly measured, but they do also highlight some potential paths forward for the development of proxy measures employable by ecoimmunologists.
Collapse
Affiliation(s)
- Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ramya S Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Sciences Center at San Antonio; San Antonio, TX, USA
| | - Annie Robinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Jennie Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine; New York, NY, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei City, Taiwan
| | - Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, USA
| | - Frank Yeung
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine; New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - P’ng Loke
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine; New York, NY, USA
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Santa Fe Institute; Santa Fe, NM, USA
| |
Collapse
|
7
|
Brownstein CD, Zapfe KL, Lott S, Harrington R, Ghezelayagh A, Dornburg A, Near TJ. Synergistic innovations enabled the radiation of anglerfishes in the deep open ocean. Curr Biol 2024; 34:2541-2550.e4. [PMID: 38788708 DOI: 10.1016/j.cub.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/10/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Major ecological transitions are thought to fuel diversification, but whether they are contingent on the evolution of certain traits called key innovations1 is unclear. Key innovations are routinely invoked to explain how lineages rapidly exploit new ecological opportunities.1,2,3 However, investigations of key innovations often focus on single traits rather than considering trait combinations that collectively produce effects of interest.4 Here, we investigate the evolution of synergistic trait interactions in anglerfishes, which include one of the most species-rich vertebrate clades in the bathypelagic, or "midnight," zone of the deep sea: Ceratioidea.5 Ceratioids are the only vertebrates that possess sexual parasitism, wherein males temporarily attach or permanently fuse to females to mate.6,7 We show that the rapid transition of ancestrally benthic anglerfishes into pelagic habitats occurred during a period of major global warming 50-35 million years ago.8,9 This transition coincided with the origins of sexual parasitism, which is thought to increase the probability of successful reproduction once a mate is found in the midnight zone, Earth's largest habitat.5,6,7 Our reconstruction of the evolutionary history of anglerfishes and the loss of immune genes support that permanently fusing clades have convergently degenerated their adaptive immunity. We find that degenerate adaptive immune genes and sexual body size dimorphism, both variably present in anglerfishes outside the ceratioid radiation, likely promoted their transition into the bathypelagic zone. These results show how traits from separate physiological, morphological, and reproductive systems can interact synergistically to drive major transitions and subsequent diversification in novel environments.
Collapse
Affiliation(s)
- Chase D Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA.
| | - Katerina L Zapfe
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA
| | - Spencer Lott
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA
| | - Richard Harrington
- Department of Natural Resources, Marine Resources Division, 217 Ft. Johnson Road, Charleston, SC 29412-9110, USA
| | - Ava Ghezelayagh
- Department of Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, IL 60637, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA; Peabody Museum, Yale University, 21 Sachem Street, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Wainwright PC. Deep sea evolution: Glowing lures, parasitic males and rapid speciation in anglerfishes. Curr Biol 2024; 34:R549-R551. [PMID: 38834031 DOI: 10.1016/j.cub.2024.04.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Anglerfish are creatures of the deep ocean, featuring glowing lures, huge, toothy mouths and parasitic males physically attached to females. A new study finds that genomic degradation of the immune system facilitated the origin of parasitic males as anglerfishes invaded the deep zone where they experienced an adaptive radiation.
Collapse
Affiliation(s)
- Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Parker J, Marten SM, Ó Corcora TC, Rajkov J, Dubin A, Roth O. The effects of primary and secondary bacterial exposure on the seahorse (Hippocampus erectus) immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105136. [PMID: 38185263 DOI: 10.1016/j.dci.2024.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Evolutionary adaptations in the Syngnathidae teleost family (seahorses, pipefish and seadragons) culminated in an array of spectacular morphologies, key immune gene losses, and the enigmatic male pregnancy. In seahorses, genome modifications associated with immunoglobulins, complement, and major histocompatibility complex (MHC II) pathway components raise questions concerning their immunological efficiency and the evolution of compensatory measures that may act in their place. In this investigation heat-killed bacteria (Vibrio aestuarianus and Tenacibaculum maritimum) were used in a two-phased experiment to assess the immune response dynamics of Hippocampus erectus. Gill transcriptomes from double and single-exposed individuals were analysed in order to determine the differentially expressed genes contributing to immune system responses towards immune priming. Double-exposed individuals exhibited a greater adaptive immune response when compared with single-exposed individuals, while single-exposed individuals, particularly with V. aestuarianus replicates, associated more with the innate branch of the immune system. T. maritimum double-exposed replicates exhibited the strongest immune reaction, likely due to their immunological naivety towards the bacterium, while there are also potential signs of innate trained immunity. MHC II upregulated expression was identified in selected V. aestuarianus-exposed seahorses, in the absence of other pathway constituents suggesting a possible alternative or non-classical MHC II immune function in seahorses. Gene Ontology (GO) enrichment analysis highlighted prominent angiogenesis activity following secondary exposure, which could be linked to an adaptive immune process in seahorses. This investigation highlights the prominent role of T-cell mediated adaptive immune responses in seahorses when exposed to sequential foreign bacteria exposures. If classical MHC II pathway function has been lost, innate trained immunity in syngnathids could be a potential compensatory mechanism.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany.
