1
|
Wu S, Yang X, Zhou J, Yu W. Copper-catalysed bromine atom transfer cyclisation in SDS micelles. Chem Commun (Camb) 2024. [PMID: 39499534 DOI: 10.1039/d4cc03903c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The atom transfer radical cyclisation (ATRC) of non-activated alkyl bromides was realized under blue light irradiation in carbonate-buffered aqueous SDS solution using a catalytic system of CuBr2, Me6-TREN and ascorbic acid. The beneficial effect of SDS micelles can be accounted for by the activation of the C-Br bond as well as by the suppression of competitive reductive cyclisation.
Collapse
Affiliation(s)
- Shuoren Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xue Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jianlin Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Anderson IC, Gomez DC, Zhang M, Koehler SJ, Figg CA. Catalyzing PET-RAFT Polymerizations Using Inherently Photoactive Zinc Myoglobin. Angew Chem Int Ed Engl 2024:e202414431. [PMID: 39468874 DOI: 10.1002/anie.202414431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 10/30/2024]
Abstract
Protein photocatalysts provide a modular platform to access new reaction pathways and affect product outcomes, but their use in polymer synthesis is limited because co-catalysts and/or co-reductants are required to complete catalytic cycles. Herein, we report using zinc myoglobin (ZnMb), an inherently photoactive protein, to mediate photoinduced electron/energy transfer (PET) reversible addition-fragmentation chain transfer (RAFT) polymerizations. Using ZnMb as the sole reagent for catalysis, photomediated polymerizations of N,N-dimethylacrylamide in PBS were achieved with predictable molecular weights, dispersity values approaching 1.1, and high chain-end fidelity. We found that initial apparent rate constants of polymerization increased from 4.6×10-5 s-1 for zinc mesoporpyhrin IX (ZnMIX) to 6.5×10-5 s-1 when ZnMIX was incorporated into myoglobin to yield ZnMb, indicating that the protein binding site enhanced catalytic activity. Chain extension reactions comparing ZnMb-mediated RAFT polymerizations to thermally-initiated RAFT polymerizations showed minimal differences in block copolymer molecular weights and dispersities. This work enables studies to elucidate how protein modifications (e.g., secondary structure folding, site-directed mutagenesis, directed evolution) can be used to modulate polymerization outcomes (e.g., selective monomer additions towards sequence control, tacticity control, molar mass distributions).
Collapse
Affiliation(s)
- Ian C Anderson
- Department of Chemistry and Macromolecular Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Darwin C Gomez
- Department of Chemistry and Macromolecular Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Meijing Zhang
- Department of Chemistry and Macromolecular Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Stephen J Koehler
- Department of Chemistry and Macromolecular Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - C Adrian Figg
- Department of Chemistry and Macromolecular Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| |
Collapse
|
3
|
Zhang J, Wu J. Recent progress in asymmetric radical reactions enabled by chiral iron catalysts. Chem Commun (Camb) 2024; 60:12633-12649. [PMID: 39380541 DOI: 10.1039/d4cc03047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Transition-metal-catalyzed radical asymmetric reactions offer a versatile and effective platform for accessing chiral organic molecules with high enantiopurity. Given that iron is the most abundant and less toxic transition metalic element available, the application of iron catalysts is considered to be a more sustainable and attractive approach. Over the last decade, several exciting and notable achievements have been witnessed. In this highlight, we aim to provide an overview of the progress in ligand-enabled iron-catalyzed asymmetric radical reactions, with an emphasis on the reaction mechanisms.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
4
|
Reisenbauer JC, Sicinski KM, Arnold FH. Catalyzing the future: recent advances in chemical synthesis using enzymes. Curr Opin Chem Biol 2024; 83:102536. [PMID: 39369557 DOI: 10.1016/j.cbpa.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Biocatalysis has the potential to address the need for more sustainable organic synthesis routes. Protein engineering can tune enzymes to perform in cascade reactions and for efficient synthesis of enantiomerically enriched compounds, using both natural and new-to-nature reaction pathways. This review highlights recent achievements in biocatalysis, especially the development of novel enzymatic syntheses to access versatile small molecule intermediates and complex biomolecules. Biocatalytic strategies for the degradation of persistent pollutants and approaches for biomass valorization are also discussed. The transition of chemical synthesis to a greener future will be accelerated by implementing enzymes and engineering them for high performance and new activities.
Collapse
Affiliation(s)
- Julia C Reisenbauer
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States
| | - Kathleen M Sicinski
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States.
| |
Collapse
|
5
|
Mou SB, Chen KY, Kunthic T, Xiang Z. Design and Evolution of an Artificial Friedel-Crafts Alkylation Enzyme Featuring an Organoboronic Acid Residue. J Am Chem Soc 2024; 146:26676-26686. [PMID: 39190546 DOI: 10.1021/jacs.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Creating artificial enzymes by the genetic incorporation of noncanonical amino acids with catalytic side chains would expand the enzyme chemistries that have not been discovered in nature. Here, we report the design of an artificial enzyme that uses p-boronophenylalanine as the catalytic residue. The artificial enzyme catalyzes Michael-type Friedel-Crafts alkylation through covalent activation. The designer enzyme was further engineered to afford high yields with excellent enantioselectivities. We next developed a practical method for preparative-scale reactions by whole-cell catalysis. This enzymatic C-C bond formation reaction was combined with palladium-catalyzed dearomative arylation to achieve the efficient synthesis of spiroindolenine compounds.
Collapse
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518132, P. R. China
| |
Collapse
|
6
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
7
|
Chen D, Zhang X, Vorobieva AA, Tachibana R, Stein A, Jakob RP, Zou Z, Graf DA, Li A, Maier T, Correia BE, Ward TR. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway. Nat Chem 2024; 16:1656-1664. [PMID: 39030420 DOI: 10.1038/s41557-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/24/2024] [Indexed: 07/21/2024]
Abstract
While natural terpenoid cyclases generate complex terpenoid structures via cationic mechanisms, alternative radical cyclization pathways are underexplored. The metal-catalysed H-atom transfer reaction (M-HAT) offers an attractive means for hydrofunctionalizing olefins, providing access to terpenoid-like structures. Artificial metalloenzymes offer a promising strategy for introducing M-HAT reactivity into a protein scaffold. Here we report our efforts towards engineering an artificial radical cyclase (ARCase), resulting from anchoring a biotinylated [Co(Schiff-base)] cofactor within an engineered chimeric streptavidin. After two rounds of directed evolution, a double mutant catalyses a radical cyclization to afford bicyclic products with a cis-5-6-fused ring structure and up to 97% enantiomeric excess. The involvement of a histidine ligation to the Co cofactor is confirmed by crystallography. A time course experiment reveals a cascade reaction catalysed by the ARCase, combining a radical cyclization with a conjugate reduction. The ARCase exhibits tolerance towards variations in the dienone substrate, highlighting its potential to access terpenoid scaffolds.
Collapse
Affiliation(s)
- Dongping Chen
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Xiang Zhang
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Anastassia Andreevna Vorobieva
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland
| | - Alina Stein
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | | | - Zhi Zou
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Damian Alexander Graf
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland
| | - Ang Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel, Switzerland.
- National Center of Competence in Research 'Catalysis', ETH Zurich, Zurich, Switzerland.
