1
|
Tang Y, Ma K, Shao W, Lee YH, Abtahi A, Sun J, Yang H, Coffey AH, Atapattu H, Ahmed M, Hu Q, Xu W, Dani R, Wang L, Zhu C, Graham KR, Mei J, Dou L. A Pyrrole Modified 3,4-Propylenedioxythiophene Conjugated Polymer as Hole Transport Layer for Efficient and Stable Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408440. [PMID: 39463135 DOI: 10.1002/smll.202408440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Despite the outstanding electric properties and cost-effectiveness of poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives, their performance as hole transport layer (HTL) materials in conventional perovskite solar cells (PSCs) has lagged behind that of widely used spirobifluorene-based molecules or poly(triaryl amine). This gap is mainly from their poor solubility and energy alignment mismatch. In this work, the design and synthesis of a pyrrole-modified HTL (PPr) based on 3,4-propylenedioxythiophene (ProDOT) are presented for efficient and stable PSCs. As a result of the superior defects passivation ability, excellent contact with perovskite, enhanced hole extraction, and high hydrophobicity, the unencapsulated PPr-based PSCs showed the peak PCE of 21.49% and outstanding moisture stability (over 4000 h). This work highlights the potential application of ProDOT-based materials as HTL for PSCs and underscores the importance of the rational design of PEDOT and its derivatives.
Collapse
Affiliation(s)
- Yuanhao Tang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhao Shao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yoon Ho Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ashkan Abtahi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiaonan Sun
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hanjun Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Aidan H Coffey
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Harindi Atapattu
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Mustafa Ahmed
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Qixuan Hu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Wenzhan Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Raunak Dani
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Limei Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Nong Y, Yao J, Li J, Xu L, Yang Z, Wang S, Song J. Gradient Hole Injection Inducing Efficient Exciton Recombination in Blue (475 nm) Perovskite QLEDs. NANO LETTERS 2024. [PMID: 39442008 DOI: 10.1021/acs.nanolett.4c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Perovskite quantum dots (QDs) are emerging as excellent light sources for light-emitting diodes (LEDs). However, the performance of blue perovskite QD-based LEDs (QLEDs) still lags behind that of red and green counterparts, which is hindered by blue perovskite QDs with broad bandgaps that tend to increase nonradiative recombination. Here, we designed a gradient energy for hole injection utilizing multiple hole injection layers (HTLs) combined with carbazole-based small-molecule modification to reduce the hole injection barrier between HTLs and QD layers and improve the hole injection efficiency, realizing efficient exciton recombination in blue perovskite QLEDs. Moreover, the QD film on the designed HTLs demonstrates a lower surface roughness and improved photoluminescence properties. The optimized blue CsPbCl3-xBrx QLEDs exhibit an impressive external quantum efficiency of 20.7% with an electroluminescence peak at 475 nm and a turn-on voltage of 2.6 V, representing the state-of-the-art for blue perovskite LEDs emitting in the range of 460-480 nm.
Collapse
Affiliation(s)
- Yingyi Nong
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou 450051, China
| | - Jisong Yao
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou 450051, China
| | - Jiaqi Li
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou 450051, China
| | - Leimeng Xu
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou 450051, China
| | - Zhi Yang
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou 450051, China
| | - Shalong Wang
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou 450051, China
| | - Jizhong Song
- Key Laboratory of Materials Physics of Ministry of Education, Laboratory of Zhongyuan Light, School of Physics, Zhengzhou University, Zhengzhou 450051, China
| |
Collapse
|
3
|
Wu K, Ran P, Yin W, He L, Wang B, Wang F, Zhao E, Zhao J. Dynamic Evolution of Antisite Defect and Coupling Anionic Redox in High-Voltage Ultrahigh-Ni Cathode. Angew Chem Int Ed Engl 2024; 63:e202410326. [PMID: 39054680 DOI: 10.1002/anie.202410326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
High-voltage ultrahigh-Ni cathodes (LiNixCoyMn1-x-yO2, x≥0.9) can significantly enhance the energy density and cost-effectiveness of Li-ion batteries beyond current levels. However, severe Li-Ni antisite defects and their undetermined dynamic evolutions during high-voltage cycling limit the further development of these ultrahigh-Ni cathodes. In this study, we quantify the dynamic evolutions of the Li-Ni antisite defect using operando neutron diffraction and reveal its coupling relationship with anionic redox, another critical challenge restricting ultrahigh-Ni cathodes. We detect a clear Ni migration coupled with an unstable oxygen lattice, which accompanies the oxidation of oxygen anions at high voltages. Based on these findings, we propose that minimized Li-Ni antisite defects and controlled Ni migrations are essential for achieving stable high-voltage cycling structures in ultrahigh-Ni cathodes. This is further demonstrated by the optimized ultrahigh-Ni cathode, where reduced dynamic evolutions of the Li-Ni antisite defect effectively inhibit the anionic redox, enhancing the 4.5 V cycling stability.
Collapse
Affiliation(s)
- Kang Wu
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemical Engineering and Safety, Shandong university of aeronautics, Binzhou, Shandong, 256600, China
| | - Peilin Ran
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, 523803, Guangdong, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lunhua He
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Spallation Neutron Source Science Center, Dongguan, 523803, Guangdong, China
| | - Baotian Wang
- Spallation Neutron Source Science Center, Dongguan, 523803, Guangdong, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangwei Wang
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Spallation Neutron Source Science Center, Dongguan, 523803, Guangdong, China
| | - Enyue Zhao
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Jinkui Zhao
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, Great Bay University, Dongguan, 523808, China
| |
Collapse
|
4
|
Gao D, Li B, Liu Q, Zhang C, Yu Z, Li S, Gong J, Qian L, Vanin F, Schutt K, Davis MA, Palmstrom AF, Harvey SP, Long NJ, Luther JM, Zeng XC, Zhu Z. Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 2024; 386:187-192. [PMID: 39388552 DOI: 10.1126/science.adq8385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Robust contact schemes that boost stability and simplify the production process are needed for perovskite solar cells (PSCs). We codeposited perovskite and hole-selective contact while protecting the perovskite to enable deposition of SnOx/Ag without the use of a fullerene. The SnOx, prepared through atomic layer deposition, serves as a durable inorganic electron transport layer. Tailoring the oxygen vacancy defects in the SnOx layer led to power conversion efficiencies (PCEs) of >25%. Our devices exhibit superior stability over conventional p-i-n PSCs, successfully meeting several benchmark stability tests. They retained >95% PCE after 2000 hours of continuous operation at their maximum power point under simulated AM1.5 illumination at 65°C. Additionally, they boast a certified T97 lifetime exceeding 1000 hours.
Collapse
Affiliation(s)
- Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Qi Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Chunlei Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Zexin Yu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Shuai Li
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jianqiu Gong
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Liangchen Qian
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Francesco Vanin
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | - Kelly Schutt
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | | | | - Nicholas J Long
- Department of Chemistry, Imperial College London, London W12 0BZ, UK
| | | | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong
| |
Collapse
|
5
|
Zhao X, Alsufyani M, Tian J, Lin Y, Jeong SY, Han YW, Yin Y, McCulloch I. High Efficiency n-Type Doping of Organic Semiconductors by Cation Exchange. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412811. [PMID: 39385648 DOI: 10.1002/adma.202412811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Achieving efficient doping in n-type conjugated polymers is crucial for their application in electronic devices. In this study, an n-type doping method is developed based on cation exchange that maintains a high doping level while ensuring a high degree of structural order, leading to significantly improved electrical conductivity. By investigating various dopants and ionic liquids, it is discovered that the choice of dopant influences doping efficiency, while the selection of ionic liquid affects cation exchange efficiency. Through careful selection of suitable dopants and ionic liquids, High doping levels are achieved remarkably in a short period, resulting in the highest conductivity (nearly 1 × 10- 2 S cm-¹) compared to other doping methods for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (N2200). The findings highlight the robustness and efficiency of cation exchange doping as an effective approach for achieving high-quality n-type doping in conjugated polymers, thereby opening new avenues for the development of advanced polymer-based electronic devices.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Maryam Alsufyani
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Junfu Tian
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Yuanbao Lin
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Young Woo Han
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yi Yin
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
6
|
Qu Z, Zhao Y, Ma F, Mei L, Chen XK, Zhou H, Chu X, Yang Y, Jiang Q, Zhang X, You J. Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells. Nat Commun 2024; 15:8620. [PMID: 39366950 PMCID: PMC11452620 DOI: 10.1038/s41467-024-52925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Surface passivation has been developed as an effective strategy to reduce trap-state density and suppress non-radiation recombination process in perovskite solar cells. However, passivation agents usually own poor conductivity and hold negative impact on the charge carrier transport in device. Here, we report a binary and synergistical post-treatment method by blending 4-tert-butyl-benzylammonium iodide with phenylpropylammonium iodide and spin-coating on perovskite surface to form passivation layer. The binary and synergistical post-treated films show enhanced crystallinity and improved molecular packing as well as better energy band alignment, benefiting for the hole extraction and transfer. Moreover, the surface defects are further passivated compared with unary passivation. Based on the strategy, a record-certified quasi-steady power conversion efficiency of 26.0% perovskite solar cells is achieved. The devices could maintain 81% of initial efficiency after 450 h maximum power point tracking.