| | - Silke-Mareike Marten
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| | - Tadhg C Ó Corcora
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany
| | - Jelena Rajkov
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany
| | - Arseny Dubin
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| |
Collapse
|
10
|
Lucas CL. Human genetic errors of immunity illuminate an adaptive arsenal model of rapid defenses. Trends Immunol 2024; 45:113-126. [PMID: 38302340 DOI: 10.1016/j.it.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
New discoveries in the field of human monogenic immune diseases highlight critical genes and pathways governing immune responses. Here, I describe how the ~500 currently defined human inborn errors of immunity help shape what I propose is an 'adaptive arsenal model of rapid defenses', emphasizing the set of immunological defenses poised for rapid responses in the natural environment. This arsenal blurs the lines between innate and adaptive immunity and is established through molecular relays between cell types, often traversing from sensors (pathogen detection) to intermediates to executioners (pathogen clearance) via soluble factors. Predictions and missing information based on the adaptive arsenal model are discussed, as are emergent and outstanding questions fundamental to advances in the field.
Collapse
Affiliation(s)
- Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Schorpp M, Swann JB, Hess I, Ho HC, Pietsch TW, Boehm T. Foxn1 is not essential for T-cell development in teleosts. Eur J Immunol 2023; 53:e2350725. [PMID: 37724048 DOI: 10.1002/eji.202350725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
In mammals, T-cell development depends on the activity of the Foxn1 transcription factor in the thymic epithelium; mutations in the vertebrate-specific Foxn1 gene are associated with profound T-cell lymphopenia and fatal immunodeficiency. Here, we examined the extent of T-cell development in teleosts lacking a functional foxn1 gene. In zebrafish carrying a deleterious internal deletion of foxn1, reduced but robust lymphopoietic activity is maintained in the mutant thymus. Moreover, pseudogenization or loss of foxn1 in the genomes of deep-sea anglerfishes is independent of the presence or absence of the canonical signatures of the T-cell lineage. Thus, in contrast to the situation in mammals, the teleost thymus can support foxn1-independent lymphopoiesis, most likely through the activity of the Foxn4, an ancient metazoan paralog of Foxn1. Our results imply that during the early stages of vertebrate evolution, genetic control of thymopoiesis was functionally redundant and thus robust; in mammals, the genetic network was reorganized to become uniquely dependent on the FOXN1 transcription factor.
Collapse
Affiliation(s)
| | - Jeremy B Swann
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Isabell Hess
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Hsuan-Ching Ho
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
- Department and Graduate Institution of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Theodore W Pietsch
- School of Aquatic and Fishery Sciences and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Thomas Boehm
- Max Planck Institute of Immunobiology, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Zhang G, Swann JB, Felder M, O'Meara C, Boehm T. Lymphocyte pathway analysis using naturally lymphocyte-deficient fish. Eur J Immunol 2023; 53:e2350577. [PMID: 37593947 DOI: 10.1002/eji.202350577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Comparative phylogenetic analyses are of potential value to establish the essential components of genetic networks underlying physiological traits. For species that naturally lack particular lymphocyte lineages, we show here that this strategy readily distinguishes trait-specific actors from pleiotropic components of the genetic network governing lymphocyte differentiation. Previously, three of the four members of the DNA polymerase X family have been implicated in the junctional diversification process during the somatic assembly of antigen receptors. Our phylogenetic analysis indicates that the presence of terminal deoxynucleotidyl transferase is strictly associated with the facility of V(D)J recombination, whereas PolL and PolM genes are retained even in species lacking Rag-mediated somatic diversification of antigen receptor genes.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marius Felder
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Connor O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Morrissey KA, Stammnitz MR, Murchison E, Miller RD. Comparative genomics of the T cell receptor μ locus in marsupials and monotremes. Immunogenetics 2023; 75:507-515. [PMID: 37747540 PMCID: PMC7615758 DOI: 10.1007/s00251-023-01320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
T cells are a primary component of the vertebrate adaptive immune system. There are three mammalian T cell lineages based on their T cell receptors (TCR). The αβ T cells and γδ T cells are ancient and found broadly in vertebrates. The more recently discovered γμ T cells are uniquely mammalian and only found in marsupials and monotremes. In this study, we compare the TCRμ locus (TRM) across the genomes of two marsupials, the gray short-tailed opossum and Tasmanian devil, and one monotreme, the platypus. These analyses revealed lineage-specific duplications, common to all non-eutherian mammals described. There is conserved synteny in the TRM loci of both marsupials but not in the monotreme. Our results are consistent with an ancestral cluster organization which was present in the last common mammalian ancestor which underwent lineage-specific duplications and divergence among the non-eutherian mammals.
