1
|
Karges B, Rosenbauer J, Stahl-Pehe A, Flury M, Biester T, Tauschmann M, Lilienthal E, Hamann J, Galler A, Holl RW. Hybrid closed-loop insulin therapy and risk of severe hypoglycaemia and diabetic ketoacidosis in young people (aged 2-20 years) with type 1 diabetes: a population-based study. Lancet Diabetes Endocrinol 2025; 13:88-96. [PMID: 39701114 DOI: 10.1016/s2213-8587(24)00284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The effect of closed-loop insulin delivery on the risk of acute diabetes complications in people with type 1 diabetes is unclear. We investigated whether the rates of severe hypoglycaemia and diabetic ketoacidosis are lower with hybrid closed-loop insulin therapy compared with sensor-augmented (open-loop) pump therapy in a large cohort of young people. METHODS In this population-based cohort study, we evaluated young people with type 1 diabetes from 250 diabetes centres in Germany, Austria, Switzerland, and Luxembourg participating in the Diabetes Prospective Follow-up (DPV) initiative. Included participants were aged 2-20 years, with diabetes duration of more than 1 year, and were treated between Jan 1, 2021, and Dec 31, 2023. The primary outcomes were the rates of severe hypoglycaemia and ketoacidosis in people using closed-loop therapy versus open-loop therapy. Key secondary outcomes were differences in HbA1c levels, percentage of time in glucose range of 3·9-10·0 mmol/L, and glycaemic variability. To account for relevant confounders, we applied propensity score inverse probability of treatment weighting considering several baseline characteristics. FINDINGS 13 922 young people (median age 13·2 years [IQR 10·0 to 16·0]; 51% male) in the DPV database met inclusion criteria and were included in the analysis. 7088 used closed-loop therapy and 6834 used open-loop therapy, with a median observation time of 1·6 years [IQR 1·1 to 2·4]. Individuals using closed-loop therapy had a higher rate of ketoacidosis (1·74 per 100 patient-years) than those using open-loop therapy (0·96 per 100 patient-years; incidence rate ratio 1·81 [1·37 to 2·40], p<0·0001) and there was no significant difference between groups in the rate of severe hypoglycaemia (5·59 per 100 patient-years vs 6·63 per 100 patient-years; incidence rate ratio 0·84 [95% CI 0·69 to 1·03], p=0·089). Individuals using closed-loop therapy had a lower rate of hypoglycaemic coma (0·62 per 100 patient-years) compared with individuals using open-loop therapy (0·91 per 100 patient-years; incidence rate ratio 0·68 [95% CI 0·48 to 0·97], p=0·034). Those in the closed-loop therapy group also had a lower HbA1c level (7·34% vs 7·50%; difference -0·16% [95% CI -0·20 to -0·13], p=0·0007), higher percentage of time in target glucose range of 3·9-10·0 mmol/L (64% vs 52%, difference 12% [10 to 14], p<0·0001), and less glycaemic variability (coefficient of variation 35·4% vs 38·3%; difference -2·9% [-3·3 to -2·5], p<0·0001) than those in the open-loop therapy group. The rate of ketoacidosis was particularly high in young people with HbA1c of 8·5% or higher in the closed-loop therapy group (5·25 per 100 patient-years) compared with the open-loop therapy group (1·53 per 100 patient-years; incidence rate ratio 3·43 [95% CI 1·69 to 6·97], p<0·0001). INTERPRETATION Hybrid closed-loop insulin delivery has no significant effect on the rate of severe hypoglycaemia, and is associated with an increased risk of diabetic ketoacidosis, but is associated with a reduced risk of hypoglycaemic coma and improved glycaemia. These findings indicate the need for additional educational measures for the use of closed-loop insulin delivery. FUNDING German Center for Diabetes Research, German Diabetes Society, and Robert Koch Institute.
Collapse
Affiliation(s)
- Beate Karges
- Division of Endocrinology and Diabetes, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Joachim Rosenbauer
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center at University of Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anna Stahl-Pehe
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center at University of Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Monika Flury
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torben Biester
- Auf der Bult Diabetes Centre for Children and Adolescents, Hannover, Germany
| | - Martin Tauschmann
- Medical University of Vienna, Department of Pediatrics, Vienna, Austria
| | - Eggert Lilienthal
- University Hospital St Josef Bochum, Department of Pediatrics, Bochum, Germany
| | | | - Angela Galler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Sozialpädiatrisches Zentrum, Pediatric Endocrinology and Diabetology, Berlin, Germany
| | - Reinhard W Holl
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Mphasha MH, Vagiri R. A Narrative Review of the Interplay Between Carbohydrate Intake and Diabetes Medications: Unexplored Connections and Clinical Implications. Int J Mol Sci 2025; 26:624. [PMID: 39859337 PMCID: PMC11765648 DOI: 10.3390/ijms26020624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This narrative review examines the dynamic interplay between carbohydrate intake and diabetes medications, highlighting their combined molecular and clinical effects on glycemic control. Carbohydrates, a primary energy source, significantly influence postprandial glucose regulation and necessitate careful coordination with pharmacological therapies, including insulin, metformin, glucagon-like peptide (GLP-1) receptor agonists, and sodium-glucose cotransporter-2 (SGLT2) inhibitors. Low-glycemic-index (GI) foods enhance insulin sensitivity, stabilize glycemic variability, and optimize medication efficacy, while high-GI foods exacerbate glycemic excursions and insulin resistance. Continuous glucose monitoring (CGM) offers real-time insights to tailor dietary and pharmacological interventions, improving glycemic outcomes and reducing complications. Despite advancements, gaps persist in understanding nutrient-drug interactions, particularly with emerging antidiabetic agents. This review underscores the need for integrating carbohydrate-focused dietary strategies with pharmacotherapy to enhance diabetes management. Future research should prioritize clinical trials leveraging CGM technology to explore how glycemic index, glycemic load, and carbohydrate quality interact with newer diabetes medications. Such studies can refine evidence-based recommendations, support individualized care plans, and improve long-term outcomes. Addressing systemic barriers, such as limited access to dietitians and CGM technology in underserved regions, is critical for equitable care. Expanding the roles of community health workers and training healthcare providers in basic nutrition counseling can bridge gaps, promoting sustainable and inclusive diabetes management strategies. These efforts are essential for advancing personalized, effective, and equitable care for individuals with diabetes.
Collapse
Affiliation(s)
| | - Rajesh Vagiri
- Department of Pharmacy, University of Limpopo, Mankweng 0727, South Africa
| |
Collapse
|
3
|
Cai Y, Zhang L, Cheng W, Xu W, Yuan K, Xiong R, Huang C. On-demand release of insulin using glucose-responsive chitosan-based three-compartment microspheres. Int J Biol Macromol 2024; 293:139351. [PMID: 39743064 DOI: 10.1016/j.ijbiomac.2024.139351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Various injectable glucose-responsive insulin release systems, including microspheres, have been developed to achieve insulin release for over a day. However, a major challenge is on-demand release insulin, which is closely related to the degradation rate of the delivery vehicle. Herein, chitosan-based three-compartment microspheres (TCMs) were fabricated using gas-shearing microfluidics. Glucose reacts with glucose oxidase (GOD) to generate gluconic acid, and chitosan degrades under acidic conditions to release insulin. The chitosan concentration in each compartment is adjusted to have gradient pH response ranges. Low, medium and high concentrations of insulin are encapsulated in low, medium and high concentration chitosan compartments respectively. The number of compartments involved in insulin release increases from one to three as blood glucose rises. Compared with single one-compartment microspheres (OCMs), TCMs maintain structural integrity and drug action for a longer duration. In vitro experiments have proven the on-demand release of insulin and excellent biocompatibility of TCMs. In chemically induced type 2 diabetes cell models, TCMs demonstrated long-term regulation of blood glucose levels for 20 to 35 h. This work presents a novel concept of constructing three compartments in microspheres to release insulin on-demand, and is highly attractive for research on insulin analogs and other related application.