Collapse
Affiliation(s)
- Zihan Qu
- Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yang Zhao
- Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
- School of Physics, Liaoning University, 110036, Shenyang, Liaoning, P. R. China
| | - Fei Ma
- Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Le Mei
- Department of Chemistry, City University of Hong Kong, 999077, Kowloon, Hong Kong, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Haitao Zhou
- Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xinbo Chu
- Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
- School of Microelectronics, Fudan University, 200433, Shanghai, P. R. China
| | - Qi Jiang
- Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xingwang Zhang
- Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jingbi You
- Laboratory of Semiconductor Physics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
7
|
Chang Q, Yun Y, Cao K, Yao W, Huang X, He P, Shen Y, Zhao Z, Chen M, Li C, Wu B, Yin J, Zhao Z, Li J, Zheng N. Highly Efficient and Stable Perovskite Solar Modules Based on FcPF 6 Engineered Spiro-OMeTAD Hole Transporting Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406296. [PMID: 39233551 DOI: 10.1002/adma.202406296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Li-TFSI doped spiro-OMeTAD is widely recognized as a beneficial hole transport layer (HTL) in perovskite solar cells (PSCs), contributing to high device efficiencies. However, the uncontrolled migration of lithium ions (Li+) during device operation has impeded its broad adoption in scalable and stable photovoltaic modules. Herein, an additive strategy is proposed by employing ferrocenium hexafluorophosphate (FcPF6) as a relay medium to enhance the hole extraction capability of the spiro-OMeTAD via the instant oxidation function. Besides, the novel Fc-Li interaction effectively restricts the movement of Li+. Simultaneously, the dissociative hexafluorophosphate group is cleverly exploited to regulate the unstable iodide species on the perovskite surface, further inhibiting the formation of migration channels and stabilizing the interfaces. This modification leads to power conversion efficiencies (PCEs) reaching 22.13% and 20.27% in 36 cm2 (active area of 18 cm2) and 100 cm2 (active area of 56 cm2) perovskite solar modules (PSMs), respectively, with exceptional operational stability obtained for over 1000 h under the ISOS-L-1 procedure. The novel FcPF6-based engineering approach is pivotal for advancing the industrialization of PSCs, particularly those relying on high-performance spiro-OMeTAD- based HTLs.
Collapse
Affiliation(s)
- Qing Chang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Yikai Yun
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
| | - Kexin Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenlong Yao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Huang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng He
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yang Shen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhengjing Zhao
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
- Future Display Institute of Xiamen, Xiamen, 361102, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102, China
- Future Display Institute of Xiamen, Xiamen, 361102, P. R. China
| | - Binghui Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Jun Yin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Zhiguo Zhao
- Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Jing Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
| | - Nanfeng Zheng
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, 361102, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Wen B, Chen T, Yin Q, Xie J, Dai C, Lin R, Zhou S, Yu J, Gao P. Robust chelated lead octahedron surface for efficient and stable perovskite solar cells. Nat Commun 2024; 15:7720. [PMID: 39231990 PMCID: PMC11374995 DOI: 10.1038/s41467-024-52198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
PbI6 octahedron as a fundamental framework endows the perovskite with excellent photoelectric properties, but also the defective and flimsy surface. Here, we report that the treatment of perovskite surface by bidentate ligands molecules N, N'-Dimethyl-1,2-ethanediamine can in-situ form a lead iodide chelates layer with excellently robust chelated lead octahedron, leading to effectively stabilize and passivate the underlying perovskite. The strong chelation with the lead enables the surface to largely inhibit the defects generation, iodide ion migration and skeleton collapse under external stimuli. It also prolongs the carrier lifetime and adjusts the surface energy-level of perovskite. The resultant perovskite solar cells deliver a power conversion efficiency of 25.7% (certified 25.04%) and retain >90% of their initial value after almost 1000 hours aging at maximum power point under simulated AM1.5 illumination.
Collapse
Affiliation(s)
- Bin Wen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China
- Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Tian Chen
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China
- Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Qixin Yin
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China
- Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiangsheng Xie
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China.
- Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Chaohua Dai
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China
- Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ruohao Lin
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China
- Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Sicen Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China
- Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiancan Yu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China
| | - Pingqi Gao
- School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen, 518107, P. R. China.
- Institute for Solar Energy Systems, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
9
|
Li G, Wang C, Fu S, Zheng W, Shen W, Jia P, Huang L, Zhou S, Zhou J, Wang C, Guan H, Zhou Y, Zhang X, Pu D, Fang H, Lin Q, Ai W, Chen W, Zeng G, Wang T, Qin P, Fang G, Ke W. Boosting All-Perovskite Tandem Solar Cells by Revitalizing the Buried Tin-Lead Perovskite Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401698. [PMID: 39075821 DOI: 10.1002/adma.202401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Narrow-bandgap (NBG) mixed tin-lead (Sn-Pb) perovskite solar cells (PSCs) serve as crucial top subcells in all-perovskite tandem solar cells (TSCs). However, the prevalent use of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) hole transport layers (HTLs) in NBG PSCs compromises device efficiency and stability. To address this, the study proposes a revitalizing strategy for the buried interface of Sn-Pb perovskites by directly immersing acetylcholine chloride (ACh) into PEDOT: PSS. ACh acts as a proficient "diver," not only modulating the bottom PEDOT: PSS HTLs but also facilitating the reconstruction of the buried interface and significantly enhancing the quality of the top perovskite layers. This intervention with ACh prevents Sn2+ oxidation, mitigates buried defects, and encourages the growth of large, densely packed grains within Sn-Pb perovskites. Consequently, the optimized NBG PSCs exhibit significantly improved hole transport and reduced carrier recombination, achieving a steady-state efficiency of 22.98% with enhanced stability. Furthermore, these optimized NBG Sn-Pb cells enable highly efficient two-terminal and four-terminal all-perovskite TSCs, boasting steady-state efficiencies of 27.54% (certified at 26.41%) and 28.01%, respectively. This study emphasizes the importance of optimizing NBG PSCs through buried interface reconstruction, propelling the advancement of all-perovskite TSCs.
Collapse
Affiliation(s)
- Guang Li
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chen Wang
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shiqiang Fu
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wenwen Zheng
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Weicheng Shen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Peng Jia
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lishuai Huang
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shun Zhou
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jin Zhou
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Cheng Wang
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hongling Guan
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuan Zhou
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xuhao Zhang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Dexin Pu
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hongyi Fang
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Qingxian Lin
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wei Ai
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Weiqing Chen
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Guojun Zeng
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ti Wang
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Pingli Qin
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guojia Fang
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Weijun Ke
- Key Lab of Artificial Micro-and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
10
|
Ding D, Yao Y, Hang P, Kan C, Lv X, Ma X, Li B, Jin C, Yang D, Yu X. Visualizing the Structure-Property Nexus of Wide-Bandgap Perovskite Solar Cells under Thermal Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401955. [PMID: 38810025 PMCID: PMC11304240 DOI: 10.1002/advs.202401955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Wide-bandgap perovskite solar cells (PSCs) toward tandem photovoltaic applications are confronted with the challenge of device thermal stability, which motivates to figure out a thorough cognition of wide-bandgap PSCs under thermal stress, using in situ atomic-resolved transmission electron microscopy (TEM) tools combing with photovoltaic performance characterizations of these devices. The in situ dynamic process of morphology-dependent defects formation at initial thermal stage and their proliferations in perovskites as the temperature increased are captured. Meanwhile, considerable iodine enables to diffuse into the hole-transport-layer along the damaged perovskite surface, which significantly degrade device performance and stability. With more intense thermal treatment, atomistic phase transition reveals the perovskite transform to PbI2 along the topo-coherent interface of PbI2/perovskite. In conjunction with density functional theory calculations, a mutual inducement mechanism of perovskite surface damage and iodide diffusion is proposed to account for the structure-property nexus of wide-bandgap PSCs under thermal stress. The entire interpretation also guided to develop a thermal-stable monolithic perovskite/silicon tandem solar cell.