Collapse
Affiliation(s)
- K A Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, Albuquerque, NM, USA
| | - M R Stammnitz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - E Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, Albuquerque, NM, USA.
| |
Collapse
|
14
|
Sakaguchi H, Sato Y, Matsumoto R, Gomikawa J, Yoshida N, Suzuki T, Matsuda M, Iwanami N. Maturation of the medaka immune system depends on reciprocal interactions between the microbiota and the intestinal tract. Front Immunol 2023; 14:1259519. [PMID: 37767090 PMCID: PMC10520778 DOI: 10.3389/fimmu.2023.1259519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The interactions between the host immune system and intestinal microorganisms have been studied in many animals, including fish. However, a detailed analysis has not been performed in medaka, an established fish model for biological studies. Here, we investigated the effect of immunodeficiency on the microbiota composition and the effect of gut bacteria on intestinal epithelial development and immune responses in medaka. Chronological analysis of the intestinal microbiota of interleukin 2 receptor subunit gamma (il2rg) mutant medaka showed a gradual decrease in the evenness of operational taxonomic units, mainly caused by the increased abundance of the Aeromonadaceae family. Exposure of wild-type medaka to high doses of an intestine-derived opportunistic bacterium of the Aeromonadaceae family induced an inflammatory response, suggesting a harmful effect on adult il2rg mutants. In addition, we established germ-free conditions in larval medaka and observed large absorptive vacuoles in intestinal epithelial cells, indicating a block in epithelial maturation. Transcriptome analysis revealed a decrease in the expression of genes involved in the defense response, including the antimicrobial peptide gene hepcidin, whose expression is induced by lipopolysaccharide stimulation in normal larvae. These results show that reciprocal interactions between the microbiome and the intestinal tract are required for the maturation of the medaka immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
15
|
Matz H, Dooley H. 450 million years in the making: mapping the evolutionary foundations of germinal centers. Front Immunol 2023; 14:1245704. [PMID: 37638014 PMCID: PMC10450919 DOI: 10.3389/fimmu.2023.1245704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Germinal centers (GCs) are distinct microanatomical structures that form in the secondary lymphoid organs of endothermic vertebrates (i.e., mammals and some birds). Within GCs, B cells undergo a Darwinian selection process to identify clones which can respond to pathogen insult as well as affinity mature the B cell repertoire. The GC response ultimately generates memory B cells and bone marrow plasma cells which facilitate humoral immunological memory, the basis for successful vaccination programs. GCs have not been observed in the secondary lymphoid organs of ectothermic jawed vertebrates (i.e., fishes, reptiles, and amphibians). However, abundant research over the past decades has indicated these organisms can produce antigen specific B cell responses and some degree of affinity maturation. This review examines data demonstrating that the fundamentals of B cell selection may be more conserved across vertebrate phylogeny than previously anticipated. Further, research in both conventional mammalian model systems and comparative models raises the question of what evolutionary benefit GCs provide endotherms if they are seemingly unnecessary for generating the basic functional components of jawed vertebrate humoral adaptive immune responses.