Collapse
Affiliation(s)
- Yixin Cai
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, PR China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Wenxuan Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangrui Yuan
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Kumar N, Kaur K, Kaur Jassal A, Bedi PMS. Flavin mononucleotide, a potent inhibitor of insulin-degrading enzyme: an in-silico study. J Biomol Struct Dyn 2024:1-11. [PMID: 39659241 DOI: 10.1080/07391102.2024.2440146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/13/2024] [Indexed: 12/12/2024]
Abstract
Diabetes Mellitus is a metabolic disorder which has affected over 476 million people globally with projections indicating a further increase in this number. Despite the availability of treatment therapies, maintaining optimal blood glucose levels remains a critical task. During literature survey, we came across Insulin degrading enzyme (IDE) which is responsible for insulin degradation in the body and inhibition of this enzyme could increase the bioavailability of insulin in the body. Therefore, a library of phytoconstituents isolated from anti-diabetic plants was prepared and screened against the IDE by using various in silico tools. This screening suggested Flavin mononucleotide (derivative of Vitamin B12) to possess the highest affinity towards IDE which interacted with a binding energy value of -332.686 kcal/mol. Moreover, molecular dynamic simulations and MMGBSA studies confirms the stability of Compound Flavin mononucleotide-IDE complex for at least 200 ns. These findings suggest that Compound Flavin mononucleotide has ability to halt the activity of this enzyme, but this study also underscores the need for confirming the anti-diabetic action of Flavin mononucleotide via in vitro assay and subsequent in vivo studies.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anupmjot Kaur Jassal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
5
|
Ji X, Zhou J, Zhou Z, Liu Z, Yan L, Li Y, Guo H, Su W, Wang H, Ni D. Recovering skin-nerve interaction by nanoscale metal-organic framework for diabetic ulcers healing. Bioact Mater 2024; 42:112-123. [PMID: 39280583 PMCID: PMC11402068 DOI: 10.1016/j.bioactmat.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Skin-nerve interaction plays an important role in promoting wound healing. However, in diabetic ulcers (DUs), the diabetic periphery neuropathy and excessive levels of reactive oxygen species (ROS) block skin-nerve interaction and further impede the DUs healing. Herein, we developed a nanoscale metal-organic framework loaded with nerve growth factor (NGF/Ce-UiO-66, denoted NGF/CU) for the treatment of DUs. The Ce-UiO-66 (CU) was applied as an antioxidant to scavenge ROS and reduce the inflammatory response while the NGF aided in the recovery of cutaneous nerves to further promote DUs healing. Both in vitro and in vivo experiments revealed the effective ability of NGF/CU for DUs healing. Subsequent RNA sequencing analysis revealed the mechanism that NGF/CU can improve wound healing by inhibiting the NF-κB signaling pathway and recovering the neuroendocrine system of the skin. This strategy of nerve regulation will provide more ideas for the treatment of DUs and other organ injuries.
Collapse
Affiliation(s)
- Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai, 200025, PR China
| | - Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Rd, Shanghai, 200011, PR China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai, 200025, PR China
| | - Zeyang Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai, 200025, PR China
| | - Li Yan
- Department of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai, 200025, PR China
| | - Yuhan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai, 200025, PR China
| | - Haiyan Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai, 200025, PR China
| | - Weijie Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Rd, Shanghai, 200011, PR China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai, 200025, PR China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai, 200025, PR China
| |
Collapse
|
6
|
Piatkowski T, Cox LTJ. 'Insulin is super dangerous if you don't know what you're doing': Situating the risks of insulin within the image and performance enhancing drug community. Drug Alcohol Rev 2024; 43:1976-1984. [PMID: 38665042 DOI: 10.1111/dar.13857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Insulin is an essential treatment within diabetes management; however, it takes on a role of enhancement within image and performance enhancing drug (IPED) communities due to its anabolic effects. This study sought to provide insight into how IPED users perceive and manage the risks linked to insulin. METHODS We conducted semi-structured interviews with 10 individuals from Australia and United Kingdom who used insulin as part of their IPED protocols. The analysis followed an iterative categorisation approach and applied the lens of situated rationality theory. RESULTS The decision to incorporate insulin was influenced by peers' experiences and preferences. Participants highlighted the risks and responsibilities associated with insulin use, emphasising the need for precise lifestyle habits. They recognised the potential dangers and called for comprehensive harm reduction strategies within IPED communities to respond to such concerns. Some participants expressed reluctance to discuss insulin openly, underlining the importance of education and awareness to mitigate health risks associated with underground and uninformed use. DISCUSSION AND CONCLUSIONS While people who use IPEDs demonstrate awareness of the risks associated with insulin, their practices of routinisation moderate these risks within the context of IPED use. Silence as a risk-reduction strategy highlights vulnerabilities among certain prospective users, while the hierarchical structure of IPED use establishes expertise and status within the community. Reconsidering insulin risks entails reframing harm reduction messages to better match the social dynamics of IPED communities. Closer ties between IPED communities can enhance support accessibility, particularly through peers, who, with their firsthand knowledge, can offer tailored guidance.
Collapse
Affiliation(s)
- Timothy Piatkowski
- School of Applied Psychology, Griffith University, Brisbane, Australia
- Griffith Centre for Mental Health, Griffith University, Brisbane, Australia
| | | |
Collapse
|
7
|
Lu J, Qiao Y, Jiang Y, Ali A, Guo L. Fabrication of highly carboxylated nanofibrous aerogels under mild conditions and their protein adsorption performance. Int J Biol Macromol 2024; 281:136636. [PMID: 39419156 DOI: 10.1016/j.ijbiomac.2024.136636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The development of high-performance media for protein adsorption in bio-purification is highly desired, particularly in biological pharmaceuticals. In this study, we demonstrate a simple, versatile and mild strategy to construct a nanofibrous aerogel (NFA)-based adsorption media for protein purification. Pyromellitic dianhydride (PMDA) was selected to in-situ graft onto poly(ethylene-co-vinyl alcohol) (PE-co-PVA) nanofibers in aerogels through liquid phase grafting. The obtained PE-co-PVA/PMDA NFAs (PPNAs) possessed superb underwater elasticity, compression fatigue resistance and shape-memory performance. With an open porous network, abundant adsorption ligands, and surface hydrophilicity, the PPNAs exhibited a significant adsorption capacity of 1019.71 mg/g and a short equilibrium time of 3.0 h, surpassing that of commercial and reported nanofiber-based adsorbents. Additionally, the PPNAs demonstrated good dynamic adsorption performance for protein driven solely by gravity. Furthermore, the PPNAs showed reusability, selectivity, acid and alkaline resistance, and practical potential of extracting lysozyme form egg white solution. The successful scale-up of such aerogel-based adsorbents can open up new way for the development and design of next-generation protein adsorption media for bio-purification applications.
Collapse
Affiliation(s)
- Jianwei Lu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yufei Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangang Jiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Amjad Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Guo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Perkins BA, Turner LV, Riddell MC. Applying technologies to simplify strategies for exercise in type 1 diabetes. Diabetologia 2024; 67:2045-2058. [PMID: 39145882 DOI: 10.1007/s00125-024-06229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024]
Abstract
Challenges and fears related to managing glucose levels around planned and spontaneous exercise affect outcomes and quality of life in people living with type 1 diabetes. Advances in technology, including continuous glucose monitoring, open-loop insulin pump therapy and hybrid closed-loop (HCL) systems for exercise management in type 1 diabetes, address some of these challenges. In this review, three research or clinical experts, each living with type 1 diabetes, leverage published literature and clinical and personal experiences to translate research findings into simplified, patient-centred strategies. With an understanding of limitations in insulin pharmacokinetics, variable intra-individual responses to aerobic and anaerobic exercise, and the features of the technologies, six steps are proposed to guide clinicians in efficiently communicating simplified actions more effectively to individuals with type 1 diabetes. Fundamentally, the six steps centre on two aspects. First, regardless of insulin therapy type, and especially needed for spontaneous exercise, we provide an estimate of glucose disposal into active muscle meant to be consumed as extra carbohydrates for exercise ('ExCarbs'; a common example is 0.5 g/kg body mass per hour for adults and 1.0 g/kg body mass per hour for youth). Second, for planned exercise using open-loop pump therapy or HCL systems, we additionally recommend pre-emptive basal insulin reduction or using HCL exercise modes initiated 90 min (1-2 h) before the start of exercise until the end of exercise. Modifications for aerobic- and anaerobic-type exercise are discussed. The burden of pre-emptive basal insulin reductions and consumption of ExCarbs are the limitations of HCL systems, which may be overcome by future innovations but are unquestionably required for currently available systems.
Collapse
Affiliation(s)
- Bruce A Perkins
- Leadership Sinai Centre for Diabetes, Sinai Health, Toronto, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Lauren V Turner
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
9
|
Rodríguez-Muñoz A, Picón-César MJ, Tinahones FJ, Martínez-Montoro JI. Type 1 diabetes-related distress: Current implications in care. Eur J Intern Med 2024; 125:19-27. [PMID: 38609810 DOI: 10.1016/j.ejim.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Type 1 diabetes (T1D) is a complex chronic disease associated with major health and economic consequences, also involving important issues in the psychosocial sphere. In this regard, T1D-related distress, defined as the emotional burden of living with T1D, has emerged as a specific entity related to the disease. Diabetes distress (DD) is an overlooked but prevalent condition in people living with T1D, and has significant implications in both glycemic control and mental health in this population. Although overlapping symptoms may be found between DD and mental health disorders, specific approaches should be performed for the diagnosis of this problem. In recent years, different DD-targeted interventions have been postulated, including behavioral and psychosocial strategies. Moreover, new technologies in this field may be helpful to address DD in people living with T1D. In this article, we summarize the current knowledge on T1D-related distress, and we also discuss the current approaches and future perspectives in its management.
