1
|
Naganuma F, Girgin B, Agu ABS, Hirano K, Nakamura T, Yanai K, Vetrivelan R, Mochizuki T, Yanagisawa M, Yoshikawa T. Pharmacological inhibition of histamine N-methyltransferase extends wakefulness and suppresses cataplexy in a mouse model of narcolepsy. Sleep 2025; 48:zsae244. [PMID: 39441998 DOI: 10.1093/sleep/zsae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Histamine, a neurotransmitter, plays a predominant role in maintaining wakefulness. Furthermore, our previous studies showed that histamine N-methyltransferase (HNMT), a histamine-metabolizing enzyme, is important for regulating brain histamine concentration. However, the effects of pharmacological HNMT inhibition on mouse behavior, including the sleep-wake cycle and cataplexy, in a mouse model of narcolepsy have not yet been investigated. In the present study, we investigated the effects of metoprine, an HNMT inhibitor with high blood-brain barrier permeability, in wild-type (WT) and orexin-deficient (OxKO) narcoleptic mice. Metoprine increased brain histamine concentration in a time- and dose-dependent manner without affecting peripheral histamine concentrations. Behavioral tests showed that metoprine increased locomotor activity in both novel and familiar environments, but did not alter anxiety-like behavior. Sleep analysis showed that metoprine increased wakefulness and decreased non-rapid eye movement (NREM) sleep through the activation of the histamine H1 receptor (H1R) in WT mice. In contrast, the reduction of rapid eye movement (REM) sleep by metoprine occurred independent of H1R. In OxKO mice, metoprine was found to prolong wakefulness and robustly suppress cataplexy. In addition, metoprine has a greater therapeutic effect on cataplexy than pitolisant, which induces histamine release in the brain and has been approved for patients with narcolepsy. These data demonstrate that HNMT inhibition has a strong effect on wakefulness, demonstrating therapeutic potential against cataplexy in narcolepsy.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Birkan Girgin
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Anne Bernadette S Agu
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Kyosuke Hirano
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University, Iwate, Japan
| | - Kazuhiko Yanai
- Cyclotron and Radioisotope Center, Tohoku University, Miyagi, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Takatoshi Mochizuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
2
|
Keserű D, Hajnik T, Pethő M, Détári L, Van Den Bossche M, Tóth A. Simultaneous activation of different subtypes of dopamine receptors may lead to activation of homeostatic sleep regulatory mechanisms. Pharmacol Biochem Behav 2025; 248:173954. [PMID: 39798808 DOI: 10.1016/j.pbb.2025.173954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/06/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Dopaminergic system gains importance in homeostatic sleep regulation, but the role of different dopamine receptors is not well-defined. 72 h rat electrocorticogram and sleep recordings were made after single application of dopaminergic drugs in clinical use or at least underwent clinical trials. The non-selective agonist apomorphine evoked short pharmacological sleep deprivation with intense wakefulness followed by pronounced sleep rebound. D2 agonist bromocriptine induced moderate and extended increase in wakefulness without a homeostatic sleep replacement but downregulated slow wave sleep need for 72 h. Selective D1 agonist SKF-38393 failed to induce enhanced waking sufficient for sleep replacement. High-dose D2 antagonism by sulpiride temporarily enhanced wakefulness. All drugs evoked extended (72 h) sleep changes after single application. Opposite sleep changes could be seen after the application of different doses in case of both bromocriptine and sulpiride. Theta, beta and gamma power reflected intensity differences in drug-induced wakefulness stages. Apomorphine- and high sulpiride dose-induced waking showed elevated power in all three frequency bands. Bromocriptine-induced wakefulness dominated by beta activity. Enhancement of more, than one type of electrocorticogram activities during wakefulness was a prerequisite for the activation of sleep homeostasis. According to present data, D1- or D2-like receptor agonism are not separately involved in the homeostatic regulation of slow wave sleep. Simultaneous and non-selective agonism on DA receptors is the most effective way to elicit intense W, which is followed by slow wave sleep rebound. REM sleep rebound could be evoked by D2 agonism. Rebound indicates the activation of homeostatic sleep regulation, but with unknown exact mechanisms.
Collapse
Affiliation(s)
- Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Maarten Van Den Bossche
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium; Neuropsychiatry, Research Group Psychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary.
| |
Collapse
|
3
|
Osorio-Forero A, Foustoukos G, Cardis R, Cherrad N, Devenoges C, Fernandez LMJ, Lüthi A. Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM-REM sleep cycle. Nat Neurosci 2025; 28:84-96. [PMID: 39587312 DOI: 10.1038/s41593-024-01822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
The noradrenergic locus coeruleus (LC) regulates arousal levels during wakefulness, but its role in sleep remains unclear. Here, we show in mice that fluctuating LC neuronal activity partitions non-rapid-eye-movement sleep (NREMS) into two brain-autonomic states that govern the NREMS-REMS cycle over ~50-s periods; high LC activity induces a subcortical-autonomic arousal state that facilitates cortical microarousals, whereas low LC activity is required for NREMS-to-REMS transitions. This functional alternation regulates the duration of the NREMS-REMS cycle by setting permissive windows for REMS entries during undisturbed sleep while limiting these entries to maximally one per ~50-s period during REMS restriction. A stimulus-enriched, stress-promoting wakefulness was associated with longer and shorter levels of high and low LC activity, respectively, during subsequent NREMS, resulting in more microarousal-induced NREMS fragmentation and delayed REMS onset. We conclude that LC activity fluctuations are gatekeepers of the NREMS-REMS cycle and that this role is influenced by adverse wake experiences.
Collapse
Affiliation(s)
- Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Najma Cherrad
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Christiane Devenoges
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Yao L, Liu Y, Li M, Zheng H, Sun M, He M, Zhong Z, Ma S, Huang H, Wang H. The central regulatory effects of acupuncture in treating primary insomnia: a review. Front Neurol 2024; 15:1406485. [PMID: 39719980 PMCID: PMC11666528 DOI: 10.3389/fneur.2024.1406485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic insomnia has the potential to significantly impact physical well-being, occupational performance, and overall quality of life. This review summarizes the clinical and basic research on the central regulatory mechanism of acupuncture in treating primary insomnia (PI), aiming to explore the clinical effectiveness and possible mechanism of acupuncture in treating PI. The currently available drugs for insomnia exhibit notable adverse effects and tend to induce dependence. Empirical evidence from clinical investigations has demonstrated that acupuncture has a favorable safety profile while substantially enhancing the sleep quality of individuals diagnosed with PI. The combination of acupuncture and medication has been shown to augment the therapeutic efficacy of medication while reducing the dosage and mitigating the occurrence of unwanted effects. A review of the current clinical and basic research on the effects of acupuncture on central alterations in PI patients revealed that acupuncture exerts a regulatory influence on the functional activity of brain regions implicated in cognitive and emotional processes. Additionally, acupuncture has been found to impact metabolite levels and circadian clock gene expression and enhance inflammatory responses and energy metabolism. Notably, a single acupuncture intervention had a modulatory effect on functional brain regions similar to that of cumulative acupuncture. The current clinical trials on acupuncture have been limited in scale, and basic research has focused on a single objective. With the continuous progress of brain research, extensive clinical randomized controlled trials of high quality can be combined with various neuroimaging technology modalities. Moreover, different targets and pathways can be explored through basic research. This may serve to enhance the understanding of the fundamental central nervous system mechanisms involved in the efficacy of acupuncture in treating PI.
Collapse
Affiliation(s)
- Lin Yao
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanze Liu
- Acupuncture and Tuina Center, The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Mengyuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Mengmeng Sun
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min He
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Haipeng Huang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Hongfeng Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Ma YM, Zhang DP, Zhang HL, Cao FZ, Zhou Y, Wu B, Wang LZ, Xu B. Why is vestibular migraine associated with many comorbidities? J Neurol 2024; 271:7422-7433. [PMID: 39302416 DOI: 10.1007/s00415-024-12692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Vestibular migraine (VM) is a usual trigger of episodic vertigo. Patients with VM often experience spinning, shaking, or unsteady sensations, which are usually also accompanied by photophobia, phonophobia, motor intolerance, and more. VM is often associated with a number of comorbidities. Recurrent episodes of VM can affect the patient's emotions, sleep, and cognitive functioning to varying degrees. Patients with VM may be accompanied by adverse moods such as anxiety, fear, and depression, which can gradually develop into anxiety disorders or depressive disorders. Sleep disorders are also a common concomitant symptom of VM, which significantly lower patients' quality of life. The influence of anxiety disorders and sleep disorders may reduce cognitive functions of VM, such as visuospatial ability, attention, and memory decline. Clinically, it is also common to see VM comorbid with other vestibular disorders, making the diagnosis more difficult. VM episodes are relieved but lingering, in which case VM may coexist with persistent postural-perceptual dizziness (PPPD). Anxiety may be an important bridge between recurrent VM and PPPD. The clinical manifestations of VM and Meniere's disease (MD) overlap considerably, and those who meet the diagnostic criteria for both can be said to have VM/MD comorbidity. VM can also present with positional vertigo, and some patients with VM present with typical benign paroxysmal positional vertigo (BPPV) nystagmus on positional testing. In this paper, we synthesize and analyze the pathomechanisms of VM comorbidity by reviewing the literature. The results show that it may be related to the extensive connectivity of the vestibular system with different brain regions and the close connection of the trigeminovascular system with the periphery of the vestibule. Therefore, it is necessary to pay attention to the diagnosis of comorbidities in VM, synthesize its pathogenesis, and give comprehensive treatment to patients.