Collapse
|
16
|
Swann JB, Grammer C, Schorpp M, Boehm T. A survey of the adaptive immune genes of the polka-dot batfish Ogcocephalus cubifrons. BMC Immunol 2023; 24:20. [PMID: 37480016 PMCID: PMC10362645 DOI: 10.1186/s12865-023-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The anglerfish, belonging to the teleost order Lophiiformes, are a diverse and species-rich group of fish that are known to exhibit a number of unique morphological, reproductive and immunological adaptations. Work to date has identified the loss of specific adaptive immune components in two of the five Lophiiformes sub-orders (Lophioidei and Ceratioidei), while no anomalies have been identified to date in two other sub-orders, Antennaroidei and Chaunacoidei. The immunogenome of the fifth sub-order, Ogcocephaloidei has not yet been investigated, and we have therefore used whole genome shotgun sequencing, combined with RNA-seq, to survey the adaptive immune capabilities of the polka-dot batfish, O. cubifrons, as a representative of this as yet unexplored sub-order. RESULTS We find that the O. cubifrons genome encodes the core genes needed to mount adaptive T and B cell responses. These genes include those necessary for rearranging and editing antigen receptors, the antigen receptors themselves; as well as the co-receptors, signalling molecules, and antigen presenting molecules (both class I and class II) needed for B cell and T cell development and activation. CONCLUSIONS From an immune perspective, the polka-dot batfish has a canonical complement of adaptive immune genes, and does not exhibit any of the adaptive immune changes previously identified in monkfish and oceanic anglerfish.
Collapse
Affiliation(s)
- Jeremy B Swann
- Department of Developmental Immunology, Max Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany.
| | - Christiane Grammer
- Department of Developmental Immunology, Max Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Giorgetti OB, O'Meara CP, Schorpp M, Boehm T. Origin and evolutionary malleability of T cell receptor α diversity. Nature 2023:10.1038/s41586-023-06218-x. [PMID: 37344590 PMCID: PMC10322711 DOI: 10.1038/s41586-023-06218-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Lymphocytes of vertebrate adaptive immune systems acquired the capability to assemble, from split genes in the germline, billions of functional antigen receptors1-3. These receptors show specificity; unlike the broadly tuned receptors of the innate system, antibodies (Ig) expressed by B cells, for instance, can accurately distinguish between the two enantiomers of organic acids4, whereas T cell receptors (TCRs) reliably recognize single amino acid replacements in their peptide antigens5. In developing lymphocytes, antigen receptor genes are assembled from a comparatively small set of germline-encoded genetic elements in a process referred to as V(D)J recombination6,7. Potential self-reactivity of some antigen receptors arising from the quasi-random somatic diversification is suppressed by several robust control mechanisms8-12. For decades, scientists have puzzled over the evolutionary origin of somatically diversifying antigen receptors13-16. It has remained unclear how, at the inception of this mechanism, immunologically beneficial expanded receptor diversity was traded against the emerging risk of destructive self-recognition. Here we explore the hypothesis that in early vertebrates, sequence microhomologies marking the ends of recombining elements became the crucial targets of selection determining the outcome of non-homologous end joining-based repair of DNA double-strand breaks generated during RAG-mediated recombination. We find that, across the main clades of jawed vertebrates, TCRα repertoire diversity is best explained by species-specific extents of such sequence microhomologies. Thus, selection of germline sequence composition of rearranging elements emerges as a major factor determining the degree of diversity of somatically generated antigen receptors.
Collapse
Affiliation(s)
- Orlando B Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Chuphal B, Sathoria P, Rai U, Roy B. Crosstalk between reproductive and immune systems: the teleostean perspective. JOURNAL OF FISH BIOLOGY 2023; 102:302-316. [PMID: 36477945 DOI: 10.1111/jfb.15284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The bidirectional interaction between the hypothalamic-pituitary-gonadal (HPG) axis and the immune system plays a crucial role in the adaptation of an organism to its environment, its survival and the continuance of a species. Nonetheless, very little is known about this interaction among teleost, the largest group of extant vertebrates. Fishes being seasonal breeders, their immune system is exposed to seasonally changing levels of HPG hormones. On the contrary, the presence and infiltration of leukocytes, the expression of pattern recognition receptors as well as cytokines in gonads suggest their key role in teleostean gametogenesis as in the case of mammals. Moreover, the modulation of gametogenesis and steroidogenesis by lipopolysaccharide implicates the pathological significance of inflammation on reproduction. Thus, it is important to engage in the understanding of the interaction between these two important physiological systems, not only from a phylogenetic perspective but also due to the importance of fish as an important economic resource. In view of this, the authors have reviewed the crosstalk between the reproductive and immune systems in teleosts and tried to explore the importance of this interaction in their survival and reproductive fitness.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| | - Umesh Rai
- University of Jammu, Jammu, Jammu and Kashmir, India
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| |
Collapse
|
19
|