Collapse
Affiliation(s)
- Degong Ding
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science & EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Yuxin Yao
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science & EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Pengjie Hang
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science & EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Chenxia Kan
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science & EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xiang Lv
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science & EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xiaoming Ma
- Department of ChemistryZhejiang UniversityHangzhou310058China
| | - Biao Li
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science & EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Chuanhong Jin
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science & EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science & EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xuegong Yu
- Zhejiang University‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou310014P. R. China
| |
Collapse
|
11
|
Guo J, Wang B, Min J, Shi J, Wang Y, Ling X, Shi Y, Ullah I, Chu D, Ma W, Yuan J. Stabilizing Lead Halide Perovskites via an Organometallic Chemical Bridge for Efficient and Stable Photovoltaics. ACS NANO 2024. [PMID: 39018431 DOI: 10.1021/acsnano.4c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Defects around the surface and grain boundaries of perovskite films normally cause severe nonradiative recombination and imbalanced charge carrier transport, further limiting both the efficiency and stability of perovskite solar cells (PSCs). To tackle this critical issue, we propose a chemical bridge strategy to reconstruct the interface using organometallic molecules. The commercially available molecule bis(diphenylphosphino)ferrocene (FcP2), with a unique bridge molecular structure, anchors and chelates Pb atoms by forming strong Pb-P bonds and further passivates both surfaces and grain boundaries. Detailed characterization revealed that bridge molecule FcP2 reconstruction can effectively suppress nonradiative recombination, and the electron delocalization properties of the ferrocene core can further achieve more balanced interfacial carrier transport. The resultant N-i-P PSC device outputs close to 25% efficiency together with one of the best reported operational stabilities, maintaining over 95% of the initial efficiency after 1000 h of continuous operation at the maximum power point under 1-sun illumination.
Collapse
Affiliation(s)
- Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Bei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jie Min
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Junwei Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xufeng Ling
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yafei Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ihsan Ullah
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
12
|
Zeng H, Lin F, Wan Z, Yang H, Lu H, Jiang S, Zhu J, Yin H, Wei R, Wang Y, Luo J, Jia C. Efficient and stabilized molecular doping of hole-transporting materials driven by a cyclic-anion strategy for perovskite solar cells. Chem Sci 2024; 15:9814-9822. [PMID: 38939142 PMCID: PMC11206222 DOI: 10.1039/d4sc02020k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
Bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) is commonly used as an effective dopant to improve the performance of the hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, the ultra-hygroscopic and migratory nature of Li-TFSI leads to inferior stability of PSCs. Here, we report on a strategy to regulate the anion unit in Li-TFSI from linear to cyclic, constructing a new dopant, lithium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide (Li-CYCLIC), for the state-of-the-art poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Mechanistic and experimental results reveal that the cyclic anion CYCLIC- exhibits stronger interaction with Li+ and PTAA˙+ compared with the linear anion TFSI-, thus significantly restraining the moisture absorption and migration of Li+ and improving the thermodynamic stability of PTAA˙+CYCLIC-. With this molecular engineering, the resulting PSCs based on Li-CYCLIC obtained an improved efficiency, along with remarkably enhanced stability, retaining 96% of the initial efficiency after over 1150 hours under continuous 1 sun illumination in an N2 atmosphere, yielding an extrapolated T 80 of over 12 000 hours. In a broader context, the proposed strategy of linear-to-cyclic doping provides substantial guidance for the subsequent advancement in the development of effective dopants for photoelectric devices.
Collapse
Affiliation(s)
- Huaibiao Zeng
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China 518110 Shenzhen P. R. China
| | - Fangyan Lin
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
| | - Zhongquan Wan
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China 518110 Shenzhen P. R. China
| | - Hua Yang
- Dongguan Neutron Science Center Dongguan 523803 P. R. China
| | - Hui Lu
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China 518110 Shenzhen P. R. China
| | - Shaoliang Jiang
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
| | - Jinqing Zhu
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
| | - Haomiao Yin
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
| | - Runmin Wei
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China 518110 Shenzhen P. R. China
| | - Yuanxi Wang
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
| | - Junsheng Luo
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China 518110 Shenzhen P. R. China
| | - Chunyang Jia
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China 611731 Chengdu P. R. China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China 518110 Shenzhen P. R. China
| |
Collapse
|
13
|
Lu X, Sun K, Wang Y, Liu C, Meng Y, Lang X, Xiao C, Tian R, Song Z, Zhu Z, Yang M, Bai Y, Ge Z. Dynamic Reversible Oxidation-Reduction of Iodide Ions for Operationally Stable Perovskite Solar Cells under ISOS-L-3 Protocol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400852. [PMID: 38579292 DOI: 10.1002/adma.202400852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Indexed: 04/07/2024]
Abstract
Despite rapid advancements in the photovoltaic efficiencies of perovskite solar cells (PSCs), their operational stability remains a significant challenge for commercialization. This instability mainly arises from light-induced halide ion migration and subsequent oxidation into iodine (I2). The situation is exacerbated when considering the heat effects at elevated temperatures, leading to the volatilization of I2 and resulting in irreversible device degradation. Mercaptoethylammonium iodide (ESAI) is thus incorporated into perovskite as an additive to inhibit the oxidation of iodide anion (I-) and the light-induced degradation pathway of FAPbI3→FAI+PbI2. Additionally, the formation of a thiol-disulfide/I--I2 redox pair within the perovskite film provides a dynamic mechanism for the continuous reduction of I2 under light and thermal stresses, facilitating the healing of iodine-induced degradations. This approach significantly enhances the operational stability of PSCs. Under the ISOS-L-3 testing protocol (maximum power point (MPP) tracking in an environment with relative humidity of ≈50% at ≈65 °C), the treated PSCs maintain 97% of their original power conversion efficieney (PCE) after 300 h of aging. In contrast, control devices exhibit almost complete degradation, primarily due to rapid thermal-induced I2 volatilization. These results demonstrate a promising strategy to overcome critical stability challenges in PSCs, particularly in scenarios involving thermal effects.
Collapse
Affiliation(s)
- Xiaoyi Lu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering Ningbo University, Ningbo, 315211, China
| | - Kexuan Sun
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yaohua Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chang Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiting Lang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chuanxiao Xiao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ruijia Tian
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhenhua Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zewei Zhu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ming Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yang Bai
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering University of Chinese, Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Lan Z, Huang H, Du S, Lu Y, Sun C, Yang Y, Zhang Q, Suo Y, Qu S, Wang M, Wang X, Yan L, Cui P, Zhao Z, Li M. Cascade Reaction in Organic Hole Transport Layer Enables Efficient Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202402840. [PMID: 38509835 DOI: 10.1002/anie.202402840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/03/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
The doped organic hole transport layer (HTL) is crucial for achieving high-efficiency perovskite solar cells (PSCs). However, the traditional doping strategy undergoes a time-consuming and environment-dependent oxidation process, which hinders the technology upgrades and commercialization of PSCs. Here, we reported a new strategy by introducing a cascade reaction in traditional doped Spiro-OMeTAD, which can simultaneously achieve rapid oxidation and overcome the erosion of perovskite by 4-tert-butylpyridine (tBP) in organic HTL. The ideal dopant iodobenzene diacetate was utilized as the initiator that can react with Spiro to generate Spiro⋅+ radicals quickly and efficiently without the participation of ambient air, with the byproduct of iodobenzene (DB). Then, the DB can coordinate with tBP through a halogen bond to form a tBP-DB complex, minimizing the sustained erosion from tBP to perovskite. Based on the above cascade reaction, the resulting Spiro-based PSCs have a champion PCE of 25.76 % (certificated of 25.38 %). This new oxidation process of HTL is less environment-dependent and produces PSCs with higher reproducibility. Moreover, the PTAA-based PSCs obtain a PCE of 23.76 %, demonstrating the excellent applicability of this doping strategy on organic HTL.
Collapse
Affiliation(s)
- Zhineng Lan
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Hao Huang
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Shuxian Du
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Yi Lu
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Changxu Sun
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Yingying Yang
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Qiang Zhang
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Yi Suo
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Shujie Qu
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Min Wang
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Xinxin Wang
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Luyao Yan
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Peng Cui
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| | - Zhiguo Zhao
- China Huaneng Clean Energy Research Institute, Beijing, 102209, China
| | - Meicheng Li
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, 2 Beinong Road, Changping District, Beijing, 102206, China
| |
Collapse
|
15
|
Zhang Y, He L, Cai Y, Zhang J, Wang P. Aza[5]helicene-Derived Semiconducting Polymers for Improved Performance in Perovskite Solar Cells: Exploring Energetic and Morphological Influences. Angew Chem Int Ed Engl 2024; 63:e202401605. [PMID: 38363082 DOI: 10.1002/anie.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
The strategic design of solution-processable semiconducting polymers possessing both matched energy levels and elevated glass transition temperatures is of urgent importance in the progression of thermally robust n-i-p perovskite solar cells with efficiencies exceeding 25 %. In this work, we employed direct arylation polymerization to achieve the high-yield synthesis of three aza[5]helicene-derived copolymers with distinct HOMO energy levels and exceptional glass transition temperatures. Upon integration of these semiconducting polymers into formamidinium lead triiodide-based perovskite solar cells, marked disparities in photovoltaic parameters manifest, primarily stemming from variations in the electrical conductivity and film morphology of the hole transport layers. The p-A5HP-E-POZOD-E copolymer, featuring a main chain comprising alternating repeats of aza[5]helicene, ethylenedioxythiophene, phenoxazine, and ethylenedioxythiophene, attains an initial average efficiency of 25.5 %, markedly surpassing reference materials such as spiro-OMeTAD (23.0 %), PTAA (17.0 %), and P3HT (11.6 %). Notably, p-A5HP-E-POZOD-E exhibits a high cohesive energy density, resulting in enhanced Young's modulus and diminished external species diffusion coefficients, thereby conferring perovskite solar cells with exceptional 85 °C tolerance and operational stability.