Collapse
Affiliation(s)
- Yan-Min Ma
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Dao-Pei Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Huai-Liang Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province, Zhengzhou City, China
| | - Fang-Zheng Cao
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Yu Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Bin Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Ling-Zhe Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, China
| | - Bin Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou City, 310053, China.
| |
Collapse
|
6
|
Kashiwagi M, Beck G, Kanuka M, Arai Y, Tanaka K, Tatsuzawa C, Koga Y, Saito YC, Takagi M, Oishi Y, Sakaguchi M, Baba K, Ikuno M, Yamakado H, Takahashi R, Yanagisawa M, Murayama S, Sakurai T, Sakai K, Nakagawa Y, Watanabe M, Mochizuki H, Hayashi Y. A pontine-medullary loop crucial for REM sleep and its deficit in Parkinson's disease. Cell 2024; 187:6272-6289.e21. [PMID: 39303715 DOI: 10.1016/j.cell.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Identifying the properties of the rapid eye movement (REM) sleep circuitry and its relation to diseases has been challenging due to the neuronal heterogeneity of the brainstem. Here, we show in mice that neurons in the pontine sublaterodorsal tegmentum (SubLDT) that express corticotropin-releasing hormone-binding protein (Crhbp+ neurons) and project to the medulla promote REM sleep. Within the medullary area receiving projections from Crhbp+ neurons, neurons expressing nitric oxide synthase 1 (Nos1+ neurons) project to the SubLDT and promote REM sleep, suggesting a positively interacting loop between the pons and the medulla operating as a core REM sleep circuit. Nos1+ neurons also project to areas that control wide forebrain activity. Ablating Crhbp+ neurons reduces sleep and impairs REM sleep atonia. In Parkinson's disease patients with REM sleep behavior disorders, CRHBP-immunoreactive neurons are largely reduced and contain pathologic α-synuclein, providing insight into the mechanisms underlying the sleep deficits characterizing this disease.
Collapse
Affiliation(s)
- Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Goichi Beck
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshifumi Arai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumiko Koga
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki C Saito
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Marina Takagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Ikuno
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 605-8507, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Japan Life Science Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shigeo Murayama
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuya Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University Lyon 1, 69373 Lyon, France
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Park S, Heu J, Hoener MC, Kilduff TS. Wakefulness Induced by TAAR1 Partial Agonism in Mice Is Mediated Through Dopaminergic Neurotransmission. Int J Mol Sci 2024; 25:11351. [PMID: 39518904 PMCID: PMC11547084 DOI: 10.3390/ijms252111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is a negative regulator of dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in rodents and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake regulation were due, in part, to DA release. Male C57BL6/J mice (n = 8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R + D2R antagonists, or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle per os. EEG, EMG, subcutaneous temperature, and activity were recorded across the 8 treatments and sleep architecture was analyzed for 6 h post-dosing. As described previously, RO5263397 increased wakefulness and delayed NREM and REM sleep onset. D1, D2, and D1 + D2 pretreatment reduced RO5263397-induced wakefulness for 1-2 h after dosing but only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected the TAAR1-mediated suppression of REM sleep. These results suggest that, whereas the TAAR1 effects on wakefulness are mediated, in part, through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. In contrast, the TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms.
Collapse
Affiliation(s)
- Sunmee Park
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| | - Jasmine Heu
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| | - Marius C. Hoener
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland;
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| |
Collapse
|
8
|
Mu X, Qu L, Yin L, Wang L, Liu X, Liu D. Pichia pastoris secreted peptides crossing the blood-brain barrier and DSIP fusion peptide efficacy in PCPA-induced insomnia mouse models. Front Pharmacol 2024; 15:1439536. [PMID: 39444618 PMCID: PMC11498945 DOI: 10.3389/fphar.2024.1439536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Pichia pastoris-secreted delta sleep inducing peptide and crossing the blood-brain barrier peptides (DSIP-CBBBP) fusion peptides holds significant promise for its potential sleep-enhancing and neurotransmitter balancing effects. This study investigates these properties using a p-chlorophenylalanine (PCPA) -induced insomnia model in mice, an approach akin to traditional methods evaluating sleep-promoting activities in fusion peptides. Aim of the study The research aims to elucidate the sleep-promoting mechanism of DSIP-CBBBP, exploring its impact on neurotransmitter levels and sleep regulation, and to analyze its composition and structure. Materials and methods Using a PCPA-induced insomnia mouse model, the study evaluates the sleep-promoting effects of DSIP-CBBBP. The peptide's influence on neurotransmitters such as 5-HT, glutamate, dopamine, and melatonin is assessed. The functions of DSIP-CBBBP are characterized using biochemical and animal insomnia-induced behavior tests and compared without CBBBP. Results DSIP-CBBBP demonstrates a capacity to modulate neurotransmitter levels, indicated by changes in 5-HT, glutamate, DA, and melatonin. DSIP-CBBBP shows a better restorative effect than DSIP on neurotransmitter imbalance and the potential to enhance sleep. Conclusion The study underscores DSIP-CBBBP potential in correcting neurotransmitter dysregulation and promoting sleep, hinting at its utility in sleep-related therapies.
Collapse
Affiliation(s)
- Xiaoxiao Mu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lijun Qu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liquan Yin
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dingxi Liu
- Department of Clinical medicine, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| |
Collapse
|
9
|
Sulaman BA, Zhang Y, Matosevich N, Kjærby C, Foustoukos G, Andersen M, Eban-Rothschild A. Emerging Functions of Neuromodulation during Sleep. J Neurosci 2024; 44:e1277242024. [PMID: 39358018 PMCID: PMC11450531 DOI: 10.1523/jneurosci.1277-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.
Collapse
Affiliation(s)
- Bibi Alika Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiyao Zhang
- Neuroscience Institute, New York University, New York, New York 10016
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Celia Kjærby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | | |
Collapse
|
10
|
Reichardt R, Király A, Szőllősi Á, Racsmány M, Simor P. A daytime nap with REM sleep is linked to enhanced generalization of emotional stimuli. J Sleep Res 2024; 33:e14177. [PMID: 38369938 DOI: 10.1111/jsr.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
How memory representations are shaped during and after their encoding is a central question in the study of human memory. Recognition responses to stimuli that are similar to those observed previously can hint at the fidelity of the memories or point to processes of generalization at the expense of precise memory representations. Experimental studies utilizing this approach showed that emotions and sleep both influence these responses. Sleep, and more specifically rapid eye movement sleep, is assumed to facilitate the generalization of emotional memories. We studied mnemonic discrimination by the emotional variant of the Mnemonic Separation Task in participants (N = 113) who spent a daytime nap between learning and testing compared with another group that spent an equivalent time awake between the two sessions. Our findings indicate that the discrimination of similar but previously not seen items from previously seen ones is enhanced in case of negative compared with neutral and positive stimuli. Moreover, whereas the sleep and the wake groups did not differ in memory performance, participants entering rapid eye movement sleep exhibited increased generalization of emotional memories. Our findings indicate that entering into rapid eye movement sleep during a daytime nap shapes emotional memories in a way that enhances recognition at the expense of detailed memory representations.
Collapse
Affiliation(s)
- Richárd Reichardt
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Király
- National Institute of Locomotor Diseases and Disabilities, Budapest, Hungary
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Centre for Cognitive Medicine, University of Szeged, Szeged, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Centre for Cognitive Medicine, University of Szeged, Szeged, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Park S, Heu J, Hoener MC, Kilduff TS. Wakefulness Induced by TAAR1 Partial Agonism is Mediated Through Dopaminergic Neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612122. [PMID: 39314371 PMCID: PMC11419104 DOI: 10.1101/2024.09.09.612122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) is known to negatively regulate dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in mice, rats, and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake were due, at least in part, to DA release. Male C57BL6/J mice (n=8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R+D2R antagonists or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle (10% DMSO in DI water) at ZT6 per os. EEG, EMG, subcutaneous temperature, and activity were recorded in each mouse across the 8 treatment conditions and sleep architecture was analyzed for 6 hours post-dosing. Consistent with our previous reports, RO5263397 increased wakefulness as well as the latency to NREM and REM sleep. D1, D2, and D1+D2 pretreatment reduced RO5263397-induced wakefulness during the first 1-2 hours after dosing, but only the D1+D2 combination attenuated the wake-promoting effect of RO5263397 from ZT6-8, mostly by increasing NREM sleep. Although D1+D2 antagonism blocked the wake-promoting effect of RO5263397, only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected TAAR1-mediated suppression of REM sleep. These results suggest that, whereas TAAR1 effects on wakefulness are mediated in part through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. By contrast, TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms.
Collapse
Affiliation(s)
- Sunmee Park
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Jasmine Heu
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Marius C. Hoener
- Neuroscience, Ophthalmology and Rare Diseases DTA, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| |
Collapse
|
12
|
Congiu P, Puligheddu M, Capodiferro AM, Falqui SG, Tamburrino L, Figorilli M, Plazzi G, Gagliano A. Narcolepsy and pediatric acute-onset neuropsychiatric syndrome: A case report that suggests a putative link between the two disorders. Sleep Med 2024; 121:370-374. [PMID: 39079372 DOI: 10.1016/j.sleep.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 08/19/2024]
Abstract
Narcolepsy with cataplexy (NT1) is a rare hypothalamic disorder that presents with a dysregulation of the sleep-wake cycle (i.e., excessive daytime sleepiness and sleep and cataplectic attacks) and other motor, cognitive, psychiatric, metabolic, and autonomic disturbances, with putative autoimmune pathogenesis. Pediatric acute-onset neuropsychiatric syndrome (PANS) is a clinically heterogeneous disorder that presents with acute-onset obsessive-compulsive symptoms and/or a severe eating restriction, with concomitant cognitive, behavioral, or affective symptoms caused by infections and other environmental triggers provoking an inflammatory brain response, which evolves into a chronic or progressive neuroimmune disorder. In this study, we present the case of a 13-year-old boy with vocal tics and syncopal-like episodes, eventually diagnosed as NT1 and PANS, and from this we discuss the hypothesis that both NT1 and PANS might belong to the same immunological spectrum, resulting in comparable imbalances in key neurotransmitter axes (i.e., orexinergic and dopaminergic), with conceptual and operational implications, especially with regards to the pharmacological tretament.