Bjørnestad SA, Solbakken MH, Jakobsen KS, Jentoft S, Bakke O, Progida C. Atlantic cod ( Gadus morhua) MHC I localizes to endolysosomal compartments independently of cytosolic sorting signals. Front Cell Dev Biol 2023; 11:1050323. [PMID: 36760361 PMCID: PMC9905690 DOI: 10.3389/fcell.2023.1050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Major histocompatibility complex (MHC) class I and II are crucial for the adaptive immune system because they are involved in peptide presentation to T cells. Until recently, it was believed that MHC genes and their associated immune components had been conserved since their evolutionary emergence in jawed fish. However, sequencing of the Atlantic cod (Gadus morhua) genome revealed a loss of MHC class II genes, and an extreme expansion of MHC class I genes. These findings lead to the hypothesis that a loss of the MHC class II pathway coincided with a more versatile use of MHC class I, but so far there is no direct experimental evidence in support of this. To gain a deeper understanding of the function of the expanded MHC class I, we selected five MHC class I gene variants representing five of the six clades identified in previous studies and investigated their intracellular localization in human and Atlantic cod larval cells. Intriguingly, we uncovered that all selected MHC class I variants localize to endolysosomal compartments in Atlantic cod cells. Additionally, by introducing point mutations or deletions in the cytosolic tail, we found that hypothetical sorting signals in the MHC class I cytosolic tail do not influence MHC class I trafficking. Moreover, we demonstrated that in Atlantic cod, tapasin and MHC class I colocalize on endolysosomes suggesting that peptide-loading assistance and stabilization of MHC class I occurs outside the endoplasmic reticulum. Altogether, our results demonstrate that MHC class I from Atlantic cod is sorted to the endolysosomal system, which may indicate that it interacts with exogenous peptides for potential cross presentation.
Collapse
Affiliation(s)
- Synne Arstad Bjørnestad
- Section of Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Monica Hongrø Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Section of Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Section of Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway,*Correspondence: Cinzia Progida,
| |
Collapse
|
20
|
Tracing the origin of fish immunoglobulins. Mol Immunol 2023; 153:146-159. [PMID: 36502743 DOI: 10.1016/j.molimm.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
We have studied the origin of immunoglobulin genes in fish. There are two evolutionary lines of bony fish, Actinopterygii and Sarcopterygii. The former gave rise to most of the current fish and the latter to the animals that went to land. Non-teleost actinopterygians are significant evolutionary, sharing a common ancestor with sarcopterygians. There are three different immunoglob- ulin isotypes in ray-finned fish: IgM, IgD and IgT. We deduce that translocon formation in im- munoglobulins genes occurred already in non-teleost Actinopterygii. We establish a relationship between no teleosts and teleostean fish at the domain level of different immunoglobulins. We found two evolutionary lines of immunoglobulin. A line that starts from Immunoglobulin M and another from an ancestral Immunoglobulin W. The M line is stable, and the W line gives rise to the IgD of the fish. Immunoglobulin T emerges by recombination between both lines.
Collapse
|
21
|
Ghorbani A, Khataeipour SJ, Solbakken MH, Huebert DNG, Khoddami M, Eslamloo K, Collins C, Hori T, Jentoft S, Rise ML, Larijani M. Ancestral reconstruction reveals catalytic inactivation of activation-induced cytidine deaminase concomitant with cold water adaption in the Gadiformes bony fish. BMC Biol 2022; 20:293. [PMID: 36575514 PMCID: PMC9795746 DOI: 10.1186/s12915-022-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - S. Javad Khataeipour
- grid.25055.370000 0000 9130 6822Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Monica H. Solbakken
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David N. G. Huebert
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Minasadat Khoddami
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Khalil Eslamloo
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Cassandra Collins
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tiago Hori
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Sissel Jentoft
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L. Rise
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Mani Larijani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
22
|
Liu Y, Qu M, Jiang H, Schneider R, Qin G, Luo W, Yu H, Zhang B, Wang X, Zhang Y, Zhang H, Zhang Z, Wu Y, Zhang Y, Yin J, Zhang S, Venkatesh B, Roth O, Meyer A, Lin Q. Immunogenetic losses co-occurred with seahorse male pregnancy and mutation in tlx1 accompanied functional asplenia. Nat Commun 2022; 13:7610. [PMID: 36494371 PMCID: PMC9734139 DOI: 10.1038/s41467-022-35338-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
In the highly derived syngnathid fishes (pipefishes, seadragons & seahorses), the evolution of sex-role reversed brooding behavior culminated in the seahorse lineage's male pregnancy, whose males feature a specialized brood pouch into which females deposit eggs during mating. Then, eggs are intimately engulfed by a placenta-like tissue that facilitates gas and nutrient exchange. As fathers immunologically tolerate allogenic embryos, it was suggested that male pregnancy co-evolved with specific immunological adaptations. Indeed, here we show that a specific amino-acid replacement in the tlx1 transcription factor is associated with seahorses' asplenia (loss of spleen, an organ central in the immune system), as confirmed by a CRISPR-Cas9 experiment using zebrafish. Comparative genomics across the syngnathid phylogeny revealed that the complexity of the immune system gene repertoire decreases as parental care intensity increases. The synchronous evolution of immunogenetic alterations and male pregnancy supports the notion that male pregnancy co-evolved with the immunological tolerance of the embryo.