Collapse
Affiliation(s)
- Yuyan Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lifei He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yaohang Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Peng Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Wu K, Ran P, Wang B, Wang F, Zhao J, Zhao E. Diffusion-Optimized Long Lifespan 4.6 V LiCoO 2: Homogenizing Cycled Bulk-To-Surface Li Concentration with Reduced Structure Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308258. [PMID: 38291813 PMCID: PMC11005714 DOI: 10.1002/advs.202308258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Increasing the charging cut-off voltage (e.g., 4.6 V) to extract more Li ions are pushing the LiCoO2 (LCO) cathode to achieve a higher energy density. However, an inhomogeneous cycled bulk-to-surface Li distribution, which is closely associated with the enhanced extracted Li ions, is usually ignored, and severely restricts the design of long lifespan high voltage LCO. Here, a strategy by constructing an artificial solid-solid Li diffusion environment on LCO's surface is proposed to achieve a homogeneous bulk-to-surface Li distribution upon cycling. The diffusion optimized LCO not only shows a highly reversible capacity of 212 mA h g-1 but also an ultrahigh capacity retention of 80% over 600 cycles at 4.6 V. Combined in situ X-ray diffraction measurements and stress-evolution simulation analysis, it is revealed that the superior 4.6 V long-cycled stability is ascribed to a reduced structure stress leaded by the homogeneous bulk-to-surface Li diffusion. This work broadens approaches for the design of highly stable layered oxide cathodes with low ion-storage structure stress.
Collapse
Affiliation(s)
- Kang Wu
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Peilin Ran
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Baotian Wang
- Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
- Spallation Neutron Source Science CenterDongguanGuangdong523803P. R. China
| | - Fangwei Wang
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- Spallation Neutron Source Science CenterDongguanGuangdong523803P. R. China
| | - Jinkui Zhao
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Enyue Zhao
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
| |
Collapse
|
17
|
Luo J, Liu B, Yin H, Zhou X, Wu M, Shi H, Zhang J, Elia J, Zhang K, Wu J, Xie Z, Liu C, Yuan J, Wan Z, Heumueller T, Lüer L, Spiecker E, Li N, Jia C, Brabec CJ, Zhao Y. Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime. Nat Commun 2024; 15:2002. [PMID: 38443353 PMCID: PMC10914746 DOI: 10.1038/s41467-024-46145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
The development of a robust quasi-ohmic contact with minimal resistance, good stability and cost-effectiveness is crucial for perovskite solar cells. We introduce a generic approach featuring a Lewis-acid layer sandwiched between dopant-free semicrystalline polymer and metal electrode in perovskite solar cells, resulting in an ideal quasi-ohmic contact even at elevated temperature up to 85 °C. The solubility of Lewis acid in alcohol facilitates nondestructive solution processing on top of polymer, which boosts hole injection from polymer into metal by two orders of magnitude. By integrating the polymer-acid-metal structure into solar cells, devices exhibit remarkable resilience, retaining 96% ± 3%, 96% ± 2% and 75% ± 7% of their initial efficiencies after continuous operation in nitrogen at 35 °C for 2212 h, 55 °C for 1650 h and 85 °C for 937 h, respectively. Leveraging the Arrhenius relation, we project an impressive T80 lifetime of 26,126 h at 30 °C.
Collapse
Affiliation(s)
- Junsheng Luo
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110, Shenzhen, PR China
| | - Bowen Liu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Haomiao Yin
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China
| | - Xin Zhou
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, FriedrichAlexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058, Erlangen, Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, FriedrichAlexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058, Erlangen, Germany
| | - Hongyang Shi
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Jiyun Zhang
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Jack Elia
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Kaicheng Zhang
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Jianchang Wu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Zhiqiang Xie
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Chao Liu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Junyu Yuan
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110, Shenzhen, PR China
| | - Zhongquan Wan
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110, Shenzhen, PR China.
| | - Thomas Heumueller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Larry Lüer
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science, FriedrichAlexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058, Erlangen, Germany
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, PR China
| | - Chunyang Jia
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518110, Shenzhen, PR China.
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, Martensstr. 7, 91058, Erlangen, Germany.
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.
| | - Yicheng Zhao
- National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, PR China.
- Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.
| |
Collapse
|
18
|
Azmi R, Zhumagali S, Bristow H, Zhang S, Yazmaciyan A, Pininti AR, Utomo DS, Subbiah AS, De Wolf S. Moisture-Resilient Perovskite Solar Cells for Enhanced Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211317. [PMID: 37075307 DOI: 10.1002/adma.202211317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/11/2023] [Indexed: 05/03/2023]
Abstract
With the rapid rise in device performance of perovskite solar cells (PSCs), overcoming instabilities under outdoor operating conditions has become the most crucial obstacle toward their commercialization. Among stressors such as light, heat, voltage bias, and moisture, the latter is arguably the most critical, as it can decompose metal-halide perovskite (MHP) photoactive absorbers instantly through its hygroscopic components (organic cations and metal halides). In addition, most charge transport layers (CTLs) commonly employed in PSCs also degrade in the presence of water. Furthermore, photovoltaic module fabrication encompasses several steps, such as laser processing, subcell interconnection, and encapsulation, during which the device layers are exposed to the ambient atmosphere. Therefore, as a first step toward long-term stable perovskite photovoltaics, it is vital to engineer device materials toward maximizing moisture resilience, which can be accomplished by passivating the bulk of the MHP film, introducing passivation interlayers at the top contact, exploiting hydrophobic CTLs, and encapsulating finished devices with hydrophobic barrier layers, without jeopardizing device performance. Here, existing strategies for enhancing the performance stability of PSCs are reviewed and pathways toward moisture-resilient commercial perovskite devices are formulated.
Collapse
Affiliation(s)
- Randi Azmi
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shynggys Zhumagali
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Helen Bristow
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shanshan Zhang
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Aren Yazmaciyan
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Anil Reddy Pininti
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Drajad Satrio Utomo
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Anand S Subbiah
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Stefaan De Wolf
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Mussakhanuly N, Choi E, L Chin R, Wang Y, Seidel J, Green MA, M Soufiani A, Hao X, Yun JS. Multifunctional Surface Treatment against Imperfections and Halide Segregation in Wide-Band Gap Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7961-7972. [PMID: 38290432 DOI: 10.1021/acsami.3c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Mixed-halide wide-band gap perovskites (WBPs) still suffer from losses due to imperfections within the absorber and the segregation of halide ions under external stimuli. Herein, we design a multifunctional passivator (MFP) by mixing bromide salt, formamidinium bromide (FABr) with a p-type self-assembled monolayer (SAM) to target the nonradiative recombination pathways. Photoluminescence measurement shows considerable suppression of nonradiative recombination rates after treatment with FABr. However, WBPs still remained susceptible to halide segregation for which the addition of 25% p-type SAM was effective to decelerate segregation. It is observed that FABr can act as a passivating agent of the donor impurities, shifting the Fermi-level (Ef) toward the mid-band gap, while p-type SAM could cause an overweight of Ef toward the valence band. Favorable band bending at the interface could prevent the funneling of carriers toward I-rich clusters. Instead, charge carriers funnel toward an integrated SAM, preventing the accumulation of polaron-induced strain on the lattice. Consequently, n-i-p structured devices with an optimal MFP treatment show an average open-circuit voltage (VOC) increase of about 20 mV and fill factor (FF) increase by 4% compared with the control samples. The unencapsulated devices retained 95% of their initial performance when stored at room temperature under 40% relative humidity for 2800 h.
Collapse
Affiliation(s)
- Nursultan Mussakhanuly
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Eunyoung Choi
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
- Dimond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, Oxfordshire, U.K
| | - Robert L Chin
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Yihao Wang
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Jan Seidel
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Martin A Green
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Arman M Soufiani
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Xiaojing Hao
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Jae S Yun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney 2052, Australia
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford GU2 7XH, Surrey, U.K
| |
Collapse
|
20
|
Yang Y, Xiong Q, Wu J, Tu Y, Sun T, Li G, Liu X, Wang X, Du Y, Deng C, Tan L, Wei Y, Lin Y, Huang Y, Huang M, Sun W, Fan L, Xie Y, Lin J, Lan Z, Stacchinii V, Musiienko A, Hu Q, Gao P, Abate A, Nazeeruddin MK. Poly(3-hexylthiophene)/perovskite Heterointerface by Spinodal Decomposition Enabling Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310800. [PMID: 38019266 DOI: 10.1002/adma.202310800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The best research-cell efficiency of perovskite solar cells (PSCs) is comparable with that of mature silicon solar cells (SSCs); However, the industrial development of PSCs lags far behind SSCs. PSC is a multiphase and multicomponent system, whose consequent interfacial energy loss and carrier loss seriously affect the performance and stability of devices. Here, by using spinodal decomposition, a spontaneous solid phase segregation process, in situ introduces a poly(3-hexylthiophene)/perovskite (P3HT/PVK) heterointerface with interpenetrating structure in PSCs. The P3HT/PVK heterointerface tunes the energy alignment, thereby reducing the energy loss at the interface; The P3HT/PVK interpenetrating structure bridges a transport channel, thus decreasing the carrier loss at the interface. The simultaneous mitigation of energy and carrier losses by P3HT/PVK heterointerface enables n-i-p geometry device a power conversion efficiency of 24.53% (certified 23.94%) and excellent stability. These findings demonstrate an ingenious strategy to optimize the performance of PSCs by heterointerface via Spinodal decomposition.