Collapse
Affiliation(s)
- Patrizia Congiu
- Sleep Disorders Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Monica Puligheddu
- Sleep Disorders Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy.
| | - Agata Maria Capodiferro
- Section of Neuroscience & Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Child & Adolescent Neuropsychiatry Unit, "Azienda Ospedaliera Brotzu" Hospital Trust, Cagliari, Italy
| | - Stella Giulia Falqui
- Section of Neuroscience & Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Child & Adolescent Neuropsychiatry Unit, "Azienda Ospedaliera Brotzu" Hospital Trust, Cagliari, Italy
| | - Ludovica Tamburrino
- Sleep Disorders Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Michela Figorilli
- Sleep Disorders Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Gagliano
- Section of Neuroscience & Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Child & Adolescent Neuropsychiatry Unit, "Azienda Ospedaliera Brotzu" Hospital Trust, Cagliari, Italy
| |
Collapse
|
13
|
Zhang Z, Zhang W, Fang Y, Wang N, Liu G, Zou N, Song Z, Liu H, Wang L, Xiao Q, Zhao J, Wang Y, Lei T, Zhang C, Liu X, Zhang B, Luo F, Xia J, He C, Hu Z, Ren S, Zhao H. A potentiation of REM sleep-active neurons in the lateral habenula may be responsible for the sleep disturbance in depression. Curr Biol 2024; 34:3287-3300.e6. [PMID: 38944036 DOI: 10.1016/j.cub.2024.05.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 07/01/2024]
Abstract
Psychiatric disorders with dysfunction of the lateral habenula (LHb) show sleep disturbance, especially a disinhibition of rapid eye movement (REM) sleep in major depression. However, the role of LHb in physiological sleep control and how LHb contributes to sleep disturbance in major depression remain elusive. Here, we found that functional manipulations of LHb glutamatergic neurons bidirectionally modulated both non-REM (NREM) sleep and REM sleep. Activity recording revealed heterogeneous activity patterns of LHb neurons across sleep/wakefulness cycles, but LHb neurons were preferentially active during REM sleep. Using an activity-dependent tagging method, we selectively labeled a population of REM sleep-active LHb neurons and demonstrated that these neurons specifically promoted REM sleep. Neural circuit studies showed that LHb neurons regulated REM sleep via projections to the ventral tegmental area but not to the rostromedial tegmental nucleus. Furthermore, we found that the increased REM sleep in a depression mouse model was associated with a potentiation of REM sleep-active LHb neurons, including an increased proportion, elevated spike firing, and altered activity mode. Importantly, inhibition of REM sleep-active LHb neurons not only attenuated the increased REM sleep but also alleviated depressive-like behaviors in a depression mouse model. Thus, our results demonstrated that REM sleep-active LHb neurons selectively promoted REM sleep, and a potentiation of these neurons contributed to depression-associated sleep disturbance.
Collapse
Affiliation(s)
- Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yuanyuan Fang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Na Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Guoying Liu
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Nan Zou
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hanshu Liu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Longshuo Wang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Qin Xiao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Juanjuan Zhao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ting Lei
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Cai Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Xiaofeng Liu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
14
|
Hasegawa E, Lazarus M. Mental health: The REM sleep paradox in depression. Curr Biol 2024; 34:R739-R741. [PMID: 39106833 DOI: 10.1016/j.cub.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The relationship between mental disorders and sleep remains unclear. Two new studies show that the lateral habenula, a brain region associated with value-guided behavior, controls REM sleep and promotes emotional stability but also contributes to REM sleep disinhibition in depression.
Collapse
Affiliation(s)
- Emi Hasegawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyoku, Kyoto, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
15
|
Ba W, Nollet M, Yin C, Yu X, Wong S, Miao A, Beckwith EJ, Harding EC, Ma Y, Yustos R, Vyssotski AL, Wisden W, Franks NP. A REM-active basal ganglia circuit that regulates anxiety. Curr Biol 2024; 34:3301-3314.e4. [PMID: 38944034 DOI: 10.1016/j.cub.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EPSom)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep. Inhibiting or exciting EPSom neurons reduced or increased REM sleep duration, respectively. Activation of the sole downstream target of EPSom neurons, Vglut2 cells in the lateral habenula (LHb), increased sleep via the ventral tegmental area (VTA). A simple chemogenetic scheme to periodically inhibit the LHb over 4 days selectively removed a significant amount of cumulative REM sleep. Chronic, but not acute, REM reduction correlated with mice becoming anxious and more sensitive to aversive stimuli. Therefore, we suggest that cumulative REM sleep, in part generated by the EP → LHb → VTA circuit identified here, could contribute to stabilizing reactions to habitual aversive stimuli.
Collapse
Affiliation(s)
- Wei Ba
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Chunyu Yin
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sara Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Edward C Harding
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland
| | - William Wisden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
16
|
Luo ZC, Gao TM. Dopamine Switches Affective States Under Acute Sleep Deprivation. Neurosci Bull 2024; 40:1205-1208. [PMID: 38722463 PMCID: PMC11306665 DOI: 10.1007/s12264-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/08/2024] [Indexed: 08/09/2024] Open
Affiliation(s)
- Zhou-Cai Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
17
|
Henderson F, Dumas S, Gangarossa G, Bernard V, Pujol M, Poirel O, Pietrancosta N, El Mestikawy S, Daumas S, Fabre V. Regulation of stress-induced sleep perturbations by dorsal raphe VGLUT3 neurons in male mice. Cell Rep 2024; 43:114411. [PMID: 38944834 DOI: 10.1016/j.celrep.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.
Collapse
Affiliation(s)
- Fiona Henderson
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; Institut Universitaire de France (IUF), Paris, France
| | - Véronique Bernard
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Marine Pujol
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Odile Poirel
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Sorbonne Université, CNRS UMR 7203, Laboratoire des BioMolécules, 75005 Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC H4H 1R3, Canada
| | - Stéphanie Daumas
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Véronique Fabre
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
18
|
Luppi PH, Malcey J, Chancel A, Duval B, Cabrera S, Fort P. Neuronal network controlling REM sleep. J Sleep Res 2024:e14266. [PMID: 38972672 DOI: 10.1111/jsr.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024]
Abstract
Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Amarine Chancel
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Blandine Duval
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
19
|
Yeh WC, Li YS, Chang YP, Hsu CY. Dopamine agonists in restless leg syndrome treatment and their effects on sleep parameters: A systematic review and meta-analysis. Sleep Med 2024; 119:379-388. [PMID: 38761607 DOI: 10.1016/j.sleep.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Dopamine agonists (DAs) constitute the standard therapeutic scheme for restless leg syndrome (RLS) because they have been proven to be effective. However, DAs may change sleep parameters, thus having adverse effects on patient condition. This meta-analysis clarified the effects of DAs used in RLS treatment on the sleep architecture. METHODS PubMed, Embase, and Cochrane Central databases were searched for randomized control trials (RCT) (up to October 2023) that discussed the effects of DAs on sleep architecture in patients with RLS. A meta-analysis employing a random-effects model was conducted. The patients were divided into subgroups according to individual DAs and treatment duration (1 day or ≥4 weeks). RESULTS Thirteen eligible randomized placebo-controlled trials were included in the assessment. The effects of three DAs (i.e., pramipexole, ropinirole, and rotigotine) on rapid eye movement (REM) sleep, slow-wave sleep (SWS), and sleep efficiency (SE) were analyzed. Overall, pramipexole significantly improved SE but decreased the percentage of REM sleep among treated patients. Ropinirole also enhanced SE compared with the placebo group. Rotigotine did not affect SE and REM sleep. Subgroup analysis found that pramipexole used for 1 day and ≥4 weeks significantly diminished the percentage of REM sleep. Ropinirole used for 1 day showed similar REM sleep patterns. Finally, none of the three DAs affected SWS. CONCLUSIONS This meta-analysis demonstrated that DAs significantly affect sleep parameters.
Collapse
Affiliation(s)
- Wei-Chih Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Sheng Li
- Sleep Disorders Center, Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yang-Pei Chang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yao Hsu
- Sleep Disorders Center, Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Yu Q, Wang Y, Gu L, Shao W, Gu J, Liu L, Lian X, Xu Q, Zhang Y, Yang Y, Zhang Z, Wu Y, Ma H, Shen Y, Ye W, Wu Y, Yang H, Chen L, Nagayasu K, Zhang H. Dorsal raphe nucleus to basolateral amygdala 5-HTergic neural circuit modulates restoration of consciousness during sevoflurane anesthesia. Biomed Pharmacother 2024; 176:116937. [PMID: 38870632 DOI: 10.1016/j.biopha.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The advent of general anesthesia (GA) has significant implications for clinical practice. However, the exact mechanisms underlying GA-induced transitions in consciousness remain elusive. Given some similarities between GA and sleep, the sleep-arousal neural nuclei and circuits involved in sleep-arousal, including the 5-HTergic system, could be implicated in GA. Herein, we utilized pharmacology, optogenetics, chemogenetics, fiber photometry, and retrograde tracing to demonstrate that both endogenous and exogenous activation of the 5-HTergic neural circuit between the dorsal raphe nucleus (DR) and basolateral amygdala (BLA) promotes arousal and facilitates recovery of consciousness from sevoflurane anesthesia. Notably, the 5-HT1A receptor within this pathway holds a pivotal role. Our findings will be conducive to substantially expanding our comprehension of the neural circuit mechanisms underlying sevoflurane anesthesia and provide a potential target for modulating consciousness, ultimately leading to a reduction in anesthetic dose requirements and side effects.