Collapse
Affiliation(s)
- Yali Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Meng Qu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Han Jiang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Ralf Schneider
- grid.9764.c0000 0001 2153 9986Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Geng Qin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Wei Luo
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Haiyan Yu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Bo Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Xin Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Yanhong Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Huixian Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Zhixin Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.412785.d0000 0001 0695 6482Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | - Yongli Wu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Yingyi Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Jianping Yin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Si Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Byrappa Venkatesh
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore, Singapore
| | - Olivia Roth
- grid.9764.c0000 0001 2153 9986Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Axel Meyer
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Qiang Lin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
23
|
Hakala SM, Fujioka H, Gapp K, De Gasperin O, Genzoni E, Kilner RM, Koene JM, König B, Linksvayer TA, Meurville MP, Negroni MA, Palejowski H, Wigby S, LeBoeuf AC. Socially transferred materials: why and how to study them. Trends Ecol Evol 2022; 38:446-458. [PMID: 36543692 DOI: 10.1016/j.tree.2022.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
When biological material is transferred from one individual's body to another, as in ejaculate, eggs, and milk, secondary donor-produced molecules are often transferred along with the main cargo, and influence the physiology and fitness of the receiver. Both social and solitary animals exhibit such social transfers at certain life stages. The secondary, bioactive, and transfer-supporting components in socially transferred materials have evolved convergently to the point where they are used in applications across taxa and type of transfer. The composition of these materials is typically highly dynamic and context dependent, and their components drive the physiological and behavioral evolution of many taxa. Our establishment of the concept of socially transferred materials unifies this multidisciplinary topic and will benefit both theory and applications.
Collapse
|
24
|
Haugland GT, Rønneseth A, Gundersen L, Lunde HS, Nordland K, Wergeland HI. Neutrophils in Atlantic salmon (Salmo salar L.) are MHC class II+ and secret IL-12p40 upon bacterial exposure. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Guslund NC, Krabberød AK, Nørstebø SF, Solbakken MH, Jakobsen KS, Johansen FE, Qiao SW. Lymphocyte subsets in Atlantic cod (Gadus morhua) interrogated by single-cell sequencing. Commun Biol 2022; 5:689. [PMID: 35821077 PMCID: PMC9276791 DOI: 10.1038/s42003-022-03645-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Atlantic Cod (Gadus morhua) has lost the major histocompatibility complex class II presentation pathway. We recently identified CD8-positive T cells, B cells, and plasma cells in cod, but further characterisation of lymphocyte subsets is needed to elucidate immune adaptations triggered by the absence of CD4-positive T lymphocytes. Here, we use single-cell RNA sequencing to examine the lymphocyte heterogeneity in Atlantic cod spleen. We describe five T cell subsets and eight B cell subsets and propose a B cell trajectory of differentiation. Notably, we identify a subpopulation of T cells that are CD8-negative. Most of the CD8-negative T lymphocytes highly express the homologue of monocyte chemotactic protein 1b, and another subset of CD8-negative T lymphocytes express the homologue of the scavenger receptor m130. Uncovering the multiple lymphocyte cell sub-clusters reveals the different immune states present within the B and T cell populations, building a foundation for further work. Single-cell sequencing of naïve and vaccinated Atlantic Cod uncovers multiple B and T lymphocyte subsets including a subset of T lymphocytes expressing neither CD4 or CD8 and reveals different immune states present within B and T cell populations.