- National Center of Competence in Research 'Molecular Systems Engineering', Basel, Switzerland.
| |
Collapse
|
8
|
Hilvert D. Spiers Memorial Lecture: Engineering biocatalysts. Faraday Discuss 2024; 252:9-28. [PMID: 39046423 PMCID: PMC11389855 DOI: 10.1039/d4fd00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Enzymes are being engineered to catalyze chemical reactions for many practical applications in chemistry and biotechnology. The approaches used are surveyed in this short review, emphasizing methods for accessing reactivities not expressed by native protein scaffolds. The successful generation of completely de novo enzymes that rival the rates and selectivities of their natural counterparts highlights the potential role that designer enzymes may play in the coming years in research, industry, and medicine. Some challenges that need to be addressed to realize this ambitious dream are considered together with possible solutions.
Collapse
Affiliation(s)
- Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
9
|
Kagawa Y, Oohora K, Himiyama T, Suzuki A, Hayashi T. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity. Angew Chem Int Ed Engl 2024; 63:e202403485. [PMID: 38780472 DOI: 10.1002/anie.202403485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Design of metal cofactor ligands is essential for controlling the reactivity of metalloenzymes. We investigated a carbene transfer reaction catalyzed by myoglobins containing iron porphyrin cofactors with one and two trifluoromethyl groups at peripheral sites (FePorCF3 and FePor(CF3)2, respectively), native heme and iron porphycene (FePc). These four myoglobins show a wide range of Fe(II)/Fe(III) redox potentials in the protein of +147 mV, +87 mV, +42 mV and -198 mV vs. NHE, respectively. Myoglobin reconstituted with FePor(CF3)2 has a more positive potential, which enhances the reactivity of a carbene intermediate with alkenes, and demonstrates superior cyclopropanation of inert alkenes, such as aliphatic and internal alkenes. In contrast, engineered myoglobin reconstituted with FePc has a more negative redox potential, which accelerates the formation of the intermediate, but has low reactivity for inert alkenes. Mechanistic studies indicate that myoglobin with FePor(CF3)2 generates an undetectable active intermediate with a radical character. In contrast, this reaction catalyzed by myoglobin with FePc includes a detectable iron-carbene species with electrophilic character. This finding highlights the importance of redox-focused design of the iron porphyrinoid cofactor in hemoproteins to tune the reactivity of the carbene transfer reaction.
Collapse
Affiliation(s)
- Yoshiyuki Kagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoki Himiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, 563-8577, Japan
| | - Akihiro Suzuki
- National Institute of Technology, Ibaraki College, Hitachinaka, Ibaraki, 312-8508, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Fu W, Fu Y, Zhao Y, Wang H, Liu P, Yang Y. A metalloenzyme platform for catalytic asymmetric radical dearomatization. Nat Chem 2024:10.1038/s41557-024-01608-8. [PMID: 39198700 DOI: 10.1038/s41557-024-01608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Catalytic asymmetric dearomatization represents a powerful means to convert flat aromatic compounds into stereochemically well-defined three-dimensional molecular scaffolds. Using new-to-nature metalloredox biocatalysis, we describe an enzymatic strategy for catalytic asymmetric dearomatization via a challenging radical mechanism that has eluded small-molecule catalysts. Enabled by directed evolution, new-to-nature radical dearomatases P450rad1-P450rad5 facilitated asymmetric dearomatization of a broad spectrum of aromatic substrates, including indoles, pyrroles and phenols, allowing both enantioconvergent and enantiodivergent radical dearomatization reactions to be accomplished with excellent enzymatic control. Computational studies revealed the importance of additional hydrogen bonding interactions between the engineered metalloenzyme and the reactive intermediate in enhancing enzymatic activity and enantiocontrol. Furthermore, designer non-ionic surfactants were found to significantly accelerate this biotransformation, providing an alternative means to promote otherwise sluggish new-to-nature biotransformations. Together, this evolvable metalloenzyme platform opens up new avenues to advance challenging catalytic asymmetric dearomatization processes involving free radical intermediates.
Collapse
Affiliation(s)
- Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Huanan Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
11
|
Wang Y, Das S, Aboulhosn K, Champagne SE, Gemmel PM, Skinner KC, Ragsdale SW, Zimmerman PM, Narayan ARH. Nature-Inspired Radical Pyridoxal-Mediated C-C Bond Formation. J Am Chem Soc 2024; 146:23321-23329. [PMID: 39106078 DOI: 10.1021/jacs.4c05997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Pyridoxal-5'-phosphate (PLP) and derivatives of this cofactor enable a plethora of reactions in both enzyme-mediated and free-in-solution transformations. With few exceptions in each category, such chemistry has predominantly involved two-electron processes. This sometimes poses a significant challenge for using PLP to build tetrasubstituted carbon centers, especially when the reaction is reversible. The ability to access radical pathways is paramount to broadening the scope of reactions catalyzed by this coenzyme. In this study, we demonstrate the ability to access a radical PLP-based intermediate and engage this radical intermediate in a number of C-C bond-forming reactions. By selection of an appropriate oxidant, single-electron oxidation of the quinonoid intermediate can be achieved, which can subsequently be applied to C-C bond-forming reactions. Through this radical reaction pathway, we synthesized a series of α-tertiary amino acids and esters to investigate the substrate scope and identify nonproductive reaction pathways. Beyond the amino acid model system, we demonstrate that other classes of amine substrates can be applied in this reaction and that a range of small molecule reagents can serve as coupling partners to the semiquinone radical. We anticipate that this versatile semiquinone radical species will be central to the development of a range of novel reactions.
Collapse
Affiliation(s)
- Ye Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kareem Aboulhosn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah E Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Philipp M Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin C Skinner
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Zhao H. Recent advances in enzymatic carbon-carbon bond formation. RSC Adv 2024; 14:25932-25974. [PMID: 39161440 PMCID: PMC11331486 DOI: 10.1039/d4ra03885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Enzymatic carbon-carbon (C-C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C-C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include the aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita-Baylis-Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C-C bond formation, C-C bond formation through C1 resource utilization, radical enzymes for C-C bond formation, and other C-C bond formation reactions.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota St. Paul MN 55108 USA
| |
Collapse
|
13
|
Wang TC, Zhang Z, Rao G, Li J, Shirah J, Britt RD, Zhu Q, Yang Y. Threonine Aldolase-Catalyzed Enantioselective α-Alkylation of Amino Acids through Unconventional Photoinduced Radical Initiation. J Am Chem Soc 2024; 146:22476-22484. [PMID: 38961805 PMCID: PMC11376206 DOI: 10.1021/jacs.4c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Visible light-driven pyridoxal radical biocatalysis has emerged as a promising strategy for the stereoselective synthesis of valuable noncanonical amino acids (ncAAs). Previously, the use of well-tailored photoredox catalysts represented the key to enable efficient pyridoxal phosphate (PLP) enzyme-catalyzed radical reactions. Here, we report a PLP-dependent threonine aldolase-catalyzed asymmetric α-C-H alkylation of abundant amino acids using Katritzky pyridinium salts as alkylating agents. The use of engineered threonine aldolases allowed for this redox-neutral radical alkylation to proceed efficiently, giving rise to challenging α-trisubstituted and -tetrasubstituted ncAA products in a protecting-group-free fashion with excellent enantiocontrol. Mechanistically, this enantioselective α-alkylation capitalizes on the unique reactivity of the persistent enzymatic quinonoid intermediate derived from the PLP cofactor and the amino acid substrate to allow for novel radical C-C coupling. Surprisingly, this photobiocatalytic process does not require the use of well-established photoredox catalysts and operates through an unconventional photoinduced radical generation involving a PLP-derived aldimine. The ability to develop photobiocatalytic reactions without relying on classic photocatalysts or photoenzymes opens up new avenues for advancing stereoselective intermolecular radical reactions that are not known in either organic chemistry or enzymology.