Collapse
Affiliation(s)
- Qian Yu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - LeYuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - XiTing Lian
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - HaiXiang Ma
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Wen Ye
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - YanHui Wu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - HuiFang Yang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - LiHai Chen
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 606-8501, Japan
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
21
|
Davinelli S, Medoro A, Savino R, Scapagnini G. Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cell Mol Neurobiol 2024; 44:52. [PMID: 38916679 PMCID: PMC11199221 DOI: 10.1007/s10571-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
Sleep is a fundamental conserved physiological state across evolution, suggesting vital biological functions that are yet to be fully clarified. However, our understanding of the neural and molecular basis of sleep regulation has increased rapidly in recent years. Among various processes implicated in controlling sleep homeostasis, a bidirectional relationship between sleep and oxidative stress has recently emerged. One proposed function of sleep may be the mitigation of oxidative stress in both brain and peripheral tissues, contributing to the clearance of reactive species that accumulate during wakefulness. Conversely, reactive species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), at physiological levels, may act as signaling agents to regulate redox-sensitive transcriptional factors, enzymes, and other effectors involved in the regulation of sleep. As a primary sensor of intracellular oxidation, the transcription factor NRF2 is emerging as an indispensable component to maintain cellular redox homeostasis during sleep. Indeed, a number of studies have revealed an association between NRF2 dysfunction and the most common sleep conditions, including sleep loss, obstructive sleep apnea, and circadian sleep disturbances. This review examines the evidence of the intricate link between oxidative stress and NRF2 function in the context of sleep, and highlights the potential of NRF2 modulators to alleviate sleep disturbances.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Rosa Savino
- Department of Woman and Child, Neuropsychiatry for Child and Adolescent Unit, General Hospital "Riuniti" of Foggia, Viale Pinto Luigi, 1, 71122, Foggia, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| |
Collapse
|
22
|
Abdou K, Nomoto M, Aly MH, Ibrahim AZ, Choko K, Okubo-Suzuki R, Muramatsu SI, Inokuchi K. Prefrontal coding of learned and inferred knowledge during REM and NREM sleep. Nat Commun 2024; 15:4566. [PMID: 38914541 PMCID: PMC11196720 DOI: 10.1038/s41467-024-48816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Idling brain activity has been proposed to facilitate inference, insight, and innovative problem-solving. However, it remains unclear how and when the idling brain can create novel ideas. Here, we show that cortical offline activity is both necessary and sufficient for building unlearned inferential knowledge from previously acquired information. In a transitive inference paradigm, male C57BL/6J mice gained the inference 1 day after, but not shortly after, complete training. Inhibiting the neuronal computations in the anterior cingulate cortex (ACC) during post-learning either non-rapid eye movement (NREM) or rapid eye movement (REM) sleep, but not wakefulness, disrupted the inference without affecting the learned knowledge. In vivo Ca2+ imaging suggests that NREM sleep organizes the scattered learned knowledge in a complete hierarchy, while REM sleep computes the inferential information from the organized hierarchy. Furthermore, after insufficient learning, artificial activation of medial entorhinal cortex-ACC dialog during only REM sleep created inferential knowledge. Collectively, our study provides a mechanistic insight on NREM and REM coordination in weaving inferential knowledge, thus highlighting the power of idling brain in cognitive flexibility.
Collapse
Affiliation(s)
- Kareem Abdou
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
| | - Masanori Nomoto
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Mohamed H Aly
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Ahmed Z Ibrahim
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
| | - Kiriko Choko
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
| | - Reiko Okubo-Suzuki
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Centre for Open Innovation, Jichi Medical University, Tochigi, 3290498, Japan
- Centre for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 1088639, Japan
| | - Kaoru Inokuchi
- Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan.
| |
Collapse
|
23
|
Zhang Y, Karadas M, Liu J, Gu X, Vöröslakos M, Li Y, Tsien RW, Buzsáki G. Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron 2024; 112:1862-1875.e5. [PMID: 38537642 PMCID: PMC11156550 DOI: 10.1016/j.neuron.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 06/09/2024]
Abstract
A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.
Collapse
Affiliation(s)
| | | | | | - Xinyi Gu
- Neuroscience Institute, New York, NY, USA
| | | | - Yulong Li
- School of Life Science, Peking University, Beijing, China
| | - Richard W Tsien
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
24
|
Dugan BJ, Fraigne JJ, Peever J. REM sleep: Out-dreaming fear. Curr Biol 2024; 34:R510-R512. [PMID: 38772341 DOI: 10.1016/j.cub.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The ability to forget fear-inducing situations is essential for adapting to our environment, but the neural mechanisms underlying 'fear forgetting' remain unclear. Novel findings reveal that the activity of the infralimbic cortex - specifically during REM sleep - contributes to the extinction of fear memory.
Collapse
Affiliation(s)
- Brittany J Dugan
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada
| | - Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto ON, Canada.
| |
Collapse
|
25
|
Peng B, Foilb AR, Manasian Y, Li Y, Deng X, Meloni EG, Ressler KJ, Carlezon WA, Bolshakov VY. Intra-amygdala circuits of sleep disruption-induced anxiety in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.19.594863. [PMID: 38798391 PMCID: PMC11118584 DOI: 10.1101/2024.05.19.594863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Combining mouse genetics, electrophysiology, and behavioral training and testing, we explored how sleep disruption may affect the function of anxiety-controlling circuits, focusing on projections from the basolateral nucleus of the amygdala (BLA) to CRF-positive cells in the lateral division of the central amygdala (CeL). We found in Crh-IRES-Cre::Ai14(tdTomato) reporter female mice that 6 hours of sleep disruption during their non-active (light) cycle may be anxiogenic. Notably, the AMPAR/NMDAR EPSC amplitude ratio at the BLA inputs to CRF-CeL cells (CRF CeL ), assessed with whole-cell recordings in ex vivo experiments, was enhanced in slices from sleep-disrupted mice, whereas paired-pulse ratio (PPR) of the EPSCs induced by two closely spaced presynaptic stimuli remained unchanged. These findings indicate that sleep disruption-associated synaptic enhancements in glutamatergic projections from the BLA to CRF-CeL neurons may be postsynaptically expressed. We found also that the excitation/inhibition (E/I) ratio in the BLA to CRF CeL inputs was increased in sleep-disrupted mice, suggesting that the functional efficiency of excitation in BLA inputs to CRF CeL cells has increased following sleep disruption, thus resulting in their enhanced activation. The latter could be translated into enhanced anxiogenesis as activation of CRF cells in the CeL was shown to promote anxiety-like behaviors.
Collapse
|
26
|
Liu X, Zhao X, Shao Z, Guo Y, Yue L, Liu J, Yu D, Sheng X, Zhu Y, Yuan K. Dual roles of the amygdala-hippocampus circuit in the regulation of rapid eye movement sleep and depression symptoms by repetitive transcranial magnetic stimulation in patients with insomnia. Gen Psychiatr 2024; 37:e101183. [PMID: 38650921 PMCID: PMC11033640 DOI: 10.1136/gpsych-2023-101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Xiaoyang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziqiang Shao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yongjian Guo
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lirong Yue
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dahua Yu
- Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Harada M, Capdevila LS, Wilhelm M, Burdakov D, Patriarchi T. Stimulation of VTA dopamine inputs to LH upregulates orexin neuronal activity in a DRD2-dependent manner. eLife 2024; 12:RP90158. [PMID: 38567902 PMCID: PMC10990487 DOI: 10.7554/elife.90158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Dopamine and orexins (hypocretins) play important roles in regulating reward-seeking behaviors. It is known that hypothalamic orexinergic neurons project to dopamine neurons in the ventral tegmental area (VTA), where they can stimulate dopaminergic neuronal activity. Although there are reciprocal connections between dopaminergic and orexinergic systems, whether and how dopamine regulates the activity of orexin neurons is currently not known. Here we implemented an opto-Pavlovian task in which mice learn to associate a sensory cue with optogenetic dopamine neuron stimulation to investigate the relationship between dopamine release and orexin neuron activity in the lateral hypothalamus (LH). We found that dopamine release can be evoked in LH upon optogenetic stimulation of VTA dopamine neurons and is also naturally evoked by cue presentation after opto-Pavlovian learning. Furthermore, orexin neuron activity could also be upregulated by local stimulation of dopaminergic terminals in the LH in a way that is partially dependent on dopamine D2 receptors (DRD2). Our results reveal previously unknown orexinergic coding of reward expectation and unveil an orexin-regulatory axis mediated by local dopamine inputs in the LH.