Collapse
Affiliation(s)
- Naomi Croft Guslund
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway.
| | - Anders K Krabberød
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway.,Section for Genetics and Evolutionary Biology, Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway
| | - Simen F Nørstebø
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Monica Hongrø Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences and the Department of Immunology, University of Oslo, Oslo, Norway
| | - Finn-Eirik Johansen
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
26
|
Morrissey KA, Sampson JM, Rivera M, Bu L, Hansen VL, Gemmell NJ, Gardner MG, Bertozzi T, Miller RD. Comparison of Reptilian Genomes Reveals Deletions Associated with the Natural Loss of γδ T Cells in Squamates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1960-1967. [PMID: 35346964 DOI: 10.4049/jimmunol.2101158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 01/06/2023]
Abstract
T lymphocytes or T cells are key components of the vertebrate response to pathogens and cancer. There are two T cell classes based on their TCRs, αβ T cells and γδ T cells, and each plays a critical role in immune responses. The squamate reptiles may be unique among the vertebrate lineages by lacking an entire class of T cells, the γδ T cells. In this study, we investigated the basis of the loss of the γδ T cells in squamates. The genome and transcriptome of a sleepy lizard, the skink Tiliqua rugosa, were compared with those of tuatara, Sphenodon punctatus, the last living member of the Rhynchocephalian reptiles. We demonstrate that the lack of TCRγ and TCRδ transcripts in the skink are due to large deletions in the T. rugosa genome. We also show that tuataras are on a growing list of species, including sharks, frogs, birds, alligators, and platypus, that can use an atypical TCRδ that appears to be a chimera of a TCR chain with an Ab-like Ag-binding domain. Tuatara represents the nearest living relative to squamates that retain γδ T cells. The loss of γδTCR in the skink is due to genomic deletions that appear to be conserved in other squamates. The genes encoding the αβTCR chains in the skink do not appear to have increased in complexity to compensate for the loss of γδ T cells.
Collapse
Affiliation(s)
- Kimberly A Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM
| | - Jordan M Sampson
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM
| | - Megan Rivera
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM
| | - Victoria L Hansen
- Department of Orthopedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia; and
| | - Terry Bertozzi
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia; and .,The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM;
| |
Collapse
|
27
|
Ellis J, Ellis B, Tyler K, Reichel MP. Recent trends in the use of social media in parasitology and the application of alternative metrics. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100013. [PMID: 35284864 PMCID: PMC8906104 DOI: 10.1016/j.crpvbd.2021.100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 11/12/2022]
Abstract
In recent times, the use of social media for the dissemination of “news and views” in parasitology has increased in popularity. News, Twitter and Blogs have emerged as commonplace vehicles in the knowledge dissemination and transfer process. Alternative metrics (“altmetrics”), based on social media mentions have been proposed as a measure of societal impact, although firm evidence for this relationship is yet to be found. Nevertheless, increasing amounts of data on “altmetrics” are being analysed to identify the nature of the unknown impact that social media is generating. Here, we examine the recent, and increasing use of social media in the field of parasitology and the relationship of “altmetrics” with more traditional bibliometric indicators, such as article citations and journal metrics. The analyses document the rise and dominance of Twitter as the main form of social media occurring in the discipline of parasitology and note the contribution to this trend of Twitter bots that automatically tweet about publications. We also report on the use of the social referencing platform Mendeley and its correlation to article citations; Mendeley reader numbers are now considered to provide firm evidence on the early impact of research. Finally, we consider the Twitter profile of 31 journals publishing parasitology research articles (by volume of papers published); we show that 13 journals are associated with prolific Twitter activity about parasitology. We hope this study will stimulate not only the continued and responsible use of social media to disseminate knowledge about parasitology for the greater good, but also encourage others to further investigate the impact and benefits that altmetrics may bring to this discipline. We highlight and document the rise of social media and its use in parasitology. Twitter activity within the parasitology community has increased significantly over the last 10 years. Mendeley reader activity is strongly correlated with an article's citations. Thirteen journals are associated with prolific Twitter activity about parasitology. A Journalʼs social media strategy is important to authors.