Collapse
Affiliation(s)
- Alba Rodríguez-Muñoz
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - María José Picón-César
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Faculty of Medicine, University of Málaga, Málaga, Spain
| | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Faculty of Medicine, University of Málaga, Málaga, Spain.
| |
Collapse
|
10
|
Thomson EA, Lee S, Xu H, Moeller H, Sands J, Lal RA, Annes JP, Poon ASY. Enhancing Therapeutic Insulin Transport from Macroencapsulated Islets Using Sub-Minute Pressure at Physiological Levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.11.570688. [PMID: 38168181 PMCID: PMC10760036 DOI: 10.1101/2023.12.11.570688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cadaveric islet and stem cell-derived transplantations hold promise as treatments for type 1 diabetes. To tackle the issue of immunocompatibility, numerous cellular macroencapsulation techniques have been developed that utilize diffusion to transport insulin across an immunoisolating barrier. However, despite several devices progressing to human clinical trials, none have successfully managed to attain physiologic glucose control or insulin independence. Based on empirical evidence, macroencapsulation methods with multilayered, high islet surface density are incompatible with homeostatic, on-demand insulin delivery and physiologic glucose regulation, when reliant solely on diffusion. An additional driving force is essential to overcome the distance limit of diffusion. In this study, we present both theoretical proof and experimental validation that applying pressure at levels comparable to physiological diastolic blood pressure significantly enhances insulin flux across immunoisolation membranes-increasing it by nearly three orders of magnitude. This significant enhancement in transport rate allows for precise, sub-minute regulation of both bolus and basal insulin delivery. By incorporating this technique with a pump-based extravascular system, we demonstrate the ability to rapidly reduce glucose levels in diabetic rodent models, effectively replicating the timescale and therapeutic effect of subcutaneous insulin injection or infusion. This advance provides a potential path towards achieving insulin independence with islet macroencapsulation. One Sentence Summary Towards improved glucose control, applying sub-minute pressure at physiological levels enhances therapeutic insulin transport from macroencapsulated islets.
Collapse
|
11
|
Li G, Xue P, Fan H, Ma Y, Wang H, Lu D, Gao J, Wen D. AuNi bimetallic aerogel with ultra-high stability applied in smart and portable biosensing. Anal Chim Acta 2024; 1306:342613. [PMID: 38692794 DOI: 10.1016/j.aca.2024.342613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Glucose detection is of significant importance in providing information to the human health management. However, conventional enzymatic glucose sensors suffer from a limited long-term stability due to the losing activity of the enzymes. In this work, the AuNi bimetallic aerogel with a well-defined nanowire network is synthesized and applied as the sensing nanomaterial in the non-enzymatic glucose detection. The three-dimensional (3D) hierarchical porous structure of the AuNi bimetallic aerogel ensures the high sensitivity of the sensor (40.34 μA mM-1 cm-2). Theoretical investigation unveiled the mechanism of the boosting electrocatalytic activity of the AuNi bimetallic aerogel toward glucose. A better adhesion between the sensing nanomaterial and the screen-printing electrodes (SPEs) is obtained after the introduction of Ni. On the basis of a wide linearity in the range of 0.1-5 mM, an excellent selectivity, an outstanding long-term stability (90 days) as well as the help of the signal processing circuit and an M5stack development board, the as-prepared glucose sensor successfully realizes remote monitoring of the glucose concentration. We speculate that this work is favorable to motivating the technological innovations of the non-enzymatic glucose sensors and intelligent sensing devices.
Collapse
Affiliation(s)
- Guanglei Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China
| | - Pengxin Xue
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Haoxin Fan
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China
| | - Yuan Ma
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Haoyu Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Danfeng Lu
- Faculty of Printing, Packaging Engineering, and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jie Gao
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China; Research Institute of Industrial Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Dan Wen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China.
| |
Collapse
|
12
|
Cuerda Del Pino A, Martín-San Agustín R, José Laguna Sanz A, Díez JL, Palanca A, Rossetti P, Gumbau-Gimenez M, Ampudia-Blasco FJ, Bondia J. Accuracy of Two Continuous Glucose Monitoring Devices During Aerobic and High-Intensity Interval Training in Individuals with Type 1 Diabetes. Diabetes Technol Ther 2024; 26:411-419. [PMID: 38215205 DOI: 10.1089/dia.2023.0535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Background: This study aimed to evaluate the accuracy of Dexcom G6 (DG6) and FreeStyle Libre-2 (FSL2) during aerobic training and high-intensity interval training (HIIT) in individuals with type 1 diabetes. Methods: Twenty-six males (mean age 29.3 ± 6.3 years and mean duration of diabetes 14.9 ± 6.1 years) participated in this study. Interstitial glucose levels were measured using DG6 and FSL2, while plasma glucose levels were measured every 10 min using YSI 2500 as the reference for glucose measurements in this study. The measurements began 20 min before the start of exercise and continued for 20 min after exercise. Seven measurements were taken for each subject and exercise. Results: Both DG6 and FSL2 devices showed significant differences compared to YSI glucose data for both aerobic and HIIT exercises. Continuous glucose monitoring (CGM) devices exhibited superior performance during HIIT than aerobic training, with DG6 showing a mean absolute relative difference of 14.03% versus 31.98%, respectively. In the comparison between the two devices, FSL2 demonstrated significantly higher effectiveness in aerobic training, yet its performance was inferior to DG6 during HIIT. According to the 40/40 criteria, both sensors performed similarly, with marks over 93% for all ranges and both exercises, and above 99% for HIIT and in the >180 mg/dL range, which is in accordance with FDA guidelines. Conclusions: The findings suggest that the accuracy of DG6 and FSL2 deteriorates during and immediately after exercise but remains acceptable for both devices during HIIT. However, accuracy is compromised with DG6 during aerobic exercise. This study is the first to compare the accuracy of two CGMs, DG6, and FSL2, during two exercise modalities, using plasma glucose YSI measurements as the gold standard for comparisons. It was registered at clinicaltrials.gov (NCT06080542).
Collapse
Affiliation(s)
- Alba Cuerda Del Pino
- Clinimetry and Technological Development in Therapeutic Exercise Research Group (CLIDET), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Rodrigo Martín-San Agustín
- Clinimetry and Technological Development in Therapeutic Exercise Research Group (CLIDET), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Alejandro José Laguna Sanz
- Clinimetry and Technological Development in Therapeutic Exercise Research Group (CLIDET), Department of Physiotherapy, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
| | - José-Luis Díez
- Clinimetry and Technological Development in Therapeutic Exercise Research Group (CLIDET), Department of Physiotherapy, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
| | - Ana Palanca
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Cardiometabolic Risk and Diabetes Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Paolo Rossetti
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, University and Polytechnic La Fe Hospital of Valencia, Valencia, Spain
| | - Maria Gumbau-Gimenez
- Clinimetry and Technological Development in Therapeutic Exercise Research Group (CLIDET), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - F Javier Ampudia-Blasco
- Clinimetry and Technological Development in Therapeutic Exercise Research Group (CLIDET), Department of Physiotherapy, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Cardiometabolic Risk and Diabetes Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Endocrinology and Nutrition, Clinic University Hospital of Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Jorge Bondia
- Clinimetry and Technological Development in Therapeutic Exercise Research Group (CLIDET), Department of Physiotherapy, University of Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
| |
Collapse
|
13
|
Luo X, Xie J, Yang L, Cui Y. An intelligent wearable artificial pancreas patch based on a microtube glucose sensor and an ultrasonic insulin pump. Talanta 2024; 273:125879. [PMID: 38490022 DOI: 10.1016/j.talanta.2024.125879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
In order to improve the living standards of diabetes patients and reduce the negative health effects of this disease, the medical community has been actively searching for more effective treatments. In recent years, an artificial pancreas has emerged as an important approach to managing diabetes. Despite these recent advances, meeting the requirements for miniaturized size, accurate sensing and large-volume pumping capability remains a great challenge. Here, we present a novel miniaturized artificial pancreas based on a long microtube sensor integrated with an ultrasonic pump. Our device meets the requirements of achieving both accurate sensing and high pumping capacity. The artificial pancreas is constructed based on a long microtube that is low cost, painless and simple to operate, where the exterior of the microtube is fabricated as a glucose sensor for detecting diabetes and the interior of the microtube is used as a channel for delivering insulin through an ultrasonic pump. This work successfully achieved closed-loop control of blood glucose and treatment of diabetes in rats. It is expected that this work can open up new methodologies for the development of microsystems, and advance the management approach for diabetes patients.