Collapse
Affiliation(s)
- Tian-Ci Wang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Zheng Zhang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Jiedong Li
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Josephine Shirah
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Qilei Zhu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Ju S, Li D, Mai BK, Liu X, Vallota-Eastman A, Wu J, Valentine DL, Liu P, Yang Y. Stereodivergent photobiocatalytic radical cyclization through the repurposing and directed evolution of fatty acid photodecarboxylases. Nat Chem 2024; 16:1339-1347. [PMID: 38632367 PMCID: PMC11321912 DOI: 10.1038/s41557-024-01494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Despite their intriguing photophysical and photochemical activities, naturally occurring photoenzymes have not yet been repurposed for new-to-nature activities. Here we engineered fatty acid photodecarboxylases to catalyse unnatural photoredox radical C-C bond formation by leveraging the strongly oxidizing excited-state flavoquinone cofactor. Through genome mining, rational engineering and directed evolution, we developed a panel of radical photocyclases to facilitate decarboxylative radical cyclization with excellent chemo-, enantio- and diastereoselectivities. Our high-throughput experimental workflow allowed for the directed evolution of fatty acid photodecarboxylases. An orthogonal set of radical photocyclases was engineered to access all four possible stereoisomers of the stereochemical dyad, affording fully diastereo- and enantiodivergent biotransformations in asymmetric radical biocatalysis. Molecular dynamics simulations show that our evolved radical photocyclases allow near-attack conformations to be easily accessed, enabling chemoselective radical cyclization. The development of stereoselective radical photocyclases provides unnatural C-C-bond-forming activities in natural photoenzyme families, which can be used to tame the stereochemistry of free-radical-mediated reactions.
Collapse
Affiliation(s)
- Shuyun Ju
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Dian Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xin Liu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Alec Vallota-Eastman
- Interdepartmental Graduate Program for Marine Science, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jianping Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - David L Valentine
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering (BMSE) Program, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
15
|
Ding K, Chin M, Zhao Y, Huang W, Mai BK, Wang H, Liu P, Yang Y, Luo Y. Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering. Nat Commun 2024; 15:6392. [PMID: 39080249 PMCID: PMC11289365 DOI: 10.1038/s41467-024-50698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
The effective design of combinatorial libraries to balance fitness and diversity facilitates the engineering of useful enzyme functions, particularly those that are poorly characterized or unknown in biology. We introduce MODIFY, a machine learning (ML) algorithm that learns from natural protein sequences to infer evolutionarily plausible mutations and predict enzyme fitness. MODIFY co-optimizes predicted fitness and sequence diversity of starting libraries, prioritizing high-fitness variants while ensuring broad sequence coverage. In silico evaluation shows that MODIFY outperforms state-of-the-art unsupervised methods in zero-shot fitness prediction and enables ML-guided directed evolution with enhanced efficiency. Using MODIFY, we engineer generalist biocatalysts derived from a thermostable cytochrome c to achieve enantioselective C-B and C-Si bond formation via a new-to-nature carbene transfer mechanism, leading to biocatalysts six mutations away from previously developed enzymes while exhibiting superior or comparable activities. These results demonstrate MODIFY's potential in solving challenging enzyme engineering problems beyond the reach of classic directed evolution.
Collapse
Affiliation(s)
- Kerr Ding
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Michael Chin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Wei Huang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Huanan Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, 93106, USA.
| | - Yunan Luo
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
16
|
Huang C, Zhang L, Tang T, Wang H, Jiang Y, Ren H, Zhang Y, Fang J, Zhang W, Jia X, You S, Qin B. Application of Directed Evolution and Machine Learning to Enhance the Diastereoselectivity of Ketoreductase for Dihydrotetrabenazine Synthesis. JACS AU 2024; 4:2547-2556. [PMID: 39055154 PMCID: PMC11267543 DOI: 10.1021/jacsau.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Biocatalysis is an effective approach for producing chiral drug intermediates that are often difficult to synthesize using traditional chemical methods. A time-efficient strategy is required to accelerate the directed evolution process to achieve the desired enzyme function. In this research, we evaluated machine learning-assisted directed evolution as a potential approach for enzyme engineering, using a moderately diastereoselective ketoreductase library as a model system. Machine learning-assisted directed evolution and traditional directed evolution methods were compared for reducing (±)-tetrabenazine to dihydrotetrabenazine via kinetic resolution facilitated by BsSDR10, a short-chain dehydrogenase/reductase from Bacillus subtilis. Both methods successfully identified variants with significantly improved diastereoselectivity for each isomer of dihydrotetrabenazine. Furthermore, the preparation of (2S,3S,11bS)-dihydrotetrabenazine has been successfully scaled up, with an isolated yield of 40.7% and a diastereoselectivity of 91.3%.
Collapse
Affiliation(s)
- Chenming Huang
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Li Zhang
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Tong Tang
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Haijiao Wang
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Yingqian Jiang
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Hanwen Ren
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Yitian Zhang
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Jiali Fang
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Wenhe Zhang
- School
of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Xian Jia
- School
of Pharmaceutical Engineering, Shenyang
Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Song You
- School
of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| | - Bin Qin
- Wuya
College of Innovation, Shenyang Pharmaceutical
University, 103 Wenhua Road, Shenhe, Shenyang 110016, People’s Republic
of China
| |
Collapse
|
17
|
Kissman EN, Sosa MB, Millar DC, Koleski EJ, Thevasundaram K, Chang MCY. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 2024; 631:37-48. [PMID: 38961155 DOI: 10.1038/s41586-024-07506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.