Collapse
Affiliation(s)
- Yuqian Yang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, D-12489, Berlin, Germany
| | - Qiu Xiong
- Xiamen Institute Rare Earth Materials, Haixi Institutes, Chinese Academy of Science, Xiamen, 361021, P. R. China
| | - Jihuai Wu
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Yongguang Tu
- Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tianxiao Sun
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, D-12489, Berlin, Germany
| | - Guixiang Li
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, D-12489, Berlin, Germany
| | - Xuping Liu
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Xiaobing Wang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Yitian Du
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Chunyan Deng
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Lina Tan
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Yuelin Wei
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Yu Lin
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Yunfang Huang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Miaoliang Huang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Weihai Sun
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Leqing Fan
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Yiming Xie
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Jianming Lin
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Zhang Lan
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian, 361021, P. R. China
| | - Valerio Stacchinii
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, D-12489, Berlin, Germany
| | - Artem Musiienko
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, D-12489, Berlin, Germany
| | - Qin Hu
- Univ Sci & Technol China, Sch Microelect, Hefei, Anhui, 230026, P. R. China
| | - Peng Gao
- Xiamen Institute Rare Earth Materials, Haixi Institutes, Chinese Academy of Science, Xiamen, 361021, P. R. China
| | - Antonio Abate
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, D-12489, Berlin, Germany
| | - Mohammad Khaja Nazeeruddin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne, Sion, Valais, CH-1951, Switzerland
| |
Collapse
|
21
|
Zhou X, Wang T, Liang X, Wang F, Xu Y, Lin H, Hu R, Hu H. Long-chain organic molecules enable mixed dimensional perovskite photovoltaics: a brief view. Front Chem 2024; 11:1341935. [PMID: 38274895 PMCID: PMC10808587 DOI: 10.3389/fchem.2023.1341935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
The remarkable optoelectronic properties of organometal halide perovskite solar cells have captivated significant attention in the energy sector. Nevertheless, the instability of 3D perovskites, despite their extensive study and attainment of high-power conversion efficiency, remains a substantial obstacle in advancing PSCs for practical applications and eventual commercialization. To tackle this issue, researchers have devised mixed-dimensional perovskite structures combining 1D and 3D components. This innovative approach entails incorporating stable 1D perovskites into 3D perovskite matrices, yielding a significant improvement in long-term stability against various challenges, including moisture, continuous illumination, and thermal stress. Notably, the incorporation of 1D perovskite yields a multitude of advantages. Firstly, it efficiently passivates defects, thereby improving the overall device quality. Secondly, it retards ion migration, a pivotal factor in degradation, thus further bolstering stability. Lastly, the inclusion of 1D perovskite facilitates charge transport, ultimately resulting in an elevated device efficiency. In this succinct review, we thoroughly encapsulate the recent progress in PSCs utilizing 1D/3D mixed-dimensional architectures. These advancements encompass both stacked bilayer configurations of 1D/3D structures and mixed monolayer structures of 1D/3D. Additionally, we tackle critical challenges that must be surmounted and offer insights into the prospects for further advancements in this domain.
Collapse
Affiliation(s)
- Xianfang Zhou
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, China
| | - Taomiao Wang
- Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, School of Science, Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiao Liang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, China
| | - Fei Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, China
| | - Yan Xu
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, China
| | - Haoran Lin
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, China
| | - Ruiyuan Hu
- Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, School of Science, Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic University, Shenzhen, China
| |
Collapse
|
22
|
Suo J, Yang B, Mosconi E, Bogachuk D, Doherty TAS, Frohna K, Kubicki DJ, Fu F, Kim Y, Er-Raji O, Zhang T, Baldinelli L, Wagner L, Tiwari AN, Gao F, Hinsch A, Stranks SD, De Angelis F, Hagfeldt A. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. NATURE ENERGY 2024; 9:172-183. [PMID: 38419691 PMCID: PMC10896729 DOI: 10.1038/s41560-023-01421-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/21/2023] [Indexed: 03/02/2024]
Abstract
The stabilization of grain boundaries and surfaces of the perovskite layer is critical to extend the durability of perovskite solar cells. Here we introduced a sulfonium-based molecule, dimethylphenethylsulfonium iodide (DMPESI), for the post-deposition treatment of formamidinium lead iodide perovskite films. The treated films show improved stability upon light soaking and remains in the black α phase after two years ageing under ambient condition without encapsulation. The DMPESI-treated perovskite solar cells show less than 1% performance loss after more than 4,500 h at maximum power point tracking, yielding a theoretical T80 of over nine years under continuous 1-sun illumination. The solar cells also display less than 5% power conversion efficiency drops under various ageing conditions, including 100 thermal cycles between 25 °C and 85 °C and an 1,050-h damp heat test.
Collapse
Affiliation(s)
- Jiajia Suo
- Department of Chemistry–Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bowen Yang
- Department of Chemistry–Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Edoardo Mosconi
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche ‘Giulio Natta’ (CNR-SCITEC), Perugia, Italy
| | - Dmitry Bogachuk
- Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Solarlab Aiko Europe GmbH, Freiburg, Germany
| | - Tiarnan A. S. Doherty
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Kyle Frohna
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Dominik J. Kubicki
- Department of Physics, University of Warwick, Coventry, UK
- Present Address: School of Chemistry, University of Birmingham, Edgbaston, UK
| | - Fan Fu
- Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland
| | - YeonJu Kim
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Oussama Er-Raji
- Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
- Department of Sustainable Systems Engineering (INATECH), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Tiankai Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Lorenzo Baldinelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lukas Wagner
- Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
- Physics of Solar Energy Conversion Group, Department of Physics, Philipps-University Marburg, Marburg, Germany
| | - Ayodhya N. Tiwari
- Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Andreas Hinsch
- Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany
| | - Samuel D. Stranks
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Filippo De Angelis
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche ‘Giulio Natta’ (CNR-SCITEC), Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- Department of Natural Sciences and Mathematics, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Dhahran, Saudi Arabia
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Korea
| | - Anders Hagfeldt
- Department of Chemistry–Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Li C, Zhang Z, Zhang H, Yan W, Li Y, Liang L, Yu W, Yu X, Wang Y, Yang Y, Nazeeruddin MK, Gao P. Fully Aromatic Self-Assembled Hole-Selective Layer toward Efficient Inverted Wide-Bandgap Perovskite Solar Cells with Ultraviolet Resistance. Angew Chem Int Ed Engl 2024; 63:e202315281. [PMID: 37987092 DOI: 10.1002/anie.202315281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet-induced degradation has emerged as a critical stability concern impeding the widespread adoption of perovskite solar cells (PSCs), particularly in the context of phase-unstable wide-band gap perovskite films. This study introduces a novel approach by employing a fully aromatic carbazole-based self-assembled monolayer, denoted as (4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)phosphonic acid (MeO-PhPACz), as a hole-selective layer (HSL) in inverted wide-band gap PSCs. Incorporating a conjugated linker plays a pivotal role in promoting the formation of a dense and highly ordered HSL on substrates, facilitating subsequent perovskite interfacial interactions, and fostering the growth of uniform perovskite films. The high-quality film could effectively suppress interfacial non-radiative recombination, improving hole extraction/transport efficiency. Through these advancements, the optimized wide-band gap PSCs, featuring a band gap of 1.68 eV, attain an impressive power conversion efficiency (PCE) of 21.10 %. Remarkably, MeO-PhPACz demonstrates inherent UV resistance and heightened UV absorption capabilities, substantially improving UV resistance for the targeted PSCs. This characteristic holds significance for the feasibility of large-scale outdoor applications.