Collapse
Affiliation(s)
- Masaya Harada
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
| | | | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
| | - Denis Burdakov
- Neuroscience Center Zürich, University and ETH ZürichZürichSwitzerland
- Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of ZürichZürichSwitzerland
- Neuroscience Center Zürich, University and ETH ZürichZürichSwitzerland
| |
Collapse
|
28
|
Bandarabadi M, Prouvot Bouvier PH, Corsi G, Tafti M. The paradox of REM sleep: Seven decades of evolution. Sleep Med Rev 2024; 74:101918. [PMID: 38457935 DOI: 10.1016/j.smrv.2024.101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | | | - Giorgio Corsi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Luppi PH, Chancel A, Malcey J, Cabrera S, Fort P, Maciel RM. Which structure generates paradoxical (REM) sleep: The brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med Rev 2024; 74:101907. [PMID: 38422648 DOI: 10.1016/j.smrv.2024.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France.
| | - Amarine Chancel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| | - Renato M Maciel
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, SLEEP Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France; University Claude Bernard, Lyon 1, Lyon, France
| |
Collapse
|
30
|
Vidal-Ortiz A, Blanco-Centurion C, Shiromani PJ. Unilateral optogenetic stimulation of Lhx6 neurons in the zona incerta increases REM sleep. Sleep 2024; 47:zsad217. [PMID: 37599437 PMCID: PMC11502959 DOI: 10.1093/sleep/zsad217] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/08/2023] [Indexed: 08/22/2023] Open
Abstract
To determine how a waking brain falls asleep researchers have monitored and manipulated activity of neurons and glia in various brain regions. While imaging Gamma-Aminobutyric Acid (GABA) neurons in the zona incerta (ZI) we found a subgroup that anticipates onset of NREM sleep (Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral ZI anticipates sleep onset. Sleep. 2021;44(6):zsaa268. doi:10.1093/sleep/zsaa268.). To differentiate the GABA subtype we now image and optogenetically manipulate the ZI neurons containing the transcription factor, Lhx6. In the first study, Lhx6-cre mice (n = 5; female = 4) were given rAAV-DJ-EF1a-DIO-GCaMP6M into the ZI (isofluorane anesthesia), a GRIN lens implanted, and 21days later sleep and fluorescence in individual Lhx6 neurons were recorded for 4 hours. Calcium fluorescence was detected in 132 neurons. 45.5% of the Lhx6 neurons were REM-max; 30.3% were wake-max; 11.4% were wake + REM max; 9% were NREM-max; and 3.8% had no change. The NREM-max group of neurons fluoresced 30 seconds ahead of sleep onset. The second study tested the effects of unilateral optogenetic stimulation of the ZI Lhx6 neurons (n = 14 mice) (AAV5-Syn-FLEX-rc[ChrimsonR-tdTomato]. Stimulation at 1 and 5 Hz (1 minute on- 4 minutes off) significantly increased percent REM sleep during the 4 hours stimulation period (last half of day cycle). The typical experimental approach is to stimulate neurons in both hemispheres, but here we found that low-frequency stimulation of ZI Lhx6 neurons in one hemisphere is sufficient to shift states of consciousness. Detailed mapping combined with mechanistic testing is necessary to identify local nodes that can shift the brain between wake-sleep states.
Collapse
Affiliation(s)
- Aurelio Vidal-Ortiz
- Laboratory of Sleep Medicine and Chronobiology, Ralph H. Johnson Veterans Healthcare System, Charleston, SC, USA
| | - Carlos Blanco-Centurion
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Priyattam J Shiromani
- Laboratory of Sleep Medicine and Chronobiology, Ralph H. Johnson Veterans Healthcare System, Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
31
|
Hasegawa E, Li Y, Sakurai T. Regulation of REM sleep in mice: The role of dopamine and serotonin function in the basolateral amygdala. Neurosci Res 2024; 200:28-33. [PMID: 37696450 DOI: 10.1016/j.neures.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Animals have a sleep cycle that involves the repetitive occurrence of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. In a previous study, we discovered that a transient increase in dopamine (DA) levels in the basolateral amygdala (BLA) during NREM sleep terminates NREM sleep and initiates REM sleep by acting on Drd2-positive neurons (Hasegawa et al., 2022). In this study, we identified the neurons activated by the transient increase of DA in the BLA and found that chemogenetic excitation of these neurons increased REM sleep. Additionally, we demonstrated that acute inhibition of serotonin (5HT) in the BLA elicited a transient increase in DA in the BLA, which triggered REM sleep.
Collapse
Affiliation(s)
- Emi Hasegawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
32
|
Bandarabadi M, Li S, Aeschlimann L, Colombo G, Tzanoulinou S, Tafti M, Becchetti A, Boutrel B, Vassalli A. Inactivation of hypocretin receptor-2 signaling in dopaminergic neurons induces hyperarousal and enhanced cognition but impaired inhibitory control. Mol Psychiatry 2024; 29:327-341. [PMID: 38123729 PMCID: PMC11116111 DOI: 10.1038/s41380-023-02329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Hypocretin/Orexin (HCRT/OX) and dopamine (DA) are both key effectors of salience processing, reward and stress-related behaviors and motivational states, yet their respective roles and interactions are poorly delineated. We inactivated HCRT-to-DA connectivity by genetic disruption of Hypocretin receptor-1 (Hcrtr1), Hypocretin receptor-2 (Hcrtr2), or both receptors (Hcrtr1&2) in DA neurons and analyzed the consequences on vigilance states, brain oscillations and cognitive performance in freely behaving mice. Unexpectedly, loss of Hcrtr2, but not Hcrtr1 or Hcrtr1&2, induced a dramatic increase in theta (7-11 Hz) electroencephalographic (EEG) activity in both wakefulness and rapid-eye-movement sleep (REMS). DAHcrtr2-deficient mice spent more time in an active (or theta activity-enriched) substate of wakefulness, and exhibited prolonged REMS. Additionally, both wake and REMS displayed enhanced theta-gamma phase-amplitude coupling. The baseline waking EEG of DAHcrtr2-deficient mice exhibited diminished infra-theta, but increased theta power, two hallmarks of EEG hyperarousal, that were however uncoupled from locomotor activity. Upon exposure to novel, either rewarding or stress-inducing environments, DAHcrtr2-deficient mice featured more pronounced waking theta and fast-gamma (52-80 Hz) EEG activity surges compared to littermate controls, further suggesting increased alertness. Cognitive performance was evaluated in an operant conditioning paradigm, which revealed that DAHcrtr2-ablated mice manifest faster task acquisition and higher choice accuracy under increasingly demanding task contingencies. However, the mice concurrently displayed maladaptive patterns of reward-seeking, with behavioral indices of enhanced impulsivity and compulsivity. None of the EEG changes observed in DAHcrtr2-deficient mice were seen in DAHcrtr1-ablated mice, which tended to show opposite EEG phenotypes. Our findings establish a clear genetically-defined link between monosynaptic HCRT-to-DA neurotransmission and theta oscillations, with a differential and novel role of HCRTR2 in theta-gamma cross-frequency coupling, attentional processes, and executive functions, relevant to disorders including narcolepsy, attention-deficit/hyperactivity disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Mojtaba Bandarabadi
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sha Li
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lea Aeschlimann
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Giulia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Mehdi Tafti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Benjamin Boutrel
- Centre for Psychiatric Neuroscience, Department of Psychiatry, The Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
33
|
Tsuneoka Y, Funato H. Whole Brain Mapping of Orexin Receptor mRNA Expression Visualized by Branched In Situ Hybridization Chain Reaction. eNeuro 2024; 11:ENEURO.0474-23.2024. [PMID: 38199807 PMCID: PMC10883752 DOI: 10.1523/eneuro.0474-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Orexins, which are produced within neurons of the lateral hypothalamic area, play a pivotal role in the regulation of various behaviors, including sleep/wakefulness, reward behavior, and energy metabolism, via orexin receptor type 1 (OX1R) and type 2 (OX2R). Despite the advanced understanding of orexinergic regulation of behavior at the circuit level, the precise distribution of orexin receptors in the brain remains unknown. Here, we develop a new branched in situ hybridization chain reaction (bHCR) technique to visualize multiple target mRNAs in a semiquantitative manner, combined with immunohistochemistry, which provided comprehensive distribution of orexin receptor mRNA and neuron subtypes expressing orexin receptors in mouse brains. Only a limited number of cells expressing both Ox1r and Ox2r were observed in specific brain regions, such as the dorsal raphe nucleus and ventromedial hypothalamic nucleus. In many brain regions, Ox1r-expressing cells and Ox2r-expressing cells belong to different cell types, such as glutamatergic and GABAergic neurons. Moreover, our findings demonstrated considerable heterogeneity in Ox1r- or Ox2r-expressing populations of serotonergic, dopaminergic, noradrenergic, cholinergic, and histaminergic neurons. The majority of orexin neurons did not express orexin receptors. This study provides valuable insights into the mechanism underlying the physiological and behavioral regulation mediated by the orexin system, as well as the development of therapeutic agents targeting orexin receptors.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 145-854, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 145-854, Japan
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
34
|
Cajochen C, Reichert CF, Münch M, Gabel V, Stefani O, Chellappa SL, Schmidt C. Ultradian sleep cycles: Frequency, duration, and associations with individual and environmental factors-A retrospective study. Sleep Health 2024; 10:S52-S62. [PMID: 37914631 DOI: 10.1016/j.sleh.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Sleep varies between individuals in response to sleep-wake history and various environmental factors, including light and noise. Here we report on the intranight variation of the ultradian nonrapid eye movement-rapid eye movement (NREM-REM) sleep cycle in 369 participants who have contributed to different laboratory studies from 1994 to 2020 at the Centre for Chronobiology, Basel, Switzerland. RESULTS We observed a large interindividual variability in sleep cycle duration, including NREM and REM sleep episodes in healthy participants who were given an 8-hour sleep opportunity at habitual bedtime in controlled laboratory settings. The median sleep cycle duration was 96 minutes out of 6064 polysomnographically-recorded cycles. The number and duration of cycles were not normally distributed, and the distribution became narrower for NREM sleep and wider for REM sleep later in the night. The first cycle was consistently shorter than subsequent cycles, and moderate presleep light or nocturnal noise exposure had no significant effects on ultradian sleep cycle duration. Age and sex significantly affected NREM and REM sleep duration, with older individuals having longer NREM and shorter REM sleep particularly in the end of the night, and females having longer NREM sleep episodes. High sleep pressure (ie, sleep deprivation) and low sleep pressure (ie, multiple naps) altered ultradian sleep cycles, with high sleep pressure leading to longer NREM sleep in the first cycle, and low sleep pressure leading to longer REM sleep episodes. Positive correlations were observed between N2 and NREM duration, and between N1 and REM duration. Weak intrasleep REM sleep homeostasis was also evident in our data set. CONCLUSIONS We conclude that ultradian sleep cycles are endogenous biological rhythms modulated by age, sex, and sleep homeostasis, but not directly responsive to (moderate levels of) environmental cues in healthy good sleepers.