Collapse
Affiliation(s)
- Xiaojin Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Jiaye Xie
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, PR China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
14
|
Zhang Y, Huang A, Li J, Munthali W, Cao S, Putri UMP, Yang L. The Effect of Microbiome-Modulating Agents (MMAs) on Type 1 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:1675. [PMID: 38892608 PMCID: PMC11174426 DOI: 10.3390/nu16111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Gut microbiome-modulating agents (MMAs), including probiotics, prebiotics, postbiotics, and synbiotics, are shown to ameliorate type 1 diabetes (T1D) by restoring the microbiome from dysbiosis. The objective of this systematic review and meta-analysis was to assess the impact of MMAs on hemoglobin A1c (HbA1c) and biomarkers associated with (T1D). A comprehensive search was conducted in PubMed, Web of Science, Embase, Cochrane Library, National Knowledge Infrastructure, WeiPu, and WanFang Data up to 30 November 2023. Ten randomized controlled trials (n = 630) were included, with study quality evaluated using the Cochrane risk-of-bias tool. Random-effect models with standardized mean differences (SMDs) were utilized. MMA supplementation was associated with improvements in HbA1c (SMD = -0.52, 95% CI [-0.83, -0.20]), daily insulin usage (SMD = -0.41, 95% confidence interval (CI) [-0.76, -0.07]), and fasting C-peptide (SMD = 0.99, 95% CI [0.17, 1.81]) but had no effects on FBG, CRP, TNF-α, IL-10, LDL, HDL, and the Shannon index. Subgroup analysis of HbA1c indicated that a long-term intervention (>3 months) might exert a more substantial effect. These findings suggest an association between MMAs and glycemic control in T1D. Further large-scale clinical trials are necessary to confirm these findings with investigations on inflammation and gut microbiota composition while adjusting confounding factors such as diet, physical activity, and the dose and form of MMA intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | - Aiying Huang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jun Li
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - William Munthali
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | - Saiying Cao
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | | | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| |
Collapse
|
15
|
Hashemi SMJ, Enderami SE, Barzegar A, Mansour RN. Differentiation of Wharton's Jelly-derived mesenchymal stem cells into insulin-producing beta cells with the enhanced functional level on electrospun PRP-PVP-PCL/PCL fiber scaffold. Tissue Cell 2024; 87:102318. [PMID: 38377632 DOI: 10.1016/j.tice.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Diabetes is a global problem that threatens human health. Cell therapy methods using stem cells, and tissue engineering of pancreatic islets as new therapeutic approaches have increased the chances of successful diabetes treatment. In this study, to differentiate Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) into insulin-producing cells (IPCs) with improved maturity, and function, platelet-rich plasma (PRP)-Polyvinylpyrrolidone (PVP)-Polycaprolactone (PCL)/PCL scaffold was designed. The two-dimensional (2D) control group included cell culture without differentiation medium, and the experimental groups included 2D, and three-dimensional (3D) groups with pancreatic beta cell differentiation medium. WJ-MSCs-derived IPCs on PRP-PVP-PCL/PCL scaffold took round cluster morphology, the typical pancreatic islets morphology. Real-time PCR, immunocytochemistry, and flowcytometry data showed a significant increase in pancreatic marker genes in WJ-MSCs-derived IPCs on the PRP-PVP-PCL/PCL scaffold compared to the 2D-experimental group. Also, using the ELISA assay, a significant increase in the secretion of insulin, and C-peptide was measured in the WJ-MSCs-derived IPCs of the 3D-experimental group compared to the 2D experimental group, the highest amount of insulin (38 µlU/ml), and C-peptide (43 pmol/l) secretion was in the 3D experimental group, and in response to 25 mM glucose solution, which indicated a significant improvement in the functional level of the WJ-MSCs-derived IPCs in the 3D group. The results showed that the PRP-PVP-PCL/PCL scaffold can provide an appropriate microenvironment for the engineering of pancreatic islets, and the generation of IPCs.
Collapse
Affiliation(s)
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ali Barzegar
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Reyhaneh Nassiri Mansour
- Immunogenetics Research Center, Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
Tong X, Jiang L, Ao Q, Lv X, Song Y, Tang J. Highly stable glucose oxidase polynanogel@MXene/chitosan electrochemical biosensor based on a multi-stable interface structure for glucose detection. Biosens Bioelectron 2024; 248:115942. [PMID: 38154330 DOI: 10.1016/j.bios.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
It is a challenging and meaningful task to design an enzyme electrochemical biosensor that can maintain high sensitivity while improving stability. In this study, we constructed an enzyme electrochemical biosensor by preparing nanocomposites with multi-stable interface structures. Specifically, the nanocomposite (PGOx@MXene/CS) was prepared by efficient electrostatic assembly of GOx polynanogel (PGOx) onto MXene nanosheets. PGOx could enhance enzyme stability, while the extensive the large specific surface area of MXene could realize the efficient loading of nanocapsules (PGOx) and catalyze the decomposition of toxic intermediate H2O2, thereby reducing its influence on the stability of enzyme. The linear range of the constructed glucose sensor was 0.03-16.5 mM, the sensitivity was 48.98 μA mM-1·cm-2, and the detection limit was 3.1 μM. After 200 cycles, the current still remained at 85.83% of the initial current value. The high sensitivity, excellent selectivity and great reproducibility verified the effectiveness of the system we constructed. The multi-stable enzyme electrochemical biosensor had a wide application prospect in stable and continuous blood glucose detection.
Collapse
Affiliation(s)
- Xinglai Tong
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qi Ao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying Song
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
17
|
Wu V, Choleva L, Wilkes M. Optimizing Glycemic Outcomes for Children with Type 1 Diabetes. Endocrinol Metab Clin North Am 2024; 53:27-38. [PMID: 38272596 DOI: 10.1016/j.ecl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Changes in physical growth, neurocognitive development, and pubertal maturation are some of the challenges to achieving blood glucose targets in children with type 1 diabetes mellitus. To optimize glycemic outcomes, a comprehensive approach is crucial to address psychosocial needs, expand the use of diabetes technology, and diminish health inequities.
Collapse
Affiliation(s)
- Vickie Wu
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Box #1616, Annenberg Building, 4th Floor, New York, NY 10029, USA
| | - Lauryn Choleva
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Box #1616, Annenberg Building, 4th Floor, New York, NY 10029, USA
| | - Meredith Wilkes
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, The Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Box #1616, Annenberg Building, 4th Floor, New York, NY 10029, USA.
| |
Collapse
|
18
|
Durán-Martínez M, Azriel S, Doulatram-Gamgaram VK, Moreno-Pérez Ó, Pinés-Corrales PJ, Tejera-Pérez C, Merino-Torres JF, Brito-Sanfiel M, Chico A, Marco A, García-Fernández E, Martínez-Montoro JI. Real-world safety and effectiveness of dapagliflozin in people living with type 1 diabetes in Spain: The Dapa-ON multicenter retrospective study. DIABETES & METABOLISM 2024; 50:101501. [PMID: 38061425 DOI: 10.1016/j.diabet.2023.101501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVE To assess real-world safety and effectiveness of dapagliflozin in people living with type 1 diabetes mellitus (T1DM). METHODS We conducted a multicenter retrospective study in Spain including data from 250 people living with T1DM receiving dapagliflozin as add-on therapy to insulin (80.8 % on-label use). The number of diabetic ketoacidosis (DKA) events was calculated over a 12-month follow-up (primary outcome). Changes in body weight, HbA1c, total daily insulin dose, and continuous glucose monitoring (CGM) metrics from baseline (at dapagliflozin prescription) to 12 months were also evaluated. RESULTS A total of five DKA events (2.4 % [95 % CI 0.3;4.5] were reported in patients with a 12-month follow-up, n = 207): two events related to insulin pump malfunction, two events related to concomitant illnesses, and one event related to insulin dose omission. DKA events were more frequent among insulin pump users than among participants on multiple daily injections (7.7 % versus 1.2 %). Four of the reported DKA events occurred within the first six months after initiation of dapagliflozin. No deaths or persistent sequelae due to DKA were reported. No severe hypoglycemia episodes were reported. Significant reductions in mean body weight (-3.3 kg), HbA1c (-0.6 %), and total daily insulin dose (-8.6 %), P < 0.001, were observed 12 months after dapagliflozin prescription. Significant improvements in TIR (+9.3 %), TAR (-7.2 %), TBR (-2.5 %), and coefficient of variation (-5.1 %), P < 0.001, were also observed in the subgroup of patients with available CGM data. Finally, an improvement in urinary albumin-to-creatinine ratio (UACR) was found among participants with UACR ≥ 30 mg/g at baseline (median decrease of 99 mg/g in UACR, P = 0.001). CONCLUSION The use of dapagliflozin in people living with T1DM has an appropriate safety profile after careful selection of participants and implementation of strategies to reduce the risk of DKA (i.e., prescribed according to the recommendations of the European Medicines Agency), and also leads to clinical improvements in this population.