Collapse
Affiliation(s)
- Chi Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Huifeng Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenlong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuheng Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lusheng Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Wei Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xuteng Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne, Peshawar, 1951 Sion, Switzerland
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Liu D, Chen C, Wang X, Sun X, Zhang B, Zhao Q, Li Z, Shao Z, Wang X, Cui G, Pang S. Enhanced Quasi-Fermi Level Splitting of Perovskite Solar Cells by Universal Dual-Functional Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310962. [PMID: 38111378 DOI: 10.1002/adma.202310962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Indexed: 12/20/2023]
Abstract
Perovskite solar cells (PSCs) have attracted extensive attention due to their higher power conversion efficiency (PCE) and simple fabrication process. However, the open-circuit voltage (VOC ) loss remains a significant impediment to enhance device performance. Here, a facile strategy to boost the VOC to 95.5% of the Shockley-Queisser (S-Q) limit through the introduction of a universal multifunctional polymer additive is demonstrated. This additive effectively passivates the cation and anion defects simultaneously, thereby leading to the transformation from the strong n-type to weak n-type of perovskite films. Benefitting from the energy level alignment and the suppression of bulk non-radiative recombination, the quasi-Fermi level splitting (QFLS) is enhanced. Consequently, the champion devices with 1.59 eV-based perovskite reach the highest VOC value of 1.24 V and a PCE of 23.86%. Furthermore, this strategy boosts the VOC by at least 0.07 V across five different perovskite systems, a PCE of 25.04% is achieved for 1.57 eV-based PSCs, and the corresponding module (14 cm2 ) also obtained a high PCE of 21.95%. This work provides an effective and universal strategy to promote the VOC approach to the detailed balance theoretical limit.
Collapse
Affiliation(s)
- Dachang Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Xianzhao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuhong Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingqian Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Qiangqiang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Zhipeng Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipeng Shao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Xiao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuping Pang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Yang H, Xu T, Chen W, Wu Y, Guo X, Shen Y, Ding C, Chen X, Chen H, Ding J, Wu X, Zeng G, Zhang Z, Li Y, Li Y. Iodonium Initiators: Paving the Air-free Oxidation of Spiro-OMeTAD for Efficient and Stable Perovskite Solar Cells. Angew Chem Int Ed Engl 2023:e202316183. [PMID: 38063461 DOI: 10.1002/anie.202316183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 12/22/2023]
Abstract
To date, perovskite solar cells (pero-SCs) with doped 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) hole transporting layers (HTLs) have shown the highest recorded power conversion efficiencies (PCEs). However, their commercialization is still impeded by poor device stability owing to the hygroscopic lithium bis(trifluoromethanesulfonyl)imide and volatile 4-tert-butylpyridine dopants as well as time-consuming oxidation in air. In this study, we explored a series of single-component iodonium initiators with strong oxidability and different electron delocalization properties to precisely manipulate the oxidation states of Spiro-OMeTAD without air assistance, and the oxidation mechanism was clearly understood. Iodine (III) in the diphenyliodonium cation (IP+ ) can accept a single electron from Spiro-OMeTAD and forms Spiro-OMeTAD⋅+ owing to its strong oxidability. Moreover, because of the coordination of the strongly delocalized TFSI- with Spiro-OMeTAD⋅+ in a stable radical complex, the resulting hole mobility was 30 times higher than that of pristine Spiro-OMeTAD. In addition, the IP-TFSI initiator facilitated the growth of a homogeneous and pinhole-free Spiro-OMeTAD film. The pero-SCs based on this oxidizing HTL showed excellent efficiencies of 25.16 % (certified: 24.85 % for 0.062-cm2 ) and 20.71 % for a 15.03-cm2 module as well as remarkable overall stability.
Collapse
Affiliation(s)
- Heyi Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tingting Xu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yeyong Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xianming Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
| | - Yunxiu Shen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chengqiang Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xining Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Junyuan Ding
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210008, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
26
|
Cai Y, Zhang Y, Zhang J, Pan X, Andersson MR, Wang P. A Homopolymer of Xanthenoxanthene-Based Polycyclic Heteroaromatic for Efficient and Stable Perovskite Solar Cells. Angew Chem Int Ed Engl 2023:e202315814. [PMID: 38061995 DOI: 10.1002/anie.202315814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 12/21/2023]
Abstract
Highly efficient perovskite solar cells typically rely on spiro-OMeTAD as a hole transporter, achieving a 25.7 % efficiency record. However, these cells are susceptible to harsh 85 °C conditions. Here, we present a peri-xanthenoxanthene-based semiconducting homopolymer (p-TNI2) with matched energy levels and a high molecular weight, synthesized nearly quantitatively through facile oxidative polymerization. Compared to established materials, p-TNI2 excels in hole mobility, morphology, modulus, and waterproofing. Implementing p-TNI2 as the hole transport layer results in n-i-p perovskite solar cells with an initial average efficiency of 24.6 %, rivaling 24.4 % for the spiro-OMeTAD control cells under identical conditions. Furthermore, the p-TNI2-based cells exhibit enhanced thermostability at 85 °C and operational robustness.
Collapse
Affiliation(s)
- Yaohang Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yuyan Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xun Pan
- Flinders Institute for NanoScale Science and Technology, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Mats R Andersson
- Flinders Institute for NanoScale Science and Technology, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Peng Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Dong H, Pan X, Gong Y, Xue M, Wang P, Ho-Kimura S, Yao Y, Xin H, Luo W, Zou Z. Potential window alignment regulating ion transfer in faradaic junctions for efficient photoelectrocatalysis. Nat Commun 2023; 14:7969. [PMID: 38042869 PMCID: PMC10693569 DOI: 10.1038/s41467-023-43916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
In the past decades, a band alignment theory has become a basis for designing different high-performance semiconductor devices, such as photocatalysis, photoelectrocatalysis, photoelectrostorage and third-generation photovoltaics. Recently, a faradaic junction model (coupled electron and ion transfer) has been proposed to explain charge transfer phenomena in these semiconductor heterojunctions. However, the classic band alignment theory cannot explain coupled electron and ion transfer processes because it only regulates electron transfer. Therefore, it is very significant to explore a suitable design concept for regulating coupled electron and ion transfer in order to improve the performance of semiconductor heterojunctions. Herein, we propose a potential window alignment theory for regulating ion transfer and remarkably improving the photoelectrocatalytic performance of a MoS2/Cd-Cu2ZnSnS4 heterojunction photocathode. Moreover, we find that a faradaic potential window, rather than the band position of the intermediate layer, is a criterion for identifying interface charge transfer direction. This finding can offer different perspectives for designing high-performance semiconductor heterojunctions with suitable potential windows for solar energy conversion and storage.
Collapse
Affiliation(s)
- Hongzheng Dong
- Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiangyu Pan
- State Key Laboratory for Organic Electronics and Information Displays, College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yuancai Gong
- State Key Laboratory for Organic Electronics and Information Displays, College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Mengfan Xue
- Eco-materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Pin Wang
- Eco-materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
| | - SocMan Ho-Kimura
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China
| | - Yingfang Yao
- Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Hao Xin
- State Key Laboratory for Organic Electronics and Information Displays, College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Wenjun Luo
- Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
- Eco-materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
28
|
Hatakeyama-Sato K, Oyaizu K. Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices. Chem Rev 2023; 123:11336-11391. [PMID: 37695670 DOI: 10.1021/acs.chemrev.3c00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Persistent radicals can hold their unpaired electrons even under conditions where they accumulate, leading to the unique characteristics of radical ensembles with open-shell structures and their molecular properties, such as magneticity, radical trapping, catalysis, charge storage, and electrical conductivity. The molecules also display fast, reversible redox reactions, which have attracted particular attention for energy conversion and storage devices. This paper reviews the electrochemical aspects of persistent radicals and the corresponding macromolecules, radical polymers. Radical structures and their redox reactions are introduced, focusing on redox potentials, bistability, and kinetic constants for electrode reactions and electron self-exchange reactions. Unique charge transport and storage properties are also observed with the accumulated form of redox sites in radical polymers. The radical molecules have potential electrochemical applications, including in rechargeable batteries, redox flow cells, photovoltaics, diodes, and transistors, and in catalysts, which are reviewed in the last part of this paper.
Collapse
Affiliation(s)
- Kan Hatakeyama-Sato
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
29
|
Zeng F, Kong W, Liang Y, Li F, Lvtao Y, Su Z, Wang T, Peng B, Ye L, Chen Z, Gao X, Huang J, Zheng R, Yang X. Highly Stable and Efficient Formamidinium-Based 2D Ruddlesden-Popper Perovskite Solar Cells via Lattice Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306051. [PMID: 37671795 DOI: 10.1002/adma.202306051] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Formamidinium (FA)-based 2D perovskites have emerged as highly promising candidates in solar cells. However, the insertion of 2D spacer cations into the perovskite lattice concomitantly introduces microstrain and unfavorable orientations that hinder efficiency and stability. In this study, by finely tuning the FA-based 2D perovskite lattice through spacer cation engineering, a stable lattice structure with balanced distortion, microstrain relaxation, and reduced carrier-lattice interactions is achieved. These advancements effectively stabilize the inherently soft lattice against light and thermal-aging stress. To reduce the photocurrent loss induced by undesired crystal texture, a polarity-matched molecular-type selenourea (SENA) additive is further employed to modulate the crystallization kinetics. The introduction of the SENA significantly inhibits the disordered crystallization induced by spacer cations and drives the templated growth of the quantum well structure with a vertical orientation. This controlled crystallization process effectively reduces crystal defects and enhances charge separation. Ultimately, the optimized FA-based perovskite photovoltaic devices achieve a remarkable power conversion efficiency (PCE) of 20.03% (certified steady-state efficiency of 19.30%), setting a new record for low-n 2D perovskite solar cells. Furthermore, the devices exhibit less than 1% efficiency degradation after operating at maximum power point for 1000 h and maintain excellent stability after thermal aging and cycles of cold-warm shock, respectively.