Collapse
Affiliation(s)
- Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland.
| | - Carolin Franziska Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | | | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences (MCN), University of Basel, Basel, Switzerland
| | - Sarah Laxhmi Chellappa
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Christina Schmidt
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| |
Collapse
|
35
|
Wu M, Zhang X, Feng S, Freda SN, Kumari P, Dumrongprechachan V, Kozorovitskiy Y. Dopamine pathways mediating affective state transitions after sleep loss. Neuron 2024; 112:141-154.e8. [PMID: 37922904 PMCID: PMC10841919 DOI: 10.1016/j.neuron.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The pathophysiology of affective disorders-particularly circuit-level mechanisms underlying bidirectional, periodic affective state transitions-remains poorly understood. In patients, disruptions of sleep and circadian rhythm can trigger transitions to manic episodes, whereas depressive states are reversed. Here, we introduce a hybrid automated sleep deprivation platform to induce transitions of affective states in mice. Acute sleep loss causes mixed behavioral states, featuring hyperactivity, elevated social and sexual behaviors, and diminished depressive-like behaviors, where transitions depend on dopamine (DA). Using DA sensor photometry and projection-targeted chemogenetics, we reveal that elevated DA release in specific brain regions mediates distinct behavioral changes in affective state transitions. Acute sleep loss induces DA-dependent enhancement in dendritic spine density and uncaging-evoked dendritic spinogenesis in the medial prefrontal cortex, whereas optically mediated disassembly of enhanced plasticity reverses the antidepressant effects of sleep deprivation on learned helplessness. These findings demonstrate that brain-wide dopaminergic pathways control sleep-loss-induced polymodal affective state transitions.
Collapse
Affiliation(s)
- Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Xin Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sihan Feng
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sara N Freda
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Pushpa Kumari
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Vasin Dumrongprechachan
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
36
|
Foffani G. To be or not to be hallucinating: Implications of hypnagogic/hypnopompic experiences and lucid dreaming for brain disorders. PNAS NEXUS 2024; 3:pgad442. [PMID: 38178978 PMCID: PMC10766414 DOI: 10.1093/pnasnexus/pgad442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
The boundaries between waking and sleeping-when falling asleep (hypnagogic) or waking up (hypnopompic)-can be challenging for our ability to monitor and interpret reality. Without proper understanding, bizarre but relatively normal hypnagogic/hypnopompic experiences can be misinterpreted as psychotic hallucinations (occurring, by definition, in the fully awake state), potentially leading to stigma and misdiagnosis in clinical contexts and to misconception and bias in research contexts. This Perspective proposes that conceptual and practical understanding for differentiating hallucinations from hypnagogic/hypnopompic experiences may be offered by lucid dreaming, the state in which one is aware of dreaming while sleeping. I first introduce a possible systematization of the phenomenological range of hypnagogic/hypnopompic experiences that can occur in the transition from awake to REM dreaming (including hypnagogic perceptions, transition symptoms, sleep paralysis, false awakenings, and out-of-body experiences). I then outline how metacognitive strategies used by lucid dreamers to gain/confirm oneiric lucidity could be tested for better differentiating hypnagogic/hypnopompic experiences from hallucinations. The relevance of hypnagogic/hypnopompic experiences and lucid dreaming is analyzed for schizophrenia and narcolepsy, and discussed for neurodegenerative diseases, particularly Lewy-body disorders (i.e. Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies), offering testable hypotheses for empirical investigation. Finally, emotionally positive lucid dreams triggered or enhanced by training/induction strategies or by a pathological process may have intrinsic therapeutic value if properly recognized and guided. The overall intention is to raise awareness and foster further research about the possible diagnostic, prognostic, and therapeutic implications of hypnagogic/hypnopompic experiences and lucid dreaming for brain disorders.
Collapse
Affiliation(s)
- Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid 28938, Spain
- Hospital Nacional de Parapléjicos, Toledo 45004, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid 28031, Spain
| |
Collapse
|
37
|
Robberechts R, Poffé C. Defining ketone supplementation: the evolving evidence for postexercise ketone supplementation to improve recovery and adaptation to exercise. Am J Physiol Cell Physiol 2024; 326:C143-C160. [PMID: 37982172 DOI: 10.1152/ajpcell.00485.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-β-hydroxybutyrate (βHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Li W, Sun L, Yue L, Xiao S. Associations between afternoon napping, left amygdala volume and cognitive performance in elderly with normal cognitive function. Sleep Med 2024; 113:232-237. [PMID: 38064794 DOI: 10.1016/j.sleep.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The relationship between afternoon napping and cognitive function in the elderly is very complex and the mechanism is unknown. METHODS In the current study, 194 community elders with normal cognitive functions were included. All subjects completed baseline clinical assessment, baseline neuropsychological test as well as baseline structural MRI. Based on their napping status, these 194 participants were divided into the napping group (n = 88) and the non-napping group (n = 106). We then compared the differences in cognitive performance and structural magnetic resonance between the two groups. RESULTS In the intergroup analysis, we found that the nappers showed poorer cognitive performance on both overall cognitive function and domain specific cognitive function; while on the whole sample, we found a significant negative association (F = 20.27, p<0.001) between afternoon napping and left amygdala volume. However, we did not find any effect of night sleep length or napping frequency on cognitive performance or left amygdala volume. CONCLUSIONS In community elders with normal cognitive functions, afternoon napping is associated with cognitive performance, and left amygdala may play an important role in this process.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Olsen A, Locascio J, Tuncali I, Laroussi N, Abatzis E, Kamenskaya P, Kuras Y, Yi T, Videnovic A, Hayes M, Ho G, Paulson J, Khurana V, Herrington T, Hyman B, Selkoe D, Growdon J, Gomperts S, Riise T, Schwarzschild M, Hung A, Wills A, Scherzer C. Health phenome of Parkinson's patients reveals prominent mood-sleep cluster. RESEARCH SQUARE 2023:rs.3.rs-3683455. [PMID: 38196602 PMCID: PMC10775372 DOI: 10.21203/rs.3.rs-3683455/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Associations between phenotypic traits, environmental exposures, and Parkinson's disease have largely been evaluated one-by-one, piecemeal, and pre-selections. A comprehensive picture of comorbidities, phenotypes, exposures, and polypharmacy characterizing the complexity and heterogeneity of real-world patients presenting to academic movement disorders clinics in the US is missing. Objectives To portrait the complexity of features associated with patients with Parkinson's disease in a study of 933 cases and 291 controls enrolled in the Harvard Biomarkers Study. Methods The primary analysis evaluated 64 health features for associations with Parkinson's using logistic regression adjusting for age and sex. We adjusted for multiple testing using the false discovery rate (FDR) with £ 0.05 indicating statistical significance. Exploratory analyses examined feature correlation clusters and feature combinations. Results Depression (OR = 3.11, 95% CI 2.1 to 4.71), anxiety (OR = 3.31, 95% CI 2.01-5.75), sleep apnea (OR 2.58, 95% CI 1.47-4.92), and restless leg syndrome (RLS; OR 4.12, 95% CI 1.81-12.1) were significantly more common in patients with Parkinson's than in controls adjusting for age and sex with FDR £ 0.05. The prevalence of depression, anxiety, sleep apnea, and RLS were correlated, and these diseases formed part of a larger cluster of mood traits and sleep traits linked to PD. Exposures to pesticides (OR 1.87, 95% CI 1.37-2.6), head trauma (OR 2.33, 95% CI 1.51-3.73), and smoking (OR 0.57, 95% CI 0.43-0.75) were significantly associated with the disease consistent with previous studies. Vitamin supplementation with cholecalciferol (OR 2.18, 95% CI 1.4-3.45) and coenzyme Q10 (OR 2.98, 95% CI 1.89-4.92) was more commonly used by patients than controls. Cumulatively, 43% (398 of 933) of Parkinson's patients had at least one psychiatric or sleep disorder, compared to 21% (60 of 291) of healthy controls. Conclusions 43% of Parkinson's patients seen at Harvard-affiliated teaching hospitals have depression, anxiety, and disordered sleep. This syndromic cluster of mood and sleep traits may be pathophysiologically linked and clinically important.