Collapse
Affiliation(s)
- Elijah N Kissman
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Max B Sosa
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Douglas C Millar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Edward J Koleski
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | | | - Michelle C Y Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
18
|
Jain S, Ospina F, Hammer SC. A New Age of Biocatalysis Enabled by Generic Activation Modes. JACS AU 2024; 4:2068-2080. [PMID: 38938808 PMCID: PMC11200230 DOI: 10.1021/jacsau.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis is currently undergoing a profound transformation. The field moves from relying on nature's chemical logic to a discipline that exploits generic activation modes, allowing for novel biocatalytic reactions and, in many instances, entirely new chemistry. Generic activation modes enable a wide range of reaction types and played a pivotal role in advancing the fields of organo- and photocatalysis. This perspective aims to summarize the principal activation modes harnessed in enzymes to develop new biocatalysts. Although extensively researched in the past, the highlighted activation modes, when applied within enzyme active sites, facilitate chemical transformations that have largely eluded efficient and selective catalysis. This advance is attributed to multiple tunable interactions in the substrate binding pocket that precisely control competing reaction pathways and transition states. We will highlight cases of new synthetic methodologies achieved by engineered enzymes and will provide insights into potential future developments in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Stephan C. Hammer
- Research Group for Organic Chemistry
and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Xia T, Wu W, Wu X, Qu J, Chen Y. Cobalt-Catalyzed Enantioselective Reductive α-Chloro-Carbonyl Addition of Ketimine to Construct the β-Tertiary Amino Acid Analogues. Angew Chem Int Ed Engl 2024; 63:e202318991. [PMID: 38252658 DOI: 10.1002/anie.202318991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
β-Tertiary amino acid derivatives constitute one of the most frequently occurring units in natural products and bioactive molecules. However, the efficient asymmetric synthesis of this motif still remains a significant challenge. Herein, we disclose a cobalt-catalyzed enantioselective reductive addition reaction of ketimine using α-chloro carbonyl compound as a radical precursor, providing expedient access to a diverse array of enantioenriched β-quaternary amino acid analogues. This protocol exhibits outstanding enantioselectivity and broad substrate scope with excellent functional group tolerance. Preliminary mechanism studies rule out the possibility of Reformatsky-type addition and confirm the involvement of radical species in stereoselective addition process. The synthetic utility has been demonstrated through the rapid assembly of iterative amino acid units and oligopeptide, showcasing its versatile platform for late-stage modification of drug candidates.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenwen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
20
|
Qin X, Wang Y, Ye Q, Hakenjos JM, Wang J, Teng M, Guo L, Tan Z, Young DW, MacKenzie KR, Li F. CYP3A Mediates an Unusual C(sp 2)-C(sp 3) Bond Cleavage via Ipso-Addition of Oxygen in Drug Metabolism. Angew Chem Int Ed Engl 2024; 63:e202405197. [PMID: 38574245 PMCID: PMC11126355 DOI: 10.1002/anie.202405197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Mammalian cytochrome P450 drug-metabolizing enzymes rarely cleave carbon-carbon (C-C) bonds and the mechanisms of such cleavages are largely unknown. We identified two unusual cleavages of non-polar, unstrained C(sp2)-C(sp3) bonds in the FDA-approved tyrosine kinase inhibitor pexidartinib that are mediated by CYP3A4/5, the major human phase I drug metabolizing enzymes. Using a synthetic ketone, we rule out the Baeyer-Villiger oxidation mechanism that is commonly invoked to address P450-mediated C-C bond cleavages. Our studies in 18O2 and H2 18O enriched systems reveal two unusual distinct mechanisms of C-C bond cleavage: one bond is cleaved by CYP3A-mediated ipso-addition of oxygen to a C(sp2) site of N-protected pyridin-2-amines, and the other occurs by a pseudo-retro-aldol reaction after hydroxylation of a C(sp3) site. This is the first report of CYP3A-mediated C-C bond cleavage in drug metabolism via ipso-addition of oxygen mediated mechanism. CYP3A-mediated ipso-addition is also implicated in the regioselective C-C cleavages of several pexidartinib analogs. The regiospecificity of CYP3A-catalyzed oxygen ipso-addition under environmentally friendly conditions may be attractive and inspire biomimetic or P450-engineering methods to address the challenging task of C-C bond cleavages.
Collapse
Affiliation(s)
- Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Yong Wang
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Lei Guo
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, Arkansas, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Damian W Young
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA
| |
Collapse
|
21
|
He J, Li Z, Li R, Kou X, Liu D, Zhang W. Bimetallic Ru/Ru-Catalyzed Asymmetric One-Pot Sequential Hydrogenations for the Stereodivergent Synthesis of Chiral Lactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400621. [PMID: 38509867 PMCID: PMC11187880 DOI: 10.1002/advs.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Asymmetric sequential hydrogenations of α-methylene γ- or δ-keto carboxylic acids are established in one-pot using a bimetallic Ru/Ru catalyst system, achieving the stereodivergent synthesis of all four stereoisomers of both chiral γ- and δ-lactones with two non-vicinal carbon stereocenters in high yields (up to 99%) and with excellent stereoselectivities (up to >99% ee and >20:1 dr). The compatibility of the two chiral Ru catalyst systems is investigated in detail, and it is found that the basicity of the reaction system plays a key role in the sequential hydrogenation processes. The protocol can be performed on a gram-scale with a low catalyst loading (up to 11000 S/C) and the resulting products allow for many transformations, particularly for the synthesis of several key intermediates useful for the preparation of chiral drugs and natural products.
Collapse
Affiliation(s)
- Jingli He
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zhaodi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ruhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xuezhen Kou
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
22
|
Zhi S, Ma X, Zhang W. Radical Cyclization-Initiated Difunctionalization Reactions of Alkenes and Alkynes. Molecules 2024; 29:2559. [PMID: 38893437 PMCID: PMC11173560 DOI: 10.3390/molecules29112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Radical reactions are powerful in the synthesis of diverse molecular scaffolds bearing functional groups. In previous review articles, we have presented 1,2-difunctionalizations, remote 1,3-, 1,4-, 1,5-, 1,6- and 1,7-difunctionalizations, and addition followed by cyclization reactions. Presented in this paper is radical cyclization followed by the second functionalization reaction. The second functionalization could be realized by atom transfer reactions, radical or transition metal-assisted coupling reactions, and reactions with neutral molecules, cationic and anionic species.
Collapse
Affiliation(s)
- Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, 111 Changjiang West Road, Huaian 223300, China;
| | - Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China;
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
23
|
Fu H, Hyster TK. From Ground-State to Excited-State Activation Modes: Flavin-Dependent "Ene"-Reductases Catalyzed Non-natural Radical Reactions. Acc Chem Res 2024; 57:1446-1457. [PMID: 38603772 DOI: 10.1021/acs.accounts.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Enzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMNhq) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.
Collapse
Affiliation(s)
- Haigen Fu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Wang TC, Mai BK, Zhang Z, Bo Z, Li J, Liu P, Yang Y. Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling. Nature 2024; 629:98-104. [PMID: 38693411 PMCID: PMC11299865 DOI: 10.1038/s41586-024-07284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 05/03/2024]
Abstract
Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.
Collapse
Affiliation(s)
- Tian-Ci Wang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zheng Zhang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Zhiyu Bo
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jiedong Li
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering (BMSE) Program, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
25
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
26
|
Dai NN, Lu YJ, Wu ZQ, Zhou Y, Tong Y, Tang K, Li Q, Zhang JQ, Liu Y, Wei WT. Copper-Catalyzed Radical Relay 1,3-Carbocarbonylation across Two Distinct C═C Bonds. Org Lett 2024; 26:3014-3019. [PMID: 38547326 DOI: 10.1021/acs.orglett.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The radical relay provides an effective paradigm for intermolecular assembly to achieve functionalization across remote chemical bonds. Herein, we report the first radical relay 1,3-carbocarbonylation of α-carbonyl alkyl bromides across two separate C═C bonds. The reaction is highly chemo- and regioselective, with two C(sp3)-C(sp3) bonds and one C═O bond formed in a single orchestrated operation. In addition, the synthesis method under mild conditions and using inexpensive copper as the catalyst allows facile access to structurally diverse 1,3-carbocarbonylation products. The plausible mechanism is investigated through a series of control experiments, including radical trapping, radical clock experiments, critical intermediate trapping, and 18O labeling experiment.