Collapse
Affiliation(s)
- María Durán-Martínez
- Department of Endocrinology and Nutrition, Getafe University Hospital, Madrid, Spain; Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - Sharona Azriel
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain; Department of Endocrinology and Nutrition, Infanta Sofia University Hospital, Madrid, Spain
| | - Viyey Kishore Doulatram-Gamgaram
- Department of Endocrinology and Nutrition, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Óscar Moreno-Pérez
- Endocrinology and Nutrition Department, Dr. Balmis General University Hospital - Alicante Institute of Sanitary and Biomedical Research (ISABIAL), Alicante, Spain; Clinical Medicine Department, Miguel Hernández University, Elche, Alicante, Spain
| | - Pedro J Pinés-Corrales
- Department of Endocrinology and Nutrition, Albacete University Hospital, Albacete, Spain
| | - Cristina Tejera-Pérez
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), A Coruña, Spain; Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Juan Francisco Merino-Torres
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, Valencia, Spain; Joint Research Unit On Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, Valencia, Spain; Medicine Department, Universitat de València, Valencia, Spain
| | - Miguel Brito-Sanfiel
- Department of Endocrinology and Nutrition, Puerta de Hierro University Hospital, Madrid, Spain
| | - Ana Chico
- Department of Endocrinology and Nutrition, Hospital Santa Creu i Sant Pau, Barcelona, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amparo Marco
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain; Department of Endocrinology and Nutrition, Toledo University Hospital, Toledo, Spain
| | - Elena García-Fernández
- Department of Endocrinology and Nutrition, 12 de Octubre University Hospital, Madrid, Spain
| | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain; Faculty of Medicine, University of Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Fratus M, Alam MA. Performance gain and electro-mechanical design optimization of microneedles for wearable sensor systems. Biomed Microdevices 2023; 26:4. [PMID: 38095755 DOI: 10.1007/s10544-023-00683-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
Minimally invasive microneedle (MN) is an emerging technology platform for wearable and implantable diagnostics and therapeutics systems. These short MNs offer pain-free insertion and simple operation. Among the MN technologies proposed to enhance interstitial fluid (ISF) extraction, porous and swellable (P-S) hydrogels absorb analyte molecules across the entire lateral surface. Currently, the design, development, and optimization of the MNs rely on empirical, iterative approaches. Based on theory of fluid flow and analyte diffusion through geometrically complex biomimetic systems, here we derive a generalized physics-guided model for P-S MN sensors. The framework (a) quantifies MN extracting efficiency [Formula: see text] in terms of its geometric and physical properties, and (b) suggests strategies to optimize sensor response while satisfying the mechanical constraints related to various skin-types (e.g., mouse, pig, humans, etc.). Our results show that, despite the differences in geometry and composition, P-S MNs obey a universal scaling response, [Formula: see text] with [Formula: see text] being MN length, diffusivity, and radius, respectively, and [Formula: see text], [Formula: see text] and [Formula: see text] are the ratio between approximate vs. exact analytical solutions, the effective biofluid transfer coefficient between dermis and skin, and the exponent for the power-law approximation, respectively. These parameters quantify the biomolecule transfer through the dermis-to-MN interface at different scaling limits. P-S MNs outperform hollow MNs by a 2-6x enhancement factor; however, the buckling-limit of insertion defines the maximized functionality of the sensor. Our model, validated against experimental results and numerical simulations, offers a predictive design framework to significantly reduce the optimization time for P-S MN-based sensor platforms.
Collapse
Affiliation(s)
- Marco Fratus
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47906, Indiana, USA.
| | - Muhammad Ashraful Alam
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47906, Indiana, USA
| |
Collapse
|
20
|
Pyatak EA, Ali A, Khurana AR, Lee PJ, Sideris J, Fox S, Diaz J, Granados G, Blanchard J, McGuire R, Salazar Plascencia E, Salcedo-Rodriguez E, Flores-Garcia J, Linderman M, Taylor EE, Tapia V, Nnoli N, Sequeira PA, Freeby MJ, Raymond JK. Research design and baseline participant characteristics of the Resilient, Empowered, Active Living with Diabetes - Telehealth (REAL-T) Study: A randomized controlled trial for young adults with type 1 diabetes. Contemp Clin Trials 2023; 135:107386. [PMID: 37931702 PMCID: PMC10846480 DOI: 10.1016/j.cct.2023.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic condition affecting nearly 1.9 million people in the United States. Young adults (YAs) with T1D face unique challenges in managing their condition, experiencing poorer health and well-being than other age groups. The current study is evaluating the Resilient, Empowered, Active Living (REAL) intervention, previously shown to improve glucose levels and quality of life among YAs with diabetes, using telehealth delivery (REAL-T) to expand reach and accessibility. This paper reports on the methodology and baseline participant characteristics of the REAL-T study. METHODS REAL-T is a two-arm randomized controlled trial that recruited 18-30 year olds with T1D via clinics and social media advertising. Data collection, which was adapted to be fully remote due to COVID-19, occurs every three months for one year. Participants receive either usual care or a 6-month telehealth occupational therapy intervention. The primary outcome is glycated hemoglobin (A1c); secondary outcomes include diabetes distress, quality of life, and continuous glucose monitor-derived measures. RESULTS The study enrolled a diverse sample of 209 YAs with T1D. Analysis of baseline data indicates equivalence between the intervention and control groups. Study participants have notably higher diabetes distress and poorer mental well-being than similar populations. CONCLUSION The REAL-T study successfully adapted to remote implementation during the COVID-19 pandemic. By examining long-term outcomes, mediating pathways, and cost-effectiveness, the study will contribute knowledge of the impact of tailored interventions for YAs with T1D, designed to reduce disparities and improve health and well-being in this population.
Collapse
Affiliation(s)
- Elizabeth A Pyatak
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America.
| | - Aina Ali
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Anya R Khurana
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Pey-Jiuan Lee
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - John Sideris
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Steven Fox
- Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, United States of America
| | - Jesus Diaz
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Gabrielle Granados
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Jeanine Blanchard
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Riley McGuire
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Elia Salazar Plascencia
- Alpha Clinic, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | | | | | - Megan Linderman
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Elinor E Taylor
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Valerie Tapia
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Ngozi Nnoli
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States of America
| | - Paola A Sequeira
- Department of Endocrinology, Los Angeles General Medical Center, Los Angeles, CA, United States of America
| | - Matthew J Freeby
- David Geffen UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Jennifer K Raymond
- Alpha Clinic, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
21
|
Jacobsen LM, Sherr JL, Considine E, Chen A, Peeling SM, Hulsmans M, Charleer S, Urazbayeva M, Tosur M, Alamarie S, Redondo MJ, Hood KK, Gottlieb PA, Gillard P, Wong JJ, Hirsch IB, Pratley RE, Laffel LM, Mathieu C. Utility and precision evidence of technology in the treatment of type 1 diabetes: a systematic review. COMMUNICATIONS MEDICINE 2023; 3:132. [PMID: 37794113 PMCID: PMC10550996 DOI: 10.1038/s43856-023-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The greatest change in the treatment of people living with type 1 diabetes in the last decade has been the explosion of technology assisting in all aspects of diabetes therapy, from glucose monitoring to insulin delivery and decision making. As such, the aim of our systematic review was to assess the utility of these technologies as well as identify any precision medicine-directed findings to personalize care. METHODS Screening of 835 peer-reviewed articles was followed by systematic review of 70 of them (focusing on randomized trials and extension studies with ≥50 participants from the past 10 years). RESULTS We find that novel technologies, ranging from continuous glucose monitoring systems, insulin pumps and decision support tools to the most advanced hybrid closed loop systems, improve important measures like HbA1c, time in range, and glycemic variability, while reducing hypoglycemia risk. Several studies included person-reported outcomes, allowing assessment of the burden or benefit of the technology in the lives of those with type 1 diabetes, demonstrating positive results or, at a minimum, no increase in self-care burden compared with standard care. Important limitations of the trials to date are their small size, the scarcity of pre-planned or powered analyses in sub-populations such as children, racial/ethnic minorities, people with advanced complications, and variations in baseline glycemic levels. In addition, confounders including education with device initiation, concomitant behavioral modifications, and frequent contact with the healthcare team are rarely described in enough detail to assess their impact. CONCLUSIONS Our review highlights the potential of technology in the treatment of people living with type 1 diabetes and provides suggestions for optimization of outcomes and areas of further study for precision medicine-directed technology use in type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mustafa Tosur
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- Children's Nutrition Research Center, USDA/ARS, Houston, TX, USA
| | - Selma Alamarie
- Stanford University School of Medicine, Stanford, CA, USA
| | - Maria J Redondo
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Korey K Hood
- Stanford University School of Medicine, Stanford, CA, USA
| | - Peter A Gottlieb
- Barbara Davis Center, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jessie J Wong
- Children's Nutrition Research Center, USDA/ARS, Houston, TX, USA
| | - Irl B Hirsch
- University of Washington School of Medicine, Seattle, WA, USA
| | | | - Lori M Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
22
|
Lubos M, Pícha J, Selicharová I, Žák J, Buděšínský M, Mitrová K, Žáková L, Jiráček J. Modulation of the antagonistic properties of an insulin mimetic peptide by disulfide bridge modifications. J Pept Sci 2023; 29:e3478. [PMID: 36633503 PMCID: PMC10909431 DOI: 10.1002/psc.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.