Collapse
Affiliation(s)
| | - Joseph Locascio
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham & Women's Hospital
| | | | | | | | | | | | - Tom Yi
- Brigham and Women's Hospital
| | | | | | - Gary Ho
- Brigham and Women's Hospital
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ma H, Gu L, Wang Y, Xu Q, Zhang Y, Shao W, Yu Q, Lian X, Liu L, Gu J, Ji N, Liu X, Nagayasu K, Zhang H. The States of Different 5-HT Receptors Located in the Dorsal Raphe Nucleus Are Crucial for Regulating the Awakening During General Anesthesia. Mol Neurobiol 2023; 60:6931-6948. [PMID: 37516665 DOI: 10.1007/s12035-023-03519-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
General anesthesia is widely used in various clinical practices due to its ability to cause loss of consciousness. However, the exact mechanism of anesthesia-induced unconsciousness remains unclear. It is generally thought that arousal-related brain nuclei are involved. 5-Hydroxytryptamine (5-HT) is closely associated with sleep arousal. Here, we explore the role of the 5-HT system in anesthetic awakening through pharmacological interventions and optogenetic techniques. Our data showed that exogenous administration of 5-hydroxytryptophan (5-HTP) and optogenetic activation of 5-HT neurons in the dorsal raphe nucleus (DR) could significantly shorten the emergence time of sevoflurane anesthesia in mice, suggesting that regulation of the 5-HT system using both endogenous and exogenous approaches could mediate delayed emergence. In addition, we first discovered that the different 5-HT receptors located in the DR, known as 5-HT autoreceptors, are essential for the regulation of general anesthetic awakening, with 5-HT1A and 5-HT2A/C receptors playing a regulatory role. These results can provide a reliable theoretical basis as well as potential targets for clinical intervention to prevent delayed emergence and some postoperative risks.
Collapse
Affiliation(s)
- HaiXiang Ma
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- Medical College of Jining Medical University, Ningji, 272067, Shandong, China
| | - LeYuan Gu
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - YuLing Wang
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuanli Zhang
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - WeiHui Shao
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Qian Yu
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - XiTing Lian
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lu Liu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - JiaXuan Gu
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Na Ji
- Department of Anesthesia, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - XiaoLing Liu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - HongHai Zhang
- Department of Anesthesiology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Medical College of Jining Medical University, Ningji, 272067, Shandong, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310006, China.
| |
Collapse
|
41
|
Woo KA, Kim H, Yoon EJ, Shin JH, Nam H, Jeon B, Kim YK, Lee J. Brain olfactory-related atrophy in isolated rapid eye movement sleep behavior disorder. Ann Clin Transl Neurol 2023; 10:2192-2207. [PMID: 37743764 PMCID: PMC10723229 DOI: 10.1002/acn3.51905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023] Open
Abstract
OBJECTIVE To investigate structural and functional connectivity changes in brain olfactory-related structures in a longitudinal prospective cohort of isolated REM sleep behavior disorder (iRBD) and their clinical correlations, longitudinal evolution, and predictive values for phenoconversion to overt synucleinopathies, especially Lewy body diseases. METHODS The cohort included polysomnography-confirmed iRBD patients and controls. Participants underwent baseline assessments including olfactory tests, neuropsychological evaluations, the Movement Disorders Society-Unified Parkinson's Disease Rating Scale, 3T brain MRI, and 18 F-FP-CIT PET scans. Voxel-based morphometry (VBM) was performed to identify regions of atrophy in iRBD, and volumes of relevant olfactory-related regions of interest (ROI) were estimated. Subgroups of patients underwent repeated volumetric MRI and resting-state functional MRI (fMRI) scans after four years. RESULTS A total of 51 iRBD patients were included, with 20 of them converting to synucleinopathy (mean time to conversion 3.08 years). Baseline VBM analysis revealed atrophy in the right olfactory cortex and gyrus rectus in iRBD. Subsequent ROI comparisons with controls showed atrophy in the amygdala. These olfactory-related atrophies tended to be associated with worse depression, anxiety, and urinary problems in iRBD. Amygdala 18 F-FP-CIT uptake tended to be reduced in iRBD patients with hyposmia (nonsignificant after multiple comparison correction) and correlated with urinary problems. Resting-state fMRI of 23 patients and 32 controls revealed multiple clusters with aberrant olfactory-related functional connectivity. Hypoconnectivity between the putamen and olfactory cortex was associated with mild parkinsonian signs in iRBD. Longitudinal analysis of volumetric volumetric MRI in 22 iRBD patients demonstrated four-year progression of olfactory-related atrophy. Cox regression analysis revealed that this atrophy significantly predicted phenoconversion. INTERPRETATION Progressive atrophy of central olfactory structures may be a potential indicator of Lewy body disease progression in iRBD.
Collapse
Affiliation(s)
- Kyung Ah Woo
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Heejung Kim
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Radiation Medicine, Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Eun Jin Yoon
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Memory Network Medical Research CenterSeoul National UniversitySeoulRepublic of Korea
| | - Jung Hwan Shin
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hyunwoo Nam
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Beomseok Jeon
- Department of NeurologySeoul National University Hospital, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government–Seoul National University Boramae Medical Center, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
42
|
Yang Y, Chen Z, Yan G, Kong L, Yang L, Sun H, Han Y, Zhang J, Wang X. Mass spectrum oriented metabolomics for evaluating the efficacy and discovering the metabolic mechanism of Naoling Pian for insomnia. J Pharm Biomed Anal 2023; 236:115756. [PMID: 37776625 DOI: 10.1016/j.jpba.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Insomnia is an accompanying symptom of many diseases and is closely associated with neurodegenerative diseases. Naoling Pian (NLP) is a patented Chinese medicine mainly used to treat insomnia. To evaluate the sedative and hypnotic effects of NLP and its modulatory effects on biological metabolites and metabolic pathways, rats with p-chlorophenylalanine (PCPA)-induced insomnia were given different doses of NLP by oral gavage for seven days. Diazepam (DZP) served as a positive control. Behavior was measured using the open field test, and neurotransmitter levels in the brain tissue related to sleep were measured using ELISA. The metabolic profiles and biomarkers of PCPA-induced insomnia in rats before and after NLP administration were analyzed using UPLC-Q/TOF-MS combined with multivariate data analysis. The results showed that the levels of 5-hydroxytryptamine, gamma-aminobutyric acid, norepinephrine, and dopamine in the brain tissue were significantly recovered in the NLP treatment groups, demonstrating similar or even superior therapeutic effects compared to the DZP group. The behavior of the PCPA-model rats partially recovered to normal levels after seven days of treatment. Metabolomics identified 30 metabolites in the urine as potential biomarkers of insomnia, and NLP significantly altered 25 of these, involving 21 metabolic pathways. NLP has a remarkable effect on insomnia, the therapeutic effects of which may be largely due to the rectification of metabolic disturbances. This is the first study of the sedative and hypnotic effects of NLP from a metabolomic perspective.
Collapse
Affiliation(s)
- Yu Yang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Zhe Chen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Ling Kong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China.
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Jie Zhang
- Wusuli River Pharmaceutical Co., Ltd., Heilongjiang, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
43
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
44
|
ROBBERECHTS RUBEN, ALBOUY GENEVIÈVE, HESPEL PETER, POFFÉ CHIEL. Exogenous Ketosis Improves Sleep Efficiency and Counteracts the Decline in REM Sleep after Strenuous Exercise. Med Sci Sports Exerc 2023; 55:2064-2074. [PMID: 37259248 PMCID: PMC10581428 DOI: 10.1249/mss.0000000000003231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Available evidence indicates that ketone bodies may improve sleep quality. Therefore, we determined whether ketone ester (KE) intake could counteract sleep disruptions induced by strenuous exercise. METHODS Ten well-trained cyclists with good sleep quality participated in a randomized crossover design consisting of two experimental sessions each involving a morning endurance training and an evening high-intensity interval training ending 1 h before sleep, after which polysomnography was performed overnight. Postexercise and 30 min before sleeping time, subjects received either 25 g of KE (EX KE ) or a placebo drink (EX CON ). A third session without exercise but with placebo supplements (R CON ) was added to evaluate the effect of exercise per se on sleep. RESULTS Blood d -β-hydroxybutyrate concentrations transiently increased to ~3 mM postexercise and during the first part of the night in EX KE but not in EX CON or R CON . Exercise significantly reduced rapid eye movement sleep by 26% ( P = 0.001 vs R CON ) and increased wakefulness after sleep onset by 95% ( P = 0.004 vs R CON ). Interestingly, KE improved sleep efficiency by 3% ( P = 0.040 vs EX CON ) and counteracted the exercise-induced decrease in rapid eye movement sleep ( P = 0.011 vs EX CON ) and the increase in wakefulness after sleep onset ( P = 0.009 vs EX CON ). This was accompanied by a KE-induced increase in dopamine excretion ( P = 0.033 vs EX CON ), which plays a pivotal role in sleep regulation. In addition, exercise increased sleep spindle density by 36% ( P = 0.005 vs R CON ), suggesting an effect on neural plasticity processes during sleep. CONCLUSIONS These data indicate that KE ingestion improves sleep efficiency and quality after high-intensity exercise. We provide preliminary evidence that this might result from KE-induced increases in dopamine signaling.