Collapse
Affiliation(s)
- John Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Bethany Ellis
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Kevin Tyler
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Michael P Reichel
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Hart PB, Arnold RJ, Alda F, Kenaley CP, Pietsch TW, Hutchinson D, Chakrabarty P. Evolutionary Relationships Of Anglerfishes (Lophiiformes) Reconstructed Using Ultraconserved Elements. Mol Phylogenet Evol 2022; 171:107459. [DOI: 10.1016/j.ympev.2022.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
|
29
|
Buckley KM, Dooley H. Immunological Diversity Is a Cornerstone of Organismal Defense and Allorecognition across Metazoa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:203-211. [PMID: 35017209 DOI: 10.4049/jimmunol.2100754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/16/2021] [Indexed: 01/09/2023]
Abstract
The ongoing arms race between hosts and microbes has fueled the evolution of novel strategies for diversifying the molecules involved in immune responses. Characterization of immune systems from an ever-broadening phylogenetic range of organisms reveals that there are many mechanisms by which this diversity can be generated and maintained. Diversification strategies operate at the level of populations, genomes, genes, and even individual transcripts. Lineage-specific innovations have been cataloged within the immune systems of both invertebrates and vertebrates. Furthermore, somatic diversification of immune receptor genes has now been described in jawless vertebrates and some invertebrate species. In addition to pathogen detection, immunological diversity plays important roles in several distinct allorecognition systems. In this Brief Review, we highlight some of the evolutionary innovations employed by a variety of metazoan species to generate the molecular diversity required to detect a vast array of molecules in the context of both immune response and self/nonself-recognition.
Collapse
Affiliation(s)
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore, MD
| |
Collapse
|
30
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
31
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Mincarone MM, Afonso GVF, Di Dario F, Eduardo LN, Frédou T, Lucena-Frédou F, Bertrand A, Pietsch TW. Deep-sea anglerfishes (Lophiiformes: Ceratioidei) from off northeastern Brazil, with remarks on the ceratioids reported from the Brazilian Exclusive Economic Zone. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The deep-sea anglerfishes of the suborder Ceratioidei (Lophiiformes) are represented by about 170 valid species with some of the most extraordinary morphological and reproductive adaptations among vertebrates, including extreme sexual dimorphism and male parasitism. Here we report on the diversity and distribution of rare ceratioids collected during the ABRACOS (Acoustics along the BRAzilian COaSt) expeditions off northeastern Brazil and the Fernando de Noronha Ridge (Rocas Atoll, Fernando de Noronha Archipelago, and associated seamounts). Chaenophryne ramifera, Oneirodes anisacanthus, O. carlsbergi, Gigantactis watermani, and unidentified specimens of Caulophryne, Dolopichthys, and Rhynchactis are recorded for the first time in the Brazilian Exclusive Economic Zone. Ceratias uranoscopus, Melanocetus johnsonii, and Chaenophryne draco have their distributions extended in Brazilian waters. Caulophryne, O. anisacanthus, and G. watermani are also recorded for the first time in the western South Atlantic. The specimen of G. watermani reported here represents the third known specimen of the species, and variations of its escal anatomy in relation to the holotype are described. Based on specimens examined and a review of records in the literature, 20 species of the Ceratioidei, in addition to unidentified species of Caulophryne, Dolopichthys, and Rhynchactis, are confirmed in the Brazilian Exclusive Economic Zone.
Collapse
Affiliation(s)
| | | | | | - Leandro Nolé Eduardo
- Universidade Federal Rural de Pernambuco, Brazil; Universidade Montpellier, France
| | | | | | - Arnaud Bertrand
- Universidade Federal Rural de Pernambuco, Brazil; Universidade Montpellier, France
| | | |
Collapse
|
33
|
|
34
|
Swann JB, Holland SJ, Petersen M, Pietsch TW, Boehm T. The immunogenetics of sexual parasitism. Science 2020; 369:1608-1615. [PMID: 32732279 DOI: 10.1126/science.aaz9445] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/17/2020] [Indexed: 01/29/2023]
Abstract
Sexual parasitism has evolved as a distinctive mode of reproduction among deep-sea anglerfishes. The permanent attachment of males to host females observed in these species represents a form of anatomical joining, which is otherwise unknown in nature. Pronounced modifications to immune facilities are associated with this reproductive trait. The genomes of species with temporarily attaching males lack functional aicda genes that underpin affinity maturation of antibodies. Permanent attachment is associated with additional alterations, culminating in the loss of functional rag genes in some species, abolishing somatic diversification of antigen receptor genes, the hallmark of canonical adaptive immunity. In anglerfishes, coevolution of innate and adaptive immunity has been disentangled, implying that an alternative form of immunity supported the emergence of this evolutionarily successful group of vertebrates.
Collapse
Affiliation(s)
- Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| | - Stephen J Holland
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Malte Petersen
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Theodore W Pietsch
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105-5020, USA
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| |
Collapse
|