Collapse
Affiliation(s)
- Nan-Nan Dai
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Yue-Jiao Lu
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Zhong-Qi Wu
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Ying Tong
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yu Liu
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| |
Collapse
|
27
|
Guo X, Ong WM, Zhao HP, Lai CY. Enzyme-induced reactive oxygen species trigger oxidative degradation of sulfamethoxazole within a methanotrophic biofilm. WATER RESEARCH 2024; 253:121330. [PMID: 38387268 DOI: 10.1016/j.watres.2024.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Although microorganisms carrying copper-containing membrane-bound monooxygenase (CuMMOs), such as particulate methane monooxygenase (pMMO) and ammonia monooxygenase (AMO), have been extensively documented for their capability to degrade organic micropollutants (OMPs), the underlying reactive mechanism remains elusive. In this study, we for the first time demonstrate biogenic reactive oxygen species (ROS) play important roles in the degradation of sulfamethoxazole (SMX), a representative OMP, within a methane-fed biofilm. Highly-efficient and consistent SMX biodegradation was achieved in a CH4-based membrane biofilm reactor (MBfR), manifesting a remarkable SMX removal rate of 1210.6 ± 39.0 μg·L-1·d-1. Enzyme inhibition and ROS clearance experiments confirmed the significant contribution of ROS, which were generated through the catalytic reaction of pMMO and AMO enzymes, in facilitating SMX degradation. Through a combination of density functional theory (DFT) calculations, electron paramagnetic resonance (EPR) analysis, and transformation product detection, we elucidated that the ROS primarily targeted the aniline group in the SMX molecule, inducing the formation of aromatic radicals and its progressive mineralization. In contrast, the isoxazole-ring was not susceptible to electrophilic ROS attacks, leading to accumulation of 3-amino-5-methylisoxazole (3A5MI). Furthermore, microbiological analysis suggested Methylosarcina (a methanotroph) and Candidatus Nitrosotenuis (an ammonia-oxidizing archaea) collaborated as the SMX degraders, who carried highly conserved and expressed CuMMOs (pMMO and AMO) for ROS generation, thereby triggering the oxidative degradation of SMX. This study deciphers SMX biodegradation through a fresh perspective of free radical chemistry, and concurrently providing a theoretical framework for the advancement of environmental biotechnologies aimed at OMP removal.
Collapse
Affiliation(s)
- Xu Guo
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Weng Mun Ong
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058.
| |
Collapse
|
28
|
Thorpe T, Marshall JR, Turner NJ. Multifunctional Biocatalysts for Organic Synthesis. J Am Chem Soc 2024; 146:7876-7884. [PMID: 38489244 PMCID: PMC10979396 DOI: 10.1021/jacs.3c09542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
Biocatalysis is becoming an indispensable tool in organic synthesis due to high enzymatic catalytic efficiency as well as exquisite chemo- and stereoselectivity. Some biocatalysts display great promiscuity including a broad substrate scope as well as the ability to catalyze more than one type of transformation. These promiscuous activities have been applied individually to efficiently access numerous valuable target molecules. However, systems in which enzymes possessing multiple different catalytic activities are applied in the synthesis are less well developed. Such multifunctional biocatalysts (MFBs) would simplify chemical synthesis by reducing the number of operational steps and enzyme count, as well as simplifying the sequence space that needs to be engineered to develop an efficient biocatalyst. In this Perspective, we highlight recently reported MFBs focusing on their synthetic utility and mechanism. We also offer insight into their origin as well as comment on potential strategies for their discovery and engineering.
Collapse
Affiliation(s)
- Thomas
W. Thorpe
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester, United Kingdom, M1
7DN
| | - James R. Marshall
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester, United Kingdom, M1
7DN
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester, United Kingdom, M1
7DN
| |
Collapse
|
29
|
Hendricks AR, Cohen RS, McEwen GA, Tien T, Guilliams BF, Alspach A, Snow CD, Ackerson CJ. Laboratory Evolution of Metalloid Reductase Substrate Recognition and Nanoparticle Product Size. ACS Chem Biol 2024; 19:289-299. [PMID: 38295274 DOI: 10.1021/acschembio.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Å of the enzyme active site. This mutation places a second H residue within 5 Å of an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.
Collapse
Affiliation(s)
- Alexander R Hendricks
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Rachel S Cohen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gavin A McEwen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Tony Tien
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bradley F Guilliams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Audrey Alspach
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher D Snow
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christopher J Ackerson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
30
|
Brutiu BR, Iannelli G, Riomet M, Kaiser D, Maulide N. Stereodivergent 1,3-difunctionalization of alkenes by charge relocation. Nature 2024; 626:92-97. [PMID: 38297174 PMCID: PMC10830407 DOI: 10.1038/s41586-023-06938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024]
Abstract
Alkenes are indispensable feedstocks in chemistry. Functionalization at both carbons of the alkene-1,2-difunctionalization-is part of chemistry curricula worldwide1. Although difunctionalization at distal positions has been reported2-4, it typically relies on designer substrates featuring directing groups and/or stabilizing features, all of which determine the ultimate site of bond formation5-7. Here we introduce a method for the direct 1,3-difunctionalization of alkenes, based on a concept termed 'charge relocation', which enables stereodivergent access to 1,3-difunctionalized products of either syn- or anti-configuration from unactivated alkenes, without the need for directing groups or stabilizing features. The usefulness of the approach is demonstrated in the synthesis of the pulmonary toxin 4-ipomeanol and its derivatives.
Collapse
Affiliation(s)
- Bogdan R Brutiu
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Giulia Iannelli
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Margaux Riomet
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Daniel Kaiser
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria.
- Research Platform NeGeMac, Vienna, Austria.
| |
Collapse
|
31
|
Kagan VE, Straub AC, Tyurina YY, Kapralov AA, Hall R, Wenzel SE, Mallampalli RK, Bayir H. Vitamin E/Coenzyme Q-Dependent "Free Radical Reductases": Redox Regulators in Ferroptosis. Antioxid Redox Signal 2024; 40:317-328. [PMID: 37154783 PMCID: PMC10890965 DOI: 10.1089/ars.2022.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/10/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
Significance: Lipid peroxidation and its products, oxygenated polyunsaturated lipids, act as essential signals coordinating metabolism and physiology and can be deleterious to membranes when they accumulate in excessive amounts. Recent Advances: There is an emerging understanding that regulation of polyunsaturated fatty acid (PUFA) phospholipid peroxidation, particularly of PUFA-phosphatidylethanolamine, is important in a newly discovered type of regulated cell death, ferroptosis. Among the most recently described regulatory mechanisms is the ferroptosis suppressor protein, which controls the peroxidation process due to its ability to reduce coenzyme Q (CoQ). Critical Issues: In this study, we reviewed the most recent data in the context of the concept of free radical reductases formulated in the 1980-1990s and focused on enzymatic mechanisms of CoQ reduction in different membranes (e.g., mitochondrial, endoplasmic reticulum, and plasma membrane electron transporters) as well as TCA cycle components and cytosolic reductases capable of recycling the high antioxidant efficiency of the CoQ/vitamin E system. Future Directions: We highlight the importance of individual components of the free radical reductase network in regulating the ferroptotic program and defining the sensitivity/tolerance of cells to ferroptotic death. Complete deciphering of the interactive complexity of this system may be important for designing effective antiferroptotic modalities. Antioxid. Redox Signal. 40, 317-328.