Collapse
Affiliation(s)
- RUBEN ROBBERECHTS
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| | - GENEVIÈVE ALBOUY
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
- Leuven Brain Institute (LBI), KU Leuven, Leuven, BELGIUM
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT
| | - PETER HESPEL
- Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| | - CHIEL POFFÉ
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
45
|
Urushihata T, Goto M, Kabetani K, Kiyozuka M, Maruyama S, Tsuji S, Tada H, Satoh A. Evaluation of cellular activity in response to sleep deprivation by a comprehensive analysis of the whole mouse brain. Front Neurosci 2023; 17:1252689. [PMID: 37928729 PMCID: PMC10620513 DOI: 10.3389/fnins.2023.1252689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Sleep deprivation (SD) causes several adverse functional outcomes, and understanding the associated processes can improve quality of life. Although the effects of SD on neuronal activity in several brain regions have been identified, a comprehensive evaluation of the whole brain is still lacking. Hence, we performed SD using two different methods, gentle handling and a dedicated chamber, in targeted recombination in active populations 2 (TRAP2) mice crossed with Rosa-ZsGreen reporter mice and visualized cellular activity in the whole brain. Using the semi-automated post-imaging analysis tool Slice Histology Alignment, Registration, and Cell Quantification (SHARCQ), the number of activated cells was quantified. From the analysis of 14 brain regions, cellular activity was significantly increased in the olfactory areas and decreased in the medulla by the two SD methods. From the analysis of the further subdivided 348 regions, cellular activity was significantly increased in the vascular organ of the lamina terminalis, lateral hypothalamic area, parabigeminal nucleus, ventral tegmental area, and magnocellular reticular nucleus, and decreased in the anterior part of the basolateral amygdalar nucleus, nucleus accumbens, septohippocampal nucleus, reticular nucleus of the thalamus, preoptic part of the periventricular hypothalamic nucleus, ventromedial preoptic nucleus, rostral linear nucleus raphe, facial motor nucleus, vestibular nuclei, and some fiber tracts (oculomotor nerve, genu of corpus callosum, and rubrospinal tract) by the two SD methods. Two subdivided regions of the striatum (caudoputamen and other striatum), epithalamus, vascular organ of the lamina terminalis, anteroventral preoptic nucleus, superior colliculus optic layer, medial terminal nucleus of the accessory optic tract, pontine gray, and fiber tracts (medial lemniscus, columns of the fornix, brachium of the inferior colliculus, and mammillary peduncle) were differentially affected by the two SD methods. Most brain regions detected from these analyses have been reported to be involved in regulating sleep/wake regulatory circuits. Moreover, the results from the connectivity analysis indicated that the connectivity of cellular activity among brain regions was altered by SD. Together, such a comprehensive analysis of the whole brain is useful for understanding the mechanisms by which SD and/or sleep disruption affects brain function.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mio Goto
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiko Kabetani
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mai Kiyozuka
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
| | - Shiho Maruyama
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
| | - Shogo Tsuji
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hirobumi Tada
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
46
|
Ito H, Fukatsu N, Rahaman SM, Mukai Y, Izawa S, Ono D, Kilduff TS, Yamanaka A. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy. Proc Natl Acad Sci U S A 2023; 120:e2301951120. [PMID: 37796986 PMCID: PMC10576136 DOI: 10.1073/pnas.2301951120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Narcolepsy is a sleep disorder caused by deficiency of orexin signaling. However, the neural mechanisms by which deficient orexin signaling causes the abnormal rapid eye movement (REM) sleep characteristics of narcolepsy, such as cataplexy and frequent transitions to REM states, are not fully understood. Here, we determined the activity dynamics of orexin neurons during sleep that suppress the abnormal REM sleep architecture of narcolepsy. Orexin neurons were highly active during wakefulness, showed intermittent synchronous activity during non-REM (NREM) sleep, were quiescent prior to the transition from NREM to REM sleep, and a small subpopulation of these cells was active during REM sleep. Orexin neurons that lacked orexin peptides were less active during REM sleep and were mostly silent during cataplexy. Optogenetic inhibition of orexin neurons established that the activity dynamics of these cells during NREM sleep regulate NREM-REM sleep transitions. Inhibition of orexin neurons during REM sleep increased subsequent REM sleep in "orexin intact" mice and subsequent cataplexy in mice lacking orexin peptides, indicating that the activity of a subpopulation of orexin neurons during the preceding REM sleep suppresses subsequent REM sleep and cataplexy. Thus, these results identify how deficient orexin signaling during sleep results in the abnormal REM sleep architecture characteristic of narcolepsy.
Collapse
Affiliation(s)
- Hiroto Ito
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Japan Society for the Promotion of Science Research Fellowship for Young Scientists, Tokyo102-0083, Japan
| | - Noriaki Fukatsu
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Sheikh Mizanur Rahaman
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Shuntaro Izawa
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA94025
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Chinese Institute for Brain Research, Beijing102206, China
- National Institute for Physiological Sciences, Aichi444-8585, Japan
- National Institutes of Natural Sciences, Aichi444-8585, Japan
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo160-8582, Japan
| |
Collapse
|
47
|
Hong J, Lozano DE, Beier KT, Chung S, Weber F. Prefrontal cortical regulation of REM sleep. Nat Neurosci 2023; 26:1820-1832. [PMID: 37735498 DOI: 10.1038/s41593-023-01398-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2023] [Indexed: 09/23/2023]
Abstract
Rapid eye movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram. The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus and regulate phasic events, reflected in accelerated electroencephalogram theta oscillations and increased eye movement density during REM sleep. Calcium imaging reveals that the majority of lateral hypothalamus-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Lozano
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Ramasubbu K, Ramanathan G, Venkatraman G, Rajeswari VD. Sleep-associated insulin resistance promotes neurodegeneration. Mol Biol Rep 2023; 50:8665-8681. [PMID: 37580496 DOI: 10.1007/s11033-023-08710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Lifestyle modification can lead to numerous health issues closely associated with sleep. Sleep deprivation and disturbances significantly affect inflammation, immunity, neurodegeneration, cognitive depletion, memory impairment, neuroplasticity, and insulin resistance. Sleep significantly impacts brain and memory formation, toxin excretion, hormonal function, metabolism, and motor and cognitive functions. Sleep restriction associated with insulin resistance affects these functions by interfering with the insulin signalling pathway, neurotransmission, inflammatory pathways, and plasticity of neurons. So, in this review, We discuss the evidence that suggests that neurodegeneration occurs via sleep and is associated with insulin resistance, along with the insulin signalling pathways involved in neurodegeneration and neuroplasticity, while exploring the role of hormones in these conditions.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
49
|
Han J, Zheng S, Jin J, Wu T, Shi Y, Yang K, Zhang H, Li Y, Sun Y, Lv Y, Yao C, Lin T, Zhu C, Liu H. Polydopamine-loaded prunetin nanomaterials activate DRD2 to reduce UV-induced inflammation by stabilizing and promoting Nrf2 nuclear translocation. Acta Biomater 2023; 169:556-565. [PMID: 37532131 DOI: 10.1016/j.actbio.2023.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Skin damage caused by exposure to ultraviolet (UV) light has been well documented clinically and histologically. Dopamine receptor D2 (DRD2) possesses various biological functions. However, no study has reported the possible association of DRD2 with UV-induced skin damage. We established DRD2 conditional knockout and UV damage models in this work. The results showed that DRD2 played an important role in the treatment of UV-induced skin damage. The findings of the molecular mechanism study revealed that the internalization of DRD2 after activation can stabilize nuclear factor erythroid 2-related factor 2 (Nrf2). However, the entry of Nrf2 into the nucleus did not increase. We prepared and characterized hyaluronic acid (HA)-coated mesoporous polydopamine (MPDA) nanoparticles (H@P@M). HA facilitated skin epidermal penetration of the nanoparticles to reach the site of inflammation smoothly. Meanwhile, MPDA activated DRD2 internalization to stabilize Nrf2. The release of prunetin inhibited the interaction of Kelch-like ECH-associated protein 1 with Nrf2 and promoted the nuclear translocation of Nrf2. In summary, this study unveiled that in skin inflammation, H@P@M activated and internalized DRD2, which subsequently formed a protein complex with arrestin beta 1-ubiquitin specific protease 8 (USP8)-Nrf2. Deubiquitination was performed to stabilize Nrf2 while promoting the nuclear translocation of Nrf2 to exert anti-inflammatory and antioxidant functions. STATEMENT OF SIGNIFICANCE: Skin is the body's largest physical barrier, always protecting the body from the interference of the external environment. However, excessive exposure to ultraviolet rays in the sun can cause skin inflammation, leading to skin erythema, itching, edema and pain, which can be troublesome in our daily lives. The complex mechanism of skin inflammation caused by ultraviolet radiation has not been fully clarified. In this study, the role of DRD2 in UV-induced skin inflammation was explored, and nano-composite particles HA@Prunetin@MPDA, which act on multiple targets in the anti-inflammatory pathway of DRD2, were developed to maximize the effect of the drug. It provides a new way to treat skin inflammation caused by UV.
Collapse
Affiliation(s)
- Jingxia Han
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China; State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shaoting Zheng
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China; State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing Jin
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Ting Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yue Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Kai Yang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yu Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yao
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China.
| | - Tingting Lin
- Medical Plastic and Cosmetic Center, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Caibin Zhu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China.
| | - Huijuan Liu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China; State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
50
|
Gao JX, Yan G, Li XX, Xie JF, Spruyt K, Shao YF, Hou YP. The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sci 2023; 13:1350. [PMID: 37759951 PMCID: PMC10526299 DOI: 10.3390/brainsci13091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid eye movement (REM) sleep is the main sleep correlate of dreaming. Ponto-geniculo-occipital (PGO) waves are a signature of REM sleep. They represent the physiological mechanism of REM sleep that specifically limits the processing of external information. PGO waves look just like a message sent from the pons to the lateral geniculate nucleus of the visual thalamus, the occipital cortex, and other areas of the brain. The dedicated visual pathway of PGO waves can be interpreted by the brain as visual information, leading to the visual hallucinosis of dreams. PGO waves are considered to be both a reflection of REM sleep brain activity and causal to dreams due to their stimulation of the cortex. In this review, we summarize the role of PGO waves in potential neural circuits of two major theories, i.e., (1) dreams are generated by the activation of neural activity in the brainstem; (2) PGO waves signaling to the cortex. In addition, the potential physiological functions during REM sleep dreams, such as memory consolidation, unlearning, and brain development and plasticity and mood regulation, are discussed. It is hoped that our review will support and encourage research into the phenomenon of human PGO waves and their possible functions in dreaming.
Collapse
Affiliation(s)
- Jin-Xian Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Guizhong Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Xin-Xuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Jun-Fan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, 75019 Paris, France;
| | - Yu-Feng Shao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Yi-Ping Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|