Collapse
Affiliation(s)
- Fang Zeng
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiyu Kong
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Innovation Center for Future Materials, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Yuhang Liang
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering. The University of Sydney, Sydney, NSW, 2006, Australia
| | - Feng Li
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yuze Lvtao
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zhenhuang Su
- Shanghai Synchrotron Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Tao Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Innovation Center for Future Materials, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Bingguo Peng
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Innovation Center for Future Materials, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201210, China
| | - Longfang Ye
- School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhenhua Chen
- Shanghai Synchrotron Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xingyu Gao
- Shanghai Synchrotron Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jun Huang
- School of Chemical and Biomolecular Engineering. The University of Sydney, Sydney, NSW, 2006, Australia
| | - Rongkun Zheng
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xudong Yang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Innovation Center for Future Materials, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201210, China
| |
Collapse
|
30
|
Ishii M, Yamashita Y, Watanabe S, Ariga K, Takeya J. Doping of molecular semiconductors through proton-coupled electron transfer. Nature 2023; 622:285-291. [PMID: 37821588 DOI: 10.1038/s41586-023-06504-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/01/2023] [Indexed: 10/13/2023]
Abstract
The chemical doping of molecular semiconductors is based on electron-transfer reactions between the semiconductor and dopant molecules; here, the redox potential of the dopant is key to control the Fermi level of the semiconductor1,2. The tunability and reproducibility of chemical doping are limited by the availability of dopant materials and the effects of impurities such as water. Here we focused on proton-coupled electron-transfer (PCET) reactions, which are widely used in biochemical processes3,4; their redox potentials depend on an easily handled parameter, that is, proton activity. We immersed p-type organic semiconductor thin films in aqueous solutions with PCET-based redox pairs and hydrophobic molecular ions. Synergistic reactions of PCET and ion intercalation resulted in efficient chemical doping of crystalline organic semiconductor thin films under ambient conditions. In accordance with the Nernst equation, the Fermi levels of the semiconductors were controlled reproducibly with a high degree of precision-a thermal energy of about 25 millielectronvolts at room temperature and over a few hundred millielectronvolts around the band edge. A reference-electrode-free, resistive pH sensor based on this method is also proposed. A connection between semiconductor doping and proton activity, a widely used parameter in chemical and biochemical processes, may help create a platform for ambient semiconductor processes and biomolecular electronics.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Yu Yamashita
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan.
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Shun Watanabe
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Takeya
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
31
|
Chen C, Ran C, Yao Q, Wang J, Guo C, Gu L, Han H, Wang X, Chao L, Xia Y, Chen Y. Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303992. [PMID: 37541313 PMCID: PMC10558701 DOI: 10.1002/advs.202303992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Indexed: 08/06/2023]
Abstract
As a key contender in the field of photovoltaics, third-generation thin-film perovskite solar cells (PSCs) have gained significant research and investment interest due to their superior power conversion efficiency (PCE) and great potential for large-scale production. For commercialization consideration, low-cost and scalable fabrication is of primary importance for PSCs, and the development of the applicable film-forming techniques that meet the above requirements plays a key role. Currently, large-area perovskite films are mainly produced by printing techniques, such as slot-die coating, inkjet printing, blade coating, and screen-printing. Among these techniques, screen printing offers a high degree of functional layer compatibility, pattern design flexibility, and large-scale ability, showing great promise. In this work, the advanced progress on applying screen-printing technology in fabricating PSCs from technique fundamentals to practical applications is presented. The fundamentals of screen-printing technique are introduced and the state-of-the-art studies on screen-printing different functional layers in PSCs and the control strategies to realize fully screen-printed PSCs are summarized. Moreover, the current challenges and opportunities faced by screen-printed perovskite devices are discussed. This work highlights the critical significance of high throughput screen-printing technology in accelerating the commercialization course of PSCs products.
Collapse
Affiliation(s)
- Changshun Chen
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Chenxin Ran
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Qing Yao
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Jinpei Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Chunyu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Lei Gu
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Huchen Han
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Xiaobo Wang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Lingfeng Chao
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Yingdong Xia
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM)School of Flexible Electronics (Future Technologies)Nanjing Tech University (NanjingTech)NanjingJiangsu211816P. R. China
| |
Collapse
|
32
|
Mu X, Liu Y, Xiao GB, Xu C, Gao X, Cao J. Porphyrin Supramolecule as Surface Carrier Modulator Imparts Hole Transporter with Enhanced Mobility for Perovskite Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202307152. [PMID: 37490622 DOI: 10.1002/anie.202307152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Modulating the surface charge transport behavior of hole transport materials (HTMs) would be as an potential approach to improve their hole mobility, while yet realized for fabricating efficient photovoltaic devices. Here, an oxygen bridged dimer-based monoamine FeIII porphyrin supramolecule is prepared and doped in HTM film. Theoretical analyses reveal that the polaron distributed on dimer can be coupled with the parallel arranged polarons on adjacent dimers. This polaron coupling at the interface of supramolecule and HTM can resonates with hole flux to increase hole transport efficiency. Mobility tests reveal that the hole mobility of doped HTM film is improved by 8-fold. Doped perovskite device exhibits an increased efficiency from 19.8 % to 23.2 %, and greatly improved stability. This work provides a new strategy to improve the mobility of HTMs by surface carrier modulation, therefore fabricating efficient photovoltaic devices.
Collapse
Affiliation(s)
- Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Yajun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Chen Xu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Xingbang Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| |
Collapse
|
33
|
Zhang Y, Zhou C, Lin L, Pei F, Xiao M, Yang X, Yuan G, Zhu C, Chen Y, Chen Q. Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:175. [PMID: 37428245 PMCID: PMC10333165 DOI: 10.1007/s40820-023-01145-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chenxiao Zhou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Lizhi Lin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Fengtao Pei
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mengqi Xiao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoyan Yang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Guizhou Yuan
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Cheng Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yu Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
34
|
Fei C, Li N, Wang M, Wang X, Gu H, Chen B, Zhang Z, Ni Z, Jiao H, Xu W, Shi Z, Yan Y, Huang J. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 2023; 380:823-829. [PMID: 37228201 DOI: 10.1126/science.ade9463] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The defective bottom interfaces of perovskites and hole-transport layers (HTLs) limit the performance of p-i-n structure perovskite solar cells. We report that the addition of lead chelation molecules into HTLs can strongly interact with lead(II) ion (Pb2+), resulting in a reduced amorphous region in perovskites near HTLs and a passivated perovskite bottom surface. The minimodule with an aperture area of 26.9 square centimeters has a power conversion efficiency (PCE) of 21.8% (stabilized at 21.1%) that is certified by the National Renewable Energy Laboratory (NREL), which corresponds to a minimal small-cell efficiency of 24.6% (stabilized 24.1%) throughout the module area. Small-area cells and large-area minimodules with lead chelation molecules in HTLs had a light soaking stability of 3010 and 2130 hours, respectively, at an efficiency loss of 10% from the initial value under 1-sun illumination and open-circuit voltage conditions.
Collapse
Affiliation(s)
- Chengbin Fei
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nengxu Li
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mengru Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaoming Wang
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Hangyu Gu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bo Chen
- Perotech, Inc., Chapel Hill, NC 27516, USA
| | - Zhao Zhang
- Perotech, Inc., Chapel Hill, NC 27516, USA
| | - Zhenyi Ni
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haoyang Jiao
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenzhan Xu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhifang Shi
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanfa Yan
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
35
|
Cai X, Yang L, Deng J, Wei K, Du G, Luo Z, Zhang C, Zhang J. Unveiling and Modulating the Interfacial Reaction at the Metal-Hole Conductor Heterojunction toward Reliable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21252-21260. [PMID: 37073888 DOI: 10.1021/acsami.3c02062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interfaces between functional layers in perovskite solar cells (PSCs) are of paramount importance in determining their efficiency and stability, but the interaction and stability of metal-hole conductor (HC) interfaces have received less attention. Here, we discover an intriguing transient behavior in devices which induces a profound efficiency fluctuation from 9 to 20% during the initial performance testing. Air exposure (e.g., oxygen and moisture) can significantly accelerate this nonequilibrium process and simultaneously enhance the device maximal efficiency. Structural analysis reveals that the chemical reaction between Ag and HC occurred during the metal deposition by thermal evaporation, leading to the formation of an insulating barrier layer at their interfaces, which results in a high charge-transport barrier and poor device performance. Accordingly, we propose a metal diffusion-associated barrier evolution mechanism to understand the metal/HC interfaces. To mitigate these detrimental effects, we strategically develop an interlayer strategy by introducing an ultrathin layer of molybdenum oxide (MoO3) between Ag and HC, which is found to effectively suppress the interfacial reaction, yielding highly reliable PSCs with instant high efficiency. This work provides new insights into understanding the metal-organic interfaces, and the developed interlayer strategy can be generally applicable to engineer other interfaces in realizing efficient and stable contacts.