Collapse
Affiliation(s)
- Marta Lubos
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jíří Žák
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPrahaCzech Republic
| |
Collapse
|
23
|
Mubeen F, Wang CL, Al Maradni A, Shivaswamy V, Sadhu AR. Digital Health and Shared Decision-Making in Diabetes Care - A Survey Initiative in Patients and Clinicians. Endocr Pract 2023:S1530-891X(23)00401-9. [PMID: 37178788 DOI: 10.1016/j.eprac.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE To assess the landscape of digital health resources in the United States, better understand the impact of the digital health on shared decision-making and identify potential barriers and opportunities for progress in the care of persons with diabetes. METHODS The study consisted of two phases: (1) A qualitative phase in which one-on-one interviews were conducted virtually with 34 physicians (Endocrinologists, Endos: n=15; primary care physicians, PCPs: n=19) between February 11-18, 2021, and (2) A quantitative phase in which two online, email-based surveys in the English language were conducted between April 16 and May 17, 2021: one with healthcare professionals (HCP) (n=403: n=200 Endos and n=203 PCPs), and one with persons with diabetes (n=517: patients with type 1 diabetes, n=257; patients with type 2 diabetes, n=260). RESULTS Diabetes digital health tools were found to be helpful in shared decision-making, but leading barriers include cost, coverage, and lack of time by healthcare professionals. Among diabetes digital health tools, continuous glucose monitoring (CGM) systems were used most commonly and viewed as most effective in improving quality of life and facilitating shared decision-making. Strategies for increasing use of diabetes digital health resources included lower cost, integration into electronic health records, and increased simplicity of tools. CONCLUSION This study revealed that both Endos and PCPs feel that diabetes digital health tools have an overall positive impact. Integration with telemedicine and simpler, lower cost tools with increased patient access can further facilitate shared decision-making and improved diabetes care and quality of life.
Collapse
Affiliation(s)
- Faiza Mubeen
- Department of Endocrinology, Diabetes and Metabolism, Weill Cornell Medical College at Houston Methodist Hospital, Houston, Texas, USA
| | - Cecilia Low Wang
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, USA
| | - Ahmad Al Maradni
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, Banner University Medical Center, and Carl T. Hyden VA Medical Center, Phoenix, Arizona, USA
| | - Vijay Shivaswamy
- Department of Internal Medicine, Division of Diabetes, Endocrinology, Metabolism, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Archana R Sadhu
- Houston Methodist Academic Medicine Associates, Endocrinology, Houston, Texas, USA
| |
Collapse
|
24
|
Behzadifar S, Barras A, Plaisance V, Pawlowski V, Szunerits S, Abderrahmani A, Boukherroub R. Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics 2023; 15:pharmaceutics15041215. [PMID: 37111699 PMCID: PMC10143373 DOI: 10.3390/pharmaceutics15041215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes poses major economic, social, and public health challenges in all countries worldwide. Besides cardiovascular disease and microangiopathy, diabetes is a leading cause of foot ulcers and lower limb amputations. With the continued rise of diabetes prevalence, it is expected that the future burden of diabetes complications, early mortality, and disabilities will increase. The diabetes epidemic is partly caused by the current lack of clinical imaging diagnostic tools, the timely monitoring of insulin secretion and insulin-expressing cell mass (beta (β)-cells), and the lack of patients' adherence to treatment, because some drugs are not tolerated or invasively administrated. In addition to this, there is a lack of efficient topical treatment capable of stopping the progression of disabilities, in particular for treating foot ulcers. In this context, polymer-based nanostructures garnered significant interest due to their tunable physicochemical characteristics, rich diversity, and biocompatibility. This review article emphasizes the last advances and discusses the prospects in the use of polymeric materials as nanocarriers for β-cell imaging and non-invasive drug delivery of insulin and antidiabetic drugs in the management of blood glucose and foot ulcers.
Collapse
Affiliation(s)
- Shakila Behzadifar
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
25
|
Li G, Wang C, Chen Y, Liu F, Fan H, Yao B, Hao J, Yu Y, Wen D. Dual Structural Design of Platinum-Nickel Hydrogels for Wearable Glucose Biosensing with Ultrahigh Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206868. [PMID: 36710247 DOI: 10.1002/smll.202206868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Wearable glucose sensors are of great significance and highly required in mobile health monitoring and management but suffering from limited long-term stability and wearable adaptability. Here a simultaneous component and structure engineering strategy is presented, which involves Pt with abundant Ni to achieve three-dimensional, dual-structural Pt-Ni hydrogels with interconnected networks of PtNi nanowires and Ni(OH)2 nanosheets, showing prominent electrocatalytic activity and stability in glucose oxidation under neutral condition. Specifically, the PtNi(1:3) dual hydrogels shows 2.0 and 270.6 times' activity in the glucose electro-oxidation as much as the pure Pt and Ni hydrogels. Thanks to the high activity, structural stability, good flexibility, and self-healing property, the PtNi(1:3) dual gel-based non-enzymatic glucose sensing chip is endowed with high performance. It features a high sensitivity, an excellent selectivity and flexibility, and particularly an outstanding long-term stability over 2 months. Together with a pH sensor and a wireless circuit, an accurate, real-time, and remote monitoring of sweat glucose is achieved. This facile design of novel dual-structural metallic hydrogels sheds light to rationally develop new functional materials for high-performance wearable biosensors.
Collapse
Affiliation(s)
- Guanglei Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Chenxin Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Yao Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Fei Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Haoxin Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Bin Yao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| | - Jia Hao
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, School of Mechanical Engineering, NPU, Xi'an, 710072, P. R. China
| | - Yiting Yu
- Key Laboratory of Micro/Nano Systems for Aerospace (Ministry of Education), Shaanxi Province Key Laboratory of Micro and Nano Electro-Mechanical Systems, School of Mechanical Engineering, NPU, Xi'an, 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, P. R. China
| |
Collapse
|
26
|
Human umbilical cord mesenchymal stem cell-derived TGFBI attenuates streptozotocin-induced type 1 diabetes mellitus by inhibiting T-cell proliferation. Hum Cell 2023; 36:997-1010. [PMID: 36841925 PMCID: PMC10110644 DOI: 10.1007/s13577-023-00868-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
MSCs have been demonstrated to have a great benefit for type 1 diabetes mellitus (T1DM) due to their strong immunosuppressive and regenerative capacity. However, the comprehensive mechanism is still unclear. Our previous study indicated that transforming growth factor beta induced (TGFBI) is highly expressed in human umbilical cord-derived mesenchymal stem or stromal cells (hUC-MSCs), which are also implicated in T1DM. In this study, we found that infusion of TGFBI knockdown hUC-MSCs displayed impaired therapeutic effects in T1DM mice and decreased immunosuppressive capability. TGFBI knockdown hUC-MSCs could increase the proportion of T-cell infiltration while increasing the expression of IFN-gamma and interleukin-17A in the spleen. In addition, we also revealed that hUC-MSC-derived TGFBI could repress activated T-cell proliferation by interfering with G1/S checkpoint CyclinD2 expression. Our results demonstrate that TGFBI plays a critical role in MSC immunologic regulation. TGFBI could be a new immunoregulatory molecule controlling MSC function for new treatments of T1DM. Schematic Representation of the Immunosuppression capacity of hUC-MSC by TGFBI.
Collapse
|
27
|
Contreras CM, Gutiérrez-García AG. Insulin and fluoxetine produce opposite actions on lateral septal nucleus-infralimbic region connection responsivity. Behav Brain Res 2023; 437:114146. [PMID: 36202146 DOI: 10.1016/j.bbr.2022.114146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
Some diabetes patients develop depression, the main treatment for which is antidepressants. Pharmacological interactions between insulin and antidepressants (e.g., fluoxetine) are controversial in the literature. Some authors reported hypoglycemic actions of fluoxetine, whereas others reported antidepressant-like actions. In healthy rats, insulin produces an antidespair-like action in rats through an increase in locomotor and exploratory activity, but differences in actions of insulin and fluoxetine on neuronal activity are unknown. The present study evaluated Wistar healthy rats that were treated with saline, insulin, fluoxetine, or fluoxetine + insulin for 3 days (short-term) or 21 days (long-term). The model consisted of electrical stimulation of the lateral septal nucleus (LSN) while we performed single-unit extracellular response recordings in the prelimbic cortex (PL) and infralimbic cortex (IL) subregions of the medial prefrontal cortex (mPFC). Stimulation of the LSN produced an initial brief excitatory paucisynaptic response and then a long-lasting inhibitory afterdischarge in the PL and IL. Treatment with saline and fluoxetine, but not insulin, minimally affected the paucisynaptic response. Differences were found in LSN-IL responsivity. The inhibitory afterdischarge was clearly enhanced in the long-term fluoxetine group but not by insulin alone or fluoxetine + insulin. These findings suggest that insulin produces some actions that are opposite to fluoxetine on LSN-mPFC connection responsivity, with no synergistic actions between the actions of insulin and fluoxetine.