Collapse
Affiliation(s)
- Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Radiation Oncology and Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert Hall
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E. Wenzel
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, Children's Hospital Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
32
|
Zhang J, Zhu W, Chen Z, Zhang Q, Guo C. Dual-Catalyzed Stereodivergent Electrooxidative Homocoupling of Benzoxazolyl Acetate. J Am Chem Soc 2024; 146:1522-1531. [PMID: 38166394 DOI: 10.1021/jacs.3c11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of a reliable strategy for stereodivergent radical reactions that allows convenient access to all stereoisomers of homocoupling adducts with multiple stereogenic centers remains an unmet goal in organic synthesis. Herein, we describe a dual-catalyzed electrooxidative C(sp3)-H/C(sp3)-H homocoupling with complete absolute and relative stereocontrol for the synthesis of molecules with contiguous quaternary stereocenters in a general and predictable manner. The stereodivergent electrooxidative homocoupling reaction is achieved by synergistically utilizing two distinct chiral catalysts that convert identical racemic substrates into inherently distinctive reactive chiral intermediates, dictate enantioselective radical addition, and allow access to the full complement of stereoisomeric products via simple catalyst permutation. The successful execution of the dual-electrocatalytic strategy programmed via electrooxidative activation provides a significant conceptual advantage and will serve as a useful foundation for further research into cooperative stereocontrolled radical transformations and diversity-oriented synthesis.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
33
|
Roy S, Vargas DA, Ma P, Sengupta A, Zhu L, Houk KN, Fasan R. Stereoselective Construction of β-, γ-, and δ-Lactam Rings via Enzymatic C-H Amidation. Nat Catal 2024; 7:65-76. [PMID: 38584987 PMCID: PMC10997382 DOI: 10.1038/s41929-023-01068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/23/2023] [Indexed: 04/09/2024]
Abstract
Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Methods for the asymmetric synthesis of these molecules are therefore highly desirable, particularly through the selective functionalization of unreactive aliphatic C-H bonds. Here we show the development of a strategy for the asymmetric synthesis of β-, γ-, and δ-lactams via hemoprotein-catalysed intramolecular C-H amidation reaction with readily available dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation yielding the desired lactam products in high yields, high enantioselectivity, and on preparative scale. Mechanistic and computational studies elucidate the nature of the C-H amination and enantiodetermining steps and provide insights into protein-mediated control of regioselectivity and stereoselectivity. Additionally, an alkaloid natural product and a drug molecule were synthesized chemoenzymatically in much fewer steps (7-8 vs. 11-12) than previously reported, further demonstrating the power of biosynthetic strategy for the preparation of complex bioactive molecules.
Collapse
Affiliation(s)
- Satyajit Roy
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
- Current affiliation: Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - David A. Vargas
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
- Current affiliation: Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an, China
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
- Current affiliation: Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
34
|
Li J, Kumar A, Lewis JC. Non-native Intramolecular Radical Cyclization Catalyzed by a B 12 -Dependent Enzyme. Angew Chem Int Ed Engl 2023; 62:e202312893. [PMID: 37874184 PMCID: PMC11328698 DOI: 10.1002/anie.202312893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Despite the unique reactivity of vitamin B12 and its derivatives, B12 -dependent enzymes remain underutilized in biocatalysis. In this study, we repurposed the B12 -dependent transcription factor CarH to enable non-native radical cyclization reactions. An engineered variant of this enzyme, CarH*, catalyzes the formation γ- and δ-lactams through either redox-neutral or reductive ring closure with marked enhancement of reactivity and selectivity relative to the free B12 cofactor. CarH* also catalyzes an unusual spirocyclization by dearomatization of pendant arenes to produce bicyclic 1,3-diene products instead of 1,4-dienes provided by existing methods. These results and associated mechanistic studies highlight the importance of protein scaffolds for controlling the reactivity of B12 and expanding the synthetic utility of B12 -dependent enzymes.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Amardeep Kumar
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
35
|
Cárdenas-Moreno Y, González-Bacerio J, García Arellano H, Del Monte-Martínez A. Oxidoreductase enzymes: Characteristics, applications, and challenges as a biocatalyst. Biotechnol Appl Biochem 2023; 70:2108-2135. [PMID: 37753743 DOI: 10.1002/bab.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
Oxidoreductases are enzymes with distinctive characteristics that favor their use in different areas, such as agriculture, environmental management, medicine, and analytical chemistry. Among these enzymes, oxidases, dehydrogenases, peroxidases, and oxygenases are very interesting. Because their substrate diversity, they can be used in different biocatalytic processes by homogeneous and heterogeneous catalysis. Immobilization of these enzymes has favored their use in the solution of different biotechnological problems, with a notable increase in the study and optimization of this technology in the last years. In this review, the main structural and catalytical features of oxidoreductases, their substrate specificity, immobilization, and usage in biocatalytic processes, such as bioconversion, bioremediation, and biosensors obtainment, are presented.
Collapse
Affiliation(s)
- Yosberto Cárdenas-Moreno
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Jorge González-Bacerio
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, Havana, Cuba
| | - Humberto García Arellano
- Department of Environmental Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University, Lerma, Mexico, Mexico
| | - Alberto Del Monte-Martínez
- Laboratory for Enzyme Technology, Centre for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| |
Collapse
|
36
|
Yuan X, Zhang Y, Li Y, Yin J, Wang S, Xiong T, Zhang Q. Asymmetric Radical Oxyboration of β-Substituted Styrenes via Late-Stage Stereomutation. Angew Chem Int Ed Engl 2023; 62:e202313770. [PMID: 37819256 DOI: 10.1002/anie.202313770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Herein, we report an unprecedented copper-catalyzed highly enantio- and diastereoselective radical oxyboration of β-substituted styrenes. The lynchpin of success is ascribed to the development of a late-stage stereomutation strategy, which enables enantioenriched cis-isomers among a couple of early-generated diastereomers to be converted into trans-isomer counterparts, thus fulfilling high diastereocontrol; while the degree of enantio-differentiation is determined by the borocupration process of the C=C bond. This reaction provides an efficient protocol to access enantioenriched trans-1,2- dioxygenation products. The value of this method has further been highlighted in a diversity of follow-up stereospecific transformations and further modifying complex molecules.
Collapse
Affiliation(s)
- Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yiliang Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- Department State Key Laboratory of Organometallic Chemistry, Institution Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
37
|
Buller R, Lutz S, Kazlauskas RJ, Snajdrova R, Moore JC, Bornscheuer UT. From nature to industry: Harnessing enzymes for biocatalysis. Science 2023; 382:eadh8615. [PMID: 37995253 DOI: 10.1126/science.adh8615] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Biocatalysis harnesses enzymes to make valuable products. This green technology is used in countless applications from bench scale to industrial production and allows practitioners to access complex organic molecules, often with fewer synthetic steps and reduced waste. The last decade has seen an explosion in the development of experimental and computational tools to tailor enzymatic properties, equipping enzyme engineers with the ability to create biocatalysts that perform reactions not present in nature. By using (chemo)-enzymatic synthesis routes or orchestrating intricate enzyme cascades, scientists can synthesize elaborate targets ranging from DNA and complex pharmaceuticals to starch made in vitro from CO2-derived methanol. In addition, new chemistries have emerged through the combination of biocatalysis with transition metal catalysis, photocatalysis, and electrocatalysis. This review highlights recent key developments, identifies current limitations, and provides a future prospect for this rapidly developing technology.
Collapse
Affiliation(s)
- R Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - S Lutz
- Codexis Incorporated, Redwood City, CA 94063, USA
| | - R J Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - R Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - J C Moore
- MRL, Merck & Co., Rahway, NJ 07065, USA
| | - U T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Greifswald, Germany
| |
Collapse
|
38
|
Moser D, Schmidt TA, Sparr C. Diastereodivergent Catalysis. JACS AU 2023; 3:2612-2630. [PMID: 37885579 PMCID: PMC10598570 DOI: 10.1021/jacsau.3c00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Alongside enantioselective catalysis, synthetic chemists are often confronted by the challenge of achieving catalyst control over the relative configuration to stereodivergently access desired diastereomers. Typically, these approaches iteratively or simultaneously control multiple stereogenic units for which dual catalytic methods comprising sequential, relay, and synergistic catalysis emerged as particularly efficient strategies. In this Perspective, the benefits and challenges of catalyst-controlled diastereodivergence in the construction of carbon stereocenters are discussed on the basis of illustrative examples. The concepts are then transferred to diastereodivergent catalysis for atropisomeric systems with twofold and higher-order stereogenicity as well as diastereodivergent catalyst control over E- and Z-configured alkenes.