Collapse
Affiliation(s)
- Xuanyi Cai
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Li Yang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jidong Deng
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Kun Wei
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Guozheng Du
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Zhide Luo
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Cuiping Zhang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Jinbao Zhang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
36
|
Yuan G, Xie W, Song Q, Ma S, Ma Y, Shi C, Xiao M, Pei F, Niu X, Zhang Y, Dou J, Zhu C, Bai Y, Wu Y, Wang H, Fan Q, Chen Q. Inhibited Crack Development by Compressive Strain in Perovskite Solar Cells with Improved Mechanical Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211257. [PMID: 36753745 DOI: 10.1002/adma.202211257] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Indexed: 05/17/2023]
Abstract
Metal halide perovskites are promising as next-generation photovoltaic materials, but stability issues are still a huge obstacle to their commercialization. Here, the formation and evolution of cracks in perovskite films during thermal cycling, which affect their mechanical stability, are investigated. Compressive strain is employed to suppress cracks and delamination by in situ formed polymers with low elastic modulus during crystal growth. The resultant devices pass the thermal-cycling qualification (IEC61215:2016), retaining 95% of the initial power conversion efficiency (PCE) and compressive strain after 230 cycles. Meanwhile, the p-i-n devices deliver PCEs of 23.91% (0.0805 cm2 ) and 23.27% (1 cm2 ). The findings shed light on strain engineering with respect to their evolution, which enables mechanically stable perovskite solar cells.
Collapse
Affiliation(s)
- Guizhou Yuan
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenqiang Xie
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qizhen Song
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Sai Ma
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Ma
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Congbo Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengqi Xiao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fengtao Pei
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiuxiu Niu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jie Dou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Cheng Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Bai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yiliang Wu
- Auner Technology Co., Ltd., Beijing, 100081, China
| | - Hao Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qunbo Fan
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
37
|
Nie T, Fang Z, Ren X, Duan Y, Liu SF. Recent Advances in Wide-Bandgap Organic-Inorganic Halide Perovskite Solar Cells and Tandem Application. NANO-MICRO LETTERS 2023; 15:70. [PMID: 36943501 PMCID: PMC10030759 DOI: 10.1007/s40820-023-01040-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Perovskite-based tandem solar cells have attracted increasing interest because of its great potential to surpass the Shockley-Queisser limit set for single-junction solar cells. In the tandem architectures, the wide-bandgap (WBG) perovskites act as the front absorber to offer higher open-circuit voltage (VOC) for reduced thermalization losses. Taking advantage of tunable bandgap of the perovskite materials, the WBG perovskites can be easily obtained by substituting halide iodine with bromine, and substituting organic ions FA and MA with Cs. To date, the most concerned issues for the WBG perovskite solar cells (PSCs) are huge VOC deficit and severe photo-induced phase separation. Reducing VOC loss and improving photostability of the WBG PSCs are crucial for further efficiency breakthrough. Recently, scientists have made great efforts to overcome these key issues with tremendous progresses. In this review, we first summarize the recent progress of WBG perovskites from the aspects of compositions, additives, charge transport layers, interfaces and preparation methods. The key factors affecting efficiency and stability are then carefully discussed, which would provide decent guidance to develop highly efficient and stable WBG PSCs for tandem application.
Collapse
Affiliation(s)
- Ting Nie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhimin Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaodong Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
38
|
Zhang H, Xiang W, Zuo X, Gu X, Zhang S, Du Y, Wang Z, Liu Y, Wu H, Wang P, Cui Q, Su H, Tian Q, Liu SF. Fluorine-Containing Passivation Layer via Surface Chelation for Inorganic Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202216634. [PMID: 36480237 DOI: 10.1002/anie.202216634] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Minimizing surface defect is vital to further improve power conversion efficiency (PCE) and stability of inorganic perovskite solar cells (PSCs). Herein, we designed a passivator trifluoroacetamidine (TFA) to suppress CsPbI3-x Brx film defects. The amidine group of TFA can strongly chelate onto the perovskite surface to suppress the iodide vacancy, strengthened by additional hydrogen bonds. Moreover, three fluorine atoms allow strong intermolecular connection via intermolecular hydrogen bonds, thus constructing a robust shield against moisture. The TFA-treated PSCs exhibit remarkably suppressed recombination, yielding the record PCEs of 21.35 % and 17.21 % for 0.09 cm2 and 1.0 cm2 device areas, both of which are the highest for all-inorganic PSCs so far. The device also achieves a PCE of 39.78 % under indoor illumination, the highest for all-inorganic indoor photovoltaic devices. Furthermore, TFA greatly improves device ambient stability by preserving 93 % of the initial PCE after 960 h.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Wanchun Xiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xuejiao Zuo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xiaojing Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Shiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Zhiteng Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yali Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15, East Road, North Third Ring, Chaoyang District, Beijing, 100029, P. R. China
| | - Peijun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Qingyue Cui
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Hang Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Qingwen Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457, Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
39
|
You S, Zeng H, Liu Y, Han B, Li M, Li L, Zheng X, Guo R, Luo L, Li Z, Zhang C, Liu R, Zhao Y, Zhang S, Peng Q, Wang T, Chen Q, Eickemeyer FT, Carlsen B, Zakeeruddin SM, Mai L, Rong Y, Grätzel M, Li X. Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science 2023; 379:288-294. [PMID: 36656941 DOI: 10.1126/science.add8786] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
High-quality perovskite light harvesters and robust organic hole extraction layers are essential for achieving high-performing perovskite solar cells (PSCs). We introduce a phosphonic acid-functionalized fullerene derivative in mixed-cation perovskites as a grain boundary modulator to consolidate the crystal structure, which enhances the tolerance of the film against illumination, heat, and moisture. We also developed a redox-active radical polymer, poly(oxoammonium salt), that can effectively p-dope the hole-transporting material by hole injection and that also mitigates lithium ion diffusion. Power conversion efficiencies of 23.5% for 1-square-centimeter mixed-cation-anion PSCs and 21.4% for 17.1-square-centimeter minimodules were achieved. The PSCs retained 95.5% of their initial efficiencies after 3265 hours at maximum power point tracking under continuous 1-sun illumination at 70° ± 5°C.
Collapse
Affiliation(s)
- Shuai You
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.,Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Haipeng Zeng
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yuhang Liu
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bing Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Min Li
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Lin Li
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xin Zheng
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Rui Guo
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Long Luo
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Zhe Li
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Chi Zhang
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, Jiangsu, China
| | - Ranran Liu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yang Zhao
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Shujing Zhang
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Qi Peng
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Ti Wang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Qi Chen
- i-Lab, CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, Jiangsu, China
| | - Felix T Eickemeyer
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Brian Carlsen
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.,Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, Hubei, China
| | - Yaoguang Rong
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xiong Li
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
40
|
Fully solution-processed phase-pure 3D/2D perovskite bilayer heterojunctions. Commun Chem 2023; 6:11. [PMID: 36697959 PMCID: PMC9839684 DOI: 10.1038/s42004-023-00812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
41
|
Wang C, Gao P. ‘Radicalize’ the Performance of Perovskite Solar Cells with Radical Compounds. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Ma Y, Han G, Yang M, Guo M, Xiao Y, Guo Y, Hou W. Inhibiting Li + migration by thenoyltrifluoroacetone toward efficient and stable perovskite solar cells. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02460h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Thenoyltrifluoroacetone (TTA) modifies the perovskite/spiro-OMeTAD interface to inhibit Li+ migration from the hole transport layer to the perovskite layer and improves the performance of perovskite solar cells.
Collapse
|
43
|
Duan Y, He K, Yang L, Xu J, Zhao W, Liu Z. 24.20%-Efficiency MA-Free Perovskite Solar Cells Enabled by Siloxane Derivative Interface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204733. [PMID: 36284478 DOI: 10.1002/smll.202204733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Suppressing defects at the interface between the TiO2 electron transport layer (ETL) and perovskite film is critical for high efficiency and stable perovskite solar cells (PSCs). Herein, a siloxane derivative diethylphosphatoethylsilicic acid (PSiOH) is developed to modify the interface of TiO2 ETL/FA0.83 Cs0.17 PbI3 perovskite. Comprehensive characteristics reveal that silicon hydroxyl (SiOH) in PSiOH can reduce surface defects, improve the electrical properties and optimize the energy band structure of TiO2 by forming a SiOTi bond, while the phosphate bond (PO) in PSiOH can passivate Pb-related defects on the perovskite bottom surface. Consequently, PSiOH-modified PSCs yield a remarkable power conversation efficiency of 24.20% and improved air, thermal, or illumination stabilities. This study provides insight into passivation defects at the buried interface for efficient and stable PSCs.
Collapse
Affiliation(s)
- Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Kun He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jie Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wenjing Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|