Collapse
Affiliation(s)
- Carlos M Contreras
- Unidad Periférica del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Xalapa, Veracruz 91190, Mexico.
| | - Ana G Gutiérrez-García
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz 91190, Mexico
| |
Collapse
|
28
|
High-performance enzyme-free glucose and hydrogen peroxide sensors based on bimetallic AuCu nanoparticles coupled with multi-walled carbon nanotubes. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Velloso LA. The first immunotherapy for type 1 diabetes. Am J Physiol Endocrinol Metab 2023; 324:E185-E186. [PMID: 36542846 DOI: 10.1152/ajpendo.00316.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Licio A Velloso
- Obesity and Comorbidities Research Center, University of Campinas, São Paulo, Brazil
- American Journal of Physiology-Endocrinology and Metabolism
| |
Collapse
|
30
|
Rogol AD, Laffel LM, Bode B, Sperling MA. Celebration of a century of insulin therapy in children with type 1 diabetes. Arch Dis Child 2023; 108:3-10. [PMID: 35725290 PMCID: PMC9763182 DOI: 10.1136/archdischild-2022-323975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023]
Abstract
Insulin is the key anabolic hormone of metabolism, with clear effects on glycaemia. Near-complete insulin deficiency occurs in type 1 diabetes (T1D), the predominant form affecting children, and uniformly fatal until the discovery of insulin. By the early 20th century, it was known that T1D was caused by the lack of a factor from pancreatic islets, but isolation of this substance proved elusive. In 1921, an unusual team in Toronto comprising a surgeon, a medical student, a physiologist and a biochemist successfully isolated a glucose-lowering pancreatic endocrine secretion. They treated an emaciated 14-year-old boy in 1922, restoring his health and allowing him to live for another 13 years. Thus began an era of remarkable progress and partnership between academia and the pharmaceutical industry to produce drugs that benefit sick people. The Toronto team received the 1923 Nobel Prize, and more Nobel Prizes for work with insulin followed: for elucidation of its amino acid sequence and crystalline structure, and for its role in the development of radioimmunoassays to measure circulating hormone concentrations. Human insulin was the first hormone synthesised by recombinant methods, permitting modifications to enable improved absorption rates and alterations in duration of action. Coupled with delivery via insulin pens, programmable pumps and continuous glucose monitors, metabolic control and quality of life vastly improved and T1D in children was converted from uniformly fatal to a manageable chronic condition. We describe this remarkable ongoing story as insulin remains a paradigm for human ingenuity to heal nature's maladies.
Collapse
Affiliation(s)
- Alan D Rogol
- Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Lori M Laffel
- Pediatric, Adolescent and Young Adult Section, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Bruce Bode
- Atlanta Diabetes Associates, Atlanta, Georgia, USA
| | - Mark A Sperling
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
Porcine Relaxin but Not Serelaxin Shows Residual Bioactivity after In Vitro Simulated Intestinal Digestion-Clues for the Development of New Relaxin Peptide Agonists Suitable for Oral Delivery. Int J Mol Sci 2022; 24:ijms24010048. [PMID: 36613489 PMCID: PMC9820531 DOI: 10.3390/ijms24010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Despite human recombinant H2 relaxin or serelaxin holding promise as a cardiovascular drug, its actual efficacy in chronic treatment of heart failure patients was hampered by the need to be administered by multiple daily IV injections for a long time, with obvious drawbacks in terms of patients' compliance. This in vitro study aimed at exploring the molecular background for a possible administration of the peptide hormone relaxin by the oral route. Serelaxin and purified porcine relaxin (pRLX) were subjected to simulated intestinal fluid (SIF) enzymatic digestion in vitro to mimic the behavior of gastroprotective formulations. The digestion time course was studied by HPLC, and the relative bio-potency of the intact molecules and their proteolytic fragments was assessed by second messenger (cAMP) response in RXFP1 relaxin receptor-bearing THP-1 human monocytic cells. Both intact proteins (100 ng/mL) induced a significant cAMP rise in THP-1 cells. Conversely, SIF-treated serelaxin showed a brisk (30 s) bioactivity decay, dropping down to the levels of the unstimulated controls at 120 s, whereas SIF-treated pRLX retained significant bioactivity for up to 120 s. After that, it progressively declined to the levels of the unstimulated controls. HPLC analysis indicates that this bioactivity could be ascribed to a minor component of the pRLX sample more resistant to proteolysis. When identified and better characterized, this peptide could be exploited for the development of synthetic relaxin agonists suitable for oral formulations.
Collapse
|
32
|
Deng P, Li Z, Yi B, Leng Y. A Mendelian randomization study to assess the genetic liability of type 1 diabetes mellitus for IgA nephropathy. Front Endocrinol (Lausanne) 2022; 13:1000627. [PMID: 36589806 PMCID: PMC9797097 DOI: 10.3389/fendo.2022.1000627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background The prevalence of immunoglobulin A nephropathy (IgAN) seems to be higher in patients with type 1 diabetes mellitus (T1DM) than that in the general population. However, whether there exists a causal relationship between T1DM and IgAN remains unknown. Methods This study conducted a standard two-sample Mendelian randomization (MR) analysis to assess the causal inference by four MR methods, and the inverse variance-weighted (IVW) approach was selected as the primary method. To further test the independent causal effect of T1DM on IgAN, multivariable MR (MVMR) analysis was undertaken. Sensitivity analyses incorporating multiple complementary MR methods were applied to evaluate how strong the association was and identify potential pleiotropy. Results MR analyses utilized 81 single-nucleotide polymorphisms (SNPs) for T1DM. The evidence supports a significant causal relationship between T1DM and increased risk of IgAN [odds ratio (OR): 1.39, 95% confidence interval (CI): 1.10-1.74 for IVW, p < 0.05]. The association still exists after adjusting for triglyceride (TG), fasting insulin (FI), fasting blood glucose (FBG), homeostasis model assessment of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR), and glycated hemoglobin (HbA1c). MVMR analysis indicated that the effect of T1DM on IgAN vanished upon accounting for low-density lipoprotein cholesterol (LDL-c; OR: 0.97, 95% CI: 0.90-1.05, p > 0.05). Conclusions This MR study provided evidence that T1DM may be a risk factor for the onset of IgAN, which might be driven by LDL-c. Lipid-lowering strategies targeting LDL-c should be enhanced in patients with T1DM to prevent IgAN.
Collapse
Affiliation(s)
- Peizhi Deng
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixin Li
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiping Leng
- The Affiliated Changsha Central Hospital, Research Center for Phase I Clinical Trials, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
33
|
Bolla AM, Montefusco L, Pastore I, Lunati ME, Ben Nasr M, Fiorina P. Benefits and Hurdles of Pancreatic β-Cell Replacement. Stem Cells Transl Med 2022; 11:1029-1039. [PMID: 36073717 PMCID: PMC9585952 DOI: 10.1093/stcltm/szac058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin represents a life-saving treatment in patients with type 1 diabetes, and technological advancements have improved glucose control in an increasing number of patients. Despite this, adequate control is often still difficult to achieve and insulin remains a therapy and not a cure for the disease. β-cell replacement strategies can potentially restore pancreas endocrine function and aim to maintain normoglycemia; both pancreas and islet transplantation have greatly progressed over the last decades and, in subjects with extreme glycemic variability and diabetes complications, represent a concrete and effective treatment option. Some issues still limit the adoption of this approach on a larger scale. One is represented by the strict selection criteria for the recipient who can benefit from a transplant and maintain the lifelong immunosuppression necessary to avoid organ rejection. Second, with regard to islet transplantation, up to 40% of islets can be lost during hepatic engraftment. Recent studies showed very preliminarily but promising results to overcome these hurdles: the ability to induce β-cell maturation from stem cells may represent a solution to the organ shortage, and the creation of semi-permeable membranes that envelope or package cells in either micro- or macro- encapsulation strategies, together with engineering cells to be hypo-immunogenic, pave the way for developing strategies without immunosuppression. The aim of this review is to describe the state of the art in β-cell replacement with a focus on its efficacy and clinical benefits, on the actual limitations and still unmet needs, and on the latest findings and future directions.