Collapse
Affiliation(s)
| | | | - Christof Sparr
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
39
|
Chen H, Fu W, Yang Y. P450-catalyzed atom transfer radical cyclization. Methods Enzymol 2023; 693:31-49. [PMID: 37977735 PMCID: PMC11289761 DOI: 10.1016/bs.mie.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cytochromes P450 have been extensively studied for both fundamental enzymology and biotechnological applications. Over the past decade, by taking inspiration from synthetic organic chemistry, new classes of P450-catalyzed reactions that were not previously encountered in the biological world have been developed to address challenging problems in organic chemistry and asymmetric catalysis. In particular, by repurposing and evolving P450 enzymes, stereoselective biocatalytic atom transfer radical cyclization (ATRC) was developed as a new means to impose stereocontrol over transient free radical intermediates. In this chapter, we describe the detailed experimental protocol for the directed evolution of P450 atom transfer radical cyclases. We also delineate protocols for analytical and preparative scale biocatalytic atom transfer radical cyclization processes. These methods will find application in the development of new P450-catalyzed radical reactions, as well as other synthetically useful processes.
Collapse
Affiliation(s)
- Heyu Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
40
|
Nam H, An JS, Lee J, Yun Y, Lee H, Park H, Jung Y, Oh KB, Oh DC, Kim S. Exploring the Diverse Landscape of Biaryl-Containing Peptides Generated by Cytochrome P450 Macrocyclases. J Am Chem Soc 2023; 145:22047-22057. [PMID: 37756205 DOI: 10.1021/jacs.3c07140] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Cytochrome P450 enzymes (P450s) catalyze diverse oxidative cross-coupling reactions between aromatic substrates in the natural product biosynthesis. Specifically, P450s install distinct biaryl macrocyclic linkages in three families of ribosomally synthesized and post-translationally modified peptides (RiPPs). However, the chemical diversity of biaryl-containing macrocyclic RiPPs remains largely unexplored. Here, we demonstrate that P450s have the capability to generate diverse biaryl linkages on RiPPs, collectively named "cyptides". Homology-based genome mining for P450 macrocyclases revealed 19 novel groups of homologous biosynthetic gene clusters (BGCs) with distinct aromatic residue patterns in the precursor peptides. Using the P450-modified precursor peptides heterologously coexpressed with corresponding P450s in Escherichia coli, we determined the NMR structures of three novel biaryl-containing peptides─the enzymatic products, roseovertin (1), rubrin (2), and lapparbin (3)─and confirmed the formation of three unprecedented or rare biaryl linkages: Trp C-7'-to-His N-τ in 1, Trp C-7'-to-Tyr C-6 in 2, and Tyr C-6-to-Trp N-1' in 3. Biochemical characterization indicated that certain P450s in these pathways have a relaxed substrate specificity. Overall, our studies suggest that P450 macrocyclases have evolved to create diverse biaryl linkages in RiPPs, promoting the exploration of a broader chemical space for biaryl-containing peptides encoded in bacterial genomes.
Collapse
|
41
|
Wang B, Lu Y, Cha L, Chen TY, Palacios PM, Li L, Guo Y, Chang WC, Chen C. Repurposing Iron- and 2-Oxoglutarate-Dependent Oxygenases to Catalyze Olefin Hydration. Angew Chem Int Ed Engl 2023; 62:e202311099. [PMID: 37639670 PMCID: PMC10592062 DOI: 10.1002/anie.202311099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Mononuclear nonheme iron(II) and 2-oxoglutarate (Fe/2OG)-dependent oxygenases and halogenases are known to catalyze a diverse set of oxidative reactions, including hydroxylation, halogenation, epoxidation, and desaturation in primary metabolism and natural product maturation. However, their use in abiotic transformations has mainly been limited to C-H oxidation. Herein, we show that various enzymes of this family, when reconstituted with Fe(II) or Fe(III), can catalyze Mukaiyama hydration-a redox neutral transformation. Distinct from the native reactions of the Fe/2OG enzymes, wherein oxygen atom transfer (OAT) catalyzed by an iron-oxo species is involved, this nonnative transformation proceeds through a hydrogen atom transfer (HAT) pathway in a 2OG-independent manner. Additionally, in contrast to conventional inorganic catalysts, wherein a dinuclear iron species is responsible for HAT, the Fe/2OG enzymes exploit a mononuclear iron center to support this reaction. Collectively, our work demonstrates that Fe/2OG enzymes have utility in catalysis beyond the current scope of catalytic oxidation.
Collapse
Affiliation(s)
- Bingnan Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yong Lu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lide Cha
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Tzu-Yu Chen
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Philip M Palacios
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Liping Li
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Wei-Chen Chang
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
| | - Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
42
|
Calvó-Tusell C, Liu Z, Chen K, Arnold FH, Garcia-Borràs M. Reversing the Enantioselectivity of Enzymatic Carbene N-H Insertion Through Mechanism-Guided Protein Engineering. Angew Chem Int Ed Engl 2023; 62:e202303879. [PMID: 37260412 DOI: 10.1002/anie.202303879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
We report a computationally driven approach to access enantiodivergent enzymatic carbene N-H insertions catalyzed by P411 enzymes. Computational modeling was employed to rationally guide engineering efforts to control the accessible conformations of a key lactone-carbene (LAC) intermediate in the enzyme active site by installing a new H-bond anchoring point. This H-bonding interaction controls the relative orientation of the reactive carbene intermediate, orienting it for an enantioselective N-nucleophilic attack by the amine substrate. By combining MD simulations and site-saturation mutagenesis and screening targeted to only two key residues, we were able to reverse the stereoselectivity of previously engineered S-selective P411 enzymes. The resulting variant, L5_FL-B3, accepts a broad scope of amine substrates for N-H insertion with excellent yields (up to >99 %), high efficiency (up to 12 300 TTN), and good enantiocontrol (up to 7 : 93 er).
Collapse
Affiliation(s)
- Carla Calvó-Tusell
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Zhen Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| |
Collapse
|
43
|
Bauer T, Hakim YZ, Morawska P. Recent Advances in the Enantioselective Radical Reactions. Molecules 2023; 28:6252. [PMID: 37687085 PMCID: PMC10489153 DOI: 10.3390/molecules28176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The review covers research published since 2017 and is focused on enantioselective synthesis using radical reactions. It describes recent approaches to the asymmetric synthesis of chiral molecules based on the application of the metal catalysis, dual metal and organocatalysis and finally, pure organocatalysis including enzyme catalysis. This review focuses on the synthetic aspects of the methodology and tries to show which compounds can be obtained in enantiomerically enriched forms.
Collapse
Affiliation(s)
- Tomasz Bauer
- Faculty of Chemistry, University of Warsaw, L Pasteura 1, PL-02-093 Warsaw, Poland; (Y.Z.H.); (P.M.)
| | | | | |
Collapse
|
44
|
Ouyang Y, Turek-Herman J, Qiao T, Hyster TK. Asymmetric Carbohydroxylation of Alkenes Using Photoenzymatic Catalysis. J Am Chem Soc 2023; 145:17018-17022. [PMID: 37498747 PMCID: PMC10875682 DOI: 10.1021/jacs.3c06618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Alkene difunctionalizations enable the synthesis of structurally elaborated products from simple and ubiquitous starting materials in a single chemical step. Carbohydroxylations of olefins represent a family of reactivity that furnish structurally complex alcohols. While examples of this type of three-component coupling have been reported, catalytic asymmetric examples remain elusive. Here, we report an enzyme-catalyzed asymmetric carbohydroxylation of alkenes catalyzed by flavin-dependent "ene"-reductases to produce enantioenriched tertiary alcohols. Seven rounds of protein engineering reshape the enzyme's active site to increase activity and enantioselectivity. Mechanistic studies suggest that C-O bond formation occurs via a 5-endo-trig cyclization with the pendant ketone to afford an α-oxy radical which is oxidized and hydrolyzed to form the product. This work demonstrates photoenzymatic reactions involving "ene"-reductases can terminate radicals via mechanisms other than hydrogen atom transfer, expanding their utility in chemical synthesis.
Collapse
Affiliation(s)
- Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Joshua Turek-Herman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
45
|
Cheng L, Li D, Mai BK, Bo Z, Cheng L, Liu P, Yang Y. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 2023; 381:444-451. [PMID: 37499030 PMCID: PMC10444520 DOI: 10.1126/science.adg2420] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Developing synthetically useful enzymatic reactions that are not known in biochemistry and organic chemistry is an important challenge in biocatalysis. Through the synergistic merger of photoredox catalysis and pyridoxal 5'-phosphate (PLP) biocatalysis, we developed a pyridoxal radical biocatalysis approach to prepare valuable noncanonical amino acids, including those bearing a stereochemical dyad or triad, without the need for protecting groups. Using engineered PLP enzymes, either enantiomeric product could be produced in a biocatalyst-controlled fashion. Synergistic photoredox-pyridoxal radical biocatalysis represents a powerful platform with which to discover previously unknown catalytic reactions and to tame radical intermediates for asymmetric catalysis.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Dian Li
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Zhiyu Bo
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Lida Cheng
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering (BMSE) Program, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
46
|
Yang X, Zhou J, Wu S, Yu W. Copper-mediated bromine atom transfer radical cyclisation of unactivated alkyl bromides. Chem Commun (Camb) 2023. [PMID: 37401443 DOI: 10.1039/d3cc02430j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The atom transfer radical cyclisation of unactivated alkyl bromides was realized by using a catalytic system of CuBr and Me6-TREN. This protocol is applicable to the preparation of five-membered rings from unsaturated primary and secondary bromides.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jianlin Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shuoren Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
47
|
Fu W, Neris NM, Fu Y, Zhao Y, Krohn-Hansen B, Liu P, Yang Y. Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. Nat Catal 2023; 6:628-636. [PMID: 38404758 PMCID: PMC10882986 DOI: 10.1038/s41929-023-00986-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 06/13/2023] [Indexed: 02/27/2024]
Abstract
The effective induction of high levels of stereocontrol for free radical-mediated transformations represents a notorious challenge in asymmetric catalysis. Herein, we describe a novel metalloredox biocatalysis strategy to repurpose natural cytochromes P450 to catalyse asymmetric radical cyclisation to arenes through an unnatural electron transfer mechanism. Empowered by directed evolution, engineered P450s allowed diverse radical cyclisation selectivities to be accomplished in a catalyst-controlled fashion: P450arc1 and P450arc2 facilitated enantioconvergent transformations of racemic substrates, giving rise to either enantiomer of the product with excellent total turnover numbers (up to 12,000). In addition to these enantioconvergent variants, another engineered radical cyclase, P450arc3, permitted efficient kinetic resolution of racemic chloride substrates (S factor = 18). Furthermore, computational studies revealed a proton-coupled electron transfer (PCET) mechanism for the radical-polar crossover step, suggesting the potential role of the haem carboxylate as a base catalyst. Collectively, the excellent tunability of this metalloenzyme family provides an exciting platform for harnessing free radical intermediates for asymmetric catalysis.
Collapse
Affiliation(s)
- Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Natalia M. Neris
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yunlong Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Benjamin Krohn-Hansen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
48
|
Chen JJ, Zhang JY, Fang JH, Du XY, Xia HD, Cheng B, Li N, Yu ZL, Bian JQ, Wang FL, Zheng JJ, Liu WL, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Enantioconvergent Radical C(sp 3)-N Cross-Coupling of Activated Racemic Alkyl Halides with (Hetero)aromatic Amines under Ambient Conditions. J Am Chem Soc 2023. [PMID: 37392183 DOI: 10.1021/jacs.3c02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The enantioconvergent C(sp3)-N cross-coupling of racemic alkyl halides with (hetero)aromatic amines represents an ideal means to afford enantioenriched N-alkyl (hetero)aromatic amines yet has remained unexplored due to the catalyst poisoning specifically for strong-coordinating heteroaromatic amines. Here, we demonstrate a copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. The key to success is the judicious selection of appropriate multidentate anionic ligands through readily fine-tuning both electronic and steric properties for the formation of a stable and rigid chelating Cu complex. Thus, this kind of ligand could not only enhance the reducing capability of a copper catalyst to provide an enantioconvergent radical pathway but also avoid the coordination with other coordinating heteroatoms, thereby overcoming catalyst poisoning and/or chiral ligand displacement. This protocol covers a wide range of coupling partners (89 examples for activated racemic secondary/tertiary alkyl bromides/chlorides and (hetero)aromatic amines) with high functional group compatibility. When allied with follow-up transformations, it provides a highly flexible platform to access synthetically useful enantioenriched amine building blocks.
Collapse
Affiliation(s)
- Ji-Jun Chen
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Yong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jia-Heng Fang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuan-Yi Du
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai-Dong Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Cheng
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Nan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhang-Long Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fu-Li Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Jing Zheng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei-Long Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
49
|
Zhou H, Fan LW, Ren YQ, Wang LL, Yang CJ, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Chemo- and Enantioselective Radical 1,2-Carbophosphonylation of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202218523. [PMID: 36722939 DOI: 10.1002/anie.202218523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
The copper-catalyzed enantioselective radical difunctionalization of alkenes from readily available alkyl halides and organophosphorus reagents possessing a P-H bond provides an appealing approach for the synthesis of α-chiral alkyl phosphorus compounds. The major challenge arises from the easy generation of a P-centered radical from the P-H-type reagent and its facile addition to the terminal side of alkenes, leading to reverse chemoselectivity. We herein disclose a radical 1,2-carbophosphonylation of styrenes in a highly chemo- and enantioselective manner. The key to the success lies in not only the implementation of dialkyl phosphites with a strong bond dissociation energy to promote the desired chemoselectivity but also the utilization of an anionic chiral N,N,N-ligand to forge the chiral C(sp3 )-P bond. The developed Cu/N,N,N-ligand catalyst has enriched our library of single-electron transfer catalysts in the enantioselective radical transformations.
Collapse
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang-Qing Ren
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Lei Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang-Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
50
|
Guo H, Sun N, Guo J, Zhou TP, Tang L, Zhang W, Deng Y, Liao RZ, Wu Y, Wu G, Zhong F. Expanding the Promiscuity of a Copper-Dependent Oxidase for Enantioselective Cross-Coupling of Indoles. Angew Chem Int Ed Engl 2023; 62:e202219034. [PMID: 36789864 DOI: 10.1002/anie.202219034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket. This study is significant with regard to expanding the catalytic repertoire of natural multicopper oxidases as well as enlarging the synthetic toolbox for sustainable asymmetric oxidative coupling.
Collapse
Affiliation(s)
- Huan Guo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Ningning Sun
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Juan Guo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Langyu Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Wentao Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yaming Deng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|