Collapse
Affiliation(s)
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Huang Y, Fu R, Zhu Z, Liu C, Liu S, Yu P, Yan L, Zhou Z, Ning C, Wang Z. Plasmon-Enhanced Electrocatalysis of Conductive Polymer-Based Nano-Heterojunction for Small Molecule Metabolites Diagnostics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39799-39807. [PMID: 36018044 DOI: 10.1021/acsami.2c09789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive polymers are promising electrode candidates in the nonenzymatic catalytic detection of small molecule metabolites, due to the tunable electronic conductivity and versatile modifiability. However, the complex catalytic reaction pathway of conductive polymers results in lower detection sensitivity and a narrower linear range compared with clinical metal-based and carbon-based electrodes. Localized surface plasmon resonance (LSPR), characterized by deep strong light-matter coupling, has great potential in driving surface catalytic reactions at an ultrafast rate. Here, we constructed a salix argyracea-like polypyrrole nanowires/silver nanoparticles (PPy/AgNPs) heterojunction electrode using polydopamine as a dopant and chelator. Through cyclic voltammetry, the Mott-Schottky curve, and COMSOL simulation, we demonstrated that the LSPR-excited photocarriers enhanced PPy/AgNPs electrode electrocatalysis. Thus, the detection current response and linear range were significantly improved under the LSPR excitation when taking glucose and hydrogen peroxide as models of small molecule metabolites. Furthermore, we discussed the LSPR-enhanced detection mechanism of PPy/AgNPs electrode from the aspects of the Tafel slope, the apparent electron diffusion coefficient, and the charge transfer resistance. This strategy opens a new avenue toward the design of LSPR-enhanced conductive polymer electrodes.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Rumin Fu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zurong Zhu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Chengli Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Senwei Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Peng Yu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Ling Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhengnan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
- Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
35
|
Zhang W, Ling Q, Wang B, Wang K, Pang J, Lu J, Bi Y, Zhu D. Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes. Stem Cell Res Ther 2022; 13:406. [PMID: 35941696 PMCID: PMC9358877 DOI: 10.1186/s13287-022-02974-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs) in type 1 diabetes (T1D) has been demonstrated in both preclinical and clinical studies. MSCs that have been used in research on T1D are derived from various tissue sources, with bone marrow (BM) and umbilical cord (UC) tissues being the most commonly used. However, the influence of tissue origin on the functional properties and therapeutic effects of MSCs in T1D remains unclear. This study aimed to compare the therapeutic efficacy of UC-MSCs and BM-MSCs in a mouse model of T1D as well as in patients with T1D. Methods In non-obese diabetic (NOD) mice, the development of diabetes was accelerated by streptozotocin injections. Thereafter, diabetic mice were randomized and treated intravenously with UC-MSCs, BM-MSCs or phosphate-buffered saline as a control. Blood glucose and serum insulin were measured longitudinally after transplantation. At 14 days post-transplantation, pancreatic tissues were collected to assess insulitis and the β-cell mass. Flow cytometry was performed to evaluate the composition of T lymphocytes in the spleen and pancreatic lymph nodes of the NOD mice. In our retrospective study of patients with T1D, 28 recipients who received insulin therapy alone or a single transplantation of UC-MSCs or BM-MSCs were enrolled. The glycaemic control and β-cell function of the patients during the first year of follow-up were compared. Results In NOD mice, UC-MSC and BM-MSC transplantation showed similar effects on decreasing blood glucose levels and preserving β cells. The regulation of islet autoimmunity was examined, and no significant difference between UC-MSCs and BM-MSCs was observed in the attenuation of insulitis, the decrease in T helper 17 cells or the increase in regulatory T cells. In patients with T1D, MSC transplantation markedly lowered haemoglobin A1c (HbA1c) levels and reduced insulin doses compared to conventional insulin therapy. However, the therapeutic effects were comparable between UC-MSCs and BM-MSCs, and they also exerted similar effects on the endogenous β-cell function in the patients. Conclusion In conclusion, both UC-MSCs and BM-MSCs exhibited comparable therapeutic effects on improving glycaemic control and preserving β-cell function in T1D. Considering their abundance and higher cell yields, UC-MSCs appear to be more promising than BM-MSCs in clinical applications. Trial registration NCT02763423. Registered on May 5, 2016—Retrospectively registered, https://www.clinicaltrials.gov/.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Ling
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Clinical Stem Cell Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Kai Wang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jianbo Pang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Jing Lu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Yan Bi
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
36
|
Perkins BA. The uncomfortable truth about kidney disease in type 1 diabetes. Lancet Diabetes Endocrinol 2022; 10:472-473. [PMID: 35489370 DOI: 10.1016/s2213-8587(22)00132-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, ON, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto M5S 3H2, ON, Canada.
| |
Collapse
|
37
|
Guo J, Wang Y, Zhang H, Zhao Y. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110024. [PMID: 35081264 DOI: 10.1002/adma.202110024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronics, an emerging field with the mutual penetration of biological systems and electronic sciences, allows the quantitative analysis of complicated biosignals together with the dynamic regulation of fateful biological functions. In this area, the development of conductive materials with elaborate micro/nanostructures has been of great significance to the improvement of high-performance bioelectronic devices. Thus, here, a comprehensive and up-to-date summary of relevant research studies on the fabrication and properties of conductive materials with micro/nanostructures and their promising applications and future opportunities in bioelectronic applications is presented. In addition, a critical analysis of the current opportunities and challenges regarding the future developments of conductive materials with elaborate micro/nanostructures for bioelectronic applications is also presented.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
38
|
Rabbani N, Kim GYE, Suarez CJ, Chen JH. Applications of machine learning in routine laboratory medicine: Current state and future directions. Clin Biochem 2022; 103:1-7. [PMID: 35227670 PMCID: PMC9007900 DOI: 10.1016/j.clinbiochem.2022.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023]
Abstract
Machine learning is able to leverage large amounts of data to infer complex patterns that are otherwise beyond the capabilities of rule-based systems and human experts. Its application to laboratory medicine is particularly exciting, as laboratory testing provides much of the foundation for clinical decision making. In this article, we provide a brief introduction to machine learning for the medical professional in addition to a comprehensive literature review outlining the current state of machine learning as it has been applied to routine laboratory medicine. Although still in its early stages, machine learning has been used to automate laboratory tasks, optimize utilization, and provide personalized reference ranges and test interpretation. The published literature leads us to believe that machine learning will be an area of increasing importance for the laboratory practitioner. We envision the laboratory of the future will utilize these methods to make significant improvements in efficiency and diagnostic precision.
Collapse
Affiliation(s)
- Naveed Rabbani
- Department of Clinical Informatics, Lucile Packard Children's Hospital, Palo Alto, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Grace Y E Kim
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan H Chen
- Stanford Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA, USA; Division of Hospital Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Dai B, Zhou R, Ping J, Ying Y, Xie L. Recent advances in carbon nanotube-based biosensors for biomolecular detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Affiliation(s)
- Mark A Sperling
- From the Department of Pediatrics, Division of Endocrinology and Diabetes, Icahn School of Medicine at Mount Sinai, New York (M.A.S.); and the Pediatric, Adolescent, and Young Adult Section, Joslin Diabetes Center, and Harvard Medical School - both in Boston (L.M.L.)
| | - Lori M Laffel
- From the Department of Pediatrics, Division of Endocrinology and Diabetes, Icahn School of Medicine at Mount Sinai, New York (M.A.S.); and the Pediatric, Adolescent, and Young Adult Section, Joslin Diabetes Center, and Harvard Medical School - both in Boston (L.M.L.)
| |
Collapse
|
41
|
Affiliation(s)
- Klemen Dovc
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bruce W Bode
- Atlanta Diabetes Associates and Emory University School of Medicine, Atlanta, GA
| | - Tadej Battelino
- Atlanta Diabetes Associates and Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
42
|
Harrison VS, Khan MH, Chamberlain CE, Harlan DM. The Noble and Often Nobel Role Played by Insulin-Focused Research in Modern Medicine. Diabetes Care 2022; 45:23-27. [PMID: 34986255 PMCID: PMC9004313 DOI: 10.2337/dci21-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 02/03/2023]
Abstract
Since diabetes was first described over 3,000 years ago, clinicians and scientists alike have sought ever improving treatments en route to a cure. As we approach the 100th anniversary of insulin's first therapeutic use, this article will recount the glorious history associated with research surrounding insulin's isolation, purification, cloning, and subsequent modification. The discovery path we will relate tells the story of many relentless and passionate investigators pursuing ground-breaking research. The fruits of their labor include several Nobel Prizes, new technology, and, more importantly, ever improving treatments for one of humankind's greatest medical scourges.
Collapse
Affiliation(s)
| | | | - Christine E. Chamberlain
- Division of Pharmacovigilance, Office of Surveillance and Epidemiology, U.S. Food and Drug Administration, Silver Spring, MD
| | - David M. Harlan
- Diabetes Center of Excellence, Department of Medicine, UMass Chan School of Medicine, Worcester, MA
| |
Collapse
|